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SUMMARY
A central paradigm in the field of lymphocyte biology asserts that replicatively senescent memory T cells ex-
press the carbohydrate epitope CD57. These cells nonetheless accumulate with age and expand numerically
in response to persistent antigenic stimulation. Here, we use in vivo deuterium labeling and ex vivo analyses
of telomere length, telomerase activity, and intracellular expression of the cell-cycle marker Ki67 to distin-
guish between two non-exclusive scenarios: (1) CD57+ memory T cells do not proliferate and instead arise
via phenotypic transition from the CD57� memory T cell pool; and/or (2) CD57+ memory T cells self-renew
via intracompartmental proliferation. Our results provide compelling evidence in favor of the latter scenario
and further suggest in conjunction with mathematical modeling that self-renewal is by far the most abundant
source of newly generated CD57+ memory T cells. Immunological memory therefore appears to be intrinsi-
cally sustainable among highly differentiated subsets of T cells that express CD57.
INTRODUCTION

Immune senescence has been linked with the accumulation of

terminally differentiated lymphocytes that fail to proliferate in

response to antigenic challenge. It has also been suggested

that surface expression of CD57, a terminally sulfated glycan

carbohydrate epitope (Abo and Balch, 1981), identifies memory

T cells that lack the capacity to proliferate (Brenchley et al.,

2003). In line with these widely accepted paradigms, highly

differentiated effector memory T cells that express CD45RA,

known as TEMRA cells, become more prevalent with age (Nociari

et al., 1999) and often express CD57 (Ladell et al., 2008).

Contrary to the notion of differentiation-linked senescence,

memory T cells that express CD57 can be induced to proliferate

in vitro, at least under optimized conditions (Chong et al., 2008;

Izquierdo et al., 1990). Parallel strands of evidence have further

suggested a key role for these cells as immune effectors. For

example, memory CD8+ T cells rarely express CD57 in conjunc-

tion with programmed death-1 (PD-1) (Petrovas et al., 2009), a

marker associated with exhaustion (Day et al., 2006; Freeman

et al., 2006; Petrovas et al., 2006; Trautmann et al., 2006), and

functionally replete memory CD4+ and CD8+ T cells with cyto-

toxic potential typically express high levels of CD57 (Casazza
C
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et al., 2006; Chattopadhyay et al., 2009; Chong et al., 2008;

Kern et al., 1999; Le Priol et al., 2006; Takata and Takiguchi,

2006; van Leeuwen et al., 2002). Virus-specific memory T cells

have also been identified in the TEMRA compartment (Appay

et al., 2008). In the CD8+ lineage, these cells have been associ-

ated with protective effects, most notably during acute (North-

field et al., 2007) and chronic human immunodeficiency virus

type 1 (HIV-1) infection (Addo et al., 2007), and in a study of elite

controllers with eventual disease progression, increasing levels

of viral replication appeared to drive the formation of

CD28�CD57+ memory CD8+ T cells, potentially indicating a

reactive escalation in the cytotoxic response to HIV-1 (Benito

et al., 2018). Accordingly, CD57+ memory T cells enrich the im-

mune system with important antigen-dependent effector func-

tions and, by extension, do not necessarily represent an irrele-

vant ‘‘cul-de-sac’’ in the lymphocyte differentiation pathway.

In this study, we used deuterium labeling to quantify the prolif-

eration of CD57� and CD57+ memory T cells in vivo and supple-

mented these analyses with ex vivo measurements of telomere

length, telomerase activity, and intracellular expression of the

cell-cycle marker Ki67. We then used mathematical modeling

to evaluate two non-exclusive hypothetical scenarios: (1)

CD57+ memory T cells arise from the CD57� memory T cell
ell Reports 33, 108501, December 15, 2020 ª 2020 The Authors. 1
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compartment as a consequence of progressive differentiation;

and/or (2) CD57+ memory T cells self-renew via intracompart-

mental proliferation and thereby contribute to long-term immu-

nological memory.
RESULTS

CD57� and CD57+ Memory T Cells Exhibit Similar Rates
of Deuterium Incorporation
Preliminary in vivo labeling data were derived from studies of

volunteers with chronic HIV-1 infection (aged 36–53 years), all

of whom were antiretroviral drug-free at the time of experimen-

tation and seropositive for cytomegalovirus (CMV; n = 4; Table

S1). The labeling protocol is outlined in Figure 1A. Venous blood

was sampled at weeks 7 (end of labeling), 10, 14, and 18, and at

each time point, CD57� and CD57+ memory CD8+ T cells were

flow-sorted from the CD45RA�CCR7� subset at >98% purity

(Figure S1). This gating strategywas designed to exclude TEMRA

cells, which were assessed separately in an earlier report (La-

dell et al., 2008). Considerable rates of 2H labeling and delabel-

ing were observed among CD45RA�CCR7�CD57� and

CD45RA�CCR7�CD57+ memory CD8+ T cells (Figure 1B).

Immune activation enhances the turnover of memory T cells in

the setting of chronic HIV-1 or HIV-2 infection (Hegedus et al.,

2014; McCune et al., 2000; Vrisekoop et al., 2015; Zhang et al.,

2013). We therefore sought to confirm these preliminary findings

in a more comprehensive labeling study of healthy volunteers

(aged 29–83 years), all of whom were seronegative for HIV-1

and seropositive for CMV. Recruitment was stratified to include

equal numbers of young (aged 29–47 years) and elderly individ-

uals (aged 60–83 years), the latter representing a population in

which immune senescence was more likely (total n = 8; Table

S1). Venous blood was sampled during the labeling phase

(weeks 1, 3, and 5), at the end of labeling (week 7), and during

the delabeling phase (weeks 8, 10, 14, and 18) (Figure 1A). At

each time point, CD57� and CD57+ memory T cells were flow-

sorted from the CD4+ and CD8+ lineages at >98% purity after

gating out potentially naive CD27brightCD45RO� events (Fig-

ures 1C and S1).

In each coreceptor-defined lineage, similar patterns of 2H la-

beling and delabeling were observed among CD57� and

CD57+ memory T cells, and equivalent (n = 3) or greater rates

of 2H labeling (n = 5) were observed among CD57+ memory

T cells compared with CD57� memory T cells (Figures 1D and

1E). Importantly, the corresponding 2H label enrichments in

bodywater followed an expected rise-and-fall profile (Figure S2),

and in the context of age-related immune senescence, no intra-
Figure 1. CD57� and CD57+ Memory T Cells Exhibit Similar Rates of D

(A) Schematic representation of the 2H2O labeling protocol and sampling time po

(B) Experimental labeling data for CD57� and CD57+ memory CD8+ T cells sam

cytometric gating strategy is shown in Figure S1.

(C) Successive panels depict the flow cytometric gating strategy used to sort CD

Lymphocytes were identified in a forward scatter-area versus side scatter-area

scatter-height plot. Boolean gates were drawn for analysis only to exclude fluoro

CD4+ and CD8+ lineages, and sort gates were fixed on CD57� and CD57+ mem

(D) Experimental labeling data for CD57� and CD57+ memory CD4+ T cells samp

(E) Experimental labeling data for CD57� and CD57+ memory CD8+ T cells samp
lineage or intrasubset differences in the kinetics of 2H accumula-

tion or loss were apparent between young and elderly volunteers

(Figures 1D and 1E).
Ki67+ Cells Are Readily Detectable in theCD57+Memory
T Cell Pool
To corroborate these findings, we measured the expression of

Ki67, an intracellular marker that accumulates during active

phases of the cell cycle (Gerdes et al., 1983; Miller et al., 2018).

Cytosolic expression of Ki67 was detected in the CD4+ lineage

at mean frequencies of 1% among CD57� memory T cells and

2.9%amongCD57+memory T cells (p = 0.02, paired samplesWil-

coxon test; Figures 2A and 2B) and in the CD8+ lineage at mean

frequencies of 0.7% among CD57� memory T cells and 0.4%

among CD57+ memory T cells (p = 0.008, paired samples Wil-

coxon test; Figures 2A and 2B).Higher frequencieswere observed

using a different approach that simultaneously exposed intranu-

clear antigens. Cytosolic/nuclear expressionof Ki67was detected

in the CD4+ lineage at mean frequencies of 4.9% among CD57�

memory T cells and 8.6% among CD57+ memory T cells (p =

0.742, paired samples Wilcoxon test; Figures 2C and 2D) and in

the CD8+ lineage at mean frequencies of 1.2% among CD57�

memory T cells and 1.9% among CD57+ memory T cells (p =

0.039, paired samples Wilcoxon test; Figures 2E and 2F).

In further analyses, we assessed the phenotypic characteris-

tics of Ki67+CD57� and Ki67+CD57+ memory T cells in the

CD4+ and CD8+ lineages. As expected, Ki67+ memory CD4+

T cells predominantly expressed CD45RO, with or without

CD57, whereas Ki67+ memory CD8+ T cells were phenotypically

more heterogeneous and often expressed CD45RA in conjunc-

tion with CD57 (Figure 2G). Moreover, Ki67+CD57� memory

T cells expressed CD28 at higher frequencies than

Ki67+CD57+ memory T cells, both in the CD4+ lineage (p =

0.008, paired samples Wilcoxon test; Figures 2D and 2H) and

in the CD8+ lineage (p = 0.008, paired samples Wilcoxon test;

Figures 2F and 2I). Similar patterns of expression were observed

for CCR7 (Figure S3).

To link these findings with the labeling data, we compared the

phenotypic characteristics of Ki67+CD57� and Ki67+CD57+

memory T cells with the phenotypic characteristics of CD57�

and CD57+ memory T cells sampled from the healthy volunteers

in cohort 2. In both coreceptor-defined lineages, CD57�memory

T cells expressed CD28 and CCR7 at higher frequencies than

CD57+ memory T cells, akin to the corresponding Ki67+ memory

T cells (Figure S4). Of note, CD57+ memory CD4+ T cells mostly

lacked CD27 but commonly expressed CD127 and PD-1,

whereas CD57+ memory CD8+ T cells were generally more
euterium Incorporation

ints.

pled from the HIV-1-infected volunteers in cohort 1. The corresponding flow

57� and CD57+ memory T cells from the CD4+ and CD8+ lineages (cohort 2).

plot, and single cells were identified in a forward scatter-area versus forward

chrome aggregates. Viable CD3+CD14�CD19� cells were then identified in the

ory cells after exclusion of potentially naive CD27brightCD45RO� cells.

led from the healthy volunteers in cohort 2.

led from the healthy volunteers in cohort 2.
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differentiated and rarely expressed CD27, CD127, or PD-1 (Fig-

ures S4 and S5). Age had no apparent influence on these pheno-

typic characteristics (data not shown).

CD57� and CD57+ Memory T Cells Have Similar Division
Histories
To refine our understanding of these datasets, we measured

XpYp or 17p telomere lengths in the CD57� and CD57+ memory

T cell pools (Figure 3A). Telomere lengths were distributed in a

heterogeneous manner and overlapped considerably across

CD57-defined subsets in the CD4+ and CD8+ lineages. In

some volunteers, significant differences in mean telomere length

were observed between the CD57� and CD57+ memory T cell

populations, most commonly in the CD4+ lineage, but no consis-

tent directional change was apparent between CD57-defined

subsets in either the CD4+ or the CD8+ lineage (Figures 3B and

3C). However, pooling the XpYp data from labeled volunteers re-

vealed that telomere lengths were maintained to a slightly

greater extent in the CD57� memory CD4+ T cell population

compared with the CD57+ memory CD4+ T cell population (Fig-

ure 3D), and pooling the 17p data from volunteers in cohort 3

yielded a similar result with borderline significance (p = 0.037,

Mann-Whitney U test; data not shown). Telomerase activity

was generally low, as expected given the infrequent expression

of Ki67, but marginally higher levels were detected among

CD57� memory T cells compared with CD57+ memory T cells

in both coreceptor-defined lineages. These data were reported

previously for reference in another labeling study of the volun-

teers in cohort 2 (Ahmed et al., 2016).

CD57� and CD57+ Memory T Cells Self-Renew In Vivo

To integrate these findings, we fitted mathematical models simul-

taneously to the 2H enrichment data and the telomere length data,

allowingCD57�memory T cells to becomeCD57+memory T cells

in theCD4+ andCD8+ lineages (Figure 4A). This approachwas de-

signed to capture both possible explanations for the accumulation

of label in the corresponding CD57+ compartments, namely that
Figure 2. Ki67+ Cells Are Readily Detectable in the CD57+ Memory T C

(A) Representative flow cytometric data from a labeled volunteer (DW01) showing c

gated as CD57� (blue) or CD57+ (red).

(B) Percent cytosolic expression of Ki67 amongmemory CD4+ (top) or CD8+ T cells

0.01. Paired samples Wilcoxon test.

(C) Representative flow cytometric data from unlabeled volunteers (n = 2) showin

CD57� (blue) or CD57+ (red). HC07 was seronegative for CMV.

(D) Top: percent cytosolic/nuclear expression of Ki67 among memory CD4+ T c

expression of CD28 among the corresponding Ki67+CD57� (blue triangles) and

Wilcoxon test.

(E) Representative flow cytometric data from unlabeled volunteers (n = 2) showin

CD57� (blue) or CD57+ (red). HC02 was seropositive for CMV, and HC08 was se

(F) Top: percent cytosolic/nuclear expression of Ki67 among memory CD8+ T c

expression of CD28 among the corresponding Ki67+CD57� (blue triangles) and

samples Wilcoxon test.

(G) Phenotypic characteristics of Ki67+CD57� and Ki67+CD57+ memory CD4+ (to

corresponding total CD4+ (top) or CD8+ T cell populations (bottom). Related to (A

(H) Phenotypic characteristics of Ki67+CD57� and Ki67+CD57+ memory CD4+ T

CD4+ T cell populations. Related to (C). Key as in (G).

(I) Phenotypic characteristics of Ki67+CD57� and Ki67+CD57+memory CD8+ T ce

T cell populations. Related to (E). Key as in (G).
CD57� memory T cells proliferated and acquired expression of

CD57 and/or that CD57+memory T cells proliferated and retained

expression of CD57. Proliferation rateswere denoted by p1 and p2
for CD57� and CD57+ memory T cells, respectively, such that

replicative senescence in the CD57+ subsets was represented

by the constraint p2 = 0. Telomeres shorten by an average of

50 bp per cell division (De Boer and Noest, 1998). In some cases,

this rate of erosion can be counteracted by the activity of telome-

rase, a possibility that was included in the model assumptions via

an additional parameter, termed K.

Fitswere restricted to the volunteers forwhom labelingdata and

telomere length data were available (n = 5). The general model

(with p2 free) fitted the data well for CD57� and CD57+ memory

T cells in the CD4+ and CD8+ lineages (Figure 4B; Table 1). Impor-

tantly, the proliferation rate estimates for the CD57+ subsets were

positive, with 95% confidence intervals that did not overlap zero

(i.e., p2 > 0). This conclusion was robust to different rates of telo-

mere shortening per cell division and changes in the parameter K

(Figure S6). Model performance was considerably worse if prolif-

eration was disallowed in the CD57+ memory T cell populations

(i.e., p2 = 0) (Figures 4B and S7). Indeed, the median p value in a

comparison of the models was 53 10�20 (F test), which provided

strong evidence to reject the null hypothesis of the simpler model,

namely that CD57+ memory T cells were unable to proliferate (i.e.,

p2 = 0). Moreover, the median small-sample-corrected Akaike in-

formation criterion (AICc) differencewas 106, which indicated that

the simpler model provided a substantially worse description of

the data (i.e., fit after adjustment for model complexity). The

best fits were therefore consistent with substantial proliferation

in the CD57+ compartments, such that influx from the CD57�

compartments typically contributed only �5% of all newly gener-

ated CD57+ memory T cells (Table 1).

DISCUSSION

In this study, we used in vivo deuterium labeling and ex vivo an-

alyses of telomere length, telomerase activity, and intracellular
ell Pool

ytosolic expression of Ki67 amongmemoryCD4+ (top) or CD8+ T cells (bottom)

(bottom) gated as CD57� (blue triangles) or CD57+ (red circles). *p < 0.05, **p <

g cytosolic/nuclear expression of Ki67 among memory CD4+ T cells gated as

ells gated as CD57� (blue triangles) or CD57+ (red circles). Bottom: percent

Ki67+CD57+ memory CD4+ T cells (red circles). **p < 0.01. Paired samples

g cytosolic/nuclear expression of Ki67 among memory CD8+ T cells gated as

ronegative for CMV.

ells gated as CD57� (blue triangles) or CD57+ (red circles). Bottom: percent

Ki67+CD57+ memory CD8+ T cells (red circles). *p < 0.05, **p < 0.01. Paired

p) or CD8+ T cells (bottom) shown overlaid on density clouds representing the

).

cells shown overlaid on density clouds representing the corresponding total

lls shown overlaid on density clouds representing the corresponding total CD8+
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Figure 3. CD57� and CD57+ Memory T Cells Have Similar Division Histories

(A) Representative single telomere length analysis (STELA) data showing XpYp telomere lengths among CD57� and CD57+ memory CD4+ or CD8+ T cells

sampled from a labeled volunteer (DW02).

(B) XpYp telomere lengths among CD57� and CD57+memory CD4+ or CD8+ T cells sampled from labeled volunteers (cohort 2). *p < 0.05, **p < 0.01, ***p < 0.001.

Mann-Whitney U test.

(C) 17p telomere lengths amongCD57� andCD57+memory CD4+ or CD8+ T cells sampled from unlabeled volunteers (cohort 3). *p < 0.05, **p < 0.01, ***p < 0.001.

Mann-Whitney U test.

(D) Pooled XpYp telomere length data for the volunteers shown in (B). Red lines show means with 95% confidence intervals. Mean values are specified above

each column. Significance was assessed using the Mann-Whitney U test.
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expression of the cell-cycle marker Ki67 to investigate the para-

digm that replicatively senescent memory T cells can be identi-

fied via the surrogate marker CD57. We detected similar rates

of proliferation among CD57� and CD57+ memory T cells in

both coreceptor-defined lineages. These results were supported

by flow cytometric analyses, which revealed the presence of

actively dividing cells in the corresponding CD57+ memory

T cell populations. Marginally higher levels of telomerase activity

were detected among CD57� memory T cells compared with
6 Cell Reports 33, 108501, December 15, 2020
CD57+ memory T cells in the CD4+ and CD8+ lineages, consis-

tent with a relatively small biological effect, and in line with recent

observations (Fali et al., 2018), telomere lengthsweremaintained

to a slightly greater extent among CD57� memory CD4+ T cells

compared with CD57+ memory CD4+ T cells. In contrast, telo-

mere lengths were distributed around similar means in the

CD57� and CD57+ memory CD8+ T cell populations. Mathemat-

ical modeling of the experimental data further suggested that

self-renewal via intracompartmental proliferation rather than
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Figure 4. CD57� and CD57+ Memory T Cells Self-Renew In Vivo

(A) Schematic representation of the mathematical model.

(B)Model fits to themeasureddata (dots) for CD57� andCD57+memoryCD4+ (left) or CD8+ T cells (right) withp2 constrained to zero (dashed lines) or free (solid lines).
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Table 1. Parameter Estimates from Model Fits to the Experimental Data

ID

p1
(% per

day)

SE

(% per

day)

z1
(% per

day)

SE

(% per

day)

p2

(% per

day)

SE

(% per

day)

z2
(% per

day)

SE

(% per

day)

mR

(% per

day)

SE

(% per

day)

Self-

renewal

(%)

CD4+ T Cells

DW01 0.33 0.04 0.0088 0.27 0.59 0.08 1.24 0.37 0.02 0.01 97

DW02 0.65 0.06 1.89 0.31 2.08 0.23 3.77 0.58 0.17 0.03 93

DW04 0.53 N/D 1.43 N/D 0.53 N/D 1.65 N/D 0.00 N/D 100

DW10 0.58 0.05 1.80 0.28 0.49 0.05 0.92 0.22 0.00 0.00 99

DW11 0.44 0.06 1.24 0.33 1.64 0.02 5.24 0.66 0.45 0.02 79

Median 0.53 1.43 0.59 1.65 0.02 97

CD8+ T Cells

DW01 0.26 0.02 0.73 0.13 0.40 0.03 0.70 0.13 0.02 0.00 96

DW02 0.22 0.02 0.86 0.22 0.42 0.04 0.45 0.19 0.04 0.01 92

DW04 0.37 N/D 0.91 N/D 0.37 N/D 0.62 N/D 0.00 N/D 100

DW10 0.55 0.17 3.60 1.53 0.34 0.11 0.63 0.56 0.02 0.02 95

DW11 0.07 0.01 0.24 0.34 0.32 0.03 0.81 0.04 0.07 0.01 83

Median 0.26 0.86 0.37 0.63 0.02 95

The best-fit estimates are shown. A limited number of data points were available from one volunteer (DW04). The asymptotic covariancematrixmethod

was used to calculate standard errors (SEs). The percentage of new CD57+ T cells generated via intracompartmental proliferation (right column) was

calculated as 100 3 p2/(p2 + mR). ID, identification number; N/D, not determined.
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replenishment via phenotypic conversion was by far the most

abundant source of newly generated CD57+ memory CD4+

and CD57+ memory CD8+ T cells.

CD57 was originally recognized as a differentiation antigen on

the surface of NK cells (Abo and Balch, 1981) and subsequently

associated with other lymphocyte subsets in germinal centers

(Ritchie et al., 1983). In peripheral blood, CD57+ memory

T cells accumulate throughout life, especially after infection

with CMV (Gratama et al., 1989). These associations with age

and persistent antigenic drive were mechanistically linked in a

seminal in vitro study, which reported that replicatively senes-

cent memory CD8+ T cells expressed CD57 (Brenchley et al.,

2003). However, an earlier study had reached a different conclu-

sion (Izquierdo et al., 1990), and later experiments showed that

CD57+ memory CD8+ T cells were able to proliferate in vitro in

the presence of certain growth factors, potentially mimicking

the in vivo microenvironment (Chong et al., 2008). Similar find-

ings were reported in another study, although markedly higher

response frequencies on a per-cell basis were noted in the

CD57� subset compared with the CD57+ subset (Le Priol

et al., 2006). Nonetheless, the proportion of responding cells in

the CD57+ subset was more than sufficient to maintain homeo-

static turnover, at least according to a deuterium labeling study

of bulk memory T cell populations (Zhang et al., 2013).

TEMRA cells are somewhat resistant to apoptosis (Gupta and

Gollapudi, 2007) and retain deuterium in the CD8+ lineage with

an estimated half-life of approximately 25 years, assuming sim-

ple exponential decay without phenotypic conversion (Ladell

et al., 2008). In response to extreme stimulation with supraphy-

siological concentrations of phytohemagglutinin and inter-

leukin-2, CD8+ TEMRA cells that expressed CD57 were recently

found to bemore susceptible to cell death than CD8+ TEMRA cells

that lacked CD57 (Verma et al., 2017). This observation was
8 Cell Reports 33, 108501, December 15, 2020
thought to indicate a functional dichotomy between CD57-

defined subsets within the CD8+ TEMRA compartment. However,

it does not necessarily follow that a similar dichotomy exists un-

der homeostatic conditions, because terminally differentiated

CD57+ memory CD8+ T cells may be protected from excessive

stimulation in vivo by a lack of costimulatory receptors, such

as CD27 and CD28.

In summary, we have shown that CD57+ memory T cells in the

CD4+ and CD8+ lineages self-renew in vivo, enabling the long-

term maintenance of functionally replete immunological mem-

ory. It remains to be determined how this process is regulated

in terms of antigenic drive versus homeostatic signals as a func-

tion of differentiation status, but nonetheless, it is clear from the

presented data that replicatively senescent memory T cells

cannot be defined solely via surface expression of CD57.
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Antibodies

Anti-CD3–APC-H7 (clone SK7) BD Biosciences Cat#641415; RRID:AB_2870309

Anti-CD4–PE-Cy5.5 (clone S3.5) Thermo Fisher Scientific Cat#MHCD0418; RRID:AB_10376013

Anti-CD8–BV711 (clone RPA-T8) BioLegend Cat#301044; RRID:AB_2562906

Anti-CD14–V500 (clone M5E2) BD Biosciences Cat#561391; RRID:AB_10611856

Anti-CD19–V500 (clone HIB19) BD Biosciences Cat#561121; RRID:AB_10562391

Anti-CD27–QD605 (clone CLB-27/1) Thermo Fisher Scientific Cat#Q10065; RRID:AB_2556450

Anti-CD28–APC (clone CD28.2) BD Biosciences Cat#559770; RRID:AB_398666

Anti-CD28–BV421 (clone CD28.2) BioLegend Cat#302930; RRID:AB_2561910

Anti-CD45RA–ECD (clone 2H4LDH11LDB9) Beckman Coulter Cat#M2711U; RRID:AB_10640553

Anti-CD45RA–PE (clone HI100) BD Biosciences Cat#555489; RRID:AB_395880

Anti-CD45RO–ECD (clone UCHL1) Beckman Coulter Cat#IM2712U; RRID:AB_10639537

Anti-CD57–FITC (clone NK-1) BD Biosciences Cat#555619; RRID:AB_395986

Anti-CD57–PE-Cy7 (clone NK-1) BioLegend Cat#359624; RRID:AB_2632689

Anti-CD127–BV421 (clone A019D5) BioLegend Cat#351310; RRID:AB_10960140

Anti-CCR7–BV421 (clone G043H7) BioLegend Cat#353208; RRID:AB_11203894

Anti-CCR7–FITC (clone 150503) BD Biosciences Cat#561271; RRID:AB_10561679

Anti-CCR7–PE-Cy7 (clone 3D12) BD Biosciences Cat#557648; RRID:AB_396765

Anti-CXCR3–BV421 (clone G025H7) BioLegend Cat#353716; RRID:AB_2561448

Anti-Ki67–AF647 (clone B56) BD Biosciences Cat#558615; RRID:AB_647130

Anti-Ki67–FITC (clone B56) BD Biosciences Cat#556026; RRID:AB_396302

Anti-PD-1–BV421 (clone EH12.2H7) BioLegend Cat#329920; RRID:AB_10960742

Biological Samples

Peripheral blood from adults infected

with HIV-1

San Francisco General Hospital,

San Francisco, CA, USA

N/A

Peripheral blood from healthy adult volunteers St George’s Hospital, London, UK N/A

Peripheral blood from healthy adult volunteers Cardiff University School of

Medicine, Cardiff, UK

N/A

Chemicals, Peptides, and Recombinant Proteins

Heavy water (2H2O) Cambridge Isotope Laboratories Cat#DLM-4TPB-PK

Pentafluorobenzyl hydroxylamine Sigma-Aldrich Cat#194484

Sodium dodecyl sulfate Thermo Fisher Scientific Cat#10593355

Tris(hydroxymethyl) methylamine Thermo Fisher Scientific Cat#77-86-1

Ethylenediaminetetraacetic acid Sigma-Aldrich Cat#E6511-100G

Sodium hydroxide Thermo Fisher Scientific Cat#J/7620/15

Sodium phosphate dibasic Sigma-Aldrich Cat#7558-79-4

Hydrochloric acid Thermo Fisher Scientific Cat#7647-01-0

Critical Commercial Assays

LIVE/DEAD Fixable Aqua Dead Cell

Stain Kit

Thermo Fisher Scientific Cat#L34966

Cytofix/Cytoperm Kit BD Biosciences Cat#554715

Foxp3 Transcription Factor Staining

Buffer Kit

Thermo Fisher Scientific Cat#00-5521-00

QIAmp DNA Mini Kit QIAGEN Cat#51304

QIAmp DNA Micro Kit QIAGEN Cat#56304

(Continued on next page)
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Oligonucleotides

XpYpE2: TTGTCTCAGGGTCCTAGTG Eurofins Genomics Custom

17pserev1: GAATCCACGGATTGCTTTGTGTAC Eurofins Genomics Custom

Telorette2: TGCTCCGTGCATCTGGCATCTAACCCT Eurofins Genomics Custom

Teltail: TGCTCCGTGCATCTGGCATC Eurofins Genomics Custom

Software and Algorithms

DiVa version 8 BD Biosciences https://www.bdbiosciences.com/en-us

FlowJo software version 9.9.4 FlowJo LLC https://www.flowjo.com

Phoretix 1D Quantifier Nonlinear Dynamics http://www.nonlinear.com/about/totallab

Prism version 8 GraphPad https://www.graphpad.com

Other

DreamTaq polymerase Thermo Fisher Scientific Cat#EP0702

Pwo polymerase Sigma-Aldrich Cat#11644955001

dNTPs Promega Cat#U1511

a-33P dCTP PerkinElmer Cat#BLU013H100UC

Megaprime VWR Cat#RPN1607

Hybond-XL VWR Cat#RPN15205

Agarose MP Sigma-Aldrich Cat#11388983001

1 kb ladder Agilent Cat#201115

2.5 kb ladder Bio-Rad Cat#1708205

FACSVantage SE BD Biosciences https://www.bdbiosciences.com/en-us

FACSAria BD Biosciences https://www.bdbiosciences.com/en-us

Special Order Research Product

FACSAria II

BD Biosciences https://www.bdbiosciences.com/en-us

GC/MS (5873/6980) Agilent https://www.agilent.com

DB-17 column Agilent https://www.agilent.com

Tetrad2 Thermal Cycler Bio-Rad https://www.bio-rad.com

Typhoon FLA 9500 Phosphorimager GE Healthcare https://www.cytivalifesciences.com/
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RESOURCE AVAILABILITY

Lead Contact
Further information and requests for reagents and resources should be directed to and will be fulfilled by the Lead Contact, Kristin

Ladell (ladellk@gmail.com).

Materials Availability
This study did not generate new unique reagents.

Data and Code Availability
The datasets reported in this study are available on request from the Lead Contact, Kristin Ladell (ladellk@gmail.com).

EXPERIMENTAL MODEL AND SUBJECT DETAILS

Three groups of human volunteers participated in this work. Cohort 1: volunteers with chronic HIV-1 infection (aged 36–53

years) were recruited for preliminary in vivo labeling studies (n = 4 males; Table S1). All were antiretroviral drug-free and sero-

positive for CMV. Cohort 2: healthy volunteers (aged 29–83 years) were recruited for more extensive in vivo labeling studies

(n = 3 females; n = 5 males; Table S1). All were seronegative for hepatitis C virus and HIV-1 and seropositive for CMV. Cohort

3: additional healthy volunteers (aged 28–58 years) were recruited for phenotypic studies and measurements of telomere

length and telomerase activity (n = 7 females; n = 7 males). Similar experiments were performed using venous blood samples

donated by 5 of the 8 volunteers in cohort 2. All studies were conducted in accordance with the principles of the Declaration

of Helsinki. Ethical approval was granted by the University of California Committee on Human Research (cohort 1), the London-
e2 Cell Reports 33, 108501, December 15, 2020
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Chelsea Research Ethics Committee (cohort 2), and the Cardiff University School of Medicine Research Ethics Committee

(cohort 3).

METHOD DETAILS

Measurement and Analysis of Deuterium Enrichment in T Cell DNA
T cell proliferation in vivo was measured using deuterium (2H) labeling as described previously (Busch et al., 2007; Hellerstein et al.,

1999; Ladell et al., 2008;McCune et al., 2000; Neese et al., 2001;Westera et al., 2013). Briefly, volunteers received heavywater (2H2O)

orally for 7 weeks (Figure 1A), and deuterium incorporation into the DNA of flow-sorted T cells was quantified via gas chromatog-

raphy/mass spectrometry (Agilent 5873/6980) (Ladell et al., 2008). DNA was released by boiling and hydrolyzed according to

standard protocols, and deoxyribonucleosides were derivatized using pentafluorobenzyl hydroxylamine (Sigma-Aldrich). Gas chro-

matography/mass spectrometry was performed in negative chemical ionization mode using a DB-17 column (Agilent). TheM+1/M+0

isotopomer ratio was monitored at mass-to-charge (m/z) 436/435. To normalize for body water enrichment, weekly saliva samples

were analyzed for 2H2O content via calcium carbide-induced acetylene generation, monitoring at m/z 27/26 (Previs et al., 1996).

Flow Cytometry and Cell Sorting
T cell subsets of interest were flow-sorted from freshly isolated peripheral blood mononuclear cells (PBMCs) at >98% purity using a

FACSVantage SE, a FACSAria, or a Special Order Research Product FACSAria II (all from BD Biosciences). Cells were stained with

combinations of the following reagents: (1) anti-CD3–APC-H7 (clone SK7), anti-CD14–V500 (clone M5E2), anti-CD19–V500 (clone

HIB19), anti-CD28–APC (clone CD28.2), anti-CD45RA–PE (clone HI100), anti-CD57–FITC (clone NK-1), anti-CCR7–FITC (clone

150503), and anti-CCR7–PE-Cy7 (clone 3D12) from BD Biosciences; (2) anti-CD4–PE-Cy5.5 (clone S3.5), anti-CD27–QD605 (clone

CLB-27/1), and LIVE/DEAD Fixable Aqua from Thermo Fisher Scientific; (3) anti-CD8–BV711 (clone RPA-T8), anti-CD28–BV421

(clone CD28.2), anti-CD57–PE-Cy7 (clone NK-1), anti-CD127–BV421 (clone A019D5), anti-CCR7–BV421 (clone G043H7), anti-

CXCR3–BV421 (clone G025H7), and anti-PD-1–BV421 (clone EH12.2H7) from BioLegend; and (4) anti-CD45RA–ECD (clone

2H4LDH11LDB9) and anti-CD45RO–ECD (clone UCHL1) from Beckman Coulter. Viable CD57� and CD57+ memory T cells were

identified in the CD4+ and/or CD8+ lineages after exclusion of CD27brightCD45RO� (Figure 1C) or CD45RA+CCR7+ events (Figure S1).

Cytosolic expression of Ki67 was evaluated using anti-Ki67–AF647 (clone B56; BD Biosciences) in conjunction with a Cytofix/Cyto-

perm Kit (BD Biosciences), and cytosolic/intranuclear expression of Ki67 was evaluated using anti-Ki67–FITC (clone B56; BD Bio-

sciences) in conjunction with a Foxp3 Transcription Factor Staining Buffer Kit (Thermo Fisher Scientific). Data were analyzed with

FlowJo software version 9.9.4 (FlowJo LLC).

Single Chromosome Telomere Length Analysis
DNA was extracted from 3,000 flow-sorted T cells using a QIAmp DNA Micro Kit (QIAGEN). Single telomere length analysis (STELA)

was carried out at the XpYp or the 17p telomere as described previously (Capper et al., 2007). Briefly, 0.75 mL of the Telorette-2 linker

(10 mM) was added to genomic DNA eluted in 35 mL of Tris (10 mM). Multiple PCRs were then performed for each test DNA. Each

reaction was set up in a final volume of 10 mL containing 250 pg of DNA and the telomere-adjacent and Teltail primers at a final con-

centration of 0.5 mM in 75mMTris-HCl pH 8.8, 20mM (NH4)2SO4, 0.01%Tween-20, and 1.5mMMgCl2, with 0.5 U of a 10:1mixture of

Taq (Thermo Fisher Scientific) and Pwo polymerase (Sigma-Aldrich). The reactions were processed in a Tetrad2 Thermal Cycler

(Bio-Rad). DNA fragments were resolved via 0.5%Tris-acetate-EDTA agarose gel electrophoresis and identified via Southern hybrid-

ization with a random-primed a-33P-labeled (PerkinElmer) TTAGGG repeat probe, together with probes specific for molecular weight

markers at 1 kb (Agilent) and 2.5 kb (Bio-Rad). Hybridized fragments were detected using a Typhoon FLA 9500 Phosphorimager (GE

Healthcare). The molecular weights of the DNA fragments were calculated using Phoretix 1D Quantifier (Nonlinear Dynamics).

Measurement of Telomerase Activity
Flow-sorted T cells were lyzed and assayed in two steps using a modified SYBRGreen real-time quantitative telomeric repeat ampli-

fication protocol (Wege et al., 2003). Standard curves were obtained from serial dilutions of a 293T cell extract with known telomerase

activity. Experimental telomerase activity was calculated with reference to 293T cells and expressed as relative telomerase activity

(Ct293T/Ctsample).

QUANTIFICATION AND STATISTICAL ANALYSIS

General Statistics
Unmatched groups were compared using the Mann-Whitney U test, and matched groups were compared using the paired samples

Wilcoxon test. Significance was assigned at p < 0.05.

Mathematical Modeling
Mechanistic ordinary differential equation-based models were developed to assess the dynamics of CD57� and CD57+ memory

T cells (Costa Del Amo et al., 2018; Patel et al., 2017). These subsets were modeled as dependent populations to investigate the
Cell Reports 33, 108501, December 15, 2020 e3
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possibility that label acquisition in the CD57+ compartment was a consequence of proliferation-linked differentiation in the CD57�

compartment. Accordingly, CD57� and CD57+ memory T cells were allowed to proliferate and die or exit the circulation, and

CD57� memory T cells were allowed to gain expression of CD57. The phenotypic conversion of CD57� memory T cells into

CD57+ memory T cells was considered over n rounds of division, including the possibility that n = 0.

In the applied model, CD57� memory T cells (x1) became CD57+ memory T cells (x2) at a rate m:

dx1
dt

= p1x1 � z1x1
dx2
dt

= p2x2 � z2x2 +mx1

where p1 and p2 are the rates of proliferation of CD57� and CD57+ memory T cells, respectively, and z1 and z2 are the rates of disap-

pearance of CD57� and CD57+ memory T cells, respectively. The possibility that surface expression of CD57 could be acquired dur-

ing clonal expansion was accommodated in the permitted values for m (bounds during fitting [0,40]).

To minimize the number of free parameters, label enrichment among CD57+ memory T cells was assumed to originate either from

dividing CD57� memory T cells that differentiated into CD57+ memory T cells or from dividing CD57+ memory T cells. A model in

which the acquisition of CD57 was not coincident with clonal expansion resulted in a substantially worse fit to the data and was

not pursued further. The fraction of label thus became:

dL1

dt
= p1bwUt � z�1L1
dL2

dt
= ðp2 + mRÞbwUt � z�2L2

where p1 and p2 are as above, z1* and z2* are the rates of loss of labeled CD57� andCD57+memory T cells, respectively, L1 and L2 are

the fractions of labeled deoxyadenosine among CD57� and CD57+ memory T cells, respectively, R is the ratio of CD57� to CD57+

memory T cells (x1/x2), and bw is the amplification factor estimated from label acquisition among granulocytes, assuming 100% turn-

over in 7 weeks. Data were available from 4 volunteers and gave a population average value for bw of 3.5, consistent with previous

studies (Ahmed et al., 2015; Lahoz-Beneytez et al., 2016). The value of bw was therefore fixed at 3.5. Finally, U(t) is an empirical func-

tion used to describe the availability of label in body water:

UðtÞ = f
�
1� e�dt

�
+ be�dt during labeling t% t
UðtÞ = f
�
1� e�dt

�
+ be�dt during labeling t% t

as described previously (Vrisekoop et al., 2008), where U(t) represents the fraction of labeled precursor in body water at time t (in

days), f is the fraction of labeled precursor in ingested water, t is the length of the labeling period, d is the turnover rate of body water

per day, and b is the plasma enrichment attained at the end of day 0. Parameters were estimated by fitting the above functions to the

deuterium labeling data measured in saliva. The resulting fits of U(t) to saliva measurements are shown in Figure S2.

Inclusion of Telomere Length Data in Model Fits
The impact of cell division on telomere length wasmodeled as described previously (De Boer and Noest, 1998). Telomere length data

were available from 5 of the 8 volunteers in cohort 2. Themodel was fitted simultaneously to the labeling data and the telomere length

data using the free parameters p1 and p2 to describe the rates of proliferation of CD57� and CD57+ memory T cells, respectively, z1*

and z2* to describe the rates of disappearance of labeled CD57� and CD57+ memory T cells, respectively, andmR, the rate of con-

version fromCD57� to CD57+memory T cells (m) multiplied by the ratio of the frequency of CD57�memory T cells to the frequency of

CD57+ memory T cells (R).

Estimation of Telomere Length Change
The rate of change in telomere loss indices for CD57�memory T cells was defined according to a previous report (De Boer andNoest,

1998) as follows:

dm1

dt
= 2p1
dm2

dt
= 2p2 � mRðm2 �m1 �KÞ
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where p1, p2,m, and R are as above, K is the length of telomere loss upon clonal expansion in units of division, and m1 and m2 are the

average number of divisions undergone by CD57� and CD57+ memory T cells, respectively. The difference in telomere length be-

tween CD57� and CD57+ memory T cells was estimated as:

D = ðm2 �m1Þε
where ε is the average number of base pairs (bp) lost per division (taken to be 50 bp [De Boer and Noest, 1998]), giving the following

expression for the difference in telomere length:

DC = ε

�
2ðp2 � p1Þ

mR
+ K

�

Fitting Procedure
The function U(t) was fitted to the deuterium labeling data measured in saliva, and the free parameters f, b, and d were estimated for

each individual. The resulting parameterizedU(t) functionswere then used as fixed inputs during simultaneous fitting of the deuterium

labeling and telomere length data from CD57� and CD57+ memory T cells using the equations for L1, L2, and DC above. The free

parameters were p1, p2, z1, z2, and mR. As telomerase is highly active during clonal expansion, the telomere length loss index (K)

was initially set to 0 (Bodnar et al., 1996; Collins, 2006). This assumption was subsequently relaxed to explore the impact of variations

in K (Figure S6). The contribution of self-renewal to the production of new CD57+ memory T cells was defined as:

contribution from self­renewal =
p2x2

p2x2 +mx1

=
p2

p2 +mR

To ensure that the labeling data and the telomere length data contributed equally to the fit, all residuals were normalized by themean,

and the deuterium residuals were divided by the number of labeling data points. Conclusions were analyzed for robustness against

changes in the number of telomere base pairs lost per division. Scenarios in which CD57+memory T cells did not proliferate were also

tested by fixing p2 to 0. Model performance was evaluated using the F test and the AICc (Burnham and Anderson, 2002). The model

was fitted to the data using non-linear least-squares regression implemented via the algorithm Pseudo in the FME package in R (Soe-

taert and Petzoldt, 2010).
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