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Abstract

Models derived from distributions of order-statistics are useful for
modelling ranked data. The well-known Bradley-Terry and Plackett-
Luce models can be derived from the order statistics of the exponen-
tial distribution but cannot handle ties. However, ties often occur in
sports, and the ability to accommodate them leads to more useful rank-
ing models. In this paper, we use discrete distributions, principally the
geometric distribution, to obtain modified Bradley-Terry and Plackett-
Luce models and some others that allow tied ranks. Our methodol-
ogy is introduced for some mathematically tractable and some less
tractable distributions and is illustrated using test match cricket.
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1 Introduction

Ranked data arise in many subject areas, such as politics, voting, market
research, food preference, medical treatments, etc., and a major area is
sport.

Distributions of order-statistics provide a fruitful class of models for
ranked data. Here, the ranks are imagined to be ranks of finishing times in a
race with n competitors, so that with finishing times T1 · · · Tn the probability
of the ranking 1 · · · n is r123···n = Prob(T1 < T2 < T3 · · · < Tn). Finishing
times are usually assumed independent, so that in this case with probability
density of finishing time fi(ti) for the ith competitor, we have that

r123···n =

∫

∞

0
f1(t1) dt1

∫

∞

t1

f2(t2) dt2 · · ·
∫

∞

tn−1

fn(tn) dtn. (1)

Naturally, these densities are specified from the same family, e.g. the ex-
ponential distribution f(x) = λ exp(−λx), but with different ‘strength’ or
rate parameters λi (for the ith competitor). Using (1) with this distribution
in the simplest case where n = 2, we have r12 = λ1/(λ1 + λ2). This is the
Bradley-Terry (BT) model.

The integral (1) is only analytically solvable for a few distributions, the
exponential and some distributions based on it, and for n > 2 a concise
analytic solution is only available for the exponential distribution itself, giv-
ing the Plackett-Luce (PL) model. Baker (2019) gives details of analytic
solutions and numerical computations for a variety of distributions.

In sporting data, ties often occur. For example, we could classify a soccer
result simply as a home win, an away win, or a tie. Golf scores are also often
tied. Ties or draws also occur in other sports, such as rugby (rare), cricket,
and chess, where at the highest level over half of games end in a draw.
In some sports as in soccer, there is a simple, explicit score. In cricket
there is a more complicated score (and margin of victory), and in some
games such as chess the idea of a score is purely notional. Outside sport, in
preference data, ties are much less common. For example, in a preference
study soft drinks might be ranked in order of preference, but in a typical
study consumers cannot express indifference. The methodology described
here allows such tied data to be analysed, and so preference studies could
become less prescriptive.

To generate a model with a theoretical foundation that can cope with
ties, we propose using a discrete distribution for the family of survival dis-
tributions in (1). With probabilities piji that the finishing time for the ith
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competitor is ji, we have

r123···n =

∞
∑

j1=0

p1j1

∞
∑

j2=j1+1

p2j2 · · ·
∞
∑

jn=jn−1+1

pnjn . (2)

This gives the probability of a ranking with no ties. Using the notation that
the indices of tied competitors are enclosed in parentheses, the probability
that competitor 1 and competitor 2 are tied, but that none of the others are
tied, is

r(12)3···n =

∞
∑

j1=0

p1j1p2j1

∞
∑

j3=j1+1

p3j3 · · ·
∞
∑

jn=jn−1+1

pnjn,

and so on. Hence using a discrete distribution instead of a continuous one
in the order-statistics model yields a class of models for ranked data that
can accommodate tied ranks.

Thus, intuitively, if two competitors are ranked using a continuous mea-
sure such as time-taken, they cannot tie under an order-statistics model
because their respective times-taken cannot be exactly equal. Whereas, if
they are ranked using a discrete measure, such as whether they are fast or
slow, then a tie is possible (either if both are fast or if both are slow).

Turning to management, order-statistics based models using discrete dis-
tributions can model data of interest, such as consumer preference data.
Here the competitors are, for example, competing brands of soft drink. Con-
tests then become judgements made by individual consumers. Sometimes
items are compared in subsets, for example different consumers might rank
different subsets of (say) three different product brands. This avoids giving
respondents unduly demanding tasks. Covariates must often be included in
the models, as is the case with sport. Vigneau et al (1999) give an account.

These various cases can be modelled using discrete distributions, so that
‘no preference’ becomes an option, and the ‘competitor strengths’ can be
found for example by fitting the discrete model using maximum-likelihood.
In general, existing methodologies can be extended to allow indifference
between products.

There is quite a lot of previous work on tied-ranks. Glenn and David
(1960) modified the Thurstone-Mosteller model to allow small differences to
become ties, and Rao and Kupper (1967) corrected the BT model similarly
by assuming that small values of ln(λ1)− ln(λ2) would be declared ties. This
led to formulae r12 = λ1/(λ1 + φλ2), r(12) = λ1λ2(φ

2 − 1)/(λ1 + φλ2)(φλ1 +
λ2), where φ ≥ 1. Beaver and Rao (1973) generalized the above work to
ties when there are three competitors. Kuk (1995) applied the approach of
Glenn and David to football.
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Davidson (1970) gave an ad hoc correction to the BT model for ties, i.e.
r12 = λ1/(λ1 + λ2 + ν

√
λ1λ2) where ν ≥ 0, so that r(12) = ν

√
λ1λ2/(λ1 +

λ2 + ν
√
λ1λ2).

In related work, Lengyel (2009) considered the gambler’s ruin problem
allowing for ties. DeWart and Gillard (2019) apply the BT model to cricket,
where draws occur but do not depend strongly on team strengths.

Other attempts to do inference in the presence of ties do not introduce
an extra parameter. Su and Zhou (2006) point out a similarity between the
BT model and the Cox proportional hazards model. Here ties can be dealt
with using Cox’s exact method or be broken in all possible ways with equal
probability. Baker and McHale (2015) analyse golf tournaments assuming
that ties can be broken in all possible ways. The drawback of this type of
approach is that although inference about player or team strengths can be
made, the probability of a tie cannot be forecast. For that, a model that
accommodates ties is needed.

The next section introduces this type of model, and in particular we
derive modified BT and PL models using the geometric distribution. We
make some general points about modelling ties, and then more complicated
models from distributions related to the geometric distribution are discussed.
Finally, computations are described for discrete distributions that should
yield realistic models, but for which analytic solutions are impossible. We
use test-match cricket, where draws are relatively frequent, to illustrate an
application of the model. We finish with some conclusions.

Note, throughout this paper we shall use the terms ‘draw’ and ‘tie’ inter-
changeably, although in some sports they are perceived as distinct outcome
types, e.g. test-match cricket. Thus here a draw or tie between two com-
petitors in a match is an outcome such that the two competitors cannot be
separated on ability. One cannot be ranked above or below the other.

2 Models derived with the geometric distribution

The geometric distribution has probability mass function (pmf) pk = (1 −
p)pk forK ∈ {0, 1, 2 · · · }, with mean p/(1−p), and is the discrete analogue of
the exponential distribution. The survival function Sk =

∑

∞

n=k+1 pn = pk+1.
In a familiar example, that of tossing a biased coin with probability p

of getting ‘tails’, K + 1 is the number of tosses before a head is obtained
(because the count starts at zero). In a game such as golf, K is the score,
and high p is bad, so that the reciprocal of the mean score, (1− p)/p, would
be a possible measure of player ability. Applying (2) with n = 2, we have
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that

r12 =
∑

j>i

p1ip2j =

∞
∑

i=0

p1iS2i = (1− p1)p2

∞
∑

i=0

(p1p2)
i = (1− p1)p2/(1− p1p2).

The tied probability

r(12) = (1− p1)(1 − p2)
∞
∑

i=0

(p1p2)
i = (1− p1)(1− p2)/(1 − p1p2),

and of course r21 = p1(1− p2)/(1 − p1p2).
This does not yet look much like the BT model. Nonetheless, the BT

model can be obtained as follows. We take strength λi = (1 − pi)/pi. Note
that (1− p1p2) = p1(1− p2)+ p2(1− p1)+ (1− p1)(1− p2). It can be shown
that r12 = λ1/(λ1 + λ2 + λ1λ2), r(12) = λ1λ2/(λ1 + λ2 + λ1λ2). The full
derivation is simple but laborious and is omitted for brevity. As pi → 1, the
strengths go to zero with their ratio constant, r(12) → 0, and the BT model
is regained.

This is the tied BT model for sports where the lowest score wins, such
as a round of golf. For sports where highest score wins, the definition is
reversed, so that λi = pi/(1 − pi). Using (2) again, we now have

r12 = λ1/(λ1 + λ2 + 1), r(12) = 1/(λ1 + λ2 + 1). (3)

Now as the pi → 1, the strengths go to infinity, and again the BT model is
regained.

When fitting models by likelihood-based methods, one can of course
estimate the strengths λi or the probabilities pi. In the simplest case, there
are several games between the same two teams over a short period, so that
strengths can be assumed constant. We then have estimates p̂12, p̂t, p̂21,
and maximum likelihood or the method of moments gives p̂1 = p̂21/(1− p̂12)
etc.

The probabilities for the 3-competitor case are:

r123 =
(1− p1)(1− p2)p2p

2
3

(1− p2p3)(1 − p1p2p3)
,

r(12)3 =
(1− p1)(1− p2)p3

1− p1p2p3
,

r1(23) =
(1− p1)(1− p2)(1 − p3)p2p3

(1− p2p3)(1− p1p2p3)
,
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r(123) =
(1− p1)(1− p2)(1− p3)

1− p1p2p3
.

In general, the probability L of one of the patterns of score can be found
numerically or symbolically as follows:

1. Set up an array giving the number of competitors at each distinct
score, e.g. for the 4 patterns just quoted, these arrays would hold 111,
21, 12, 3 respectively. Let there be M elements s1 · · · sM .

2. Set the probability L =
∏n

i=1(1− pi), where n is the number of com-
petitors.

3. For j from 1 to M :

(a) let m = 1+
∑j−1

k=1 sk, where an empty sum with upper suffix less
than the lower counts as zero.

(b) If j > 1, L → L∏n
t=m pt.

(c) L → L/(1−∏n
t=m pt).

This would be the best method for numerically computing probabilities of
rankings or deriving analytic expressions for more than 3 competitors.

Note that sometimes the bottom m competitors out of n are not ranked,
i.e. we are only interested in ranking (say) the top three players. This
situation can be dealt with under the exponential model (1) and also under
the geometric model (2). Because the survival function pk+1 is simple, (2)
can be evaluated. For example, when the top 3 competitors are ranked
out of m+ 3, the term 1 − p1p2p3 appearing in the numerators of r123 etc.
becomes 1−∏m+3

s=1 ps.

3 Theoretical considerations

3.1 The number of tied cases

With n > 2 competitors there are 2n−1 distinct patterns of tie. Thus,
representing a tie by a link between competitors, each of the n − 1 links
can be present or absent. For example, for n = 3 there are 4 patterns, 123,
1(23), (12)3, (123).

The number of different results possible is 3 for n = 2, 13 for n = 3,
and 75 for n = 4. The number for general n is the ordered Bell number or
Fubini number. Usually thought of as the number of ways n non-identical
balls can be put into identifiable boxes with at least one ball per box, it has
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also been used to give the possible number of rankings including ties in e.g.
a horse race (De Koninck, 2009).

3.2 The different types of sport

As mentioned, sports can be dichotomized into those where the smallest
score wins, such as racing and golf, and those where the highest score wins,
as in ball-games. For a given order-statistics distribution, ranking models
derived from (1) are in general different in the two cases. Hence one must
be careful to choose a sensible model, based on a discrete distribution that
approximates the reality. In the continuous case, one obtains the BT model
using the exponential distribution in (1) under either scoring system, but
the PL model with n > 2 differs in the two cases. In the discrete case,
the probability of a tie is a different function of strengths even in the 2-
competitor case. The notation used here is that e.g. r12 is the probability
that competitor 1 wins, whether through low or high score.

Sports can also be dichotomized in another way important for ranking.
In stroke-play in golf or time-trials in bicycle racing for example, a competi-
tor performs as well as he or she can, independently of other competitors.
This is an approximation, because competitors may have some knowledge
about the performance of others during the event and this may affect per-
formance. Order-statistics models assume this independence.

However, in match play, a competitor’s performance (score) depends on
the strength of the other competitor. For example, in the case of soccer this
interaction is usually modelled by taking mean goals µ1 for team 1 as the
ratio of that team’s offensive strength λ1 to the defensive strength η2 of the
opposing team, team 2, i.e. µ1 = λ1/η2. If we simplify by taking η1 ∝ λ1

etc., the formula for mean goals µ1 scored by team 1 would be

µ1 = βλ1/λ2, (4)

where β > 0, the common ratio of offensive to defensive strength, is to be
estimated.

Taking the tied model (3) and replacing the means λ1, λ2 by µ1 =
βλ1/λ2, µ2 = βλ2/λ1, we have that

r12 =
λ2
1

λ2
1 + λ2

2 + β−1λ1λ2
.

Since λ1, λ2 are just unknown strengths, we can set λ →
√
λ to obtain

r12 =
λ1

λ1 + λ2 + β−1
√
λ1λ2

.
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This is precisely the ad hoc model of Davidson (1970). Hence this model
can be derived more theoretically, as an order-statistics model based on the
geometric distribution.

3.3 Inference for discrete and continuous models

A feature of continuous models derived from (1) is that the probability of
a ranking depends only on ratios of strength parameters. This is because
survival distributions must have a scale parameter, and a change of variables
can be made that rescales all n strengths but does not change the value of
the integral. However this cannot be done for discrete-distribution models,
in fact the only transformation that preserves the lattice nature of the dis-
tribution is to change the support of the distribution from zero; this would
make the geometric model more applicable to golf, for example. Hence it
can be seen that effectively, as an extra parameter has been added to model
the probabilities of ties, there are now n strengths instead of n−1 ratios. As
the means of the discrete distributions go to infinity, the sums in (2) tend
to integrals, and the continuous score model with no ties is regained. Hence
(2) can model heavily or lightly-tied data. Thus, as all strengths tend to
zero, all scores are tied at zero.

Furthermore, statistical inference is easier than for the no-ties continu-
ous case, as now all the strengths or probabilities pi can be estimated. In
the no-ties case, only ratios of strengths matter, so one strength must be
held fixed. However, when tracking player or team strengths through time,
higher strengths may just mean fewer draws. It would still be necessary
then to display team strengths relative to the average strength. Otherwise,
increasing strengths could just mean that there are fewer ties for whatever
reason.

This situation does not apply to sports where (4) holds. In this case,
strength ratios feature as in continuous models, plus an additional parameter
β, so that if β → ∞ there are no ties.

3.4 Further modelling of ties

Kuk (1995) and DeWart and Gillard (2019) discuss modelling win/lose/tie
data in soccer and cricket respectively, where teams can have a ‘strength to
draw’ so that draws occur more or less often than a simple model would pre-
dict. In the context of order-statistics models for team sports with offensive
and defensive strength, it is merely necessary to allow each team a unique
defensive strength to allow highly variable numbers of ties. Clearly, if both
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teams play a defensive game, few goals are scored and there are many tied
matches. Hence the formulae

µ1 = λ1/η2, µ2 = λ2/η1 (5)

are used. Inference can proceed by allowing all the ηi to be free, when the
parameter β is not needed.

For the model arising from using the geometric distribution, we now have
p1/(1 − p1) = θλ1/η2, p2/(1 − p2) = λ2/η1 where θ is the home-advantage
parameter, giving the model:

r12 =
θλ1/η2

1 + θλ1/η2 + λ2/η1
, (6)

r21 =
λ2/η1

1 + θλ1/η2 + λ2/η1
,

r(12) =
1

1 + θλ1/η2 + λ2/η1
.

A good measure of overall or total strength is s1 = λ1η1, in that r12 > r21
if and only if λ1η1 > λ2η2. We call a1 = λ1/η1 the team 1 aggressiveness.
If both teams have equal total strength s, then r12 = 1/(2 + (a1a2)

−1/2), so
an aggressive team is less likely to draw.

3.5 Relation between continuous and discrete models

It is known that the geometric distribution is a discrete case of the expo-
nential distribution, and the negative binomial model is the discrete case
of the gamma distribution, so a negative binomial order-statistic model is
a discrete version of the model of Stern (1990). For the negative binomial,
the support is K ∈ {0, 1, 2, 3 · · · } and the pmf is

pk =
Γ(k + α)

k!Γ(α)
(1− p)αpk, (7)

where α > 0 need not be an integer. The mean is αp/(1 − p). We now
look at the transition to the continuous limit. Given a spacing h between
lattice points, the Euler-Maclaurin theorem gives the difference between a
sum and the corresponding integral as being O(h). The scale factor (and
hence the mean µ) of the discrete distribution is allowed to tend to infinity,
so that hµ remains finite. As h → 0 we obtain the continuous case (1). This
of course assumes that the mean can tend to infinity, which it cannot for
some discrete distributions, e.g. the Salvia-Bollinger distribution discussed
in section 4. Hence models based on such distributions do not include the
continuous (zero-tie) case.
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4 Other tractable models

These are nearly all variants of the geometric distribution, such as the sum
of two or more geometric distributions and the exponentiated geometric
distribution.

The sum of two geometric distributions is a negative binomial distribu-
tion, called here a Pascal(2) distribution. The pmf is pk = (1−p)2(k+1)pk,
and it is possible to evaluate (2) for simple cases using simple algebra for
series summation. The results are:

r12 =
2(1 − p2)

2(1− p2)p2
(1− p1p2)3

+
(1− p1)

2p22
(1− p1p2)2

,

r(12) =
(1− p1)

2(1− p2)
2(1 + p1p2)

(1− p1p2)3
.

These unintuitive formulae would be suitable for sports where a low score is
good, and for the more common case where a high score is good, r12 ↔ r21.
This is the discrete version of the gamma model used by Henery (1983) and
Stern (1990). Another way to find these formulae is to remark that the
Pascal(r) probabilities are differentials of geometric probabilities:

qk =

(

k + r − 1

k

)

(1− p)rpk =
(1− p)r( d/dp)r−1pk+r−1

(r − 1)!
,

so that, interchanging series summation and differentiation, any BT or PL-
type probability R can be converted to the corresponding probabiity Q using

Q = {(r − 1)!}−n{
n
∏

i=1

(1− pi)
r(

∂

∂pi
)r−1pr−1

i } R
∏n

i=1(1− pi)
.

This does not seem easier by hand but a computer algebra package would
evaluate the probabilities more easily in this form.

The exponentiated geometric distribution has distribution function Fk =
(1−pk+1)γ for γ > 0. When γ = 1 we regain the geometric distribution, and
when γ = 2 we have Fk = 1−2pk+1+p2k+2 or qk = 2(1−p)pk − (1−p2)p2k,
a negative mixture of two geometric distributions. This distribution has a
mode. Using (2) the probabilities

r12 = (1− p1){
4

1 − p1p2
+

(1 + p1)p
2
2

1− p21p
2
2

− 2
(1 + p1)p2
1− p21p2

− 2
p22

1− p1p22
},

r(12) = (1−p1)(1−p2){
4

1 − p1p2
+
(1 + p1)(1 + p2)

1− p21p
2
2

−2
1 + p1
1− p21p2

−2
1 + p2
1− p1p22

}
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are obtained.
Finally, we briefly mention the Salvia-Bollinger distribution (ibid, 1982),

because here r12, r(12) can be written simply, albeit in terms of special func-

tions. The pmf is pk = ck{1−c/(k+1)}/k!, and Prob(K ≥ k) ≡ Sk = ck/k!,
for K ∈ {0, 1, 2 · · · } and 0 < c < 1. Here (2) can be evaluated for n = 2,
giving

r12 =
√

c2/c1I1(2
√
c1c2) + 1− I0(2

√
c1c2),

r(12) = 2I0(2
√
c1c2)− 1− c1 + c2√

c1c2
I1(2

√
c1c2),

where I0, I1 are modified Bessel functions of the first kind.
Given that modified Bessel functions are quick to compute, this looks an

interesting possibility. However, apart from the lack of a probabilistic basis,
it has the problem that for equally matched competitors, the probability of
a tie cannot be lower than approximately 0.33, which occurs at c1 = c2 =
0.7725. This is a little too high to model football matches. However, a left-
truncated and left-shifted distribution with Sk = n!ck/(k + n)! can rectify

this problem. The pmf is pk = n!ck

(k+n)!{1− c/(k + n+ 1)}, so that c ≤ n+ 1.
With n = 1, the minimum percentage of ties for equally-matched teams is
25.5. The probabilities are

r(12) → {r(12) − (1− c1)(1− c2)}/c1c2,

r12 → {r12 − (1− c1)c2}/c1c2.
This distribution is perhaps best regarded as a mathematical curiosity, and
the next section deals with more realistic distributions.

5 Computation for intractable models

5.1 The Poisson distribution

The Poisson distribution is a good model for scores in many ball games,
where each side independently scores following a Poisson process. This ig-
nores many possible effects, such as competitors playing differently when
trailing their opponents. Strengths could be taken as the means µ1, µ2, or
(better) (4) or (5) can be used. Home advantage θ multiplies the mean for
the home team.

In soccer, the Poisson model is indeed a reasonable approximation, but
there might be more ties than it would predict. However, this is not a prob-
lem for the ranking model, where the proportion of ties is adjustable, but
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one should be wary of taking µ̂1, µ̂2 as estimates of mean goals scored. These
quantities may have been scaled down to accommodate the high proportion
of ties.

Let the Poisson means be µ1, µ2, and take the higher score as denoting
a win. Then

r(12) = exp(−µ1 − µ2)

∞
∑

i=0

(µ1µ2)
i/i!2.

Also,

r12 = exp(−µ1 − µ2)

∞
∑

i=0

µi
2

∞
∑

j=i+1

µj
1/j!. (8)

This can be evaluated by truncating the sums at some large number N
such as 100, and proceeding as per Baker (2019) for the continuous case.
Thus, starting from zero and going up to N, Si = exp(−µ1)

∑N
j=i+1 µ

j
1/j!

is tabulated. Then r12 = exp(−µ2)
∑N

i=0 µ
i
2Si/i!. The Poisson sums can be

rescaled to unity using S0 = 1 etc., so that this gives the exact result for a
truncated Poisson distribution.

The probabilities can be written in terms of special functions, as

r(12) = exp(−µ1 − µ2)I0(2
√
µ1µ2),

where I0 is the modified Bessel function of the first kind. Using the relation

∫ µ

0

yn exp(−y) dy

n!
=

∞
∑

j=n+1

µj exp(−µ)

j!
,

we have from (8) that

r12 = exp(−µ2)

∫ µ1

0
I0(2

√
µ2y) exp(−y) dy. (9)

Which method of computation is faster and more convenient is moot, and
depends on which computing platform is used.

Note that r12, r(12) can be derived from the Skellam distribution (the
difference of two Poisson r.v.s X1,X2 ) although the useful result (9) for
Prob(X1 > X2) does not seem to appear in the literature. The distribution
is applied directly to goal difference in soccer in Karlis and Ntzoufras (2009).

The Poisson distribution with mean µ tends to normality as µ → ∞, and
twice the square root of the random variable tends to standard normality

fast. The probability r12 → Φ{2(µ1/2
1 − µ

1/2
2 )}, where Φ is the normal
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distribution function. It does not seem that this is a ratio of strengths as
it should be, but writing µ1/2 = ln(s), we have that r12 = Φ(2 ln(s1/s2)), a
Thurstonian model, so this is still a ratio of strengths when the strengths
are defined as s = exp(µ1/2).

5.2 General distributions

In general, the computation of probabilities of results must be done numer-
ically. A useful distribution for the general case is the negative binomial,
which has one extra parameter α besides the measures of strength for each
competitor. The pmf is given in (7). This is a distribution that includes
useful special cases such as the geometric (α = 1) and the Poisson (α → ∞
and p → 0). Computation would be done using (2), somewhat analogously
to the algorithm in section 2. An algorithm is:

1. Set up an array giving the number of competitors at each distinct score
as in section 2. Let there be M elements s1 · · · sM .

2. Set S0 · · · SN to 1 for N ‘large’, e.g. 100.

3. for j from M down to 1:

(a) let m = 1+
∑j−1

k=1 sk, where an empty sum with upper suffix less
than the lower counts as zero. The probabilities to be used in
this step are pm · · · pm+sj−1.

(b) For k from N down to 0, compute Ak = Sk
∏m+sj−1

t=m ptk and set
Sk → ∑N

i=k+1Ai. These two operations can be done in one loop.

4. The required probability is S0.

5. It is possible to cumulate all probabilities Tm =
∑N

k=0 pmk and so make
a correction S0 → S0/

∏n
m=1 Tm.

6 Example

Test match cricket was used to illustrate some of the models presented here.
Test match results were collected from the ‘Cricinfo’ results archive (ESPN,
2020). Data were taken as win/draw/lose. Results of all matches from
1980-2019 were analysed, excluding those involving Ireland or Afghanistan
who played very few games. This left 10 teams and 1480 matches in total
over the period. The method of modelling draws in detail in section 3.4
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was followed. Here each team has an attacking strength λ and a defensive
strength η. Defensive strength can be taken as proportional to attacking
strength, in which case the model reduces to the BT model with Davidson’s
correction for ties, or defensive strengths η can be ‘floated’ (allowed to vary).
The models used were the BT model (6) and the Poisson model. It is
convenient to reparameterize to ‘total strength’ λη and ‘aggressiveness’ λ/η.
As pointed out in section 3.4, higher total strength is what makes a team
more likely to win than its opposing team. Aggressiveness or defensiveness
is a playing style that does not by itself change the odds of winning, but
aggressiveness does reduce the probability of a draw. Because the model
with variable η generalizes the model where λ/η = β, it follows that 9
extra parameters are used. The model was fitted by maximum-likelihood,
using a NAG (Numerical Algorithms Group) function minimiser called from
a fortran program. Standard errors were found from the Hessian matrix,
obtained by numerical differentiation. England were taken as the baseline
team, with strength unity, so all strengths are relative to England.

It is clear from table 1 that the variable-η model fits the results data
significantly better. Taking the BT model, we have X2[9] = 33.67, showing
that the variable defensive parameters are needed.

Table 2 shows fitted parameter values for the variable-η model. The
home advantage parameter for the minimum AIC model was θ̂ = 1.84±0.13.

Model −ℓ AIC

Bradley-Terry 1480.74 2983.47

BT with η 1463.90 2967.80

Poisson 1479.28 2980.55

Poisson with η 1466.38 2972.75

Table 1: Minus log-likelihood and Akaike Information Criterion for the 4
models, BT and Poisson, with and without the ηi floated.

The BT model fits acceptably: from looking at home-away team combi-
nations with at least 5 identical results, the goodness of fit X2[38] = 41.05,
p = 0.34. For the Poisson model, X2[48] = 70.46, p = 0.02. It is necessary
to give some details of the chi-squared calculation. First, each home/away
team pair gives rise to 3 cells, home win, draw, lose, with 2 degrees of free-
dom. We required the minimum predicted number in any of the 3 cells to
be at least 5. Second, the estimation of model parameters poses a problem,
because removing the 20 degrees of freedom from the chi-square is excessive.
The half-sample method was used, in which only half the data is used in
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Country Games Strength se Agressiveness se

Australia 422 1.897 0.289 1.636 0.405

South Africa 260 1.786 0.335 1.182 0.355

India 352 1.263 0.222 0.309 0.073

Pakistan 318 1.209 0.216 0.666 0.172

England 458 1 N/A 0.737 0.164

West Indies 351 0.860 0.142 0.859 0.217

Sri Lanka 283 0.708 0.135 0.766 0.212

New Zealand 297 0.704 0.131 0.460 0.120

Zimbabwe 107 0.077 0.029 0.516 0.271

Bangladesh 114 0.072 0.026 2.594 1.552

Table 2: Total strength λη and aggressiveness λ/η by country 1980 to July
2019, in order of total strength, with standard errors.

fitting the model, and then the chi-squared is calculated on the full dataset
with no correction for fitted parameters.

The ranking by total strength is much as expected. Both the BT model
and the Poisson-distribution model are special cases of order-statistics mod-
els derived using the negative binomial distribution (7) with α = 1 and
α → ∞ respectively. On using this model with the parameter α floated,
α̂ = 0.84±0.52, and the log-likelihood only increased by 0.1. Clearly, the fit
is not very sensitive to the model used, but the tied BT model is about the
best in the wide class of negative binomial order-statistics models, as well
as the simplest.

What is new in the model (6) is that draws are handled by giving teams
an offensive strength λ and defensive strength η. More defensive play leads
to lower notional scores in (2), and hence to more draws. Australia has few
drawn matches in this model because of the team’s aggressive style of play.

Forecasting matches in-play is of great interest for bettors and others:
see e.g. Akhtar and Scarf (2012), Asif and McHale (2016). Here models like
(6) could be fitted to recent matches using for example a time-discounted
likelihood function and with covariates added. That is not however the focus
here, where the point of the analysis is simply to illustrate the usefulness of
the models.
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7 Conclusions

Using discrete distributions in order-statistics based models of ranking allows
ties to be included in a natural way. The geometric distribution allows the
popular BT and PL models to be given tied analogues, and more realistic
models can be devised, using e.g. the Poisson distribution for team sports
where high score wins. Computation of likelihoods for these models is still
fast, using the iterative method of evaluating the sums in (2).

A caveat is that in this methodology, ties have no particular significance:
they arise because of the discrete nature of an underlying score (which may
be notional), and one extra parameter is all that is assigned. Sometimes this
is not adequate, and ties or draws must be modelled in more detail, as in
Kuk (1995) and DeWart and Gillard (2019). Such modelling is also possible
with the order-statistics approach, by using models with both attacking and
defensive strengths to give a model that is less ad hoc. The reason that more
or fewer ties arise is that the teams are playing more or less defensively. This
gives sensible results when applied to test-match cricket.

What is novel in this work is a new approach to ties that yields many
new models. In particular, the geometric distribution specification allows
the Plackett-Luce model to be extended to include tied rankings. This allows
multi-player sports where tied rankings occur (such as golf) to be modelled
for any number of players, and likelihoods to be quickly computed. Also,
the ties model of Davidson (1970) is now given a more theoretical basis as
an order-statistics model for team sports.

In future work it would be interesting to use some of the models devel-
oped here to forecast results, e.g. in-play.

References

[1] AKHTAR S., SCARF P. (2012) Forecasting test cricket outcomes in
play, International journal of forecasting 28, 632-643.

[2] ASIF, M., MCHALE I. G. (2016) In-play forecasting of win probability
in one-day international cricket: a dynamic logistic regression model.
International journal of forecasting 32, 34-43.

[3] BAKER, R. (2019) New order-statistics-based ranking models and
faster computation of outcome probabilities, IMA Journal of Manage-

ment Mathematics, 10.1093/imaman/dpz001

16



[4] BAKER, R. D. & MCHALE, I. G. (2015) Deterministic evolution of
strength in multiple comparisons models: Who is the greatest golfer?
Scand. J. Statist. 42 (2015), pp. 180196.

[5] BEAVER, R. J. & RAO, P. V. (1973). On ties in triple comparisons,
Trabajos de Estadistica y de Investigacion Operativa 24, 77-92.

[6] DAVIDSON, R. R. (1970) On extending the Bradley-Terry model to
accommodate ties in paired comparison experiments, Journal of the

American Statistical Association 65, 317-328.

[7] DE KONINCK, J-M, Those Fascinating numbers (2009), American
Mathematical Society, USA.

[8] DEWART, N. & GILLARD, J. (2019) Using Bradley-Terry models to
analyse test match cricket. IMA Journal of Management Mathematics,
30, 187-207. and Corrigendum, 30, 265.

[9] ESPN (2020) List of cricket match results (by year).
https://stats.espncricinfo.com/ci/content/records/307847.html, re-
trieved 2.4.2020

[10] GLENN, W. A. & DAVID, H. A. (1960) Ties in paired-comparison
experiments using a modified Thurstone-Mosteller model, Biometrics,
16, 86-109.

[11] HENERY, R. J. (1983) Permutation probabilities for gamma random
variables. J. Appl. Probab., 20, 822-834.

[12] KARLIS, D. & NTZOUFRAS, I. (2009) Bayesian modelling of football
outcomes: using the Skellam’s distribution for the goal difference, IMA

Journal of Management Mathematics, 20,133-145.

[13] KUK, Y. C. (1995) Modelling paired comparison data with large num-
bers of draws and large variability of draw percentages among players,
The Statistician, 44, 523-528.

[14] LENGYEL, T. (2009). The conditional gambler’s ruin problem with
ties allowed, Applied Mathematics Letters 22, 351-355.

[15] RAO, P. V. & KUPPER L. L. (1967) Ties in paired-comparison ex-
periments: a generalization of the Bradley-Terry model, Journal of the
American Statistical Association 62, 194-204.

17



[16] SALVIA, A. A. & BOLLINGER, R. C. (1982). On discrete hazard func-
tions. IEE Trans. on Reliab., R-31, 458-459.

[17] STERN, H. (1990) Models for distributions on permutations, J. Amer.

Statist. Assoc., 85, 558564.

[18] SU, Y. & ZHOU, M. (2006) On a connection between the Bradley-
Terry model and the Cox proportional hazards model, Statistics and

Probability Letters 76, 698-702.

[19] VIGNEAU, E., COURCOUX, P. & SÉMÉNOU, M. (1999). Analysis
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