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Abstract

District heating networks are commonly addressed in the literature as one of the most effective solutions for decreasing the 
greenhouse gas emissions from the building sector. These systems require high investments which are returned through the heat
sales. Due to the changed climate conditions and building renovation policies, heat demand in the future could decrease, 
prolonging the investment return period. 
The main scope of this paper is to assess the feasibility of using the heat demand – outdoor temperature function for heat demand 
forecast. The district of Alvalade, located in Lisbon (Portugal), was used as a case study. The district is consisted of 665 
buildings that vary in both construction period and typology. Three weather scenarios (low, medium, high) and three district 
renovation scenarios were developed (shallow, intermediate, deep). To estimate the error, obtained heat demand values were 
compared with results from a dynamic heat demand model, previously developed and validated by the authors.
The results showed that when only weather change is considered, the margin of error could be acceptable for some applications
(the error in annual demand was lower than 20% for all weather scenarios considered). However, after introducing renovation 
scenarios, the error value increased up to 59.5% (depending on the weather and renovation scenarios combination considered). 
The value of slope coefficient increased on average within the range of 3.8% up to 8% per decade, that corresponds to the 
decrease in the number of heating hours of 22-139h during the heating season (depending on the combination of weather and 
renovation scenarios considered). On the other hand, function intercept increased for 7.8-12.7% per decade (depending on the 
coupled scenarios). The values suggested could be used to modify the function parameters for the scenarios considered, and 
improve the accuracy of heat demand estimations.
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Abstract 

With advances of smart grid, the responsibility of carbon emission reduction can be fairly allocated to each participant in power 
networks through bidirectional communications. This paper proposes a hierarchical carbon market scheduling model to 
effectively realize carbon emission reduction. The policy makers in the upper level aim to maximize the effects of carbon 
emission reduction. They set out appropriate monetary incentives and emission allowances for both customers and generators. 
Considering restrictions from policy makers, both generators and customers in lower levels seek to minimize their operational 
costs and payment bills, respectively. To achieve these objectives, a multiobjective problem is formulated by forecasting market 
trends from a behavior learning model. The simulation results demonstrate that through the proposed approach the renewable 
penetration increases and the carbon emissions decrease. The benefits for each participant are analyzed as well. 
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1. Introduction 

The global warming problem has been recognized as a result of greenhouse gas (GHG) emissions. Electricity 
sector accounts for 29% of the GHG emission in the UK in 2015. It is therefore important to regulate energy 
generation and consumption [1]. For generators, they need to consider the emission allowances while minimizing 
their operational costs. For customers, they can adjust their behaviors to save payment bills, consequently reducing 
the emissions [2]. In the UK, for example, the Department of Energy and Climate Change (DECC) is responsible for 
scheduling primary energy sources and providing monetary incentives from funded schemes for carbon reductions, 
such as the Green Deal [3]. Meanwhile, Office of Gas and Electricity Markets (Ofgem), serving as a government 
regulator, takes the consumer’s interests as a whole responsibility, including their interests in the reduction of GHG 
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[4]. The Big Six Energy Suppliers, serving as a retailer, buys the electricity from wholesale market and pays the 
policy costs before charging customers electricity bills [5]. For simplicity, this paper takes generators and retailers as 
a whole so that the operational costs and emission constraints can be considered at the same time. 

For the electricity generation and demand, uncertainties such as the variations of fuel prices and climate 
conditions should be considered. There are a number of studies in literature focused on the short-term and long-term 
forecasting of electricity generation and demand [6, 7]. However, the analysis of fuel uses in electricity generation 
by major producers that can elementally mitigate the emissions from the very beginning of carbon cycles is rarely 
seen. Therefore, it could be useful to apply this approach to the behavior learning and optimization. A more 
dedicated study for behavior learning, multiobjective optimization, and allocating carbon emission targets for each 
participant in energy market should be proposed to address the carbon market scheduling problem. The contributions 
of this paper can be summarized as follows: 1) The carbon market scheduling is involved in the hierarchical model, 
and the responsibility of each participant can be identified; 2) The behavior learning approach takes the uncertainties 
into account to support a prediction for carbon market scheduling. 

2. Behavior Learning Models 

This section describes the behavior learning models for both generation and demand sides. The autoregressive 
function is used to learn the stochastic process for the variations of uncertain variables. A linear regressive function 
is adopted to describe the relationship between the forecasting objectives and uncertain variables. 

2.1. Generation side behavior learning 

The prices of coal, smokeless fuels, and heating oils can impact on the fuel usages. The price set is defined as 
𝑝𝑝 𝑡𝑡 = {𝑝𝑝! 𝑡𝑡 , 𝑝𝑝! 𝑡𝑡 , 𝑝𝑝!(𝑡𝑡)} representing the prices of coal, smokeless fuels, and heating oils, respectively, in 
observation period t = {1, 2, …, T}. The fuel usage in electricity generation by major producers is 𝑔𝑔 𝑡𝑡 =
{𝑔𝑔! 𝑡𝑡 ,𝑔𝑔! 𝑡𝑡 ,𝑔𝑔! 𝑡𝑡 ,𝑔𝑔! 𝑡𝑡 , 𝑔𝑔! 𝑡𝑡 ,𝑔𝑔! 𝑡𝑡 ,𝑔𝑔! 𝑡𝑡 ,𝑔𝑔!(𝑡𝑡)}, where the subscripts correspond to the producers of coal, 
oil, gas, nuclear, hydro, wind, bioenergy and solar. The future prices of coal, smokeless fuels, and heating oils 
fluctuate stochastically on the basis of present and previous values [8]. Therefore, they can be modelled using 
autoregressive model as: 
 

𝑝𝑝 𝑡𝑡 = 𝛼𝛼 𝑛𝑛 𝑝𝑝 𝑛𝑛 + 𝜀𝜀!                                                                                                                                                            (1)
!!!

!!!

 

 
where 𝛼𝛼 𝑛𝑛  is the system coefficient, and 𝜀𝜀! is the model error. The fuel usage function in which how a major 
electricity producer responds to price signals can be subsequently established as: 
 

𝑔𝑔 𝑡𝑡 = 𝛽𝛽 𝑛𝑛 𝑝𝑝 𝑛𝑛 + 𝜀𝜀!                                                                                                                                                            (2)
!!!

!!!

 

 
where 𝛽𝛽 𝑛𝑛  is the system coefficient, and 𝜀𝜀!is the model error. These coefficients can be learned from historical 
observations and determined through evaluating the minimal squared differences between the forecasts and the 
actual values [9]. 

2.2. Demand side behavior learning 

Similar to the generation side behavior learning, the temperatures and electricity can impact on electricity 
consumption. The future temperature h(t) and electricity bill b(t) can also be forecast by using an autoregressive 
model: 
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where 𝛼𝛼! 𝑛𝑛  and 𝛼𝛼!! 𝑛𝑛  are system coefficients, and 𝜀𝜀!  and 𝜀𝜀!  are the model errors. The demand function can be 
subsequently established: 
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where 𝛽𝛽! 𝑛𝑛  and 𝛽𝛽!! 𝑛𝑛  are system coefficients, and 𝜀𝜀!  is the model error. These coefficients can be learned from 
the same method used by the generation side. 

3. Multiobjective Approach 

In this section, the proposed carbon market scheduling problem is modelled on the basis of the forecasts. This 
scheduling problem consists of three objectives. The objective for customers is to minimize the payment bills, 
considering emission compensation from policy makers. The objective for generators is to minimize the operational 
costs, considering carbon allowances. The objective for policy makers is to minimize the carbon emissions. 

3.1. Optimal payment bills scheduling for consumers 

The optimization problem of payment bills is illustrated as the basic payment subtracting emission compensation 
plus the incurred dissatisfactions. The load curtailments of demand response (DR) are adopted in this paper as an 
approach for carbon emissions reduction. The higher level of load curtailments contributes to more significant 
effects on carbon emissions reduction [10]. Since the amount of compensation to consumers increases as the 
emission reduction increases, the compensation can be modelled as a linear increasing function [11] 
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where 𝑓𝑓! 𝑡𝑡  is the compensation function, 𝑚𝑚 𝑡𝑡  is the carbon compensation rate, 𝑒𝑒!  is the carbon emissions factor for 
electricity generation by major producer i, 𝑔𝑔! 𝑡𝑡  is the original fuel usage, 𝑔𝑔!!" 𝑡𝑡  is the fuel usage after load 
curtailment, and 𝑔𝑔!!"# is the maximum fuel usage. A dissatisfaction function is also introduced to capture the 
inconvenience for consumers caused by the deviation from the original consumption. Since the dissatisfaction of 
consumers increases as the emissions reduction increases, the dissatisfaction function can be modelled as: 
 
f! 𝑡𝑡 = 𝑛𝑛 𝑡𝑡 𝑑𝑑 𝑡𝑡 − 𝑑𝑑!! 𝑡𝑡

!
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where f! 𝑡𝑡  is the dissatisfaction function, 𝑛𝑛 𝑡𝑡  is the inelasticity parameter of satisfaction for consumers, 𝑑𝑑 𝑡𝑡  is 
the original electricity demand from consumption side, 𝑑𝑑!" 𝑡𝑡  is the electricity demand after load curtailment, 𝑑𝑑!"#  

is the minimal demand required from consumption side, and 𝑑𝑑!"! is the maximal demand that can be provided form 
the generation side. The payment bills optimization problem for the consumption side can be modelled as 
 

min {𝑑𝑑 𝑡𝑡 𝑏𝑏 𝑡𝑡 − 𝑓𝑓! 𝑡𝑡 + 𝑓𝑓!(𝑡𝑡)}
!

!!!

                                                                                                                                             (7) 
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3.2. Optimal operational cost scheduling for generators 

The optimization problem of operational cost is described as the basic cost with an additional cost introduced by 
altering generation units due to the restriction of carbon emissions. Since the costs of generators increase as the 
amount of carbon emissions decreases, the operational costs of generators can be modelled as [11] 

 

𝑓𝑓! 𝑡𝑡 = 𝑟𝑟 𝑡𝑡 𝑒𝑒!𝑔𝑔! 𝑡𝑡 − 𝑒𝑒!𝑔𝑔!! 𝑡𝑡                                                                                                      
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!!!
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!!,!(!)
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≥ 𝑅𝑅                                             (8) 

 
where 𝑟𝑟 𝑡𝑡  is the inelasticity parameter of operational cost,  𝑔𝑔!! 𝑡𝑡  is the fuel usage after load curtailment and 
carbon market scheduling, 𝑔𝑔!,!(𝑡𝑡) is the fuel usage in electricity generation by renewable energy, and R is the 
minimum percentage of renewable energy penetration regulated by policy maker. This percentage of renewable 
energy penetration is also considered as a constraint according to the government policies, because higher 
percentage of renewable energy contributes to lower carbon emissions [12]. Therefore, the operational cost 
optimization problem for generators can be modelled as: 
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where 𝑐𝑐!  is a coefficient that transfers the fuel usage into corresponding power generation cost. 

3.3. Optimal carbon emissions reduction scheduling for policy makers 

With the objective of maximizing the reduction of carbon emissions, the optimization problem for policy maker 
can be described as: 

 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒!𝑔𝑔! 𝑡𝑡 − 𝑒𝑒!𝑔𝑔!! 𝑡𝑡    .                                                                                                                                           (10)
!

!!!

!
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3.4. Algorithm 

If the proposed multiobjective problem (MOP) is feasible, there would exist a possible fuel usage scheduling 
satisfying all the requirements. Table 1 presents the artificial immune algorithm used to solve the MOP problem [13, 
14]. The terminology ''antibody'' is used to represent a point in the decision variable space. 

Table 1. Pseudocode of the Artificial Immune Algorithm. 

Algorithm 
1: Generate a group of antibodies 𝑔𝑔! 𝑡𝑡  over 𝑔𝑔!!"#,𝑔𝑔!!"#  as initial population that represent the fuel 
usages of major sources. 
2: Remove dominated antibodies. 
3: Perform mutations over the nondominated antibodies. 
4: Repeatly remove dominated antibodies until the remaining antibodies are all nondominated. 
5: Evaluate the remaining antibodies on the basis of their objective values and remove infeasible 
antibodies. 
6: If the population size is larger than the nominal size, it needs to be shrunk to the nominal size. 
7: Repeat steps 3—7 until the maximum iteration is reached. 
8: A solution that maximizes the minimum improvement in all dimensions is selected as the output. 
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4. Case Studies 

Case studies are conducted to demonstrate the proposed model. The behaviour learning on generators and 
consumers for each month in 2017 is performed through the use of the UK historical data [15, 16]. With the help of 
the forecasting results and corresponding carbon emissions, the optimal scheduling results are obtained. 

4.1. Behavior learning 

The UK monthly prices of coal, smokeless fuels, and heating oils in the unit of million tons of oil equivalent 
(Mtoe) from January, 2005 to December, 2016 are implemented as an input of the regressive model. The 
corresponding fuel uses in electricity generation by major sources during the same time period are implemented as 
an output. Fig. 1 shows the learning results of the regressive model in which coal and wind serve as conventional 
and renewable sources, respectively. 
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Fig. 1. Comparison between actual and forecasting fuel uses in electricity generation by (a) coal; (b) wind. 

4.2. Carbon market scheduling 

Scheduling is performed on a monthly basis in 2017. The monetary compensation rate 18 £/ton is adopted, which 
is the current UK carbon tax [17]. The optimization result in October, 2017 is presented as an example. The results 
from behavior learning are defined as a benchmark. Fig. 2(a) illustrates the interactions among three objectives. It 
can be seen that the selected optimal solution corresponds to the vector located at the center of all possible outcomes, 
which means that the proposed multiobjective model is able to obtain a fair scheduling solution. Table 2 shows the 
detailed value of three objectives from different solutions. 
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Fig. 2. (a) Example of possible solutions; (b) Comparison between optimization and benchmark results. 

 
Fig. 2 (b) shows the comparison results in terms of the percentage of major producers between benchmark and 

optimal schedules. Detailed values can be found in Table 2. It is clear that using the proposed approach increases the 
percentage of renewable sources significantly, while decreasing the percentage of coal and gas. This illustrates that 
our approach can help to realize the UK emissions and renewable targets. 
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3.2. Optimal operational cost scheduling for generators 

The optimization problem of operational cost is described as the basic cost with an additional cost introduced by 
altering generation units due to the restriction of carbon emissions. Since the costs of generators increase as the 
amount of carbon emissions decreases, the operational costs of generators can be modelled as [11] 

 

𝑓𝑓! 𝑡𝑡 = 𝑟𝑟 𝑡𝑡 𝑒𝑒!𝑔𝑔! 𝑡𝑡 − 𝑒𝑒!𝑔𝑔!! 𝑡𝑡                                                                                                      
!

!!!

 

s.t.     𝑒𝑒!𝑔𝑔!!!
!!!

!
!!! 𝑡𝑡 ≤ 𝑒𝑒!𝑔𝑔!!

!!!
!
!!! 𝑡𝑡 ,    0 ≤ 𝑔𝑔! ≤ 𝑔𝑔!!"# ,      

!!,!(!)
!
!!!

!
!!!

!!(!)!
!!!

!
!!!

≥ 𝑅𝑅                                             (8) 

 
where 𝑟𝑟 𝑡𝑡  is the inelasticity parameter of operational cost,  𝑔𝑔!! 𝑡𝑡  is the fuel usage after load curtailment and 
carbon market scheduling, 𝑔𝑔!,!(𝑡𝑡) is the fuel usage in electricity generation by renewable energy, and R is the 
minimum percentage of renewable energy penetration regulated by policy maker. This percentage of renewable 
energy penetration is also considered as a constraint according to the government policies, because higher 
percentage of renewable energy contributes to lower carbon emissions [12]. Therefore, the operational cost 
optimization problem for generators can be modelled as: 

 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐!𝑔𝑔! 𝑡𝑡 + 𝑓𝑓!(𝑡𝑡)
!

!!!

!

!!!

                                                                                                                                                (9) 

 
where 𝑐𝑐!  is a coefficient that transfers the fuel usage into corresponding power generation cost. 

3.3. Optimal carbon emissions reduction scheduling for policy makers 

With the objective of maximizing the reduction of carbon emissions, the optimization problem for policy maker 
can be described as: 

 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑒𝑒!𝑔𝑔! 𝑡𝑡 − 𝑒𝑒!𝑔𝑔!! 𝑡𝑡    .                                                                                                                                           (10)
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!
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3.4. Algorithm 

If the proposed multiobjective problem (MOP) is feasible, there would exist a possible fuel usage scheduling 
satisfying all the requirements. Table 1 presents the artificial immune algorithm used to solve the MOP problem [13, 
14]. The terminology ''antibody'' is used to represent a point in the decision variable space. 

Table 1. Pseudocode of the Artificial Immune Algorithm. 

Algorithm 
1: Generate a group of antibodies 𝑔𝑔! 𝑡𝑡  over 𝑔𝑔!!"#,𝑔𝑔!!"#  as initial population that represent the fuel 
usages of major sources. 
2: Remove dominated antibodies. 
3: Perform mutations over the nondominated antibodies. 
4: Repeatly remove dominated antibodies until the remaining antibodies are all nondominated. 
5: Evaluate the remaining antibodies on the basis of their objective values and remove infeasible 
antibodies. 
6: If the population size is larger than the nominal size, it needs to be shrunk to the nominal size. 
7: Repeat steps 3—7 until the maximum iteration is reached. 
8: A solution that maximizes the minimum improvement in all dimensions is selected as the output. 
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Table 2. Results of system performance. 

Objective\ Method Benchmark Selected Opt. Carbon Opt. Costs Opt. Bills Opt. 

Carbon Reduction [Mtons] 0 128.52 200.76 1.10 170.44 

Operational Costs [M£] 1940.84 1173.26 2142.22 1940.70 2085.94 

Payment Bills [M£] 1507.18 1598.90 2227.83 6039.11 1578.34 

5. Conclusion 

This paper proposed multiobjective carbon market scheduling based on the behavior learning on both generation 
and consumption sides. A hierarchical framework consisting of policy makers, generators, and customers was 
designed. Compared with the benchmark results, the proposed approach improved the percentage of renewables 
penetration, addressed the carbon reduction required by policy makers, and reduced operational costs of generators 
and payment bills of customers.  
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