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Glioblastoma is the most common primary brain tumor in adults with poor overall outcome
and 5-year survival of less than 5%. Treatment has not changed much in the last decade
or so, with surgical resection and radio/chemotherapy being the main options.
Glioblastoma is highly heterogeneous and frequently becomes treatment-resistant due
to the ability of glioblastoma cells to adopt stem cell states facilitating tumor recurrence.
Therefore, there is an urgent need for novel therapeutic strategies. The ubiquitin system, in
particular E3 ubiquitin ligases and deubiquitinating enzymes, have emerged as a
promising source of novel drug targets. In addition to conventional small molecule drug
discovery approaches aimed at modulating enzyme activity, several new and exciting
strategies are also being explored. Among these, PROteolysis TArgeting Chimeras
(PROTACs) aim to harness the endogenous protein turnover machinery to direct
therapeutically relevant targets, including previously considered “undruggable” ones, for
proteasomal degradation. PROTAC and other strategies targeting the ubiquitin
proteasome system offer new therapeutic avenues which will expand the drug
development toolboxes for glioblastoma. This review will provide a comprehensive
overview of E3 ubiquitin ligases and deubiquitinating enzymes in the context of
glioblastoma and their involvement in core signaling pathways including EGFR, TGF-b,
p53 and stemness-related pathways. Finally, we offer new insights into how these
ubiquitin-dependent mechanisms could be exploited therapeutically for glioblastoma.

Keywords: glioblastoma, ubiquitin, E3 ubiquitin ligases, deubiquinating enzymes, PROTAC (proteolysis-targeting
chimeric molecule), stem cell, cancer, ubiquitin-proteasome system
GLIOBLASTOMA

Background
Glioblastoma (GBM) is the most common and aggressive malignant primary brain tumor,
categorized as grade IV diffuse glioma by the World Health Organization (WHO) (1).
Commonly found in the supratentorial region, GBMs constitute 16% of all primary brain tumors
and 54% of all gliomas (2). The CBTRUS Statistical Report (2006–2010) estimated the age-adjusted
incidence rate of GBM at 3.19/100,000/year in the United States (2) while data from the National
Cancer Registration Service and Hospital Episode Statistics for England (2007–2011) estimated the
incidence rate at 4.64/100,000/year in England (3). GBM also has a very poor overall survival rate
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dropping from 28.4% after one year to 3.4% at five years with a
median survival of 6.1 months in the English cohort study (3).
When stratified by age, median survival was 16.2 months for 20
to 44-year-olds compared to only 3.2 months for 70+-year-olds.
Further, incidences are higher in males compared to females with
a relative sex ratio of 1.66:1. Overall GBM has a very poor
outlook considering that the median age at diagnosis is 64 (2). In
2016, the WHO published its revised classification of tumors of
the central nervous system (CNS) which for the first time used
histology as well as molecular parameters to guide appropriate
tumor classification (1, 4). Here, GBMs are defined as either
isocitrate dehydrogenase (IDH)-wildtype or IDH-mutant, a
genotype that in the majority of cases clinically coincides with
primary/de novo GBM and secondary GBM, respectively (5).
Perhaps unsurprisingly, IDH1 mutations are also very frequent
(>80%) in diffuse and anaplastic astrocytomas which are
common precursor lesions for recurrent GBM. At the molecular
level, IDH mutations result in reduced affinity toward its
endogenous substrate, isocitrate, and acquisition of neomorphic
enzymatic activity converting a-ketoglutarate into the
oncometabolite 2-hydroxyglutarate (6). This gain-of-function has
been linked to several oncogenic processes including epigenetic
remodeling, which results in the CpG island methylator phenotype
(CIMP) (7–9). However, the extent as well as targets of glioma
hypermethylation seem to vary considerably when compared to
that observed in other IDHmut cancers such as acute myeloid
leukemia (AML), possibly explaining why IDH mutational status
serves as a favorable prognostic biomarker in GBM only (10).
Interestingly, several studies have reported varying methylation
patterns between de novo and secondary GBM with, for example,
promoter methylation of retinoblastoma protein 1 (RB1) and O6-
methylguanine methyltransferase (MGMT) being three-fold and
two-fold higher in secondary GBM, respectively (11–15). The
epigenetic silencing of the DNA repair enzyme MGMT also
serves as IDH-independent prognostic biomarker indicative of
increased sensitivity toward temozolomide (TMZ) chemotherapy
(16–18). Furthermore, loss of MGMT expression, paired with
concomitant TMZ treatment, may select for loss of mismatch
repair function resulting in recurrent GBM with hypermutator
phenotype (19).

In an attempt to unravel GBM evolution as well as inter- and
intra-tumoral heterogeneity, molecular subtyping has been
developed as a prognostic strategy. Based on an 840-gene
expression profile, GBM samples were grouped into proneural,
mesenchymal, classical and neural molecular subtypes (20).
Verhaak and colleagues used transcriptomic and genomic
profiling to further stratify GBM by identifying patterns of
somatic mutations characteristic of individual subtypes.
Specifically, EGFR, NF1 and PDGFRA/IDH aberrations were
found to define classical, mesenchymal and proneural
subtypes, respectively. In recent years, single-cell analysis has
become well-established and has offered important insights into
tumor complexity. Single-cell RNA-sequencing revealed that
tumor bulk transcriptomic profiles do not accurately reflect
GBM subtypes (20, 21). Transcriptomic profiles characteristic
of the four subgroups (i.e. proneural, mesenchymal, classical and
Frontiers in Oncology | www.frontiersin.org 2
neural), differ at the single-cell level within a tumor, providing
further support for the heterogeneity of tumors. In agreement
with this, data binning of a proneural tumor according to
percentage (%) heterogeneity resulted in patient subsets with
diverging overall survival. Hence, higher heterogeneity
associated with shorter overall survival. Another single-cell
RNA-sequencing study found that infiltrating neoplastic cells
from the tumor periphery share a common transcriptomic
signature despite having distinct dominant subtypes (22).
About 1,000 and 250 genes were found down- and up-
regulated, respectively, compared to cells from the tumor core,
including genes associated with hypoxia (down) or migration/
invasion of the interstitial matrix (up). This indicates that despite
intratumoral heterogeneity, some mechanisms such as those
driving cell invasion are shared between tumors.
Current Treatments and Future Directions
Treatment of GBM has largely remained unchanged throughout
the last decade. A hallmark randomized phase III clinical trial in
2004 by the European Organisation for Research and Treatment
of Cancer (EORTC) and the National Cancer Institute of Canada
Clinical Trials Group (NCIC), set the following gold standard
that is still used today (23, 24). Following maximal safe resection
(also referred to as tumor debulking, 84% of patient cohort),
patients randomly received radiotherapy alone or radiotherapy
with concomitant TMZ chemotherapy followed by six cycles of
adjuvant TMZ treatment. The 5-year analysis showed the
median survival was 27.2% after two years and 9.8% at five
years post treatment commencement. The higher 5-year survival
rate compared to previously highlighted epidemiological studies
can be explained by the exclusion of 70+-year-olds from the
patient cohort. Although surgical debulking followed by
radiotherapy and concomitant TMZ chemotherapy remains
the current treatment paradigm, several new approaches are
being explored including techniques for surgical refinement,
immunotherapies and personalized medicine approaches
(25–29).

Ongoing efforts in the delineation of the aberrant molecular
networks that account for and drive the malignancy and
aggressiveness associated with GBM have highlighted key areas
that may be exploited therapeutically. In addition to progress
made with regards to personalized immunotherapy, the
ubiquitin proteasome system has been recognized as one of the
most promising fields for novel therapeutics. Proof-of-concept
studies have indeed demonstrated that every class of enzymes
involved in the ubiquitin-proteasome system can be effectively
targeted, including E1-activating, E2-conjugating enzymes, E3
ubiquitin ligases as well as deubiquitinases. With around 1,000
enzymes regulating protein ubiquitination, the number of
candidate drug targets is likely to surpass that seen for protein
kinases (30). Beyond targeting individual components of the
ubiquitin system, new approaches that exploit protein turnover
are also being developed and these are bringing new hopes to
target the so far “undruggable proteome” (31). In particular,
recent developments in proteolysis targeting chimeras
November 2020 | Volume 10 | Article 574011
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(PROTACs) and PROTAC-related molecules such as “molecular
glues”, have demonstrated the feasibility of harnessing the
endogenous protein turnover machinery for the selective and
specific degradation of target proteins. In the next sections, we
will discuss key components of the ubiquitin system, in
particular E3 ubiquitin ligases and DUBs, in the context of GBM.
THE UBIQUITIN SYSTEM

Ubiquitin and UBLs
Post-translational modifications serve a plethora of regulatory
functions and thus are integral to cellular homeostasis. In
particular, protein ubiquitination plays critical roles by
regulating protein fate and function. The small protein
modifier ubiquitin (76 aa) is highly conserved in eukaryotes,
and it is found expressed in all human tissues (32, 33). More
recently, analogous systems in the form of or ubiquitin-like
proteins (UBLs) were shown to exist in prokaryotes. UBLs are
proteins with shared fold homology to ubiquitin, including a
globular b-grasp fold, but for which there is little conservation in
the primary protein sequence. As many as 10 UBLs, not
including paralogs, have been found in humans with the most
well-characterized being interferon-stimulated gene (ISG) 15,
autophagy-related genes (Atg) 8 and 12, Nedd8 and small-
ubiquitin-related modifiers (SUMO) (34, 35). Furthermore,
each post-translational modification has its dedicated
conjugation and deconjugation machinery, although some
overlapping conjugation systems exists between ubiquitin and
UBLs (36, 37). For example, ISG15, a 15 kDa interferon-
inducible protein modifier, utilizes its own ubiquitin-like
modifier-activating enzyme 7 (UBA7 or UBE1L), ubiquitin/
ISG15-conjugating enzyme E2 L6 (UBE2L6 or UbcH8) and the
E3 ubiquitin ligases HERC5 or TRIM25 (38–42).

Conjugation of ubiquitin or UBLs to substrate proteins is an
ancient, highly conserved protein modification. Even though
ubiquitin is absent in prokaryotes, at least two families of post-
translational modifications, with analogous function but distinct
biochemical pathway to ubiquitin, have been described. Pup
(prokaryotic ubiquitin-like protein) which mediates the
pupylation of substrate lysine residues was identified in the
actinobacteria Mycobacterium tuberculosis/smegmatis and
constitutes the first group (43, 44). The second group includes
the archaeal SAMPs (small archaeal modifier proteins) and
Thermus TtuB (tRNA-two-thiouridine B) which mediate sulfur
mobilization (45, 46).

The Ubiquitin Cascade
The pioneering work of Aaron Ciechanover, Avram Hershko
and Irwin Rose led to the discovery of ubiquitination as novel
post-translational modification that facilitated subsequent
degradation in an ATP-dependent manner (47, 48).
Subsequently, the Varshavsky lab made seminal contributions
to the fundamental understanding of ubiquitin-mediated protein
degradation and the regulation of protein half-life. Specifically,
delineation of its biological relevance in vivo highlighted
Frontiers in Oncology | www.frontiersin.org 3
ubiquitination as a fundamental requirement for cell viability
as well as many cellular pathways including the cell cycle and
DNA repair (49, 50).

Substrate protein modification by ubiquitin is mediated by a
hierarchical enzymatic cascade (Figure 1). The E1-activating
enzyme binds ATP and cofactor Mg2+ and catalyzes ubiquitin
C-terminal acyl adenylation, which is then transferred to the
sulfhydryl group of the catalytic cysteine residue via acyl
substitution forming a thioester bond (51, 52). E1 ubiquitin
loading is complete after a second round of ubiquitin adenylate
synthesis forming a ternary complex (53). The kinetically
charged thioester-conjugate is then transferred to a catalytic
cysteine residue in the ubiquitin conjugation (UBC) domain of
a cognate E2 via transthioesterification. The thioester bond is
susceptible to nucleophilic attack and thus ubiquitin may be
transferred to a free substrate lysine (aminolysis) or cysteine
residue (transthiolation) (54). Non-canonical transfer may also
involve conjugation to serine/threonine residues (oxyester bond)
or substrate N-termini (peptide bond) (55–57). The final step of
conjugating ubiquitin or UBLs to protein targets is mediated by
E3 ubiquitin ligases. This can occur directly by RING E3 ligases
which recruit a ubiquitin-loaded E2 and substrate bringing them
into close proximity, or indirectly by HECT E3s through an
intermediary step where ubiquitin is transthiolated onto a
catalytic cysteine residue prior to being transferred to the
ϵ-amino group of a substrate lysine residue (58, 59). Single
ubiquitin moieties may be attached to a substrate protein at
one or multiple sites, monoubiquitination and multi-
monoubiquitination respectively, or as ubiquitin chains of
varying topology (polyubiquitination), altogether constituting
the ubiquitin code (Figure 1) (60).

Below, we will summarize our current understanding of the
ubiquitin code in terms of the different types of ubiquitin signals
that have been identified, their cellular functions, and the
“Writers” (E1, E2, E3) and “Erasers” (i.e. DUBs) that regulate
this complex but versatile post-translational modification.
COMPONENTS OF THE UBIQUITIN
SYSTEM

E3 Ubiquitin Ligases
RING E3 Ligases
E3 ubiquitin ligases catalyze the final step of ubiquitination and
impart substrate specificity through protein family diversity.
Over 700 E3 ubiquitin ligases are encoded by the human
genome and based on their mode of action these have been
grouped in four major families: Really Interesting New Gene
(RING), Homologous to E6-AP Carboxyl Terminus (HECT),
RING-in-between-RING (RBR), and U-box E3 ubiquitin ligases
(Figure 2).

RING E3s are the largest family with >600 members and are
characterized by their zinc finger RING domain (Figure 2) (61).
The conserved crossbraced structure of the RING domain is
facilitated by two Zn2+ ions and may adopt monomeric or
(homo/hetero) dimeric conformations (62–64). Generally,
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RING domains transiently interact with the E2 UBC domain via
a shallow groove constituted by the central a-helix and two
adjacent loop regions, thus competing with E1-E2 interaction
while other domains are responsible for substrate recruitment
(62, 65). Instead of strictly acting as an E2-substrate scaffolding
Frontiers in Oncology | www.frontiersin.org 4
protein, RING E3 ligases also have a passive catalytic capacity
and have been shown to facilitate the proximity required for
isopeptide bond formation through manifold dynamic
conformational rearrangements (66–69). For example, the E2
Ubc13 (Ube2N) and its cofactor Mms2 do not require an E3 to
FIGURE 1 | The Ubiquitin Proteasome System. (1) Post-translational modifier ubiquitin, 8.5 kDa, is thiolated to ubiquitin-activating enzyme (E1) and subsequently
transthioesterified to a cognate ubiquitin-conjugating enzyme (E2). E3 ubiquitin ligases either serve as scaffold (RING E3 ligases) or catalytic intermediary (HECT E3
ligases) facilitating covalent linkage of ubiquitin C-terminal Gly76 (COOH) to the ϵ-amino group of target lysine residues. (2) Subsequent turnover of ubiquitinated
proteins is mediated by the 26S proteasome. Structurally, the proteasome is divided into the 19S regulatory particle, composed of lid and base, and the 20S core
particle. Orange: non-ATPase Rpn components (lid); red: ubiquitin receptors Rpn1/10/13 (base); green: AAA+ family ATPases Rpt1–Rpt6 (base); yellow: a
heptameric rings, a1–7, that constitute gate/substrate entry portal (20S); magenta: b heptameric rings, b1–7, that constitute the catalytic chamber. (3) Target proteins
may either be monoubiquitinated or modified by chains of varying architecture and composition. The complexity of ubiquitin as a signaling molecule, existing as a
single moiety or a complex chains, is matched by an impressive diversity in enzymes including 2 E1s, 40 E2s, ~700 E3s and 99 DUBs encoded by the human
genome PDB: 1UBQ, Ubiquitin; 6FVW, 26S proteasome.
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coordinate substrate ubiquitination but exhibit increased
reaction kinetics and differential substrate specificity in the
presence of E3 ligase TRAF6 (63, 70). A major fraction of
RING E3 ligases, the Cullin-RING E3 ligase superfamily,
organize into large, multi-subunit proteins (Figure 2) such as
the SCF (Skp1, Cullin 1, F-box protein) complex or anaphase-
promoting complex/cyclosome (APC/C) [reviewed in (71)].
Frontiers in Oncology | www.frontiersin.org 5
U-Box E3 Ligases
U-box E3s have a comparable mechanism to RING E3s, utilizing
a structurally similar domain they can also operate as monomers
or function as subunits of multimeric protein complexes. In
contrast to RINGs, U-box E3s lack the conserved cysteine and
histidine Zn2+-chelators at the RING domain-binding interface
and instead utilize a hydrophobic binding groove constituted by
FIGURE 2 | E3 Ubiquitin Ligases. (1) RING (Really Interesting New Gene) E3 ligases facilitate Ub-E2:substrate interaction. RING E3 ligases may also organize into
multi-subunit complexes that are commonly composed of Cullins, E2 binding RING-box proteins and an adaptor protein that mediates substrate recognition.
Canonically, neddylation (NEDD8) is required to induce the active conformer. (2) RBR (RING-in-between-RING) E3 ligases constitute a hybrid class between RING
and HECT E3 ligases where the RING1 domain facilitates E2 interaction while the RING2 domain harbors a catalytic cysteine residue that forms an intermediate
thioester. (3) HECT (Homologous to E6-AP Carboxyl Terminus) E3 ligases are characterized by a conserved bi-lobed, catalytic HECT domain. The loaded E2 is
bound by the N-lobe where ubiquitin is transferred to the catalytic cysteine residue on the flexible C-lobe. The C-lobe-ubiquitin thioester intermediate rotates toward
the substrate which is bound by a substrate-binding domain located N-terminal of the HECT domain.
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hydrogen bonding networks and polar amino acids (72, 73). A
well-researched example is carboxy-terminus of Hsc70
interacting protein (CHIP), a co-chaperone that acts as quality
control for misfolded proteins by ubiquitinating Hsp70 and
Hsp90 associated substrates (74, 75). The N-terminal
tetratricopeptide repeat (TPR) domain mediates Hsp70/Hsp90
interaction, while a coiled-coil domain facilitates CHIP
dimerization allowing the homodimer U-box domain to
interact with its cognate E2 (76, 77).

RBR E3 Ligases
RING-in-Between RING (RBR) E3 ligases are a comparably
small family with the human genome encoding about 12 such
proteins [reviewed in (78, 79)] Originally thought to employ a
similar mechanism to canonical RING ubiquitination, RBR E3
ligases were rather shown to be hybrids of RING and HECT E3
ligases (80). The RING1 domain mediates interaction with a
ubiquitin-loaded E2, while the RING2 domain forms a thioester
intermediate via a catalytic cysteine residue (Figure 2). The two-
step mechanism is reminiscent of HECT-mediated
ubiquitination, although the domain structure differs. Several
RBRs have been shown to function in this manner, including
HHARI, HOIP and Parkin (81–83). Additionally, Parkin which
contributes to neurodegeneration in Parkinson’s disease, but also
GBM, can carry out E2-independent monoubiquitination and
remains active in the absence of its RING1 domain (84–86).
Nevertheless, all RBRs are thought to share stringent
intramolecular auto-inhibitory mechanisms. In the case of
Parkin, an N-terminal ubiquitin-like domain induces a closed,
auto-inhibited conformation by binding to the IBR-RING2
linker region (87). Parkin substrates have been shown to
interact with the ubiquitin-like domain, indicating substrate-
induced activation (88, 89).

HECT E3 Ligases
HECT E3 ligases can be divided into 16 subfamilies with a total
of 28 members encoded by the human genome (90). The HECT
family of E3 ligases were discovered during the investigation of
E3 ligase E6AP (UBE3A), which then became its first member
(91–93). Here, the human papillomavirus (HPV) virulence
protein E6 was shown to hijack the mammalian E3 ligase,
altering its substrate specificity toward tumor suppressor p53
as well as other regulatory proteins (94, 95). HECT-mediated
ubiquitination requires an intermediate step, whereby ubiquitin
is first transferred onto the E3 catalytic cysteine residue via a
thioester bond, prior to conjugation onto protein substrates. This
allows HECT-type E3 ligases to veto any linkage preference
conferred by E2 conjugating enzymes (96). The approximately
40 kDa bi-lobed HECT domain is composed of an N-lobe and a
C-lobe, with the N- and C-lobes being separated by a hinge
glycine residue (Figure 2) (97). While the C-lobe contains the
catalytic cysteine residue, the larger N-lobe primarily mediates
E2 interaction as evidenced by the crystal structure of E6AP in
complex with UBCH7 (97). In the context of at least some HECT
E3s such as NEDD4, the N-lobe can also provide a binding
interface for ubiquitin itself and this might promote processivity
during ubiquitin chain extension (98). These and other structural
Frontiers in Oncology | www.frontiersin.org 6
studies have emphasized that conformational flexibility of the
HECT domain is key to bringing the catalytic cysteine of the E3
in close proximity with that of the E2 and thus to enable
ubiquitin transfer (97, 99, 100).

Even though HECT E3 ligases share the highly conserved
HECT domain, they display considerable diversity in their N-
terminal domains which are thought to play important roles in
substrate targeting as well as E3 ubiquitin ligase regulation (101).
This has been most well-characterized for the NEDD4 HECT E3
ligase family (NEDD4, NEDD4.2, ITCH, SMURF1, SMURF2,
WWP1, WWP2, NEDL1 (HECW1) and NEDDL2 (HECW2))
which contain an N-terminal Ca2+-dependent/independent
lipid-binding domain (C2 domain) and between two to four
WW domains in addition to the C-terminal HECT domain (102,
103). Type I WW domains within NEDD4 family proteins bind a
multitude of substrates by engaging PY motifs (PPxY) as well as
other proline-rich motifs (104–106). C2 domains mediate
targeting of the E3 to the phospholipid bilayer but may also
confer substrate specificity (107, 108). Various inter- and
intramolecular interactions are prominent in the regulation of
HECT E3 ligase activity (109). For example, C2-HECT domain
interaction within SMURF2 results in the canonical closed/
autoinhibitory conformation that may be outcompeted if a
substrate is available (110). Further, NEDD4 forms an
autoinhibitory trimer via a conserved a1-helix domain, which
is contrasted by E6AP trimerization that constitutes its active
conformer (111, 112).

Deubiquitinases
In many aspects, the cellular counterpart to E3 ubiquitin ligases,
DUBs remove ubiquitin moieties from substrate proteins
ensuring reversibility of the post-translational modification.
Around 100 DUBs have been identified in eukaryotes and are
divided into seven evolutionary conserved families (USP,
JAMM/MPN, OTU, MJD/Josephin, UCH, MINDY, and ZUP1)
(113). DUBs are predominantly thiol proteases with a catalytic
cysteine residue or in the case of the JAMM family
metalloproteases coordinate a Zn2+ ion in the active site (114).
DUBs may display substrate specificity and/or ubiquitin linkage
specificity. The reversibility of protein ubiquitination was first
demonstrated in 1982 by the observation that histone H2A is
deubiquitinated during mitosis and re-ubiquitinated during the
G1 phase (115). Later, the first DUB, YUH1, was identified in S.
cerevisiae and the lack of obvious phenotypic changes suggested
the existence of additional DUBs (116). DUBs have since been
implicated in most if not all cellular processes including DNA
repair, signal transduction and innate immunity (113).

DUBs also play a crucial role in the de novo synthesis of
ubiquitin and thus maintenance of the cellular ubiquitin pool.
Human ubiquitin is encoded by four genes expressing the
ubiquitin precursors UBB, UBC, UBA52 and UBA80. UBB and
UBC exist as head-to-tail linked ubiquitin polymers with a C-
terminal extension, while UBA52 and UBA80 are ubiquitin
monomers fused to the ribosomal proteins L40 and S27A,
respectively (117–119). Processing of ubiquitin precursors is
carried out by multiple DUBs and likely serves as additional
quality control checkpoint. Ribosomal fusion precursors are
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post-translationally cleaved by UCHL3, USP7 and USP9X, while
ubiquitin multimer precursors are processed by USP5 and
OTULIN (120).

In addition, DUBs also carry out another important
“housekeeping” function by recycling ubiquitin as part of the
UPS and the endocytic pathway (121, 122). Upon recognition of
ubiquitinated cargoes by ubiquitin receptors on the proteasome
lid, including Rpn10, Rpn13 and Rpn1, the polyubiquitin signal
is cleaved off by proteasomal DUBs including UCH37 (UCHL5),
Usp14 and PSMD14 (Rpn11) (Figure 1) (123). As demonstrated
for PSMD14, catalytic activity is in direct competition with
ubiquitin unfolding by the proteasomal AAA-ATPases (124).
This results in mechanochemical coupling of the two processes,
where substrate translocation accelerates conformational
switching of PSMD14 into its active b-hairpin conformer.
Mechanistically, PSMD14 exists as a dimer with the pseudo-
DUB PSMD7 which is subject to steric inhibition by the 20S
entry port (125). Therefore, even though PSMD14 may not exert
linkage specificity in vitro, it may only catalyze en bloc chain
removal, at least in the context of the proteasome (126). The
recycling of ubiquitin on the 19S cap is part of a highly
orchestrated series of events which leads to cargo unfolding by
AAA-ATPases and translocation into the 20S core particle where
proteolysis takes place (127).

In other cellular contexts, DUB linkage specificity is of more
importance. For example, NFkB signaling relies on the K63-
linked polyubiquitination of adaptor proteins for the recruitment
o f t h e TAB–TAK1 k i n a s e c omp l e x , M1 - l i n k e d
polyubiquitination of NEMO by the linear ubiquitin chain
assembly complex (LUBAC) , and the K48- l inked
polyubiquitination of IkBa, the key effector kinase mediating
activation of the pathway (128). To regulate NFkB activity,
ubiquitin chain disassembly is orchestrated by OTU DUBs
OTULIN and CYLD which exert M1 and M1/K63 specificity,
respectively (129, 130). Importantly, loss of function of OTULIN
drives inflammation and autoimmunity in mice and leads to
OTULIN‐related autoinflammatory syndrome (ORAS) in
humans (131). Similarly, deficiency in CYLD or A20, a master
regulator of NFkB, lead to overt pathway activation and
inflammation (132).
THE UBIQUITIN CODE

Ubiquitin can be conjugated to a substrate lysine residue via its
C-terminal glycine residue but may also be conjugated to itself.
Polyubiquitin chains can thus be assembled through any of its
lysine residues (K6, K11, K27, K29, K33, K48, and K63) as well as
the N-terminal methionine residue (M1 or linear chains) (Figure
1). Although ubiquitin smears were observed in the initial study
by Hershko and colleagues, it took further efforts to confirm the
existence of polyubiquitin chains (48). These were first identified
as K48-linked polyubiquitin chains attached to lysine residues on
short-lived proteins which targeted them for proteolytic
degradation by the 26S proteasome in an ATP-dependent
manner (133–136). Importantly, each of these linkages has
Frontiers in Oncology | www.frontiersin.org 7
now been identified in yeast and mammalian cells by mass
spectrometry (137, 138). Over the last two decades, atypical
chains (assembled through linkages other than K48 or K63), as
well as more complex polyubiquitin signals such as heterotypic
and branched chains, have also been reported, emphasizing the
complexity and diversity of ubiquitin as a signaling molecule (60,
139, 140).

Homotypic K48-linked ubiquitin chains canonically signal for
proteasomal degradation and also represent the most abundant
linkage-type (135, 137, 141). Additional linkage-types that
mediate proteasomal targeting include K29, which may also
drive lysosomal degradation, and perhaps surprisingly,
monoubiquitination and K63 which have been predominantly
associated with non-proteasomal functions including
endocytosis and autophagy (141–144). Indeed, K63-
polyubiquitin chains have been primarily implicated in protein
complex assembly which includes TRAF6, Ubc13-Uev1A and
TRIKA2 (TAK1, TAB1 and TAB2) that associates with IkB
kinase (IKK). Here, K63-polyubiquitination stimulates
phosphorylation of IKK by TAD1 which leads to the K48-
linked polyubiquitination and degradation of IKK and
transcriptional activation of NFkB gene targets (145, 146).
Other K63 signaling functions include but are not limited to
regulation of DNA repair (also K27) (147–149), protein sorting
(150, 151) and mRNA splicing (152) and translation (153).
Similarly, K48 chains can also mediate non-proteasomal
functions as evidenced by the stabilization of the yeast
transcription factor M4 by K48-polyubiquitination (154).

Heterotypic ubiquitin chains may either present with “mixed”
or “branched” topology. For example, the E3 ligase complex
LUBAC, which assembles linear M1-linked ubiquitin chains, also
forms K63/M1-linked hybrid ubiquitin chains. In the context of
innate immunity, these hybrid chains mediate activation of the
canonical IKK complex, but have also been shown to play a role
in the TNFR1 and NOD1 signaling networks through
modification of RIP1 and RIP2 kinases, respectively (128, 155).
Meyer and Rape showed that APC/C assembles K11/K48-
branched ubiquitin chains through its E2s Ube2S and Ube2C
resulting in a degradation signal that is superior to homotypic
K11/K48 chains (156). To achieve polyubiquitin chains of
branched topology, the cooperation of enzymes with differing
linkage specificity is key. This is the case with ITCH and Ubr5
which assemble K63-linked chains and K48-linked chains,
respectively, resulting in K48/K63-branched ubiquitination of
proapoptotic regulator TXNIP (157). Similarly, ubiquitin
branching has also been demonstrated in yeast where the E4
enzyme Ufd2p catalyzes K48-linked multi-monoubiquitination
of Ufd4p-assembled K29-linked polyubiquitin chains as part of
the ubiquitin fusion degradation (UFD) pathway (158, 159). In
eukaryotes, K29/K48 branched chains have so far been
demonstrated to play a role in targeting substrates to the UPS
and ERAD (160, 161). Interestingly, the UPS appears well-
equipped for processing these more complex chains, with a
recent study showing that the proteasome-associated DUB
UCH37 is a debranching DUB with important roles during
proteasomal degradation (162). Through continued
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advancements in mass spectrometry-based techniques including
the quantification of polyubiquitin linkage composition (e.g.
ubiquitin-AQUA, Middle-Down MS), and the dissection of
polyubiquitin architecture (e.g. UBICREST, Ub-Clipping,
TUBE, TR-TUBE), new insights into the structure and
function of branched ubiquitin chains are now possible (138,
163–167).

The versatility of ubiquitin as a signaling molecule makes it a
prime target for cancer cells that seek to escape physiological
regulation. Indeed, deregulation of the ubiquitin system is often
observed in tumor-suppressing pathways (e.g. overactivation/
expression of an E3 ligase leading to the ubiquitin-dependent
degradation of a protein with tumor suppressive function) as
well as tumor-promoting pathways (e.g. inactivation of an E3
ligase leading to the stabilization of oncoproteins). Thus, E3
ubiquitin ligases and DUBs in particular have emerged as
therapeutic candidates, offering the possibility to more accurately
control the activity of a given pathway in contrast to targeting
protein degradation as a whole through proteasomal inhibition.
The contribution of ubiquitin signaling to GBM tumorigenesis is
currently not well understood. In the next section, we will highlight
ubiquitin-dependent mechanisms relevant to GBM and discuss
these in the context of EGFR, TGF-b, p53 and stemness-related
pathways. Table 1 and Table 2 provide a comprehensive overview
of E3s and DUBs implicated in GBM, respectively.
THE UBIQUITIN SYSTEM IN
GLIOBLASTOMA

Epidermal Growth Factor Receptor
EGFR amplification and mutations rendering the receptor
constitutively active are commonly observed in GBM. Most
common are deletions of exons 2-7 (EGFRvIIID6-273), which
result in constitutive activation of receptor signaling as well as
global epigenomic and transcriptomic remodeling with
chromatin landscape analysis revealing that activation of 2245
putative enhancers was specific to EGFRvIII (275). Also, EGFR
amplification (44%) and point mutations that target the
extracellular domain (R108K, A289V/D/T and G598D; 24%)
are frequently observed (TCGA, PanCancer Atlas). Likewise, loss
of the negative Akt regulator PTEN is associated with poor
survival (276). Interestingly, in addition to mutations causing
loss of expression or enzymatic activity, L320S and T277A have
been found to dysregulate PTEN stability and cellular
localization by altering the membrane-binding regulatory
interface resulting in increased polyubiquitination (277).

Indeed, EGFR stability and downstream signaling are subject
to the ubiquitin regulatory network (Tables 1, 2). In GBM, the
DUB CSN6, a subunit of the COP9 signalosome complex (CSN),
mediates EGFR stabilization and was also shown to be
overexpressed in GBM tumor samples (176). CSN6 may also
destabilize EGFR-interacting E3 ligase CHIP by promoting its
autoubiquitination (278). Interestingly, in a non-GBM context, it
is well-established that the multi-subunit metalloprotease CSN
regulates the neddylation of CRLs (279). Here, its CSN6 subunit
Frontiers in Oncology | www.frontiersin.org 8
has been associated with the degradation of tumor suppressor
proteins including c-Myc and p53 (280, 281). Another E3 ligase,
TRIM11, also regulates EGFR levels and TRIM11 expression
correlated closely with glioblastoma stem cell (GSC) markers
Nestin and CD133 and promoted tumorsphere formation (223).

TGF-b Signaling
Aberrant rewiring of tumor-suppressing TGF-b signaling that
induces potent cell cycle arrest to one that promotes cell
growth and EMT is characteristic of tumor progression. It has
been shown that in patients with high-grade gliomas TGF-b
signaling is highly active and this is associated with poor
prognosis (282). The canonical TGF-b pathway signals
through receptor-regulated Smads (R-Smads), but the receptor
may also directly cross-communicate with non-canonical
pathways including MAPK, PI3K or RHO-like GTPases (283).
TGF-b signaling is subject to tight regulation by ubiquitination
(Figure 3). The inhibitory Smad protein Smad7 functions as a
negative feedback loop by complexing with TbR-I and blocking
R-Smad phosphorylation, or by binding to the promoter region
of PAI1, blocking functional SMAD2/3-DNA complex
formation. Further, Smad7 also serves as a docking site for the
HECT E3 ligase Smurf2 and DUB USP15 (239, 284). This E3-
DUB pair is yet another example of signaling regulation by
ubiquitination and a quick and responsive mechanism to
regulate pathway activity/output (285). Smurf2 suppresses
TGF-b signaling by targeting TbR-I for proteasomal
degradation, while USP15 opposes TbR-I polyubiquitination
thus stabilizing the receptor complex. Indeed, USP15
knockdown decreased tumorigenic potential in GBM, while
more than 2.5 copies of USP15 conferred significantly poorer
life expectancy in patients (239).

The physical and functional interaction between Smad7 and
the HECT E3 ligase HERC3 has been shown to play a role in
chemoresistance observed in GBM. Concomitant TMZ
chemotherapy is a standard treatment for high-grade gliomas
and has been shown to induce autophagy-mediated cell death
(286). Nonetheless, in a subset of tumor cells, this catabolic
process may also have pro-survival effects rendering the tumor
chemoresistant (287). HERC3 has also been shown to play a key
role in autophagy-induced EMT, a core molecular mechanism
for drug resistance in GBM (233, 288). Experiments in GBM cells
showed that TMZ-induced autophagy resulted in significant up-
regulation of TGF-b signaling and subsequent expression of
mesenchymal markers. Specifically, autophagy upregulated
HERC3 expression which resulted in HERC3-mediated Smad7
K63-polyubiquitination and subsequent autolysosomal
degradation. HERC3 binds Smad7 via its RCC4–7 domains
(aa156–366) and in addition to targeting cytoplasmic Smad7,
HERC3 also disrupted the inhibitory interaction of nuclear
Smad7 with the promoter region of PAI1 (289).

The HECT E3 ligase Smurf1 carries out very similar functions
to Smurf2 by also binding to Smad7, however it does not co-
precipitate with USP15 indicating a contextually different,
USP15/Smurf2-independent role (239, 290). Downstream of
receptor complex activation, the DUB USP10 drives TGF-b
signaling by stabilizing Smad4 which has been linked to
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TABLE 1 | E3 ubiquitin ligases in Glioblastoma (GBM).

Name Function Target/Substrate Reference

RING E3 Ligases
A20 • Inhibition of TRAIL-induced apoptosis via RIP1 K63-polyubiquitination RIP1 (168)
APC/C • Cell cycle regulation

• Regulation of GSCs via CDC20-APC/SOX2 signaling axis
CDC20, KIF11, SOX2 (169–171)

BIRC3 • Hypoxic adaptation in mesenchymal GBM ? (172)
BRE1 • Polyubiquitination of tumor suppressor p42 Ebp1 Ebp1 (173)
c-Cbl • Regulation of aPix-mediated cell migration and invasion

• Negative regulation of PI3K-AKT pathway via neddylation of c-Src
aPix, c-Src (174, 175)

CHIP • Regulation of PI3K/AKT signaling via the CHIP/miR-92b/PTEN regulatory network
• CSN6-CHIP-EGFR signaling axis

EGFR, PTEN (176, 177)

CUL4B • Knockdown induced G1 arrest and decreased expression of cyclin D1 ? (178)
HOIL-1L • Hypoxic adaptation via HIF1-dependent PKCz degradation PKCz (179)
IAP1 • Regulation of c-Myc and NFkB signaling ASK1, IAP2, MAD1/4, TRAF2 (180)
IAP2 • Negatively regulates XIAP stabilization of mature Smac and Bcl10

• Regulation of NFkB signaling
XIAP (181)

LZTR1/CUL3 • Regulation of the RAS/MAPK signaling cascade RAS (182)
MDM2/HDM2 • Overexpression provides escape from p53-regulated growth control

• Associated with multi-drug resistant phenotype
• Regulation of HIF1a in a PTEN-PI3K-AKT-dependent manner

HIF1a, p53 (183–185)

MEX3A • Regulates tumor suppressor RIG-I RIG-I (186)
NRDP1 • Negative regulator of non-canonical Wnt signaling Disheveled, Vangl1/2 (187)
nXIAP • Regulation of NFkB activation and apoptosis

• Inhibits IAP2 autoubiquitination
Caspase 3/7/9, IAP2, TAK1/TAB1 (181, 188)

PRAJA1 • Overexpressed in gliomas with inverse relationship to cell cycle regulator and
apoptotic genes

• Mediates degradation of CIC, possibly contributing to hyperactive RTK/Ras/ERK signaling

Capicua (CIC) (189, 190)

PRAJA2 • Degradation of NDR/LATS kinase component Mob, attenuating the Hippo cascade
and sustaining tumor growth

Mob (191)

RAD18 • Knockdown reduced cell viability and invasive capacity ? (192)
RBX1/ROC1
(SCF)

• Silencing induces G2-M arrest, apoptosis and senescence ? (193)

RNF123 • miR-155-5p-RNF123-NF-kB1-p50-SerpinE1 signaling axis NFkB? (194)
RNF135 • Knockdown induced G0/G1 arrest and attenuation of p-ERK activation RIG1 (195)
RNF138 • Downregulation attenuated tumour growth and reversed EMT, possibly via Erk

signaling pathway
• Degradation of rpS3 provides mechanism for radioresistance

rpS3 (196, 197)

RNF144 • Epigenetic regulation
• Downregulation under hypoxic stress in mesenchymal GSCs increases cell survival

BMI1 (198)

RNF168 • Reduced expression of RNF168 in MTAB-deficient GBM cells leads to H2AX
destabilisation

H2AX (199)

SCFb-TrCP • Regulation of GBM stem cell maintenance/differentiation
• Nuclear mislocalization induces PI3K/Akt and Wnt/b-catenin pathway dysregulation

b-catenin, PHLPP1, REST (200–202)

SCFFbw7 • Tumor suppressor commonly mutated in GBM
• Enhances BNIP3-mediated hypoxic cell death via Mcl-1 degradation
• Silencing reduced G2/M arrest and apoptosis

Aurora-A/B, c-Jun, c-Myc, Cyclin E, Mcl-1,
Notch1/4, SOX9

(203–206)

SCFFBXL14 • Antagonizes USP13-mediated c-Myc stabilization, negatively regulating GSC self-
renewal

c-Myc (207)

SCFFBXO16 • Low expression in GBM results in active Wnt signalling b-catenin (208)
SCFSKP2 • Regulation of p27 stability via PTEN/PI3-kinase pathway

• Senescence and cell cycle regulation
• Knockdown resulted in chemosensitization and reduced sphere formation ability

p21Cip1/Waf1/Sdi1, p27KIP1 (209–212)

SHPRH • Tumor suppressive phenotype PCNA (213)
SIAH1 • Proapoptotic role in GBM p53WT cells HIPK2, p27 (214, 215)
TRAF2 • Silencing induces G2-M arrest and radiosensitization

• NO induced CREB phosphorylation via IRE1-a/TRAF2/JNK axis
• Regulation of NFkB signaling

IRE1-a, SGEF/Rac1 (216–218)

TRIM3 • Regulation of stem cell dynamics and asymmetric cell division
• Regulation of c-Myc and Musashi–Notch signaling

? (219)

TRIM8 • Regulation of stemness via STAT3 signaling PIAS3 (220, 221)
TRIM9s • Enhances p38 signaling via K63-uniquitination of MKK6 MKK6 (222)
TRIM11 • Overexpression promoted a stem-like phenotype

• Exerts oncogenic effect through EGFR pathway
? (223)

TRIM14 • Promotes EMT by regulating ZEB2 stability ZEB2 (224)

(Continued)
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increased metastatic potential in hepatocellular carcinoma
(291). Another HECT E3 ligase, NEDD4L, recognizes
the phosphorylated PPXY motif of Smad2/3 via its WW
domain, resulting in polyubiquitin-mediated turnover and
reduced TGF-b signaling output (292). This mechanism is
specific to the canonical TGF-b pathway since it requires the
phosphorylation of p-Smad2/3 by TGF-b-activated CDK8/9,
which does not regulate non-canonical TGF-b pathways. These
and additional ubiquitin-dependent mechanisms have been
implicated in TGF-b signaling, and their dysregulation is
frequently observed in GBM as well as other cancers, therefore
opening new avenues for therapeutic intervention (293).

p53 Regulation
The master-regulator p53 integrates various signaling pathways,
relaying its tumor suppressive functions through a plethora of
target genes. p53 is modified by a large variety of post-
translational modifications which regulate its spatial and
temporal expression. Ubiquitination of p53 was first discovered
in the context of human papillomavirus, which highjacks the
HECT E3 ligase E6AP to redirect its E3 ligase activity toward
p53, an otherwise non-canonical substrate (92). In addition to
oncogenic viruses, p53 is also targeted for ubiquitin-dependent
degradation in multiple cancers. In GBM for example (Figure 4),
p53 levels are regulated by the RING E3 ligase MDM2 as part of
the ARF-MDM2-p53 axis which is dysfunctional in 84% of cases/
94% of cell lines (294). Under normal physiological conditions,
MDM2-p53 forms a negative feedback loop where p53 activation
induces the expression of MDM2 which in turn promotes the
Frontiers in Oncology | www.frontiersin.org 10
ubiquitin-mediated degradation of p53 (295). This equilibrium is
disrupted by MDM2 amplification which negates p53 tumor
suppressor function such as growth/cell cycle arrest, apoptosis or
DNA repair. MDM4 performs a complementary role but lacks
intrinsic E3 ligase activity (296). Via protein-protein
interactions, MDM4 directly inhibits p53 by binding to its
transcription activation and DNA binding domain (297, 298).
In contrast to MDM2, MDM4 does not form homodimers but
preferentially hetero-oligomerises with MDM2 via their
C-terminal RING domains to mediate p53 ubiquitination
(299). Indeed, heterodimer formation facilitates increased p53
ubiquitination but also stabilizes MDM2 by reducing its
autoubiquitination. In GBM, homozygous deletions of
CDKN2A (ARF/56%), gene amplification of MDM2/4 (8.2%/
9.4%) and missense mutations in TP53 (31.5%) all lead to loss of
p53 tumor suppressive functions, either through reduced activity
or through reduced levels (TCGA, PanCancer Atlas).

Another interesting regulator of p53 activity in GBM is the
DUB USP4 which negatively regulates p53 indirectly by
stabilizing the HECT E3 ligase HUWE1/Mule (300). Although
USP4 mRNA and protein levels were upregulated in GBM, its
transient depletion did not result in changes in cell viability
(252). In contrast, cells treated with the chemotherapeutic TMZ
were significantly more sensitive to USP4 depletion by siRNA
and showed decreased cell viability. This study suggests that
USP4 mediates chemoresistance in GBM by preferentially
inhibiting p53-mediated apoptosis. However, other E3 ligases
such as TRIM45, may also positively regulate p53 activity. The
TRIM family of RING E3 ligases are highly expressed in the
TABLE 1 | Continued

Name Function Target/Substrate Reference

TRIM33 • Degradation of nuclear b-catenin b-catenin (225)
TRIM45 • Stabilizes p53 via K63-polyubiquitination p53 (226)
VHL • Regulation of JAK/STAT and hypoxic signaling and Wnt/b-catenin pathway

• Regulation of angiogenesis via VEGF
b-catenin, HIF-1a (227–229)

RING-Between-RING E3 Ligases
PARKIN • PARK2 mutations lead to cyclin E dysregulation and mitotic instability

• Degradation of APE1 under cellular stress
• Negative regulation of EMT via ZEB1

APE1, Cyclin E (85, 230,
231)

HECT E3 Ligases
HECTD1 • Negative regulation of Wnt pathway Adenomatous polyposis coli? (232)
HERC3 • Promotes autophagy-induced EMT via SMAD7/TGF-b signaling SMAD7 (233)
HUWE1 (Mule) • Regulation of N-Myc transcriptional activity N-Myc (234, 235)
ITCH/AIP4 • Regulation of FLIPs stability via PTEN-Akt-AIP4 pathway FLIPs (236)
NEDD4 • FoxM1B-induced degradation/downregulation of PTEN PTEN (237)
SMURF1 • Knockdown reduced cell invasion

• Correlates with poor prognosis
? (238)

SMURF2 • Dysregulation of TGF-b signaling TbR-I (239)
UBE3B • Knockdown sensitized cells to chemotherapeutic and resulted in mitochondrial

fragmentation
• Regulation of mitochondrial oxidative stress response

Calmodulin (240, 241)

UBE3C • Knockdown decreased cell migration and invasion
• Ubiquitination of tumor suppressor ANXA7

Annexin A7 (242)

SUMOylase
NUSAP1 • Stabilizes DNA damage sensor ATR

• Increased chemotherapeutic resistance
ATR (243)

PIAS1 • Mediates STI1 nuclear retention during DNA-damage response
• Regulates stability of RNA helicase, DDX39B

DDX39B, STI1 (244, 245)
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brain, but TRIM45 mRNA and protein levels have been shown to
be significantly downregulated in GBM tissue samples. TRIM45
had been previously shown to negatively regulate the MAPK and
NFkB pathway, but its role as tumor suppressor had not been
explored in GBM (301, 302). However, in GBM, TRIM45
mediated its tumor suppressor function through direct
ubiquitination and stabilization of p53 (226). The authors
suggested that K63-ubiquitination of p53 by TRIM45 inhibited
subsequent degradative ubiquitination by for example MDM2/4.

Stem Cell Maintenance
The discovery of cells with extensive proliferative and self-
renewal capacity in AML gave rise to the cancer stem cell
hypothesis (303). Glioblastoma stem cells (here defined as
CD133+Nestin+) have since been identified as a distinct
subpopulation, critical to tumorigenesis (304). The origin of
GSCs may be disputable, but it is evident that the GSC
subpopulation is key to the maintenance of tumor growth
and invasive capacity, while also providing means for
Frontiers in Oncology | www.frontiersin.org 11
treatment resistance and thus GBM recurrence (305–307).
Generally, GSC transcriptomic signature correlates with bulk
tumor molecular subtype (excluding neural subtype), thus
reflecting clonal heterogeneity and plasticity (308). Indeed,
intra tumoral GSC subtype plasticity may allow for adaptation
to a particular tumor niche or serves as a survival mechanism in
response to microenvironmental cues. Identification of the
underlying molecular mechanisms that drive stemness is thus
key for successful therapeutic development. Using serial
xenotransplantation and DNA barcoding, GSCs have been
shown to exhibit a remarkable neutral proliferative hierarchy
(309). In this model, a small pool of slow-cycling stem-like cells
ensured tumor proliferative capacity by giving rise to rapidly-
cycling progenitor cells. Although this model highlights the
evolutionary fitness advantage of GSCs over non-GSCs, it does
not take into account GSC plasticity. Indeed, multi-lineage
plasticity not only extends to molecular subtypes but also
exists as a dynamic equilibrium between GSCs and
differentiated cancer cells (310). Stemness regulation by the
TABLE 2 | Deubiquitinases in Glioblastoma (GBM).

Name Function Target/Substrate Reference

USPs (Ubiquitin Specific Proteases)
USP1 • Promotes stem cell maintenance via stabilization of ID1 and CHEK1

• b-catenin–USP1-EZH2 axis links aberrant b-catenin signaling with EZH2-mediated gene epigenetic silencing
CHEK1, EZH2,
ID1, ID2

(246–248)

USP2a • Stabilizes MDM4, which regulates p53 activity MDM4 (249)
USP3 • Regulation of EMT and invasion via stabilization of Snail

• Promotes radioresistance via Smo-USP3-Claspin axis
Claspin, Snail, (250, 251)

USP4 • Negatively regulates p53 stability
• Knockdown downregulates PCNA, Bcl-2, upregulates Bax
• Activates ERK pathway

? (252, 253)

USP5 • In GBM, USP5 generates a shorter isoform 2 that promotes growth and migration ? (254)
USP7
(HAUSP)

• Prevents neuronal differentiation in NPCs by stabilizing REST
• Promotes tumorigenesis via LSD1

LSD1, REST (255, 256)

USP8
(hUBPy)

• Regulates FLIPs stability and TRAIL sensitivity via Akt-USP8-AIP4 axis
• Identified as GSC fitness gene

AIP4 (257, 258)

USP9X • Regulates survival by stabilizing Mcl-1
• Knockdown reduces levels of Bcl-2 family members, XIAP and Survivin
• Maintains mesenchymal identity by stabilizing ALDH1A3

ALDH1A3, Mcl-1,
SOX2

(259–262)

USP10 • Overexpressed and correlates with poor survival ? (263)
USP11 • EGFR-vIII epigenetically silences USP11, a negative regulator of cell cycle, via PI3K/AKT-HDAC1/2 axis

• Stabilizes tumor suppressor PML
PML (264, 265)

USP13 • Maintenance of GSCs by stabilizing c-Myc c-Myc (207)
USP15 • Binds Smurf2 and stabilizes TbR-I

• Regulates WNT pathway
• Knockdown downregulates mesenchymal markers and proliferative/invasive capacity

HECTD1, Smurf2,
TbR-I

(232, 239,
266)

USP18 • Negative regulator of IFN response; possibly promotes apoptotic resistance ? (267)
USP22 • GSK3b and USP22-dependent KDM1A stabilization is required for the demethylation of histone H3K4, thereby

repression of BMP2, CDKN1A, and GATA6
KDM1A (268)

USP28 • Promotes tumorigenesis by stabilizing c-Myc c-Myc (269)
USP48 • Sonic Hedgehog pathway-USP48-Gli1 loop promotes tumorigenesis Gli1 (270)
CYLD • Regulates hypoxia-mediated inflammation

• Stabilizes RIPK1 for cell survival
RIPK1 (271, 272)

OTUs (Ovarian Tumor Family)
A20
(TNFAIP3)

• Regulator of cell survival and the NF-kB pathway
• Overexpressed in GSCs

? (273)

JAMM/MPN+ Family
BRCC3 • Knockdown reduces growth, migration and TMZ resistance ? (274)
CSN6 • Promotes proliferation and metastasis by stabilizing EGFR

• Promotes CHIP auto-ubiquitination
CHIP, EGFR (176)
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tumor microenvironment results in a bidirectional equilibrium
between CSC and non-CSC compartments and therefore GSCs
should be regarded as reversible, transient state at the apex of a
stem cell hierarchy (311, 312). GSC plasticity itself is now
emerging as a key therapeutic target to overcome recurrence
and drug resistance.

The underlying molecular mechanisms that contribute to GSC
maintenance and plasticity, including the role of ubiquitin
signaling, are still being worked out. E3 ligases/DUBs regulate
the stability of key mediators of neuronal differentiation, including
c-Myc, a core transcriptional regulator of GSCs. c-Myc levels are
tightly controlled in a context-dependent manner by several E3
ligases and DUBs. One study showed that USP13 and SCFFBXL14

act as an E3-DUB pair regulating c-Myc ubiquitination in GBM
(207). USP13 was found preferentially expressed in GSCs while
SCFFBXL14 was predominantly expressed in non-stem glioma cells,
enabling preferential stabilization of c-Myc in GSCs. USP28 was
previously shown to stabilize c-Myc in HeLa and U2OS cells by
antagonizing SCFFBW7a-mediated degradation and a more recent
study has now reported its overexpression in GBM (269, 313). It
has also been demonstrated that high expression of TRIP13, which
stabilized c-Myc by inhibiting FBW7 transcription, correlates with
poor patient survival (203). TRIM3 is another E3 ligase that has
Frontiers in Oncology | www.frontiersin.org 12
been shown to suppress c-Myc levels in GBM (219). In
Drosophila, TRIM3 is an important regulator of asymmetric cell
division, but whether its tumor suppressive effects in GBM are
mediated through direct interaction with c-Myc remains to be
shown (314).

The gene master regulator REST (repressor element 1-silencing
transcription factor) is aberrantly expressed in brain tumors, where
it likely maintains stem/progenitor cells through repression of
neuronal genes (200, 201, 315). Here, the multi-subunit E3 ligase
complex SCFb-TrCP targets REST for proteasomal degradation via a
phospho-degron. Although not in GBM specifically, USP7 has
been demonstrated to counterbalance REST ubiquitination by
SCFb-TrCP, facilitating neuronal differentiation in neural stem/
progenitor cells. SCFb-TrCP is a particularly versatile E3 ligase
which has been implicated in several pathways including cell
cycle regulation, NFkB and Wnt signaling (316). Interestingly,
another study reported nuclear mislocalization of SCFb-TrCP in
GBM which led to reduced degradation of its cytosolic targets
such as phospho-b-catenin (202). This may lead to increased
Wnt signaling which is also commonly observed in GBM
(317). Nevertheless, how SCFb-TrCP regulation of REST
and its nuclear mislocalization can be unified remains to
be understood.
FIGURE 3 | TGF-b Signaling and Ubiquitin in Glioblastoma. The TGF-b signaling cascade is tightly regulated by the ubiquitin-proteasome system. Illustrated are E3
ubiquitin ligases and deubiquitinases that not only regulate TGF-b signaling under physiological conditions but have also been shown to contribute to dysregulation
observed in glioblastoma.
November 2020 | Volume 10 | Article 574011

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Scholz et al. The Ubiquitin System in GBM
Another DUB enriched in GBM stem cells is USP1, which
stabilizes the DNA damage response and stem cell maintenance
regulators ID1/2 and Chk1 (246, 247). Radioresistance in
CD133+ cells is conferred by preferential activation of the
DNA damage response pathway via phosphorylation of
checkpoint proteins ATM, Rad17, Chk1 and Chk2. Loss-of-
function experiments on USP1 indeed resulted in impaired
GSC survival and radiosensitization (305). Furthermore,
CD133+ GSCs drive constitutive activation of the DNA
damage response through high levels of replication stress not
exhibited by CD133- cells (318). In proneural glioma cells, where
the PDGFR gene is frequently amplified, increased PDGF
signaling drove expression of members of the E2F
transcription factor family (E2F1-3). This in turn promoted
E2F interaction with the USP1 promoter and increased USP1
levels which then stabilized the transcriptional regulator ID2 and
maintained GSCs stemness (246, 247).
THE UBIQUITIN-PROTEASOME SYSTEM
AS A SOURCE OF NOVEL THERAPEUTICS
IN GBM

Drug discovery has largely focused on developing enzyme
inhibitors, in particular small molecular kinase inhibitors, with
Frontiers in Oncology | www.frontiersin.org 13
some success (319). Phosphorylation, like ubiquitination, is a
reversible post-translational modification and high-throughput
screens using small molecule libraries have identified vast
numbers of kinase inhibitors that target either the catalytic
ATP-binding pocket or adjacent hydrophobic cavities
inhibiting substrate phosphorylation (320). The UPS has been
dubbed as a new source of therapeutics although the development
of small molecules inhibitors has been accompanied by inherent
difficulties explaining the slow progress to date (30). E3 ubiquitin
ligases may outnumber protein kinases but are inherently more
difficult to target. Indeed, components of the UPS are exclusively
found intracellularly which in comparison to the extracellular
domains of receptor kinases, for example, negates antibody-based
approaches. Moreover, E2-E3-substrate interactions are of
transient nature and largely independent of well-defined binding
pockets making high-throughput screens not readily applicable.
Hence, the interface of E2-E3 interaction also does not lend itself
to targeting. The identification as well as the fate and function of
substrates modified by ubiquitin along with the mechanisms
regulating E1, E2, E3 and DUB activity are still being defined.
As we learn more about the specificity of enzymes in terms of the
ubiquitin-dependent mechanisms they mediate and cellular
processes they regulate, the ubiquitin system will offer a diverse
therapeutic toolbox. This will be particularly important in the
context of complex and heterogeneous pathologies such as GBM,
FIGURE 4 | p53 Regulation by the UPS in Glioblastoma. Tumor suppressor p53 is subject to a plethora of upstream regulatory mechanisms including post-
translational modification by ubiquitin. Here, E3 ubiquitin ligases and deubiquitinates that have been shown to modulate p53 function/activity in glioblastoma
specifically are depicted.
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where one “therapeutic magic bullet”might be difficult to achieve.
Below we will summarize exciting developments targeting the
components of the ubiquitin system and discuss the relevance of
these strategies for GBM.
Modulating Proteasomal Activity
Proteasome inhibition marked some of the earliest efforts in
targeting the UPS. Since transformed cells exhibit higher
proliferative capacity, ability to evade apoptosis and other
regulatory mechanisms, these cells were more susceptible to
proteasomal inhibition (321, 322). Proteasome inhibitors can
be chemically divided into the general categories of peptide
aldehydes, peptide vinyl sulfones, peptide epoxyketones,
peptide boronates and lactacystin and its derivatives. However,
only peptide boronates and epoxyketones bear the appropriate
balance of potency, selectivity and metabolic stability required
for clinical development (323). Nonetheless, proteasome
inhibitors not suitable for the clinic have provided an
invaluable understanding of cellular consequences of
proteasomal inhibition, with the most prominent example
being MG132 (carbobenzoxy-Leu-Leu-leucinal) (324).

Bortezomib (PS-341, Velcade), Carfilzomib (PR-171,
Kyprolis) and Ninlaro (Ixazomib, Takeda) are currently the
only FDA-approved proteasome inhibitors. All proteasome
inhibitors share a similar mechanism of action, they bind
active site threonine residues of the proteolytic b-subunits
(325, 326). These structural studies identified the hydroxyl
group of Thr1 as the catalytic nucleophile, which was
confirmed by further crystal structures that demonstrated that
only alanine but not serine substitution led to catalytic inactivity
(327). The dipeptidyl boronic acid bortezomib (pyrazylcarbonyl-
Phe-Leu-boronate) selectively targets the chymotrypsin-like
activity of the proteasome with the boron atom forming a
tetrahedral adduct with Thr1, exhibiting high potency (EC50

0.6 nM) and a clinical-relevant cytotoxic profile (328).
Treatment of various cancer cell lines resulted in cell cycle
arrest in G2-M phase and subsequent apoptosis as evidenced
by accumulation of cell cycle regulators p21 and p53 as well as
other pro-apoptotic proteins (329). Even though the underlying
mechanism remains to be fully elucidated, bortezomib is
considered to inhibit NFkB activation by blocking the
degradation of IkB and also increased sensitivity to
chemotherapeutic agents (330). Even though a first phase I
clinical trial in solid tumors yielded little success, a second
phase I trial for hematologic malignancies showed promising
results, ultimately leading to FDA approval of bortezomib in
2003 for multiple myeloma (331, 332).

In contrast to intravenous administration required for both
bortezomib and carfilzomib, ixazomib (ninlaro) has become the
first FDA-approved oral proteasome inhibitor (333). Ixazomib
citrate is metabolized into active ixazomib which selectively and
reversibly inhibits the chymotrypsin-like activity of the b5
subunit of the 20S proteasome. Nonetheless, drug delivery, in
particular the ability to cross the blood-brain barrier, remains an
issue for using proteasome inhibitors to treat brain pathologies
such as GBM. Bortezomib was effective in GBM mouse models,
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but only when administered intracranially but not systemically
(334). Proteasome inhibitors do not distinguish between normal
and transformed cells which may result in non-specific
cytotoxicity. Rather, they rely on the higher proliferative
capacity of cancer cells to be more effective in this particular
cell pool. However, new delivery strategies such as nanoparticle-
derived systems may help overcome specificity issues by
directing drugs to specific cellular compartments (335). Indeed,
preclinical studies have highlighted the effectiveness and
potential of bortezomib nanoparticle delivery, with for example
anti-CD38 chitosan nanoparticles improving multiple myeloma
cell targeting and resulting in a lower toxicity profile (336–338).
Therapeutic Targeting of E1-Activating
and E2-Conjugating Enzymes
Enzymes of the ubiquitination cascade also pose as promising
targets for drug discovery. However, given there are only two
main mammalian E1-activating enzymes (UBA1 and UBA6),
inhibiting their function would also affect ubiquitin-dependent
mechanisms as a whole. E1 enzymes carry out the ATP-
dependent activation step resulting in the formation of a thiol
ester bond between the ubiquitin adenylate and the active site
cysteine residue (339). UBA1’s Cys632 has been successfully
targeted via covalent modification by pyrazolidine-based
inhibitors such as PYR-41 and PYZD-4409 (340, 341). Even
though both showed selectivity for malignant cells, with the latter
displaying potential for the treatment of hematologic
malignancies, its mechanism of action and pharmacological
properties are incompletely understood. Currently, the most
promis ing candidate in deve lopment is MLN4924
(Pevonedistat) which is being evaluated in several phase I/II/III
clinical trials (342). MLN4924 targets NEDD8 Activating
Enzyme (NAE), which function as the initiator for the
conjugation of ubiquitin-like modifier NEDD8. The small
molecule inhibitor induces apoptosis due to accumulation of
tumor-suppressive Cullin-RING ligase substrates and S-phase
DNA synthesis dysregulation. Structural evidence suggests that
MLN4924 inhibits NAE enzymatic activity by forming a NEDD8
adduct via its sulfamate moiety resulting in a NEDD8-AMP
mimetic that occupies the adenylation active site (343).

In contrast to targeting the proteasome or E1-activating
enzymes, other classes of enzymes in the ubiquitin system are
likely to offer more specificity and therefore pose as more desirable
therapeutic targets. With 40 E2 conjugating enzymes encoded in
the human genome, this class of enzymes play an important role
with regards to substrate specificity, in particular for RING E3
ligase-mediated ubiquitination. For example, the small molecule
inhibitor CC0651 was originally identified in a screen for SCFSkp2,
and exhibited dose-dependent inhibition of CDK inhibitor p27
(344). However, functional studies in budding yeast later revealed
that the compound targets human UB2R1 (Cdc34) instead.
Structural analysis further confirmed this and also identified
CC0651 as an allosteric inhibitor, binding UB2R1 via its
biphenyl ring system in a hydrophobic pocket distinct from the
active site. Inhibition disrupts ubiquitin chain elongation but also
stimulates autoubiquitination.
November 2020 | Volume 10 | Article 574011

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Scholz et al. The Ubiquitin System in GBM
Another example is the E2 heterodimer UBE2N-UBE2V1
which has been successfully targeted by NSC697923 and
BAY 11-7082 (345, 346). NSC697923 blocks ubiquitin
transthioesterification by binding the active site cysteine
residue of UBE2N (Ubc13), downregulating constitutive NFkB
signaling in primary diffuse large B-cell lymphoma cells. BAY 11-
7082 was thought to inhibit IkBa phosphorylation but
here shown to inhibit K63 polyubiquitin chain formation by
forming a covalent adduct with the UBE2N Cyscat. The
compound exerts anti-inflammatory effects in primary B cell
lymphoma and leukemic cells but is yet to undergo further
preclinical evaluation.
Therapeutic Targeting of E3 Ubiquitin
Ligases
E3 ubiquitin ligases are at the pinnacle of the ubiquitination
cascade, carrying out the final step. This makes them attractive
drug targets due to their high degree of specificity and selectivity
toward substrates. Nonetheless, the transient and dynamic
nature of E3-substrate interaction and their lack of well-
defined catalytic cavities makes them inherently difficult to
target, especially with small molecule inhibitors. However,
GDC-199 (venetoclax) which gained FDA approval for chronic
lymphocytic leukemia (CLL) and small lymphocytic lymphoma
(SLL) in May 2019 revived interest in the possibility of disrupting
protein-protein interactions (347). Venetoclax selectively binds
to BCL-2’s BH3-only protein hydrophobic binding groove,
leaving the pro-apoptotic protein free to interact with for
example BAX and BAK proteins, inducing mitochondrial
membrane permeabilization and subsequent cell death
(348, 349).

The F-box protein SKP2 is the substrate recognition subunit
of the SCFSKP2 E3 ligase complex. Its well-defined role in several
human malignancies, as well as availability of structural data,
makes it a prime target for high-throughput screens. Indeed, in
silico screens identified several hits which selectively target the
p27 binding interface, while another screen identified compound
25 which disrupts SKP1 binding (350, 351). The compounds
displayed significant effects on cell proliferation through various
mechanisms including cell cycle arrest and suppression of Akt-
mediated glycolysis in line with their respective targets.

The p53 regulator MDM2 is another well-studied drug target
and particularly relevant in GBM where it is frequently
amplified. MDM2 binds the transcriptional activation domain
of p53 forming an autoregulatory feedback loop, which is
complemented by direct binding of MDM2’s hydrophobic cleft
to the amphipathic a-helix of p53’s transactivation domain
(TAD) resulting in ubiquitination and subsequent proteasomal
degradation (352, 353). A screen identified Nutlins, imidazoline
analog, as potent and selective inhibitors of TAD binding,
inducing p53 stabilization and downstream cell cycle arrest/
growth inhibition (354). Crystal structures of imidazoline
inhibitors in complex with MDM2 confirmed occupation of
the TAD binding cleft as underpinning mechanism.
Subsequently, further compounds disrupting MDM2-p53
interaction were identified. However, they suffer from the
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caveat that canonical ubiquitination of p53 mutants is MDM2-
independent (355). An interesting example is AMG-232 (KRT-
232) which averaged IC50s in the low nanomolar range in GBM
cell lines and patient-derived GBM stem cells (356). More
importantly, AMG-232’s suppressive effects seemed to extend
selectively to GBM stem cells as the compound displayed
efficacious inhibition of stemness-related factors Nestin and
ZEB1 in a spheroid culture model. AMG-232 is currently being
evaluated in 3 phase I clinical trials, with NCT03107780 probing
its ability to penetrate GBM in patients with newly diagnosed or
recurrent GBM. Several other imidazoline-based compounds are
also currently undergoing early phase clinical trials with however
so far modest clinical success (357).

Another class of compounds with several examples currently
undergoing phase I clinical trials are inhibitors of apoptosis
(IAP) antagonists (358). Proteins of the IAP E3 ligase family are
endogenous inhibitors of apoptosis that sequester pro-apoptotic
proteins such as caspases via their baculovirus IAP repeat (BIR)
domain rendering them inactive (359, 360). Under physiological
conditions, activation of the intrinsic apoptotic pathway induces
Smac/DIABLO relocalization from the mitochondria to the
cytosol where their binding to the hydrophobic BIR domain
interface results in IAP dissociation and thus activation of pro-
apoptotic proteins (361, 362). Efforts therefore focussed on
generating Smac-mimetics, which bind the IAP BIR domain
via the characteristic Ala–Val–Pro–Ile interaction motif (363).
Smac-mimetics induce dimerization of IAP RING domains, an
active conformation, resulting in autoubiquitination and
subsequent degradation (364).

The ability of small molecules to alter instead of inhibiting E3
ligase function has been demonstrated in nature as well as
experimentally. For example, the plant hormones auxin and
jasmonate function as so-called “molecular switches/glues”
enhancing E3 ligase substrate affinity (Figure 5) (369, 370).
The former is bound by the auxin receptor TIR1, an F-box
component of the SCF multi-subunit complex, enhancing
degradation of the downstream transcriptional regulators
AUX/IAA. In addit ion, the thal idomide derivat ive
lenalidomide was shown to alter the substrate specificity of
Cereblon (CRBN) ubiquitin ligase, inducing the degradation of
Ikaros family zinc finger proteins 1 and 3, B cell transcription
factors, in multiple B cell malignancies (371, 372). These studies
not only elucidate an important mechanism of these
immunomodulatory drugs but also provide evidence that small
molecules hold the potential to repurpose E3 ubiquitin ligases for
targeting “undruggable” targets, in particular GBM-relevant
oncoproteins such as c-Myc, b-catenin or MCL1 (373).
Database mining and rational screening have been used
successfully to identify molecular glue degraders that
specifically target cyclin K, and these approaches will have
broad applications for drug discovery (374, 375).

Therapeutic Targeting of Deubiquitinases
With the previously outlined success of targeting the
ubiquitination cascade, it is perhaps not surprising that
deubiquitination is also an integral part of current drug
discovery efforts. As previously discussed, DUB involvement is
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frequently observed in various cancers including GBM (Table 2).
In an attempt to build on the success of bortezomib but also
improve on issues associated with specificity, DUBs associated
with ubiquitin hydrolysis at the 26S proteasome are currently
evaluated. For example, the 19S subunit-associated DUB USP14,
which is involved in ubiquitin recycling, is overexpressed in
several diseases such as lung adenocarcinoma and non-small cell
lung cancer (376, 377). In this context, the upregulation of
USP14 is thought to maintain proteostasis of malignant cells
through efficient protein degradation. The growth factor
signaling transducer Akt phosphorylates USP14 on Ser432

resulting in an active conformation, thus providing means of
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globally regulating protein turnover (378). Similarly, UCHL5 is
also associated with the 19S cap proteasome complex by binding
to ubiquitin receptor RPN13 and functions by editing
polyubiquitin degradation signals, cleaving distal ubiquitin
moieties (379, 380). However, like USP14, UCHL5 is highly
selective, promoting the degradation of certain proteins while
guaranteeing the survival of others. For example, it was
demonstrated that the RPN13-UCHL5 complex promotes
degradation of inducible nitric oxide synthase (iNOS), while
stabilizing NFkB suppressor IkBa (381). VLX1570 is a
functional analog of the chalcone derivative b-AP15 with a
piperidine to azepane ring substitution (382). b-AP15 was
FIGURE 5 | Current approaches targeting E3 ubiquitin ligases. AUTAC, autophagy- targeting chimeric molecules; HyT, hydrophobic tagging; POI, protein of interest;
PROTAC, protein-targeting chimeric molecules; UPR, unfolded protein response (365–368).
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previously identified in a screen for lysosomal apoptosis
pathway activation and displayed promising in vivo anti-
tumor progression activity in several solid tumor models
(383). Polyubiquitinated substrate accumulation led to
USP14 and UCHL5 target identification and the compound
being dubbed second-generation proteasome inhibitor.
VLX1570 entered clinical trials in 2015 as a combination
study with dexamethasone in myeloma patients, but despite
continuous promising preclinical data, the trial had to
be suspended in 2017 due to dose-limiting toxicity
(NCT02372240). It will be interesting to see how other
proteasomal DUB inhibitors fare, with several currently in
preclinical development (384).

USP7 is another promising target for the treatment of
various cancers as it regulates the stability of a multitude of
oncoproteins and tumor suppressors (385). Many of which are
also relevant in GBM and add to its previously discussed role in
counterbalancing REST ubiquitination by SCFb-TrCP,
facilitating neuronal differentiation in neural stem/progenitor
cells (255). These include, for example, stabilization of FOXO
(Forkhead box O) transcription factors, regulation of tumor
suppressor PTEN nuclear-cytoplasmic partitioning or the p53
pathway (386–388). Several hits are currently investigated but
share issues of selectivity and potency. One such compound,
amidotetrahydroacridine derivative HBX 19,818, was shown to
covalently bind active site Cys223 with an IC50 in the
micromolar range (389). Experiments in cancer cell lines
confirmed that similar to USP7 knockdown, HBX 19,818
promoted apoptosis and G1 phase cell cycle arrest as well as
p53 stabilization. Similarly, P22077, previously identified
during an activity-based proteomics screen, showed selective
USP7 inhibition in an orthotopic neuroblastoma mouse model
(390, 391). Xenograft growth was significantly inhibited via the
USP7-MDM2-p53 axis. Recent structures of USP7 in complex
with small molecule inhibitors should accelerate informed
drug design and development. Importantly, it should be
noted that like the previously described Nutlins, USP7
inhibitors are rendered ineffective when faced with p53
mutant malignancies which is the case for ≈32% of GBMs
(TCGA, PanCancer Atlas).

USP15 has been implicated in NFkB, Wnt and TGF-b
signaling, which are all recognized cancer pathways (392, 393).
Building on a previous study that identified USP15 as DUB of
receptor-activated SMADs, Eichhorn et al. established USP15 as
SMURF2 counterpart (239, 394). USP15 gene amplification is
commonly observed in GBM and correlates with aberrant TGF-b
signaling. Currently, only weak USP15 inhibitors have been
identified, but recent structural insights in its catalytic domain
have provided a starting point for a more targeted approach
(395). Similarly, USP1 is emerging as a candidate target in GBM,
due to its increased expression in GSCs where it contributes to
the DNA damage response and stem cell maintenance (247). The
FDA-approved antipsychotic pimozide has been identified as
USP1 inhibitor and is now being re-evaluated in various
preclinical studies for cancer therapy (396). Also, the
diphenylbutylpiperidine has CNS activity and was shown to
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induce radiosensitivity as well as chemosensitivity to TMZ
treatment (397).
FUTURE OPPORTUNITIES FOR GBM
THERAPEUTICS

In addition to small molecule inhibitors, several novel
therapeutic avenues that exploit endogenous turnover
machinery are being developed (Figure 5). Rather than
delineating individual E2/E3-substrate pairings and
subsequently subjecting the specific binding interface to a small
molecule library screen, these new strategies co-opt endogenous
protein degradation machinery – specifically the UPS (i.e.
PROTACs, HyT, molecular glues), autophagy (AUTACs) and
the endosomal/lysosomal (LYTACs) pathways (398). PROTACs
are heterobifunctional molecules which can recruit E3 ubiquitin
ligases to the desired protein targets, thereby co-opting the
endogenous UPS for targeted protein degradation. Below, we
will summarize how PROTACs work and also how some of these
strategies provide new opportunities for GBM therapeutics.

Protein-Targeting Chimeric Molecules
PROTACs are an exciting new development in the field. They are
bi-specific, artificial molecular bridges that facilitate
ubiquitination of non-canonical substrates (Figures 5, 6).
Proof-of-concept was demonstrated in 2001, by using the
artificial PROTAC-1 to target methionine aminopeptidase-2
(MetAP-2) to SCFb-TrCP for proteasomal degradation in
Xenopus laevis egg extracts (365). b-TrCP is the substrate
recognition domain of SCFb-TrCP, endogenously recognizing a
short, phosphorylated peptide stretch within IkBa resulting in
subsequent ubiquitination, degradation and thus activation of
NFkB signaling (399). MetAP-2 is a primary target of ovalicin
(OVA), which covalently binds the active site His231 resulting in
a downstream inhibitory effect on endothelial cell proliferation
(400). The PROTAC-1 design combines both moieties, the IkBa
phosphopeptide and OVA, resulting in the molecular bridging of
MetAP-2 and SCFb-TrCP, two otherwise functionally unrelated
proteins. Subsequently, Sakamoto and colleagues designed two
similar PROTACs using estradiol and dihydroxytestosterone
(DHT) instead of OVA, targeting estrogen receptor (ER) and
androgen receptor (AR), respectively (401). The experiments
carried out in HEK-293 cells provided important in vitro
validation. Issues with poor cell permeability were overcome
with PROTAC-4 which was developed by ARIAD
Pharmaceuticals. It included a poly-D-arginine tag (-ALAPYIP-
(D-Arg)8-NH2) facilitating improved cell permeability and
eliminating the previous need for microinjection (402).
Nonetheless, complex synthetic chemistry and low efficacy were
issues that remained.

However, in vivo application and thus revival of the
technology became achievable with the development of E3
ligase-specific ligands. These second-generation PROTACs
relied on small molecules rather than peptides for E3 ligase
recruitment. The first examples included MDM2, cIAP1 and
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Cullin-Ring ligase (CRL) complex substrate receptors such as
CRBN and VHL (403–409). The Crews group who, along with
the Deshaies group, first reported PROTAC in 2001, developed
its second-generation AR-targeting PROTAC by coupling Nutlin
to a selective androgen receptor modulator (SARM) via a
polyethylene glycol (PEG) linker (407). Nutlin targets the AR
for proteasomal degradation by binding to the p53 interaction
interface of MDM2 (354). In 2014, thalidomide and its
derivatives lenalidomide and pomalidomide were shown in
complex with the E3 ligase DDB1–CRBN, thus validating the
E3 ligase as the target of the immunomodulatory drugs (410,
411). The phthalimide ring system found in thalidomide and its
derivatives was also utilized for DDB1–CRBN recruitment in a
PROTAC design for the degradation of bromodomain and extra-
terminal (BET) proteins (403). The other half of the PROTAC
consisted of the competitive bromodomain inhibitor JQ1 which
binds in the acetyl-lysine binding cavity of BRD4 (Figure 6)
(412). The hybrid molecule termed dBET1 displayed in vivo
efficacy in a human leukemia xenograft model and induced a
more robust apoptotic response in primary human leukemic
blast cells compared to BRD inhibition. Similarly, the improved
pharmacodynamics could be replicated by another BRD4-
targeting PROTAC, ARV-825, in Burkitt’s lymphoma cell lines
showing promising results for MYC-driven malignancies (404).

Conceptually similar to PROTAC, hydrophobic tagging
(HyT) utilizes a hydrophobic moiety instead of a peptide/small
molecule as E3 ligase recruiting domain (Figure 5) (366). Since
functional proteins fold in a manner that conceals hydrophobic
side chains to assume a lower energy state, the additional
hydrophobic surface group is thought to mimic/induce a
misfolded state leading to proteasomal degradation (413, 414).
The mechanism is not fully elucidated yet, but it is thought that
HyT modification initially recruits the chaperone machinery in
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an attempt to refold the protein, although ultimately targeting
HyT-modified proteins to the proteasome (415). Feasibility of
the approach was demonstrated by the addition of the
cycloalkane adamantane to a bacterial dehalogenase (HaloTag)
which resulted in robust degradation of HaloTag fusion proteins
in culture and mice (366). Similarly, the pseudo-kinase Her3
which is considered “undruggable” by ATP-competitive small
molecules was found to be targetable for degradation by
derivatization of the selective ligand TX1-85-1 with the
hydrophobic adamantyl moiety (416).

However, many questions remain with regards to clinical
application. For example, the large molecular weight of
PROTACs may pose challenges to oral bioavailability,
pharmacokinetics and tissue specificity. Nonetheless,
preclinical evidence are convincing, particularly for the two
recently developed BET family protein-targeting PROTACs
which exhibit EC50s in the low picomolar range, QCA570 and
compound 23 (417, 418). Furthermore, Sun et al. demonstrated
that oral, as well as intraperitoneal PROTAC delivery, can
mediate robust and global FKBP12 and Bruton’s tyrosine
kinase (BTK) degradation in animals from mice to rhesus
monkeys (419). Here, the PROTAC RC-32 rendered FKBP12
undetectable after only one day in most organs except the brain,
indicating its inability to cross the blood-brain barrier. However,
mice treated via intracerebroventricular (i.c.v.) injection
displayed localized FKBP12 degradation in the brain,
potentially expanding the use of PROTACs to GBM as well as
other brain diseases including neurodegenerative disorders such
as Alzheimer’s disease. It will be interesting to see how the
PROTACs fare in the first clinical trials. The AR-targeting ARV-
110 and ER-targeting ARV-471 (Arvinas) are currently
undergoing recruitment for phase I clinical trials against
prostate and breast cancer, respectively (NCT03888612/
FIGURE 6 | Structural Basis of PROTACs. PROtein-TArgeting Chimeric molecules (PROTACs) are heterobifunctional bridges that link E3 ligase activity to non-
canonical substrates. PROTAC MZ1 links bromodomain inhibitor JQ1 to VHL ligand VH032 via a polyethylene glycol (PEG) linker. MZ1 facilitates binding and
subsequent ubiquitination of BET (bromodomain and extraterminal) protein family member Brd4 (shown BRD4BD2) to cullin-RING ligase complex CRL2VHL. PDB:
5N4W, Cul2-Rbx1-EloBC-VHL ubiquitin ligase complex; 5T35, PROTAC MZ1 in complex with Brd4BD2 and pVHL : ElonginC:ElonginB.
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NCT04072952). A recent update at the American Association for
Clinical Oncology (ASCO) suggests that ARV-110 showed
antitumor activity and reduced PSA levels in some patients (J
Clin Oncol 38: 2020 (suppl; abstr 3500)).
CONCLUSIONS

GBM remains the deadliest cancer with limited therapeutic
options. Recent discoveries that are starting to define its
heterogeneity indicate that similar to other cancers,
personalized therapies will be the way forward. Protein
degradation is a ubiquitous feature that is essential to maintain
cellular homeostasis, and the small protein modifier ubiquitin
plays a key role in regulating protein fate and function, and
thereby impacts on most signal transduction pathways and
cellular processes.

In this review we have summarized components of the
ubiquitin system which are found deregulated in GBM as well
as highlighted key molecular mechanisms involved. In just over
twenty years or so since the first reports of the discovery of the
UPS, PROTACs have shown some exciting potential by being
able to control the fate of proteins and trigger their degradation
on demand. This has stirred new hopes for effective targeting of
the many oncogenic proteins that have been identified as drivers
of disease, in particular, those that were dubbed “undruggable”.
It has nevertheless taken almost another 20 years to bring
PROTACs and targeted protein degradation to the forefront of
drug discovery. Recent developments in chemical biology,
synthetic biology as well as the first ongoing clinical trials will
no doubt accelerate the delivery of new therapies.

The examples included in our review aim to showcase the
diversity of ubiquitin-dependent molecular mechanisms that are
now being targeted as well as the fast-expanding toolbox of
ubiquitin-based therapeutics that are becoming available.
PROTACs are prime examples and they are already being
adapted to oncoproteins also relevant for GBM including
BRD4 (Myc) (Figure 6), ERK1,2 (MAP kinase pathway),
EGFR and CDK4/6 (404, 420–423). PROTACs have so far
only been designed based on a small number of Cullin-RING
E3 ligases, leaving a large number of E3 ligases implicated in
GBM still available for investigation (Table 1). Indeed, the tissue-
specific expression of E3 ligases used in PROTACs will need to be
ascertained as well as the impact that drafting an endogenous E3
ligase for therapeutic help might have on the system. Further
exciting developments include combining optogenetics with
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protein degrader strategies such as Opto-PROTACs, as this
could provide added control over the timing and induction of
protein degradation (424).

These technological advances will no doubt offer new avenues
for GBM where little therapeutic progress has been made
throughout the last decades. Ubiquitin-dependent mechanisms
have been implicated in the regulation of most if not all
hallmarks of GBM, in particular the signal transduction
pathways that confer cancer cells properties but also stemness
and heterogeneity which have so far hindered the use of potential
treatments through mediating drug resistance. Results from the
first PROTAC clinical trials are eagerly awaited to inform on
pharmacological viability and to outline future hurdles in the
field. In the context of GBM and other brain tumors, it will also
be important to improve drug delivery systems that could
overcome or bypass the blood-brain barrier such as nano-
vehicles, strategies for enhancement of brain permeability,
active transporter or alternative administration regimens
[reviewed in (425, 426)].
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