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Abstract

This work addresses the long-standing problem
of robustly learning precise temporal point event
localization despite only having access to poorly
aligned labels for training. To that end, we in-
troduce a novel loss function that relaxes the re-
liance of the training on the exact position of
labels, thus allowing for a softer learning of
event localization. We demonstrate state-of-the-
art performance against standard benchmarks in
challenging experiments.

1. Introduction
This work tackles the problem of precise temporal local-
ization of point events (i.e., determining when and which
instantaneous events occur) in sequential data (e.g. time se-
ries, video, or audio sequences) despite only having access
to poorly aligned annotations for training (see Figure 1).
This task is characterized by the discrepancy between the
noisiness of the training labels and the precision expected
of the predictions during inference. Indeed, while models
are trained on inaccurate data, they are evaluated on their
ability to predict event occurrences as precisely as possible
with respect to the actual ground-truth. In such a setting,
effective models have to infer event locations more accu-
rately than the labels they relied on for training. This re-
quirement is particularly challenging for most classical ap-
proaches that are designed to learn localization by strictly
mimicking the provided annotations. Indeed, as the train-
ing labels themselves do not accurately reflect the event lo-
cation, focusing on replicating these unreliable patterns is
incompatible with the overall objective of learning the ac-
tual ground-truth.

This work introduces a novel model-agnostic loss function
that relaxes the reliance of the learning process on the exact
temporal location of the annotations. This softer learning
approach inherently makes the model more robust to tem-
porally misaligned labels.
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Figure 1. Task illustration. Model training solely relies on noisy
labels that differ from the actual ground-truth, while the final in-
ference objective is the precise localization of events.

2. Related Works
The literature on temporal noise robustness is limited de-
spite the relevance of this issue. First, Yadati et al. (2018)
propose solutions combining noisy and expert labels;
however, these methods require a sizable clean subset
of annotations, unlike our approach. Second, while
Adams and Marlin (2017) achieve increased robustness by
augmenting simple classifiers with an explicit probabilis-
tic model of the noise structures, the effectiveness of the
approach on more complex temporal models still needs to
be demonstrated. Finally, Lea et al. (2017) perform robust
temporal action segmentation by introducing an encoder-
decoder architecture. However, the coarse temporal encod-
ing comes at the expense of finer-grained temporal infor-
mation, which is essential for the precise localization of
short events (e.g., drum hits). In this paper, rather than a
new architecture, we propose a novel and flexible loss func-
tion — agnostic to the underlying network — which allows
for the robust training of temporal localization networks
even in the presence of extensive label misalignment.

Classical Heuristic Our approach is closely linked to the
more classical trick of label smoothing or target smearing
(e.g., applying a σ̃2-Gaussian filter Φ̃σ2 to the labels yi)
which has been considered to increase robustness to tem-
poral misalignment of annotations (Hawthorne et al., 2017;
Schlüter & Böck, 2014). However, this slight modification
of the input data ultimately leads to several issues such as
location ambiguity and prediction entanglement (see full
discussion in Section 3.1). In contrast, our novel loss func-
tion does not suffer from any of these issues, while still
achieving a more robust localization learning.



Robust Temporal Point Event Localization through Smoothing and Counting

Figure 2. Our approach solves the inherent drawbacks of the clas-
sical trick of smoothing the labels only. Issue 1: ambiguous pre-
dictions of event locations require the use of additional heuris-
tics. Issue 2: close events cannot be easily disentangled. Issue 3:
awareness of past and future event occurrences is required to make
optimal predictions (e.g., left tail estimation for causal models).

3. The SoftLoc Model
3.1. Drawbacks of Labels Smoothing

Label smoothing (e.g., applying a Gaussian filter to the
point label) is a common and state-of-the-art methodology
in 2D image point detection applications where spatial un-
certainty must be dealt with, e.g., human pose estimation
(Tompson et al., 2014). This slight modification of the
labels converts the original point prediction problem into
a distribution prediction problem, as the smoothing trans-
forms the point labels into distributions. The models are
then trained to predict these distributions, which eventu-
ally have to be transformed back to point predictions using
hand-crafted peak picking heuristics. However, despite its
intuitive nature, this solution presents inherent drawbacks
when applied to temporal point localization (see Figure 2):

(Issue 1) As the model is designed to yield heatmap pre-
dictions that are spread out over several timesteps, addi-
tional heuristics (e.g. peak picking (Böck et al., 2013)) are
required to obtain precise point predictions. The learning

of point localization is thus not done in an end-to-end fash-
ion (see Figure A.1 for illustration).

(Issue 2) Even advanced peak picking struggles to dis-
entangle close events. For instance, a single maximum
might emerge in the middle of two events, thus significantly
harming the temporal resolution of the final predictions.

Even in a noise-free setting, by transforming the point tar-
gets into distributions, the optimal solution with respect to
the training loss (i.e., heatmap prediction) does not match
the goal of the pipeline (i.e., precise point prediction):

ŷopti (t) =

Ti∑
τ=0

yi(τ)Φ̃σ2(τ − t)

=
∑
τ≤t−1

yi(τ)Φ̃σ2(τ − t)︸ ︷︷ ︸
A

+yi(t)Φ̃σ2(0)

+
∑
τ≥t+1

yi(τ)Φ̃σ2(τ − t)︸ ︷︷ ︸
B

.

(1)

(Issue 3) The optimal prediction at any given time does
not only depend on previous event occurrences (Eq. 1 A),
but also on all closely upcoming events (Eq. 1 B). This im-
plies that correctly detecting an event is not enough; the
context — before and after — also has to be estimated ac-
curately. For instance, the optimal prediction value for a
given event occurrence is different whether it stands alone
or it is directly followed by other event occurrences. This
cross-influence from other timesteps is especially problem-
atic for causal models (i.e., models that make predictions
at time t only with data up to time t). Indeed, these models
have little or even no ability to integrate information from
future timesteps. Thus, for example, requiring them to es-
timate the left tail of the label distribution might compel
them to learn irrelevant features preceding the actual event
occurrence, leading to poor generalization.

The presence of strong label misalignment further worsens
all these issues as increased noise commonly warrants in-
creased smoothing, dispersing the label (and consequently
the prediction) mass even more.

3.2. Soft Localization Learning Loss

Smoothing Many of the drawbacks arising from the
asymmetric nature of the one-sided smoothing can how-
ever be alleviated by filtering not only the labels (i.e.,
ΦSM ∗ yi(·)), but also the predictions (i.e., ΦSM ∗ ŷi(·)) with
a softness parameter SM . The comparison of these two
smoothed processes yields a relaxed loss function for the
soft learning of the location that deals on its own with the
temporal uncertainty of the labels. Indeed, in such a setting,
the model is given point labels and directly infers point pre-
dictions in an end-to-end fashion without having to resort to
heatmaps nor distributions (see Figure A.1 for illustration);
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it is only the loss function that views these point labels and
point predictions as smoothed processes. In discrete time
settings, the loss can be written as:

LSLL(θ) =
∑
i

L
(
ΦSM ∗ ŷi,θ(·),ΦSM ∗ yi(·)

)
, (2)

with ΦSM a SM-Gaussian filter. For all experiments in Sec-
tion 4, L is set to the average local mean-squared error. The
learning is characterized as soft since the loss is not strictly
constraining in terms of precision or mass concentration.
Indeed, the mass of each event can be both scattered over
numerous timesteps and slightly shifted temporally without
any abrupt increase in loss. Thus, the model’s reliance on
exact label locations is relaxed.

Properties Symmetrically smoothing both the labels and
predictions directly solves several of the issues highlighted
in the previous section (see Figure 2). Indeed, in a noise-
free setting, the optimal predictions with respect to LSLL

are the original annotations themselves, i.e.,
ŷopti (t) = yi(t). (3)

Thus, the training objective and the task objective (i.e., pre-
cise point predictions) are aligned.

(Solves 3) Since the optimal behavior (with respect to
LSLL) is to predict events at the exact moment they oc-
cur (Eq. 3), there is no cross-influence across the different
timesteps anymore. Thus, smoothing both the labels and
predictions does not only simplify the localization learning
(compared to Eq. 1), but also allows causal models to deal
with uncertainty.

(Partially Solves 1 and 2) As points (rather than
smoothed heatmaps) are inferred, the prediction mass of
a particular event is not necessarily dispersed over time.
For instance, in noise-free settings, the point targets them-
selves are the solution to the optimization problem (Eq. 3).
However, LSLL is not a hard constraint against splitting a
detection into multiple lower-likelihood point predictions.

3.3. SoftLoc Loss

Counting Both the potential dispersion of the prediction
mass (i.e. prediction of a single event split into a series of
lower-likelihood triggers) and its direct consequences on
localization performance still need to be addressed. To that
end, we propose to leverage the properties of the event-
counting loss function defined in (Schroeter et al., 2019):

LMC(θ) = −
∑
i log

( ∑
A∈F

∏
l∈A

ŷi,θ(l)
∏
j∈Ac

(1− ŷi,θ(j))
)
,
(4)

where F is the set of all subsets of {1, ..., Ti} of size∑
k yi(k). Indeed, the loss exhibits an implicit strong

mass convergence property, which concentrates the scat-
tered prediction mass toward well-defined single points in
time. More precisely, this loss function highly penalizes
scattered low-likelihood predictions to the benefit of more

sparse high-likelihood predictions. For instance, given a
sequence with exactly one event occurrence, a unique pre-
diction with probability p = 0.9 would induce a loss of
− log(0.9), while two predictions of p = 0.45 would yield
a much higher contribution of − log(0.495), regardless of
the temporal position of the predictions.

Full SoftLoc Model Incorporating this mass convergence
loss as a regularizer to our soft localization learning loss
LSLL allows the model to directly achieve unique pre-
cise impulse-like localization (i.e. a single high likeli-
hood trigger per event), without weakening its noise ro-
bustness properties. Thus, this eliminates prediction tem-
poral ambiguity and disentanglement issues, as only a
single point prediction is outputted per event occurrence
(Solves 1 & 2). We define the SoftLoc loss as follow:

LSoftLoc (θ) =
(
1− ατ

)
LSLL(θ) + ατLMC(θ). (5)

Overall, when trained with this novel loss function, models
simultaneously softly learn to mimic the location annota-
tions, while converging the scattered mass toward single
impulse-like predictions. In this equation, ατ regulates the
predominance of the mass convergence against the soft lo-
cation learning (for training iteration τ ).

End-to-end Learning of Localization One of the key fac-
tors of the predominance of the deep learning models over
classical ones relies on their ability to solve problems in
an end-to-end fashion, without the need to resort to par-
tial optimization or hand-crafted heuristics. In contrast to
more classical approaches (see Section 3.1), our proposed
method is an end-to-end solution to the problem of tem-
poral localization in the presence of misaligned labels (see
Figure A.1 for illustration) and thus can then be expected
to better serve the task at hand.

4. Experiments
In order to demonstrate the effectiveness and flexibility of
our approach, a broad range of challenging experiments are
conducted (video action detection and music event detec-
tion). Implementation details1.

4.1. Golf Swing Sequencing in Video

In this section, we replicate the golf swing event detection
experiment from (McNally et al., 2019) using either the
original cross-entropy loss (CE), the one-sided smoothing
(oSS), or our proposed loss (LSoftLoc) for training (leaving
everything else the same). The task consists in the precise
detection (within a one frame tolerance) of eight different
golf swing events in video extracts (e.g., address and im-
pact). To assess robustness to noisy annotations, rounded

1https://github.com/SchroeterJulien/2020-ICML-UDL-
Workshop-Robust-Temporal-Point-Event-Localization.git
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Table 1. Golf Swing Action Detection. Performance comparison
with respect to various label misalignment levels bN (0, σ2)e.
The cross-validated (4-folds) mean accuracy is reported.

LOSS

CE
oSS

LSOFTLOC

σ = 0 1 2 3 4

68.1 60.4 51.6 43.1 36.9
69.1 66.2 60.6 54.7 50.7

67.2 68.0 65.6 58.6 54.2

normally distributed misalignments (i.e., εm ∼ bN (0, σ2)e)
are applied to the event timestamps of the training samples,
while the test labels are kept intact for unbiased inference.

Results Table 1 (a) confirms the intuitive understanding
that the cross-entropy (CE) is not well suited to effectively
deal with label misalignment. Indeed, we observe here that
attempting to strictly mimic unreliable annotations leads to
poor generalization performance. The results further reveal
that even just one of the issues presented in Section 3.1
(e.g., here prediction ambiguity) can negatively impact the
prediction accuracy, as shown by the significant perfor-
mance gap between our approach (LSoftLoc) and the one-
sided smoothing (oSS) in noisy settings. Indeed, while our
approach yields sharp predictions, the oSS predictions are
highly ambiguous as illustrated in Figure 3. In strict set-
tings with reduced error tolerance, this lack of preciseness
can certainly lead to suboptimal performance. (Even more
clear-cut predictions can be obtained for LSoftLoc by train-
ing longer than the predefined 10k iterations, which would
allow for a full convergence of the mass convergence loss.)

4.2. Piano Onset Experiment

Piano transcription and more specifically piano onset de-
tection is a difficult problem, as it requires precise and
simultaneous detection of hits from 88 different poly-
phonic channels. In this section, we reproduce the ex-
periment from Hawthorne et al. (2017) using the MAPS
database (Emiya et al., 2010). (Only onsets are considered
for the comparison.) Once again, to evaluate the robust-
ness, the training labels are artificially perturbed according
to a normal distribution (εm ∼ N (0, σ2)).

Benchmarks Three additional classical benchmarks based
on the state-of-the-art model (on clean data) proposed by

50 75 100 125

CE

50 75 100 125

oSS

50 75 100 125

Ours

Figure 3. Out-of-Sample Golf Swing Action Predictions. Ours:
sharp predictions, oSS: ambiguous predictions, CE: multiple
peaks. (Test sequence: 0, split: 1, noise level: σ = 3 frames.)

(Hawthorne et al., 2017) are considered: first, the origi-
nal model itself which is highly representative of models
aiming for optimal performance with little regard for anno-
tation noise (ORIGINAL); second, a version with extended
onset length (i.e., target smearing) (EXTENDED); finally, a
version trained with the soft bootstrapping loss proposed
by (Reed et al., 2014) instead of the cross-entropy for in-
creased robustness.

Architecture, Training, and Evaluation See B.2.

Results As summarized in Table 2, our proposed SoftLoc
approach displays strong robustness against label misalign-
ment; in contrast to all benchmarks, the performance ap-
pears almost invariant to the noise level. For instance,
at σ = 150ms, only 26% of training labels lie within the
50ms tolerance (see Figure B.2 in Appendix B.1 for il-
lustration); in such a context, the score achieved by our
SoftLoc model (i.e., ∼ 75%) is unattainable for classi-
cal approaches, which do not take label uncertainty into
account and attempt to strictly fit the noisy annotations.
While standard tricks, such as label smoothing (oSS) or
label smearing (EXTENDED) slightly improve noise robust-
ness, their effectiveness is limited. The results also reveal
that, as the noise level increases, the addition of the mass
convergence regularizer LMC to LSLL is key to achieve
strong robustness. Finally, a fixed parameter set is used
throughout this experiment, which explains the small per-
formance gap between our approach and (Hawthorne et al.,
2017) for the noise-free case. This could easily be reme-
died by adapting the loss settings (e.g., ατ = 1, SM2 → 0ms

and L (·) = − log(1− |·|) as our loss is a strict generalization
of the standard cross-entropy.

5. Conclusion
In this work, we introduced a novel loss function that
allows for the training of precise temporal localization
models even in the presence of poorly aligned annota-
tions. While a softer learning of event localization is al-
ready made possible through classical heuristics (e.g., la-
bel smoothing), we showed that these approaches inher-
ently suffer from multiple drawbacks (e.g., entanglement
and ambiguity of predictions). We demonstrated the effec-
tiveness of our approach in a number of challenging tasks.

Table 2. Piano Onset Detection. Performance comparison with
respect to label misalignment distribution εm ∼ N (0, σ2).

LOSS

Haw. (ORIGINAL)
Haw. (EXTENDED)
Haw. (BOOTSTRAP)
oSS

LSLL

LSOFTLOC

σ = 0ms 50ms 100ms 150ms 200ms

82.1 38.5 2.0 0.5 0.2
77.7 68.0 30.7 9.2 3.9
79.1 74.2 32.5 15.4 6.9
73.1 70.5 59.2 41.3 28.0

76.1 76.0 75.1 66.9 46.9
76.0 76.3 75.9 74.0 73.7
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A. End-to-End Learning of Localization
Figure A.1 presents the clear contrast in terms of localiza-
tion learning between our proposed approach and classical
ones. Indeed, training with our novel loss function allows
for an end-to-end learning of localization without relying
on additional heuristics to obtain clear-cut point predictions
in time.

Figure A.1. Modeling novelty. By smoothing both the labels and
predictions, our model directly infers point predictions rather than
distributions. Among other things, this modification allows for an
end-to-end learning of localization.
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(a) Noise-free training data (σ = 0ms)

(b) Very noisy training data (σ = 100ms)

(c) Extremely noisy training data (σ = 200ms)

Figure B.1. Out-of-sample predictions of our SoftLoc model
trained on data subject to various levels of noise, ranging from
(a) the noise-free to (d) the extremely noisy setting. (Schubert –
Piano Sonata in A minor, D 784, Opus 143, 3. Mov)

(a) Noise-free training data (σ = 0ms)

(b) Very noisy training data (σ = 100ms)

(c) Extremely noisy training data (σ = 200ms)

Figure B.2. In-sample performance of the noisy training labels
themselves (as predictions) when compared to the clean ground-
truth. (Liszt – Hungarian Rhapsody No. 10)
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B. Piano Onset Detection
B.1. Noisy Labels and Ground-Truth Discrepancy

To further illustrate the complexity of the localization task
when annotations are subject to misalignment, we consider
the training labels as predictions and then compare them
to the clean ground-truth. Figure B.2 displays an exam-
ple of the quality of the training labels. Obviously, in the
noise-free setting (i.e., σ = 0ms), the localization is spot-
less as the training labels and the ground-truths are identi-
cal. However, as the noise level increases, the proportion
of labels that stay within the 50ms tolerance window de-
creases significantly. More precisely, the performance (i.e.,
F1-score) of the labels themselves is 68.2%, 39.8% and
23.7% for σ equal to 50ms, 100ms and 200ms respectively.

This contrast with the performance of our approach, which
appears almost invariant to the noise level (see Figure ??).

B.2. Implementation Details

The network is comprised of six convolutional layers (rep-
resentation learning) followed by a 128-unit LSTM (tem-
poral dependencies learning) and two fully-connected lay-
ers (prediction mapping). The network is trained us-
ing mel-spectrograms (Stevens et al., 1937) and their
first derivatives stacked together as model input, while
data augmentation in the form of sample rate varia-
tions is applied for increased robustness and performance.
The models are evaluated on the noise-free test set us-
ing the mir eval library (Raffel et al., 2014) with a
50ms tolerance (Hawthorne et al., 2017). (SM = 100ms,
ατ = max(min( τ−10

5

105
, .9), .2).)


