
 ORCA – Online Research @
Cardiff

This is an Open Access document downloaded from ORCA, Cardiff University's institutional
repository:https://orca.cardiff.ac.uk/id/eprint/137637/

This is the author’s version of a work that was submitted to / accepted for publication.

Citation for final published version:

McGuire, Philip, Grace, Anthony A., Stone, James M., Howes, Oliver D., Perez, Jesus, Broome, Matthew
R., Bossong, Matthijs G., Antoniades, Mathilde, Smart, Sophie E. , Gifford, George W. G., Quinn, Beverly,

Bonoldi, Ilaria, Samson, Carly, Azis, Matilda, Dima, Danai, Zugman, Andre, Allen, Paul and Modinos,
Gemma 2020. Neural circuitry of novelty salience processing in psychosis risk: association with clinical

outcome. Schizophrenia Bulletin 46 (3) , pp. 670-679. 10.1093/schbul/sbz089 

Publishers page: http://dx.doi.org/10.1093/schbul/sbz089 

Please note: 
Changes made as a result of publishing processes such as copy-editing, formatting and page numbers may
not be reflected in this version. For the definitive version of this publication, please refer to the published

source. You are advised to consult the publisher’s version if you wish to cite this paper.

This version is being made available in accordance with publisher policies. See 
http://orca.cf.ac.uk/policies.html for usage policies. Copyright and moral rights for publications made

available in ORCA are retained by the copyright holders.



Modinos et al. 

	 1 

Title: Neural Circuitry of Novelty Salience Processing in Psychosis Risk: 

Association with Clinical Outcome 

 

Abbreviated title: Hippocampal circuits and psychosis risk 

 

Gemma Modinos, PhD1,2*, Paul Allen, PhD3,1*, Andre Zugman, MD, PhD4, Danai 

Dima, PhD2,5, Matilda Azis, PhD1, Carly Samson, MSc1, Ilaria Bonoldi, MD, PhD1, 

Beverly Quinn, BSc6, George GW Gifford, MSc1, Sophie E Smart, MSc1,, Mathilde 

Antoniades, PhD1, Matthijs G. Bossong, PhD7, Matthew R Broome, MD, PhD8, Jesus 

Perez, MD, PhD6,9,10, Oliver D. Howes, MD, PhD1, James M. Stone, MD, PhD2, 

Anthony A. Grace, PhD11, Philip McGuire, MD, PhD1 

 

1 Department of Psychosis Studies, Institute of Psychiatry, Psychology & 

Neuroscience, King’s College London, UK 

2 Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, 

King’s College London, UK 

3 Department of Psychology, University of Roehampton, UK 

4 Universidade Federal de São Paulo, Brazil 

5 Department of Psychology, School of Arts and Social Sciences, City, University of 

London, UK 

6 CAMEO Early Intervention in Psychosis Service, Cambridgeshire and Peterborough 

NHS Foundation Trust, Cambridge, UK 

7 Department of Psychiatry, Brain Center Rudolf Magnus, University Medical Center 

Utrecht, Netherlands 

8 University of Birmingham, Birmingham UK 

9 Department of Psychiatry, University of Cambridge, Cambridge, UK 

10 Department of Neuroscience, Instituto de Investigacion Biomedica de Salamanca 

(IBSAL), University of Salamanca, Spain 



Modinos et al. 

	 2 

11 Departments of Neuroscience, Psychiatry and Psychology, University of 

Pittsburgh, PA, USA 

 

* G.M. and P.A. contributed equally to this paper. 

 

Corresponding author: Gemma Modinos, PhD FYAE, Institute of Psychiatry, 

Psychology & Neuroscience, King’s College London, 16 De Crespigny Park, SE5 

8AF London, United Kingdom; E-mail: gemma.modinos@kcl.ac.uk. 

 

Word count: Abstract: 249. Main text: 3,875 (text body, acknowledgments and figure 

legends). Tables: 2. Figures: 3. 

 

Keywords: psychosis; prodrome; fMRI; hippocampus; salience; schizophrenia 



Modinos et al. 

	 3 

ABSTRACT 
 
Psychosis has been proposed to develop from dysfunction in a hippocampal-striatal-

midbrain circuit, leading to aberrant salience processing. Here, we used functional 

magnetic resonance imaging (fMRI) during novelty salience processing to investigate 

this model in people at clinical high-risk (CHR) for psychosis according to their 

subsequent clinical outcomes. Seventy-six CHR participants as defined using the 

Comprehensive Assessment of At-Risk Mental States (CAARMS) and 31 healthy 

controls (HC) were studied while performing a novelty salience fMRI task that 

engaged an a priori hippocampal-striatal-midbrain circuit of interest. The CHR 

sample was then followed clinically for a mean of 59.7 months (~5 years), when 

clinical outcomes were assessed in terms of transition (CHR-T) or non-transition 

(CHR-NT) to psychosis (CAARMS criteria): during this period, 13 individuals (17%) 

developed a psychotic disorder (CHR-T) and 63 did not. Functional activation and 

effective connectivity within a hippocampal-striatal-midbrain circuit were compared 

between groups. In CHR individuals compared to HC, hippocampal response to 

novel stimuli was significantly attenuated (P=0.041 family-wise error corrected). 

Dynamic Causal Modelling revealed that stimulus novelty modulated effective 

connectivity from the hippocampus to the striatum, and from the midbrain to the 

hippocampus, significantly more in CHR participants than in HC. Conversely, 

stimulus novelty modulated connectivity from the midbrain to the striatum significantly 

less in CHR participants than in HC, and less in CHR participants who subsequently 

developed psychosis than in CHR individuals who did not become psychotic. Our 

findings are consistent with preclinical evidence implicating hippocampal-striatal-

midbrain circuit dysfunction in altered salience processing and the onset of 

psychosis.  
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INTRODUCTION 

The inappropriate attribution of salience to what would normally be irrelevant or 

neutral stimuli is a robust feature of psychotic disorders, and is linked to altered 

subcortical dopaminergic signaling1, 2. Whilst there are a number of animal models 

that attempt to describe the pathology and development of psychosis (e.g., chronic 

phencyclidine models, prenatal immune activation models (for review, see 3), a 

particularly influential model proposes that psychosis develops when hippocampal 

dysfunction drives increased subcortical dopamine activity through descending 

projections to the striatum.4, 5 Neuroimaging studies of reward salience suggest that 

salience processing and associated neural hippocampal-striatal-midbrain responses 

are perturbed in both patients with psychosis6, 7 and individuals at clinical high-risk 

(CHR) for psychosis8-11, and that this is associated with positive symptoms11. In this 

context, although novelty has been less investigated as a dimension of salience than 

reward in psychosis12, preclinical evidence indicates that dopaminergic neurons in 

the midbrain code the salience of unexpected stimuli and respond to novel stimuli13, 

14. The first aim of the present study was to examine hippocampal-striatum-midbrain 

circuit activation and effective connectivity in CHR individuals. We assessed 

activation using functional magnetic resonance imaging (fMRI) in conjunction with a 

novelty salience paradigm based on a task that had previously elicited robust 

hippocampal-striatal-midbrain responses15, and employed Dynamic Casual Modeling 

(DCM)16 to assess effective connectivity within this circuit.  

 

While previous neuroimaging studies had reported altered activation and 

connectivity in a hippocampal-striatal-midbrain circuit during reward salience 

processing in CHR individuals8, 11, the extent to which these findings are specific to 

the CHR subset who later develop psychosis has yet to be investigated. Our second 

aim was to address this issue by examining the relationship between activation and 
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connectivity within this circuit and the subsequent onset of a psychotic disorder. We 

therefore followed up our CHR participants to determine their clinical outcome.  

 

Our primary hypothesis was that during novelty salience processing, 

hippocampal-striatal-midbrain circuit activation would be attenuated6, 7, 11 in CHR 

individuals compared to healthy controls. We also examined how pure novelty 

salience processing altered effective connectivity in this circuit. Our second 

prediction was that these alterations would be particularly evident in the CHR 

subgroup who subsequently developed psychosis.  

 

 

METHODS 

Participants 

A total of 116 participants were recruited into the study. Ethical approval was 

obtained from the National Health Service UK Research Ethics Committee, and all 

participants provided written informed consent.  

 

CHR participants (n=85) were recruited from four different clinical sites in 

England: OASIS (Outreach and Support in South London)17, part of the South 

London and Maudsley NHS Trust; CAMEO, part of the Cambridge and Peterborough 

NHS Trust; the West London Early Intervention Service; and the Coventry and 

Warwick Warwickshire Partnership NHS Trust. All participants underwent clinical 

assessments and MRI scanning at King’s College London (KCL) by two trained 

researchers (CS and BQ). CHR signs and symptoms for inclusion were assessed 

with the Comprehensive Assessment of At-Risk Mental States (CAARMS)18. 

Exclusion criteria were past/present diagnosis of psychotic disorders, 

past/present/familiar history of neurological illness, substance abuse/dependence 

according to DSM-5 criteria19 or contraindication to scanning.  
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Healthy controls (HC, n=31) were recruited from the same geographical areas 

as CHR participants. None had a personal/familial history of psychiatric/neurological 

disorder or were using prescription medication as assessed via self-report. Additional 

exclusion criteria for all participants involved self-reporting illicit substance use in the 

week prior to scanning or alcohol use in the 24 hours prior to scanning.  

 

Clinical Measures 

On the day of the MRI scan, the following measures were collected at KCL by trained 

raters: psychopathology using the CAARMS18, anxiety and depression symptoms 

using the Hamilton Anxiety and Depression Scales (HAM-A/HAM-D) 20, Premorbid IQ 

was estimated with the National Adult Reading Test (NART)21. Handedness was 

assessed using the Annett Handedness Scale22. Participants provided information on 

tobacco (cigarettes/day), alcohol (units/day), and cannabis use (0=no use, 

1=experimental use, 2=occasional use, 3=moderate use, 4=severe use).  

 

Novelty Salience Task 

All participants underwent fMRI scanning on a 3T GE scanner at KCL using an 

event-related novelty salience task adapted from Bunzeck and Duzel15. Participants 

completed three 6-min runs of a visual oddball paradigm (Figure 1A). In each of the 

three runs, there were 80 standards (same picture in 73% of trials), 10 target 

oddballs (same picture in 9% of trials, requiring a button press at each presentation), 

10 neutral oddballs (same picture in 9% of trials), and 10 novel oddballs (a unique 

picture in 9% of trials representing a “pure novel stimulus”15), yielding a total of 360 

stimuli across the entire 18-min experiment (240 standards, 30 target oddballs, 30 

neutral oddballs and 30 novell oddballs). All pictures depicted black-and-white 

outdoor scenes. 
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The target stimulus, used solely to assess engagement with the task as in the 

original study15 (there was no measure of accuracy during novelty processing), was 

presented at the start of the experimental session for 4.5s. Participants were asked 

to press a button with their right index finger every time it appeared (30 presentations 

in total). During the experiment, pictures were presented for 500ms followed by a 

white fixation cross on a gray background with an inter-stimulus interval of 2.7s, 

jittered between -300ms and +300ms (uniformly distributed).  

 

Clinical Follow-Up  

The entire CHR sample was followed up subsequent to scanning to determine 

clinical outcome (transition/non-transition to psychosis). The mean interval between 

baseline and follow-up assessments was 59.7 months (SD=15.4 months). Transition 

to psychosis was determined using CAARMS Psychosis Threshold criteria18 and 

confirmed with the Structured Clinical Interview for Diagnosis19, administered by a 

psychiatrist trained in its use.  

 

Image Acquisition and Preprocessing 

See Supplement for details on fMRI acquisition and preprocessing. 

 

Statistics 

Demographic, clinical and behavioral data 

Analyses of demographic data were performed in SPSS 24 (http://www-

01.ibm.com/software/uk/analytics/spss/). The effect of group on these measures was 

examined using independent samples t-tests for parametric data and Chi-square 

tests for non-parametric data. To examine the relationship between fMRI activation 

and transition to psychosis, the CHR sample was divided into two groups at follow-

up: a transition to psychosis group (CHR-T) and a non-transition to psychosis group 

(CHR-NT). Analysis of behavioral data were performed in SPSS 24 for reaction time 
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(RT), target recognition and error rates using separate two-sample t-tests:  HC vs. 

CHR and CHR-NT vs. CHR-T. Significant effects are reported at P<0.05 with 

Bonferroni post-hoc correction as appropriate (demographic data: age, sex, IQ, years 

of education, handedness, tobacco, alcohol, cannabis, antipsychotics and 

antidepressant use – p<0.05/10 = p<0.005; clinical data: CAARMS positive, negative, 

total, GAF, HAM-A and HAM-D – p<0.05/6 = p<0.008; behavior: targetness, errors 

and RT – p<0.05/3 = p<0.017).  

 

fMRI data analysis 

Statistical analysis of the fMRI data was conducted using the general linear model in 

SPM12. Separate regressors of interest were specified for each trial type: Standard, 

Target, Neutral and Novel. Realignment parameters (x, y, z, pitch, roll, yaw) were 

included in all first-level models as covariates of no interest to account for variance 

associated with head movement. All regressors were convolved with a canonical 

hemodynamic response function during the 500ms in which trials were presented. 

One contrast image was generated for each participant to examine activation related 

to pure stimulus novelty by contrasting all novel oddball trials against neutral oddball 

trials15 and was then submitted to second-level analysis. 

 

For between-group comparisons between HC and CHR participants, a two-

sample t-test was performed using the first-level novel>neutral contrast images, 

covarying for age. We used an initial cluster defining threshold of P<0.001 

uncorrected to then enforce a voxel-wise height threshold of family-wise error (FWE) 

P<0.05 after small volume correction (SVC) for region-of-interest (ROI) analyses,23, 24 

using a pre-specified bilateral mask comprising the hippocampus, striatum and 

midbrain. The striatum was chosen on the basis of its role in the aberrant salience 

hypothesis2 and previous fMRI studies documenting salience–related responses in 

this region25. The hippocampus was chosen based on preclinical evidence for its 
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central role in psychosis through the regulation of dopamine signaling,4 and prior 

work indicating a relationship between aberrant hippocampal activity and the CHR 

state(e.g.,26, 27). The midbrain was chosen since novel stimuli are associated with fMRI 

activations in this region as shown by Bunzeck and Duzel’s study using this task in 

healthy volunteers15. The ROI mask was built using the WFU_Pitckatlas toolbox and 

comprised predefined anatomical masks of the striatum (caudate, pallidum, 

putamen) and the hippocampus from the automated anatomical labelling atlas, and a 

6-mm sphere around the midbrain (ventral tegmental area/substantia nigra, VTA/SN) 

coordinates reported in the study with healthy volunteers15 (only right-sided as in 

Bunzeck & Duzel15, xyz: 8, -20, -18) (Figure 1B). 

 

To investigate the relationship between functional activation in response to 

novelty and transition to psychosis, a two-sample t-test was specified in SPM (CHR-

NT vs CHR-T), adjusting for age. The same ROI mask and significance threshold as 

above were applied (PFWE<0.05 after SVC). Potential confounding effects of 

substance use (alcohol, tobacco, cannabis) and levels of anxiety/depression (HAM-

A/HAM-D) on the regions showing significant novelty-related group differences were 

examined with an additional ANCOVA in SPSS. Exploratory whole-brain voxel-wise 

analysis of fMRI data (comparing all CHR to HC subjects and CHR-NT to CHR-T 

subjects) is reported in the Supplement. 

 

Dynamic Casual Modeling (DCM) 

Volumes of interest and time-series extraction 

Based on preclinical evidence4, 5 and data from a previous study of the task in 

healthy volunteers15, we used DCM12 in SPM12 to compute effective connectivity 

within a circuit comprising the hippocampus, the striatum and the midbrain (Figure 

3A). The volumes of interest (VOIs) for these regions were defined using the 

maximally activated coordinates in the second-level fMRI analysis within our masked 
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regions (Figure 1B), following published rules for the application of DCM28. The VOI 

for the hippocampus was extracted from the group-level fMRI difference between 

CHR versus HCs (xyz: 38 -16 -14). As there was no significant group-level difference 

in either the striatum or midbrain, we used the coordinates of the task effect of 

novel>neutral across all participants with an 8-mm sphere for each region, allowing 

the center of the sphere to move to the nearest supra-threshold voxel (xyz: striatum, 

28 20 -2; VTA/SN, 14 -24 -16; PUNC<0.05). 

  

Group comparisons with parametric empirical Bayes (PEB) 

PEB, included in SPM12, allows evaluating group effects and between-subjects 

variability on DCM parameters (HC vs CHR; CHR-NT vs CHR-T). PEB for DCM is 

performed by comparing the posterior density of any (reduced) model in terms of the 

posterior of its parent or full model. The first step is to estimate a full model (i.e., with 

every connection switched ‘on’) for every subject. Then, a nested model is 

constructed (i.e., with certain conditions switched ‘off), which allows the expression of 

the posterior density of any (reduced) model in terms of the posterior of its parent or 

full model. This process affords an efficient way to evaluate posterior densities under 

empirical priors. It is then possible to apply Bayesian model reduction to the posterior 

densities over the second-level parameters to find out where between-subject effects 

are expressed.29 Results are given by the group effect on the Posterior Probabilities 

(P) and the Bayesian Confidence Interval. Group differences were thresholded with a 

P>0.5 obtained as recommended by DCM’s developers 

(https://arxiv.org/pdf/1902.10604.pdf) and following Kass & Raftery.30 Although 

comparing Bayes Factor to P-values is not straightforward, it could be argued that it 

is equivalent to P<0.05.31 The present study examined how the connections between 

the anterior hippocampus, ventral striatum and VTA/SN were modulated by stimulus 

novelty (novel>neutral oddball trials) by generating a second model space which 

included a full model, to then create four different models with each connection 
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switched ‘off’ (nested models) (Figure 3A). Group differences were then verified by 

comparing the evidence between the full model and the nested model. Group 

variables were de-meaned before being entered in the PEB model, to account for the 

different sample sizes of our study groups. Age was included as a covariate on all 

PEB analyses.  

 

Additional exploratory analyses within the CHR group and its subgroups 

according to transition status were conducted to examine potential associations 

between severity of positive prodromal symptoms and fMRI response to novelty / 

DCM connectivity strengths (eFigure 1 in Supplement).  

 

RESULTS 

Demographic and clinical data 

Nine CHR participants were excluded from the final analyses due to incomplete fMRI 

data (n=3), or excessive movement (n=6). The analyzed sample thus comprised 76 

CHR participants and 31 HCs. Detailed examination of potential movement 

confounds is reported in the Supplement (eTable 1 and eFigure 2).  

 

All of the CHR participants met the CAARMS Attenuated Psychotic 

Symptoms criteria32. A minority additionally fulfilled the BLIPS (n=5) or schizotypal 

personality disorder/familial risk criteria (n=2). At the time of scanning, most (67/76; 

88%) CHR participants were naïve to antipsychotic medication. The remainder were 

taking low doses of antipsychotics (<1.5mg haloperidol equivalents per day). The 

majority of CHR participants were also anti-depressant free at the time of scanning 

(48/76; 63%). 

 

 The HC and CHR groups did not differ significantly in gender, handedness, 

estimated IQ, years of education, alcohol, or cannabis use. However, the CHR group 
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was younger and smoked more tobacco. As would be expected, they showed higher 

levels of anxiety and depressive symptoms (HAM-A/HAM-D scores) and had lower 

levels of overall functioning compared to HCs (GAF score) (Table 1). 

 

Thirteen of the CHR participants (17%) developed a psychotic disorder within 

the follow-up period of 59.7 months (CHR-T), while 63 participants did not (CHR-NT). 

There were no significant differences in demographic or clinical variables at baseline 

between these groups (Table 1). 

 

Behavioral Data 

The groups did not differ in their engagement with the fMRI task (mean RT or 

recognition of target stimuli; eTable 2 in the Supplement). 

 

fMRI data 

Effect of task 

Across groups, pure stimulus novelty was associated with activation in the anterior 

hippocampus, ventral striatum and midbrain bilaterally (PFWE<0.05 after SVC; Table 

2, Figure 2A).  

 

Group differences: all CHRs vs HCs  

In CHR participants, relative to HC, pure stimulus novelty (novel>neutral oddball trial) 

was associated with significantly less activation in the anterior portion of the right 

hippocampus than in HCs (PFWE=0.041; xyz=38 -16 -14; Z=3.42, Hedges’ g=0.543; 

Figures 2B/2C). There were no areas where CHR participants showed greater 

activation than HC. These findings remained unchanged after adding sex as 

additional covariate of no interest in the analysis (HC > CHR: right hippocampus, 

PFWE=0.033; xyz=38 -16 -14; Z=3.49, Hedges’ g=0.544; CHR > HC no 

suprathreshold voxels). 
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Because resting-state neuroimaging studies in CHR groups have reported 

increased hippocampal perfusion/metabolism26, 27, 33, 34, we tested whether the 

reduced activation of the right anterior hippocampus in CHR relative to HC during 

pure stimulus novelty reflected an increased response to the neutral comparator 

stimuli that fMRI studies traditionally use35. This supplementary analysis involved the 

contrast of neutral oddballs versus standards, reflecting activation related to 

unexpected, as opposed to novel stimuli, and revealed an increased hippocampal 

response in CHR relative to HC at a lenient threshold (P=0.004 uncorrected, x y 

z=36 -24 -16; kE = 20; z = 2.66; Hedges’ g=0.186; Figure 1). 

 

Group differences: transition to psychosis  

There were no significant differences in activation between the CHR-T subgroup and 

either the CHR-NT subgroup or HCs. However, as in the total CHR sample, a lower 

right anterior hippocampal response to novel>neutral stimuli was evident when CHR-

NT were compared with HC (PFWE=0.018; xyz=38 -16 -14; Z=3.68, Hedges’ g=0.626). 

These findings remained unchanged after additionally adjusting the analysis for sex 

(HC > CHR-NT: right hippocampus, PFWE=0.013; xyz=38 -16 -14; Z=3.76, Hedges’ 

g=0.488; HC <> CHR-T or CHR-NT <> CHR-T: no suprathreshold voxels). Clinical 

follow-up information (transition/non-transition) was not available for 6 of the 76 CHR 

individuals; repeating the transition analysis with these 6 individuals excluded from 

the CHR-NT group did not change the results (HC > CHR-NT: right hippocampus, 

PFWE=0.019; xyz=38 -16 -14; Z=3.64, Hedges’ g=0.621; HC <> CHR-T or CHR-NT 

<> CHR-T: no suprathreshold voxels). 

 

Analysis of potential confounders 

A secondary analysis assessed the potentially confounding effects of substance use 

(alcohol, cigarettes and cannabis) and levels of anxiety/depression (HAM-A/HAM-D) 
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on the group difference in right anterior hippocampus activation. The group effect 

remained significant (F1,80=5.486, P=0.022, Hedges’ g=0.742) (eTable 3 in the 

Supplement). We also examined whether antipsychotic medication could have 

affected the results by repeating the analysis after the 9 CHR participants who were 

receiving antipsychotics had been excluded from the SPM design. Again, the group 

difference in the right anterior hippocampus remained significant (PFWE=0.042; 

xyz=38, −18 −14; Z=3.43, Hedges’ g=0.591). Finally, comparing CHR participants 

with (n=28) versus CHR participants without (n=48) antidepressants showed no 

suprathreshold effects at PFWE<0.05. 

 

Exploratory whole-brain fMRI results (comparing all CHR with HC subjects and CHR-

NT with CHR-NT subjects) are reported in the Supplement (eTable 4, eFigure 3). 

 

Effective connectivity: all CHRs vs HCs  

For the comparison of HC vs CHR groups, PEB revealed group differences in the 

modulatory effect of pure stimulus novelty on hippocampal-striatal-midbrain 

connections. The CHR group showed relatively reduced connectivity from VTA/SN to 

striatum (P:0.52), but greater connectivity from hippocampus to striatum (P:0.64) and 

from VTA/SN to hippocampus (P:0.68) (Figure 3B). These findings remained largely 

unchanged after additionally adjusting the analysis for sex (VTA/SN to hippocampus 

P:0.74; hippocampus to striatum P:0.63; although VTA/SN to striatum P:0.47). 

 

Effective connectivity: transition to psychosis  

Comparison of the CHR participants who subsequently developed psychosis and 

those who did not by PEB analysis also revealed a group difference: the CHR-T 

subgroup showed reduced connectivity from VTA/SN to striatum compared to the 

CHR-NT subgroup (P:0.51) (Figure 3C). This finding remained unchanged after 

additionally adjusting the analysis for sex (P:0.53). Repeating this analysis excluding 
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the 6 individuals for which follow-up clinical information was not available revealed 

that the reduced connectivity in CHR-T individuals from VTA/SN to striatum remained 

significant (P:0.71), and a further connectivity decrease was observed for the 

backward connection from the striatum to the VTA/SN (P:0.75) (eFigure 4).  

 

DISCUSSION 

Our first major finding was that participants at CHR for psychosis showed an altered 

anterior hippocampal response during pure stimulus novelty processing, suggesting 

that salience dysregulation is not only present in patients with psychosis, but is also 

evident before its onset. The result was not attributable to effects of age, treatment 

with antipsychotic or antidepressant medication, substance use, anxiety/depression 

symptoms, or differential behavioral engagement with the fMRI task. Complementary 

whole-brain analysis showed no significant between-group differences (as shown in 

the Supplement), suggesting that during ‘pure stimulus novelty’ processing regions 

outside our a priori hippocampal-striatal-midbrain mask would not be differentially 

engaged by CHR individuals. The second major finding came from applying a circuit-

based approach to examine functional coupling within a hippocampus–striatal–

midbrain circuit during salience processing. CHR subjects showed significantly 

reduced effective connectivity from the midbrain to the striatum compared to controls, 

but greater connectivity from the hippocampus to the striatum and from the midbrain 

to the hippocampus. The reduction in midbrain-striatal connectivity in the whole 

sample was also evident in the subgroup who later became psychotic compared to 

the subgroup who did not. Overall, the results support previous reports that altered 

salience-related response in the hippocampus is associated with psychosis risk,8, 11 

and suggest that the subsequent development of psychosis may rather be based on 

circuit-based connectivity disruptions. 
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According to a well-validated neurodevelopmental animal model, the 

methylazoxymethanol acetate (MAM) model, increased tonic activity of the 

ventral/anterior hippocampus leads the ventral striatum to disinhibit the midbrain via 

inhibition of the ventral pallidum, which increases the number of spontaneously 

active midbrain dopamine neurons4, 36. Human imaging evidence has been largely 

consistent with this model37. Resting cerebral blood volume (CBV) or flow (CBF) is 

elevated in the anterior hippocampus of patients with schizophrenia33, 34, 38, 39 and 

CHR individuals26, 27, 34. Higher levels of CBV/CBF are positively associated with 

psychotic symptoms in CHR subjects33 and with subclinical psychotic-like 

experiences in schizotypal individuals40. Furthermore, CHR subjects show elevated 

striatal dopamine function41, 42, an association between striatal dopamine function 

and reduced hippocampal activation during a memory task43, and altered 

hippocampal glutamate levels44, 45. In turn, altered hippocampal glutamate levels 

have been related to abnormal hippocampal activation during a memory task in 

CHR46. Our findings extend this literature by showing that hippocampal dysregulation 

is also evident when CHR individuals process novelty salience.  

 

An important consideration in the interpretation of fMRI data is that increases 

and decreases in BOLD response depend on (i) the direction of the change in 

regional brain activity relative to the baseline for both the control and the task 

condition, (ii) the way in which the control condition and the condition of interest are 

compared, (iii) comparing groups which may have different baseline states35, 47. Our 

novelty salience paradigm was adapted from that employed by Bunzeck and Duzel15 

showing that the VTA/SN preferentially responds to stimulus novelty over other forms 

of stimulus salience. The contrast between novel and neutral oddballs allowed 

quantification of neural response to what the authors called “pure stimulus novelty”, 

as opposed to rareness/deviance per se15. Our results suggest that the reduced 

response to pure stimulus novelty in the right anterior hippocampus in CHR 
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individuals may be driven by increased response to the control condition comprising 

neutral stimuli (albeit at an uncorrected level).  

 

In terms of effective connectivity within this circuit, relative to controls, CHR 

subjects showed greater modulation by pure stimulus novelty in the connection from 

hippocampus to striatum and from midbrain to hippocampus. While this analysis also 

indicated reduced modulation of connectivity from midbrain to striatum in CHR 

individuals, this effect was no longer significant once sex was adjusted for in the 

analysis, suggesting a potential relationship between midbrain-striatal connectivity 

and sex in the CHR state which merits further research. Overall, these findings 

suggest that, in CHR subjects, afferent and efferent connectivity of the hippocampus 

were increased, consistent with disrupted interactions within a hippocampal-striatal-

midbrain circuit being associated with increased risk for psychosis. This pattern of 

dysconnectivity would be in line with the maximal tonic activation of dopamine 

neuron firing hypothesized to occur in psychosis, thought to obscure salience-driven 

increases in population activity of mesostriatal dopamine neurons36, leading to all 

stimuli being inappropriately registered as salient. This could account for the 

increased response to non-novel stimuli, and the attenuation of the hippocampal 

response to salient stimuli, observed in the CHR group.  

 

Although the later onset of psychosis in CHR subjects was not associated 

with significant differences in hippocampal activation, this subgroup showed reduced 

modulation by pure stimulus novelty of the effective connectivity from midbrain to 

striatum compared to CHR subjects who did not become psychotic. As a similar 

alteration in midbrain-striatal connectivity was also evident in the total CHR sample 

relative to controls (above), this suggests that among the changes in connectivity 

seen in the CHR sample, alterations in communication from midbrain to striatum may 

be particularly relevant to the subsequent onset of psychosis. This would be 
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consistent with PET studies in CHR subjects showing elevated midbrain and striatal 

dopamine function linked to later transition to psychosis42, 43. An alternative 

explanation relates to a ‘ceiling effect’ for hippocampal activity and subcortical 

connectivity in dopamine-related regions; the lower hippocampal response to novel 

versus non-novel stimuli could reflect a reduced signal-to-noise ratio in the 

comparison between these two conditions in CHR individuals, supported by the 

(uncorrected) hyper-responsivity to the neutral comparator condition. This notion is 

consistent with previous findings on emotional salience in CHR groups that lower 

responses to emotional stimuli are driven by increased responses to the neutral, non-

emotional condition48-52, and by reports of increased resting hippocampal perfusion in 

CHR26, 27, 33, 34. Taken together, these results suggest that increased baseline 

activity/tonic dopamine signaling within this circuitry may render CHR/CHR-T 

individuals less able to 'effectively' distinguish between novel (salient) and non-novel 

(non-salient) stimuli.  

 

Despite studying a relatively large sample of CHR subjects, the number in the 

CHR-T subgroup was small; the findings in this subgroup should therefore be 

interpreted with caution, and warrant replication in larger samples. Previous imaging 

studies of salience processing in CHR individuals relative to HCs have found 

significant differences in activation of the hippocampal-striatal-midbrain circuit in the 

context of reward/motivational salience8, 11, but not novelty or emotional salience. A 

possible explanation for this discrepancy might relate to modest sample sizes in 

previous studies, as we included a relatively large CHR sample (n=76). Additional 

sources for discrepancies might relate to the use of different salience task 

paradigms, tapping on different dimensions of salience processing. More specifically, 

Roiser et al.11 used the Salience Attribution Task (SAT), a monetary reward task 

measuring adaptive and aberrant motivational salience. In contrast, Winton-Brown et 

al.8 used the Salience Integration Task (SIT), a monetary incentive delay task in 
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which conditions were manipulated to examine reward (monetary), novelty (with half 

of the trials as pre-familiarized and the other half as novel), and aversion (with half of 

the pictures as emotionally aversive). Given that salience is a multifaceted 

construct12, and that novelty salience had not been studied in relation to transition to 

psychosis, we used a task paradigm known to robustly isolate the specific processing 

of novelty15. In terms of findings, Roiser et al. focused on the dorsolateral prefrontal 

cortex, hippocampus and midbrain, and found that the magnitude of aberrant 

motivational salience attribution was positively correlated with ventral striatal 

responses to non-salient cue features11. Winton-Brown et al. focused on the 

hippocampus, striatum and midbrain, and found significant group differences with 

CHR subjects showing greater activation than HC to reward-predicting stimuli in the 

ventral pallidum and in the midbrain/hippocampus, while they did not observe any 

significant effects for novelty or emotional salience8. In the present study, using a 

specific ‘pure stimulus novelty’ salience task, we observed a significant difference in 

hippocampal responsivity between HC and CHR individuals. Finally, Roiser et al.11 

had shown an abnormal association between hippocampal response to motivational 

salience and dopamine synthesis capacity in a smaller sample of CHR individuals. 

Given that the hippocampus is central to the processing of novelty salience,53 it 

would be interesting to determine whether the hippocampal alteration we detected 

during novelty processing is also abnormally associated with dopamine synthesis 

capacity in CHR individuals. 

 

In summary, the data from the present study indicate both perturbed 

hippocampal activation and hippocampal-striatal-midbrain effective connectivity in 

the context of novelty salience in people at CHR for psychosis, and that the later 

onset of psychosis is associated with alterations in midbrain-striatal connectivity. 

These findings are consistent with data from preclinical models of psychosis 
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implicating alterations in a hippocampal–striatal-midbrain circuit in the development 

of psychosis.  
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FIGURE LEGENDS 

 

 

Figure 1. (A) Task paradigm. (B) Region-of-interest mask used for small volume 

correction on the fMRI analysis. Red = hippocampus; green = striatum; blue = 

midbrain. L = left hemisphere; R = right hemisphere. 
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Figure 2. (A) Novel > Neutral oddball trials across groups, and (B) Between-group 

clinical high risk (CHR) versus healthy control (HC) results in right hippocampus for 

the contrasts of novel > neutral oddballs with activation superimposed on a standard 

T1 template. (C) Boxplots show mean hippocampal activation in each group for novel 

> neutral (pure stimulus novelty) and neutral > standard (stimulus 

rareness/deviance). L = left hemisphere; R = right hemisphere. 
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Figure 3. (A) DCM model. (B) Group effects on PEB models between HC and CHR. 

(C) Group effects on PEB models between CHR-NT and CHR-T. Gray bars show 

posterior probabilities for model evidence. Pink bars represent the Bayesian 95% 

confidence interval. 
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TABLES 

Table 1. Demographic and questionnaire data. 

Measure HC 
(n=31) 

CHR 
(n=76) 

g or V P CHR-NT 
(n=63) 

CHR-T 
(n=13) 

g or V P 

Age (years) 25.0 (4.1) 22.46 

(3.6) 

0.677 0.003 22.7 (3.8) 21.9 (2.6) 0.220 0.488 

Gender (male/female) 15/16 42/34 0.063 0.518 36/27 6/7 0.083 0.468 

NART IQ 104.9 

(13.7) 

103.5 

(14.6) 

0.097 0.669 103.6 

(15.6) 

103.1 (8.2) 0.034 0.878 

Years of education 15.8 (3.5) 14.6 (2.2) 0.455 0.071 14.6 (2.2) 14.5 (2.5) 0.044 0.907 

CAARMS         

Positive score - 10.1 (4.1) -  9.7 (3.9) 11.8 (4.7) 0.520 0.102 

Negative score - 5.1 (4.1) -  5.1 (4.1) 4.8 (4.3) 0.073 0.785 

Total score - 42.3 
(22.4) 

-  42.1 (21.9) 43.2 (25.5) 0.050 0.873 

GAF score 92.9 (5.0) 58.0 (9.5) 4.124 <0.001 58.5 (9.7) 55.3 (8.5) 0.336 0.272 

HAM-A score 3.4 (4.2) 18.4 

(11.2) 

1.542 <0.001 17.5 (10.4) 22.8 (14.2) 0.477 0.173 

HAM-D score 1.7 (3.5) 17.6 

(11.1) 

1.662 <0.001 17.0 (11.1) 20.3 (11.2) 0.297 0.396 

Tobacco 
(cigarettes/day) 

1.9 (3.4) 6.3 (9.0) 0.563 0.001 7.2 (9.6) 2.1 (3.6) 0.573 0.074 

Alcohol (units/day) 1.7 (2.2) 1.6 (3.4) 0.032 0.964 1.8 (3.6) 0.9 (0.7) 0.272 0.426 

Cannabis (median 

[range])a 

0 [0-3] 0 [0-4] 0.146 0.703 0 [0-4] 0 [0-4] 0.147 0.811 

Antipsychotic 

medication (n) 

- 9 (12%) - - 8 (13%) 1 (8%) 0.058 0.611 

Antidepressant 

medication (n) 

1 (3.2%) 28 (37%) 0.343 <0.001 25 (40%) 3 (23%) 0.130 0.258 

Right-handed (n) 26 (90%) 64 (85%) 0.187 0.162 52 (83%) 12 (92%) 0.090 0.434 
a 0=never, 1=experimental use, 2=occasional use, 3=moderate use, 4=severe use. 
CAARMS, Comprehensive Assessment for the At-Risk Mental State; CHR, clinical high risk; CHR-NT, 
clinical high-risk non-transition; CHR-T, clinical high-risk transition; GAF, Global Assessment of 
Functioning scale; HAM-A, Hamilton Anxiety Rating Scale; HAM-D, Hamilton Depression Rating Scale; 
HC, healthy controls; NART, National Adult Reading Test. g or V, Hedges’ g or Cramer’s V. 
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Table 2. Random Effects Analysis for Novel Oddballs versus Neutral Oddballs 

Across and Within Groups in the hippocampal-striatal-midbrain region of interest. 

Brain Area MNI Coordinates k T Z Voxel-
wise PFWE 

 x y z     

Across all participants 
(n=107) 

       

R anterior hippocampus 32 -12 -14 568 5.52 5.16 <0.001 

L hippocampus -26 -30 -6 560 4.77 4.53 0.001 

R midbrain 12 -24 -16 50 4.37 4.18 <0.001 

R ventral putamen 28 20 -2 963 5.91 5.47 <0.001 

R dorsal pallidum 18 4 6  4.25 4.07 0.008 

R ventral caudate 14 8 6  4.15 3.98 0.012 

L ventral putamen -26 14 -4 540 4.28 4.10 0.008 

HC (n=31)        

R anterior hippocampus 32 -14 -14 542 4.89 4.62 <0.001 

L hippocampus -22 -34 -6 552 3.96 3.82 0.011 

R midbrain 14 -18 -14 5 3.22 3.13 0.014 

R ventral putamen 32 4 -8 42 3.77 3.64 0.019 

CHR (n=76)        

R hippocampus 22 -32 -2 18 3.63 3.51 0.031 

R midbrain 12 -24 -16 24 4.00 3.85 0.002 

R ventral putamen 28 20 -2 247 5.57 5.20 <0.001 

L ventral putamen -26 14 -6 19 3.68 3.56 0.024 

CHR-NT (n=63)        

R midbrain 12 -24 -16 17 3.59 3.48 0.005 

R ventral putamen 28 20 -2 124 5.43 5.08 <0.001 

CHR-T (n=13)        

No suprathreshold voxels        

L, left; R, right. CHR, clinical high risk; CHR-NT, clinical high-risk non-transition; CHR-T, 
clinical high-risk transition; HC, healthy controls. 
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Supplementary Methods 

fMRI acquisition and preprocessing 

Echo-planar images sensitive to blood oxygenation level-dependent (BOLD) contrast 

were acquired to measure hemodynamic responses on a General Electric Signa HDx 

TwinSpeed 3T scanner (Milwakee, Wisconsin) at the Centre for Neuroimaging 

Sciences, Institute of Psychiatry, Psychology & Neuroscience (King’s College 

London). Acquisition parameters were as follows: repetition time (TR): 2000 ms; 

echo time (TE), 30 ms; flip angle, 75°; slice thickness, 3 mm; field of view (FoV), 240; 

39 axial sections collected with sequential (top-down) acquisition and 3.3-mm 

interslice gap). Structural data were acquired by means of a three-dimensional T1-

weighted magnetization prepared rapid acquisition gradient-echo sequence (TR = 

6.98 ms, TE = 2.85 ms, voxel size = 1.05 × 1.05 × 1.2 mm, FoV = 260 mm, flip angle 

= 11°, inversion time = 400 ms). Three clinical high risk (CHR) subjects had to be 

excluded because of failure to complete the fMRI task. Functional MRI data were 

preprocessed using the SPM12 software 

(http://www.fil.ion.ucl.ac.uk/spm/software/spm12). After slice timing, realignment, 
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segmentation, co-registration and stereotaxic normalization (2x2x2 mm3), images 

were spatially smoothed using an 8-mm full-width at half-maximum Gaussian filter 

and a high pass filter (128 s). Excessive movement was considered at 43 mm of 

translation and 3 degrees of rotation in any axis; six clinical high risk (CHR) subjects 

exceeded this threshold and were therefore removed from the final analysis. 

 

Results 

Relationship between pure stimulus novelty activation / DCM connectivity and 

psychotic symptoms 

Exploratory correlations between fMRI parameter estimates extracted from regions 

showing significant novelty-related group differences and severity of positive 

prodromal symptoms (summary scores of CAARMS unusual though content, non-

bizarre ideas, perceptual abnormalities and disorganized speech) were tested with 

Pearson correlation analysis in SPSS. Within the CHR-T group, activation 

parameters in the right anterior hippocampus during novelty processing were 

significantly negatively correlated with CAARMS positive symptoms (r=-0.652, 

p=0.016) (eFigure 1). There were no significant correlations in the CHR group as a 

whole (r=-0.115, p=0.324) or in the CHR-NT group (r=-0.055 p=0.671).  

 

 
eFigure 1. Scatterplots depicting a significant inverse correlation between right 
hippocampal response to Neutral > Standard and severity of CAARMS positive 
symptoms within CHR-T the group (left), which was absent in the CHR-NT group 
(middle) and the CHR group as a whole (right). 
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Finally, correlations between severity of positive symptoms and connectivity 

strengths were assessed with using a PEB model with the CAARMS positive 

symptom as a regressor. PEB results of this type of analysis results in estimation of 

the effect size and probability for that effect. For this analysis, we included only the 

CHR sample. We have thresholded results at P>0.5 (weak probability). In the total 

CHR sample, there was a positive effect between the strength of modulation of the 

forward connection from the VTA/SN to the hippocampus and the severity of 

CAARMS positive symptoms (effect size: 0.04; P: 0.57), and a negative association 

between connectivity from the hippocampus to the striatum and CAARMS positive 

symptoms (effect size: -0.07; P: 0.69). The negative effect between hippocampus to 

striatum connectivity and positive symptoms was also evident in CHR-NT subjects 

(Effect size: -0.06 P: 0.66). In the CHR-T group, there were effects of CAARMS 

positive symptoms in VTA/SN to Striatum (effect size: -0.05; P: 0.55) and in VTA/SN 

to hippocampus (effect size: 0.09; P:0.72). 

 

Examining Potential Movement Confounds 

We used movement parameters for each trial in each of the three runs for each 

subject to compare movement between groups. For the final sample of 31 healthy 

controls (HC) and 76 CHR subjects (of which 13 became CHR-T and 63 CHR-NT), 

mean incremental (frame-to-frame) movement and group t-test results for each 

translation axis (x, y, z) and rotation axis (pitch, roll, yaw) averaged across the three 

task runs are summarized in eTable 1. 

 HC (n=31) CHR (n=76)   CHR-NT 
(n=63) 

CHR-T (n=13)   

 Mean SE Mean SE g p Mean SE Mean SE g p 
x 0.0042 0.11 0.0167 0.14 0.095 0.662 0.0264 0.14 -0.0305 0.14 0.406 0.189 
y -0.0316 0.16 0.0051 0.15 0.240 0.273 0.0076 0.14 -0.0087 0.22 0.105 0.752 
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eTable 1. Incremental movement. 

* P < 0.05. g, Hedges’ g. 

 

There was a difference between HC and CHRs in the yaw dimension (p = 0.034); 

therefore, movement parameters (x, y, z, pitch, roll, yaw) were included in all first 

level fMRI models as covariates of no interest to rule out variance associated with 

head movement. There were no significant differences between HC and CHRs in any 

of the other axis/dimensions, as well as no significant differences in any of the 

movement parameters between CHR-NT and CHR-T. 

eFigure 2: Violin plots showing mean incremental (frame-to-frame) movement by 

each translation (x, y, z: 1A and 2A) and rotation axis (pitch, roll, yaw: 1B and 2B) 

z 0.1357 0.34 0.1414 0.30 0.018 0.931 0.1285 0.31 0.2036 0.25 0.249 0.412 
pitch -0.0003 0.01 0.0004 0.01 0.07 0.679 0.0003 0.01 0.0005 0.01 0.02 0.935 
roll 0.0001 0.00 0.0003 0.00 0.07 0.852 0.0003 0.00 0.0000 0.00 0.02 0.720 
yaw -0.0004 0.00 0.0005 0.00 0.07 0.034* 0.0004 0.00 0.0006 0.00 0.02 0.808 
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averaged across the 3 task runs by group (HC vs CHR total, 1A and 1B; CHR-NT vs 

CHR-T, 2A and 2B). 

 
 
Behavioral Results. 

Reaction time (RT) 

Behavioral analysis of RTs revealed that mean reaction times (RT) did not differ 

significantly between the groups (eTable 2). 

 

Target recognition 

Target stimuli detection was nearly perfect across all participants, with a mean hit 

rate >95% and a very low error rate of <7%, with no significant between-group 

differences (eTable 2).  

 

eTable 2. Behavioral results for the novelty salience task. 

Measure HC 
(n=31) 

CHR 
(n=76) 

g p CHR-NT 
(n=63) 

CHR-T 
(n=13) 

g p 

Targetness (%) 96.3 96.3 0.009 0.964 96.3 96.1 0.032 0.924 

Errors (%) 4.7 6.5 0.157 0.457 6.6 5.5 0.101 0.760 

Reaction Time 

(mean, SD) 

561.7 

(83.6) 

568.7 

(97.8) 

0.074 0.731 566 

(90.3) 

583.3 

(135.6) 

0.177 0.592 

Targetness = percent correct hits on target stimuli. Errors = false alarms + missed 
hits. CHR, clinical high risk; CHR-NT, clinical high-risk non-transition; CHR-T, 
clinical high-risk transition; HC, healthy controls. g, Hedges’ g. 
 

 

Analysis of potential confounders 

A univariate ANCOVA in SPSS with the individual right hippocampal parameter 

estimates of activation to Novel > Neutral as dependent variable, Group as between-

subjects factor, and alcohol use, cigarettes, cannabis use, HAM-A and HAM-D 
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scores as covariates showed that the group effect remained significant (F1,80 = 5.486, 

p = 0.022, Cohen’s d = 0.742). Further details are provided in eTable 3 below. 

 

eTable 3. Univariate ANCOVA results. 

 
 
 
 
 
Whole-brain analysis 

Across groups and at the whole-brain level, pure stimulus novelty was associated 

with activation in the fusiform gyrus/occipital lobes and insula bilaterally, right 

hippocampus, putamen, inferior frontal gyrus/middle frontal gyrus, medial frontal 

gyrus and middle temporal gyrus, and with the left inferior parietal lobule (voxel-wise 

pFWE<0.05, eTable 4, eFigure 3). At the whole brain level, there were no regions that 

showed between-group differences in the CHR as a whole relative to the HC group, 

or in the CHR-NT relative to the CHR-T group. 

 

eTable 4: Random Effects Analysis for Novel Oddballs versus Neutral Oddballs 

Across and Within Groups at the Whole-Brain Voxel-wise Level. The x, y, z 
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coordinates of local maxima are listed according to the MNI coordinate system. All 

results voxel-wise p<0.05 FWE corrected. 

Brain Area MNI Coordinates k T Z Voxel-
wise 
pFWE 

 x y z     

Across all participants 
(n=107) 

       

R fusiform gyrus 28 -46 -14 4959 13.10 Inf <0.001 

R middle occipital gyrus 36 -78 9  8.33 7.27 <0.001 

R superior occipital gyrus 20 -94 -6  8.05 7.08 <0.001 

L fusiform gyrus -30 -48 -20 3730 11.69 Inf <0.001 

L inferior occipital gyrus -18 -94 -6  9.52 Inf <0.001 

L middle occipital gyrus -36 -86 -2  9.40 Inf <0.001 

R inferior frontal gyrus 44 12 28 1367 6.88 6.23 <0.001 

R middle frontal gyrus 48 32 22  6.41 5.87 <0.001 

L insula -30 22 -2 388 6.64 6.05 <0.001 

R insula 32 22 -2 613 6.63 6.04 <0.001 

R hippocampus 32 -12 -14  5.52 5.16 0.002 

R putamen 32 4 -8  5.24 4.93 0.004 

L inferior parietal lobe -28 -58 42 130 6.09 5.62 <0.001 

R medial frontal gyrus 8 30 42  5.70 5.30 0.001 

R middle temporal gyrus 58 -40 -10 20 5.35 5.02 0.003 

R middle frontal gyrus 40 46 14 23 4.91 4.65 0.015 

HC (n=31)        

R fusiform gyrus 30 -48 -16 1114 7.79 6.90 <0.001 

R calcarine gyrus 20 -94 -6  5.90 5.47 <0.001 

L fusiform gyrus -32 -50 -20 971 4.82 6.56 <0.001 

L lingual gyrus -30 -82 -16  4.97 4.70 0.012 

L middle occipital gyrus -16 -92 -6 455 7.23 6.49 <0.001 

L inferior occipital gyrus -28 -92 -8  5.39 5.05 0.003 

R middle occipital gyrus 36 -78 8 71 5.00 4.73 0.011 
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R hippocampus 32 -14 -14 7 4.89 4.63 0.016 

R inferior frontal gyrus 54 20 30 5 4.74 4.50 0.026 

CHR (n=76)        

R fusiform gyrus 28 -46 -14 3809 12.13 Inf <0.001 

R middle occipital gyrus 34 -72 20  8.25 7.22 <0.001 

L fusiform gyrus -30 -48 -16 2912 10.23 Inf <0.001 

L middle occipital gyrus -34 -88 -2  8.48 7.37 <0.001 

R inferior frontal gyrus 44 12 30 954 6.68 6.08 <0.001 

R insula 36 20 -4 622 6.58 6.00 <0.001 

L insula -28 24 0 415 6.57 5.99 <0.001 

R medial frontal gyrus 8 28 42 44 5.01 4.73 0.011 

L inferior parietal lobe -30 -56 40 26 4.99 4.72 0.011 

CHR-NT (n=63)        

R fusiform gyrus 28 -46 -14 3363 10.93 Inf <0.001 

R middle occipital gyrus 34 -72 20  7.94 7.00 <0.001 

L fusiform gyrus -30 -48 -18 1266 9.05 7.74 <0.001 

L middle occipital gyrus -34 -88 -2 1109 8.21 7.18 <0.001 

L inferior occipital gyrus -20 -94 -8  6.41 5.86 <0.001 

R insula 34 20 -4 405 6.04 5.58 <0.001 

R inferior frontal gyrus 40 8 30 378 5.78 5.37 0.001 

R middle frontal gyrus 42 30 20 175 5.55 5.18 0.001 

R medial frontal gyrus 10 24 42 16 4.79 4.54 0.021 

CHR-T (n=13)        

R fusiform gyrus 30 -44 -14 170 5.45 5.10 0.002 

L cerebellum lobule 6 -36 -54 -24 124 4.95 4.68 0.012 

L fusiform gyrus -32 -48 -16  4.91 4.64 0.015 
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eFigure 3: Random Effects Analysis for Novel Oddballs versus Neutral Oddballs 

Across and Within Groups at the Whole-Brain Voxel-wise Level. (A) across groups, 

(B) within HCs, (C) within CHRs, (D) within CHR-NT, (E) within CHR-T. Activation 

maps are superimposed on a standard T1 template. All results voxel-wise p<0.05 

FWE corrected. L = left hemisphere; R = right hemisphere. 
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Effective connectivity: transition to psychosis excluding CHR subjects for whom 

clinical outcome information could not be obtained 

 

eFigure 4. (A) DCM model. (B) Group effects on PEB models between CHR-NT 

(n=57) and CHR-T (n=13). Gray bars show posterior probabilities for model 

evidence. Pink bars represent the Bayesian 95% confidence interval. 

 


