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Abstract. In this article, we introduce mixtures of tempered stable subordinators. These
mixtures define a class of subordinators which generalize tempered stable subordinators
(TSS). The main properties like the probability density function (pdf), Lévy density, mo-
ments, governing Fokker-Planck-Kolmogorov (FPK) type equations and the asymptotic
form of potential density are derived. Further, the governing FPK type equation and
the asymptotic form of the renewal function for the corresponding inverse subordinator
are discussed. We generalize these results to n-th order mixtures of TSS. The governing
fractional difference and differential equations of the time-changed Poisson process and
Brownian motion are also discussed.
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1. Introduction16

In recent years, the subordinated stochastic processes have found many interesting17

real-life applications, see [6, 17, 19, 23, 24, 25, 26, 39] and references therein. In18

general, a subordinated process is defined by taking superposition of two indepen-19

dent stochastic processes. In a subordinated process, the time of a process called20

a parent process (or outer process) is replaced by another independent stochastic21

process called an inner process or subordinator. A subordinator is a non-decreasing22

Lévy process [3]. Note that subordinated processes are a convenient way to develop23

a stochastic model, where it is required to keep some properties of the parent pro-24

cess and at the same time some characteristics need to be altered. Some well-known25

subordinators include the gamma process, the Poisson process, a one-sided stable26

process with index α ∈ (0, 1) or an α-stable subordinator, tempered stable subordi-27

nators, geometric stable subordinators, iterated geometric stable subordinators and28

Bessel subordinators [12].29
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In this article, we introduce a class of subordinators which generalize the class of1

tempered stable subordinators and α-stable subordinators. This class of subordina-2

tors can be used as a time change to define another subordinated process instead of3

the tempered stable subordinator or the α-stable subordinator. We have discussed4

the main properties of the introduced subordinator.5

The rest of the paper is organized as follows. In Section 2, we introduce an α-6

stable subordinator, a tempered stable subordinator (TSS), and also the mixtures of7

TSS and the inverse of mixtures of TSS. In Section 3, the distributional properties8

of mixtures of TSS are discussed. Section 4 deals with the asymptotic forms of9

potential density and renewal function. The n-th order mixtures of TSS are also10

discussed in this section. In the last section, as an application, we introduce a time-11

changed Poisson process and Brownian motion by considering the mixtures of the12

tempered stable subordinator and its inverse as time changes.13

2. Tempered stable subordinators and their Mixtures14

In this section, we recall the definitions of the α-stable subordinator, the tempered15

stable subordinator, as well as the mixtures of tempered stable subordinators and16

the inverse of mixtures of tempered stable subordinators.17

2.1. Tempered stable subordinators18

In this subsection, we present the main properties of the α-stable subordinator and19

the tempered stable subordinator. The class of stable distributions is denoted by20

S(α, β, µ, σ), where parameter α ∈ (0, 2] is the stability index, β ∈ [−1, 1] is the21

skewness parameter, µ ∈ R is the location parameter, and σ > 0 is the shape22

parameter. The stable class probability density functions do not possess a closed23

form except for three cases (Gaussian (α = 2), Cauchy (α = 1), and Lévy (α =24

1/2)). Generally, stable distributions are represented in terms of their characteristic25

functions or Laplace transforms. Stable distributions are infinitely divisible and26

hence generate a class of continuous time Lévy processes. The one-sided stable Lévy27

process Sα(t) with the Laplace transform (see e.g. [34])28

E(e−sSα(t)) = e−ts
α

, s > 0, α ∈ (0, 1), (1)29

is called an α-stable subordinator. The α-stable subordinator Sα(t) has stationary30

independent increments. The right tail of the α-stable subordinator behaves [34]31

P(Sα(t) > x) ∼ tx−α

Γ(1− α)
, as x→∞. (2)32

Next, we introduce a tempered stable subordinator (TSS). The TSS Sα,λ(t) with33

the tempering parameter λ > 0 and the stability index α ∈ (0, 1) is the Lévy process34

with the Laplace transform (LT) [26]35

E(e−sSα,λ(t)) = e−t
(

(s+λ)α−λα
)
. (3)36
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Note that TSS are obtained by exponential tempering in the distributions of α-1

stable subordinators [32]. The advantage of a tempered stable subordinator over an2

α-stable subordinator is that it has finite moments of all orders and its density is also3

infinitely divisible. However, in the process of tempering it ceases to be self-similar.4

The probability density function for Sα,λ(t) is given by5

fα,λ(x, t) = e−λx+λαtfα(x, t), λ > 0, α ∈ (0, 1), (4)6

where fα(x, t) is the PDF of an α-stable subordinator [40]. The Lévy density corre-7

sponding to a TSS is given by [15]8

πSα,λ(x) =
α

Γ(1− α)

e−λx

xα+1
, x > 0. (5)9

The sample paths of the α-stable subordinator and the TSS are strictly increasing
with jumps by applying Theorem 21.3 of Sato [35]. The tail probability of the TSS
has the following asymptotic behavior:

P(Sα,λ(t) > x) ∼ cα,λ,t
e−λx

xα
, as x→∞, (6)

where cα,λ,t = t
απΓ(1 +α) sin(πα)eλ

αt. The first two moments and covariance of the
TSS are given by

E(Sα,λ(t)) = αλα−1t, E(Sα,λ(t))2 = α(1− α)λα−2t+ (αλα−1t)2, (7)

Cov(Sα,λ(t), Sα,λ(s)) = α(1− α)λα−2 min(t, s), t, s ≥ 0.

2.2. Mixtures of TSS and the inverse of mixtures of TSS10

In this subsection, the mixtures of TSS (MTSS) are introduced and their governing11

fractional FPK type differential equations are discussed. Further, the inverse of mix-12

tures of TSS (IMTSS) are also introduced. Mixtures of inverse stable subordinators13

have been considered in [4].14

Definition 1 (Mixture tempered stable subordinator). We define an MTSS denoted15

by Sα1,λ1,α2,λ2
(t), t ≥ 0, as a Lévy process with the Laplace transform16

E
(
e−sSα1,λ1,α2,λ2

(t)
)

= e−t(c1((s+λ1)α1−λα1
1 )+c2((s+λ2)α2−λα2

2 )), s > 0, (8)17

where c1 + c2 = 1 and c1, c2 ≥ 0. An alternative representation of an MTSS can18

be given as a sum of two independent tempered stable subordinators Sα1,λ1
(t) and19

Sα2,λ2
(t) with time scaling and the condition c1 + c2 = 1, such that20

Sα1,λ1,α2,λ2
(t) = Sα1,λ1

(c1t) + Sα2,λ2
(c2t), c1, c2 ≥ 0. (9)21

Representation (9) directly follows from (8), and using the Laplace transforms of22

the tempered stable subordinators Sα1,λ1
(t) and Sα2,λ2

(t) and the fact that both23

processes in the LHS and RHS are Lévy processes and hence the equivalence of their24
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one-dimensional distributions lead to the equivalence of two processes. Further,1

the sample paths of MTSS are strictly increasing since sample paths of independent2

TSS used in (9) are strictly increasing. Next, the governing fractional Fokker-Planck-3

Kolmogorov (FPK) type equation for MTSS is discussed. We recall the LT denoted4

by Lt with respect to the time variable t of shifted fractional Riemann-Liouville5

(RL) derivatives, which is given by [8, 18],6

Lt
(
c+

∂

∂t

)ν
f(x, t) = (c+ s)νLtf(x, t)− (c+ s)ν−1f(x, 0), s > 0. (10)7

The shifted fractional RL derivative can be defined as in [8], see also the approach8

discussed in [20]. We also recall the definition of generalized Mittag-Leffler function9

[31],10

Mr
p,q(z) =

∞∑
k=0

(r)n
Γ(pn+ q)

zn

n!
,11

where p, q, r ∈ C with R(q) > 0 and (r)n = Γ(r+n)
Γ(r) is a Pochhammer symbol. Let12

us recall that the following LT formula F (s) = L[tq−1Mr
p,q(−atp)] = spr−q

(sp+a)r has the13

inverse LT in [29]14

L−1[F (s)] = tq−1Mr
p,q(−atp). (11)15

Proposition 1. The pdf gα1,λ1,α2,λ2(x, t) ≡ G(x, t) of the MTSS satisfies the fol-
lowing fractional partial differential equation (FPDE):

∂

∂t
G(x, t) =− c1

(
λ1 +

∂

∂x

)α1

G(x, t)− c2
(
λ2 +

∂

∂x

)α2

G(x, t)

+ λα1
1 c1G(x, t) + λα1

2 c2G(x, t), (12)

with initial conditions16 {
G(x, 0) = δ(x)

G(0, t) = 0.
(13)17

Proof. Using (21),

Lx (gα1,λ1,α2,λ2(x, t)) =Lx (G(x, t))

=e−t(c1((s+λ1)α1−λα1
1 )+c2((s+λ2)α2−λα2

2 )) = G(s, t).

Differentiating with respect to t yields

∂

∂t
G(s, t) =− [c1 ((s+ λ1)α1 − λα1

1 ) + c2 ((s+ λ2)α2 − λα2
2 )]G(s, t)

=−
[
c1(s+ λ1)α1G(s, t)− c1(s+ λ1)α1−1G(0, t)

]
−
[
c2(s+ λ2)α2G(s, t)− c1(s+ λ1)α1−1G(0, t)

]
+ c1λ1

α1G(s, t) + c2λ2
α2G(s, t)

− c1(s+ λ1)α1−1G(0, t)− c1(s+ λ1)α1−1G(0, t).

Taking the inverse LT on both sides, using equation (10) and applying the initial18

conditions, we obtain the desired result.19
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Remark 1. For the density of the α-stable subordinator, the time derivative is equal1

to the negative of the fractional RL derivative. However, for the TSS density the2

time derivative is equal to the negative of the shifted fractional RL space derivative3

with an extra term. The density of MTSS involves two shifted fractional RL space4

derivatives.5

Next, we define the IMTSS and derive the fractional FPK type differential equation
for its pdf. Let Eα1,λ1,α2,λ2(t) be the right continuous inverse of MTSS Sα1,λ1,α2,λ2(t),
defined by

Eα1,λ1,α2,λ2
(t) = inf{u > 0 : Sα1,λ1,α2,λ2

(u) > t}.

The process Eα1,λ1,α2,λ2
(t) is called the inverse of mixture tempered stable (IMTS)

subordinator. This is also called the first-exist time. Since MTSS is a strictly increas-
ing Lévy process, the sample paths of Eα1,λ1,α2,λ2

(t) are almost surely continuous
and constant over the intervals where Sα1,λ1,α2,λ2(t) have jumps. Let hα1,λ1,α2,λ2(t)

be the pdf of IMTSS; then the Laplace transform h̃α1,λ1,α2,λ2
(x, s) of the density

hα1,λ1,α2,λ2
(t) with respect to the time variable t is given by [28],

h̃α1,λ1,α2,λ2(x, s) =
φ(s)

s
e−xφ(s), (14)

where

φ(s) = c1 ((s+ λ1)α1 − λα1
1 ) + c2 ((s+ λ2)α2 − λα2

2 ) . (15)

The Laplace transform in (14) has a simple pole at s = 0 and branch points at6

s = −λ1 and s = −λ2, and hence using the contour in Figure 1, the density function7

hα1,λ1,α2,λ2
(t) can be found using complex inversion of the Laplace transform, see8

[22] for a similar approach.9

Proposition 2. The pdf hα1,λ1,α2,λ2(x, t) ≡ H(x, t) of IMTSS governs the following
time-fractional differential equation:

∂

∂x
H(x, t) =− c1

(
λ1 +

∂

∂t

)α1

H(x, t)− c2
(
λ2 +

∂

∂t

)α2

H(x, t) + λα1
1 c1H(x, t)

+ λα1
2 c2H(x, t)− c1t−α1M1−α1

1,1−α1
(−λ1t)δ(x)− c2t−α2M1−α2

1,1−α2
(−λ2t)δ(x),

(16)

with H(x, 0) = δ(x).10

Proof. Using (14),

Lt (hα1,λ1,α2,λ2
(x, t)) =

c1 ((s+ λ1)α1 − λα1
1 ) + c2 ((s+ λ2)α2 − λα2

2 )

s

× e−t(c1((s+λ1)α1−λα1
1 )+c2((s+λ2)α2−λα2

2 ))

=H(x, s),
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which implies

∂

∂x
H(x, s) =− [c1 ((s+ λ1)α1 − λα1

1 ) + c2 ((s+ λ2)α2 − λα2
2 )]H(x, s)

=−
[
c1(s+ λ1)α1H(x, s)− c1(s+ λ1)α1−1H(x, 0)

]
−
[
c2(s+ λ2)α2H(x, t)− c1(s+ λ1)α1−1H(x, 0)

]
+ c1λ1

α1H(x, s) + c2λ2
α2H(x, s)− c1(s+ λ1)α1−1H(x, 0)

− c1(s+ λ1)α1−1H(x, 0).

Taking the inverse LT on both sides and using equation (10), we obtain

∂

∂x
H(x, t) =− c1

(
λ1 +

∂

∂t

)α1

H(x, t)− c2
(
λ2 +

∂

∂t

)α2

H(x, t) + c1λ1
α1H(x, t)

+ c2λ2
α2H(x, t)− L−1

[
c1(s+ λ1)α1−1

]
H(x, 0)

− L−1
[
c1(s+ λ1)α1−1

]
H(x, 0). (17)

In (11), taking p = 1, q = 1− α, r = 1 and a = λ yields

L−1

[
1

(s+ λ)1−α

]
= t−αM1−α

1,1−α(−λt). (18)

Using (17) and (18) yields the desired result.1

3. Distributional properties of MTSS2

The distributional properties like pdf, Lévy density and moments of MTSS are3

discussed in this section.4

3.1. Probability density function (pdf)5

We discuss the pdf gα1,λ1,α2,λ2(x, t) of the introduced strictly increasing Lévy process6

Sα1,λ1,α2,λ2
(t) . Here we use the technique of complex inversion of the Laplace7

Transform (LT) for finding the pdf of MTSS.8

Proposition 3. The pdf gα1,λ1,α2,λ2
(x, t) of MTSS defined in (8) is given by the

following integral representation, if λ1 6= λ2,

gα1,λ1,α2,λ2
(x, t) =

1

π

∫ ∞
0

e−xλ2e−wxet(c1λ
α1
1 +c2λ

α2
2 )

× e−t
(
c1(λ1−λ2)α1

∑∞
k=0 (α1

k ) wk

(λ1−λ2)k
cosπk+c2w

α2 cosπα2

)

× sin

(
c1t(λ1 − λ2)α1

∞∑
k=0

(
α1

k

)
wk

(λ1 − λ2)k
sin (πk)
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+c2tw
α2 sin (πα2))dw

+
1

π

∫ λ2−λ1

0

e−xλ1e−wxet(c1λ
α1
1 +c2λ

α2
2 )

× e−t
(
c1w

α1 cos(πα1)+c2(λ1−λ2)α2
∑∞
k=0 (α2

k ) wk

(λ1−λ2)k
cos (πk)

)
× sin (c1tw

α1 sin (πα1)

+c1t(λ1 − λ2)α2

∞∑
k=0

(
α2

k

)
wk

(λ1 − λ2)k
sin (πk)

)
dw, (19)

and if λ1, λ2 = λ:

gα1,λ1,α2,λ2(x, t) =
1

π

∫ ∞
0

e−xλe−wxet(c1λ
α1+c2λ

α2 )

× e−t(c1w
α1 cos (πα1)+c2w

α2 cos (πα2))

× sin (t(c1w
α1 sin (πα1) + c2w

α2 sin (πα2)))dw, (20)

where c1 + c2 = 1 and c1, c2 ≥ 0.1

Proof. Let Lx(f(x, t)) be the LT of the function f(x, t) with respect to the x vari-2

able. Then for gα1,λ1,α2,λ2
(x, t) from (8), we have3

Lx (gα1,λ1,α2,λ2
(x, t)) = e−t(c1((s+λ1)α1−λα1

1 )+c2((s+λ2)α2−λα2
2 )) .

= G(s, t). (21)4

The pdf gα1,λ1,α2,λ2(x, t) can be obtained by using the complex inversion formula5

for the Laplace transform, namely [36]6

gα1,λ1,α2,λ2
(x, t) =

1

2πi

∫ x0+i∞

x0−i∞
esxG(s, t)ds. (22)7

Here the integration is to be performed along a vertical line at x0 > a for some a8

such that the integrand is analytic for Re(s) > a. Note that the function esxḠ(s, t)9

is an exponential function which is analytic in the whole complex plane. However,10

due to fractional power in the exponent, the integrand esxḠ(s, t) has branch points11

at s = −λ1 and s = −λ2. Thus we take a branch cut along the non-positive real12

axis and consider a (single-valued) analytic branch of the integrand. We assume13

here λ1 < λ2; for calculating the integral in (22), consider a closed double-key-hole14

contour C: ABCDEFGHIJA (Figure 1) with branch points at P = (−λ1, 0) and15

Q = (−λ2, 0). In the contour, AB and IJ are arcs of radius R with the center at16

O = (0, 0), BC, DE, FG and HI are line segments parallel to the x-axis, CD, EF17

and GH are arcs of circles with radius r, and JA is the line segment from x0 − iy18

to x0 + iy (see Figure 1). The integrand is analytic within and on the contour C so19

that by Cauchy’s residue theorem [36]20

1

2πi

∫
C

esxG(s, t)ds = 0. (23)21
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A

B C D E

FGHI

J

R

rr

OPQ P (x0, 0)

y

Figure 1: Contour ABCDEFGHIJA

Along CD, we have s = −λ2 + reiθ, ε < θ < π − ε, which implies ds = ireiθ and∣∣∣∣∫
CD

esxG(s, t)ds

∣∣∣∣ =et(c1λ
α1
1 +c2λ

α2
2 )

∣∣∣∣∫
CD

esxe−t(c1((s+λ1)α1 )+c2((s+λ2)α2 ))

∣∣∣∣ ds
≤ret(c1λ

α1
1 +c2λ

α2
2 )

∫ ε

π−ε

∣∣∣e−t(c1(−λ2+λ1+reiθ)α1+c2(rα1eiθα2 )
∣∣∣

×
∣∣∣e(−λ2+reiθ)x

∣∣∣ ∣∣ieiθ∣∣ dθ → 0, (24)

as r → 0, since the integrand is bounded. Similarly, for the arcs EF and GH, the
integrals tend to zero as the radius r goes to zero. We have e−by

α

< y−α/b for b, y
and α > 0. Thus

|G(s, t)| = et(c1λ
α1
1 +c2λ

α2
2 )|e−tc1(s+λ1)α1 ||e−tc2(s+λ2)α2 |

≤ et(c1λ
α1
1 +c2λ

α2
2 )

t2c1c2
|(s+ λ1)−α1 ||(s+ λ2)−α2 | ≤ et(c1λ

α1
1 +c2λ

α2
2 )

t2c1c2
|s|−(α1+α2).

Hence applying Lemma 4.1 to the circular arc AB (see [36, p. 154]) gives1

lim
R→∞

∫
AB

esxG(s, t)ds = 0.2

Similarly, for the circular arc IJ, the integral vanishes as the radius R goes to ∞.3

Along BC, we have s = −λ2 + weiπ, which implies ds = −dw and∫
BC

esxG(s, t)ds =

∫ −λ2+R

r

e−xλ2e−wxet(c1λ
α1+c2λ

α2
2 )

× e−t[c1(λ1−λ2+weiπ)α1+c2(wα2eiπα2 )]dw. (25)
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Similarly, along DE, we have, s = −λ1 + weiπ, which implies ds = −dw. Further,∫
DE

esxG(s, t)ds =

∫ −r+λ2−λ1

r

e−xλ1e−wxet(c1λ
α1
1 +c2λ

α2
2 )

× e−t[c1(wα1eiπα1 )+c2(λ2−λ1+weiπ)α2 ]dw. (26)

Along FG, take s = −λ1 + we−iπ, which implies ds = −dw and leads to∫
FG

esxG(s, t)ds =−
∫ −r+λ2−λ1

r

e−xλ1e−wxet(c1λ
α1
1 +c2λ

α2
2 )

× e−t[c1(wα1e−iπα1 )+c2(λ2−λ1+we−iπ)α2 ]dw. (27)

Along HI, take s = −λ2 + we−iπ, which implies ds = −dw. Hence,1

∫
HI

esxG(s, t)ds =−
∫ −λ2+R

r

e−xλ2e−wxet(c1λ
α1+c2λ

α2
2 )

× e−t[c1(λ1−λ2+we−iπ)α1+c2(wα2e−iπα2 )]dw. (28)

Thus,∫
DE

esxG(s, t)ds+

∫
FG

esxG(s, t)ds = −
∫ −r+λ2−λ1

r

e−xλ1e−wxet(c1λ
α1
1 +c2λ

α2
2 )

×
[
e−t(c1w

α1 cos(πα1)+c2(λ2−λ1+we−iπ)α2 )2i sin(tc1w
α1 sin(πα1))

]
dw. (29)

Similarly,∫
BC

esxG(s, t)ds+

∫
HI

esxG(s, t)ds =

∫ −λ2+R

r

e−xλ2−wx+t(c1λ
α1+c2λ

α2
2 )

×
[
e−t(c1(λ1−λ2+weiπ)α1+c2(wα2eiπα2 ))−e−t(c1(λ1−λ2+we−iπ)α1+c2(wα2e−iπα2 ))dw

]
.

(30)

For R → ∞ and r → 0, using (21), (30), (29) and (23), we obtain the desired2

result.3

Remark 2. For the special case, α1 = α2 = α and λ1 = 0, λ2 = 0 with condition4

c1 + c2 = 1, (3) reduces to5

gα,0,α,0(x, t) =
1

π

∫ ∞
0

e−wxe−tw
α cos(πα) sin(twα sin(πα))dw, (31)6

which is the pdf of α-stable subordinator [22].7

Remark 3. Substituting α1 = α2 = α, λ1 = 0, λ2 = λ > 0, c1 = 0 and c2 = 1 in8

the equation, then we obtain the PDF of TSS with tempering parameter λ9

gα,0,α,λ(x, t) = e−λx+λαt 1

π

∫ ∞
0

e−wxe−tw
α cos(πα) sin(twαsin(πα))dw (32)10
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3.2. Lévy density1

In this subsection, we discuss the Lévy density for MTSS. Here, we apply the result2

discussed in [6] for strictly increasing Lévy processes.3

Proposition 4. The Lévy density denoted by νS for MTSS Sα1,λ1α2,λ2(t) has the
following forms. When λ1 6= λ2,

νS(dx)

=
1

π

∫ ∞
0

e−xλ−wx

[
c1(λ1 − λ2)α1

∞∑
k=0

(
α1

k

)
wk

(λ1 − λ2)k
sin (πk) + c2w

α2 sin (πα2)

]
dw

+
1

π

∫ λ2−λ1

0

e−xλ−wx [c1w
α1 sin (πα1)

+c1(λ1 − λ2)α2

∞∑
k=0

(
α2

k

)
wk

(λ1 − λ2)k
sin (πk)

]
dw. (33)

When λ1 = λ2,

νS(dx) =
1

π

∫ ∞
0

e−xλ−wx (c1w
α1 sin (πα1) + c2w

α2 sin (πα2))dw. (34)

Proof. Let f(x, t) be the pdf for a strictly increasing Lévy process; then the Lévy4

density ν(dx) is given by [6]:5

ν(dx) = lim
t↓0

1

t
f(x, t).6

Using the above result in (19) and (3) with the help of limt→0
sin(at)
t → a, a 6= 0,7

gives the desired result.8

Remark 4. Substituting α1 = α2 = α with the condition c1 + c2 = 1 in (34), we9

obtain the Lévy density of tempered stable subordinator, which is given by [15]10

νS(dx) =
αe−λx

Γ(1− α)x1+α
, x > 0.11

Further, for λ = 0 and α1 = α2 = α in (34), the Lévy density corresponds to that12

of the α-stable subordinator, and is given by [3]:13

νS(dx) =
α

Γ(1− α)x1+α
14

Proof. By putting α1 = α2 = α in (34), we obtain15

νS(dx) =
1

π

∫ ∞
0

e−xλ−wxwα sin(πα)dw =
αe−λx

Γ(1− α)x1+α
, x > 0.16

Using Euler’s identity Γ(α)Γ(1 − α) = π
sin(πα) , ∀ α ∈ (0, 1), we obtain the Lévy17

density of TSS.18
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3.3. Moments1

In this subsection, we discuss the moments of MTSS. We also discuss the asymptotic2

forms of the moments for large t. The n-th order moment of MTSS is obtained by3

using the n-th order cumulant such that4

kn =
dn

dsn
K(s)|s=0,5

whereK(s) = −t (c1 ((−s+ λ1)α1 − λα1
1 ) + c2 ((−s+ λ2)α2 − λα2

2 )) is obtained from
(21). The first moment and variance are k1 = E(Sα1,λ1,α2,λ2

(t)) = t(c1α1λ1
α1−1 +

c2α2λ2
α2−1) and k2 = Var(Sα1,λ1,α2,λ2

(t)) = t(c1α1(1 − α1)λ1
α1−2 + c2α2(1 −

α2)λ2
α2−2). The n-th order cumulant is

kn =(−1)nt[c1α1(α1 − 1)(α1 − 2) · · · (α1 − n+ 1)λ1
α1−n + c2α2(α2 − 1)(α2 − 2)

· · · (α2 − n+ 1)λ2
α1−n]. (35)

Moments and cumulants can be expressed in terms of each other by using Bell6

polynomials [9].7

Next, we discuss the asymptotic behavior of the p-th order moments E(Sα1,λ1,α2,λ2(t)
p
)8

of MTSS Sα1,λ1,α2,λ2
(t), where 0 < p < 1.9

Proposition 5. For 0 < p < 1, the asymptotic behavior of the p-th order moments
of MTSS is given by

E(Sα1,λ1,α2,λ2
(t)

p
) ∼ (c1α1λ1

α1−1 + c2α2λ2
α2−1)ptp, as t→∞, (36)

with condition c1 + c2 = 1, c1, c2 ≥ 0.10

Proof. Using the result in [21],

E(Sα1,λ1,α2,λ2
(t)

p
) =

(−1)

Γ(1− p)

∫ ∞
0

d

ds
e−t[c1((s+λ1)α1−λα1

1 )+c2((s+λ2)α2−λα2
2 )]s−pds

=
tet(c1λ

α1
1 +c2λ

α2
2 )

Γ(1− p)

∫ ∞
0

s−p(c1α1(s+ λ1)α1−1 + c2α2(s+ λ2)α2−1)

× e−t[c1(s+λ1)α1+c2(s+λ2)α2 ]ds

By choosing f(s) = c1(s+ λ1)α1 + c2(s+ λ2)α2 and g(s) = s−p(c1α1(s+ λ1)α1−1 +
c2α2(s+ λ2)α2−1), it follows

f(s) = (c1λ
α1
1 + c2λ

α2
2 ) +

(
c1α1λ

α1−1 + c2α2λ
α2−1

)
s+ · · ·

= f(0) +

∞∑
k=0

aks
k+β ,

where f(0) = c1λ
α1
1 + c2λ

α2
2 , a0 = c1α1λ

α1−1 + c2α2λ
α2−1 and β = 1. Further,

g(s) =
(
c1α1λ

α1−1
1 + c2α2λ

α2−1
2

)
s−p+

(
c1(α1 − 1)λα1−2

1 + c2(α2−1)λα2−2
)
sp−1+ · · ·

=

∞∑
k=0

bks
k+γ+1,
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where b0 = c1α1λ
α1−1
1 + c2α2λ

α2−1
2 , b1 = c1(α1 − 1)λα1−2

1 + c2(α2 − 1)λα2−2 and
γ = 1− p. Using the Laplace-Erdelyi theorem from [16], we have

E(Sα1,λ1,α2,λ2
(t)

p
) ∼ t

Γ(1− p)

∞∑
k=0

Γ(k + 1− p) Dk

tk+1−p , (37)

where Dk in terms of coefficients ak and bk is given by

Dk =
1

a
(k+γ)/β
0

k∑
j=0

bk−j

j∑
i=0

(
−k+γ

β

i

)
1

ai0
Bj,i(a1, a2, . . . , aj−i+1), (38)

where Bj,i are partial ordinary Bell polynomial (see e.g. [2]). The Bell polynomials1

arises naturally from differentiating a composite function n times and exhibits im-2

portant applications in combinatorics, statistics, numerical solutions of non-linear3

differential equations and other fields, and is given by (see e.g. [2, 14, 9]):4

Bj,i(a1, a2, . . . , aj−i+1) =
∑ i!

m1!m2! · · ·mj−i+1
a1
m1a2

m2 · · · aj−i+1
mj−i+1 ,5

where the sum is taken over the sequences satisfying6

m1 +m2 + · · ·+mj−i+1 = i,m1 + 2m2 + · · ·+ (j − i+ 1)mj−i+1 = j,7

where m1,m2, . . . ,mj−i+1 ≥ 0. For large t, the dominating term is the first one in
the series given in (37), which implies

E(Sα1,λ1,α2,λ2(t)
p
) ∼ D0t

p, (39)

where D0 = (c1α1λ1
α1−1 + c2α2λ2

α2−1)p.8

Remark 5. For a positive integer n, the n-th order moments of MTSS satisfy

E(Sα1,λ1,α2,λ2
(t))n =

n∑
m=1

Bn,m(k1, k2, . . . , kn−m+1)

∼(k1)n ∼ (c1α1λ1
α1−1 + c2α2λ2

α2−1)ntn as t→∞,

where Bn,m are partial (or incomplete) exponential Bell polynomials [2]. For more9

information on cumulants, Bell polynomials and moments, see [33, 38].10

Remark 6. By taking α1, α2 = α, λ1, λ2 = λ with condition c1+c2 = 1, c1, c2 ≥ 011

in (53), we obtain the asymptotic behaviour of the p-th (0 < p < 1) order moment12

of TSS Sλ,α(t) given by13

E(Sλ,α(t))p ∼ (αλα−1t)p, as t→∞.14

Similarly, the asymptotic behavior of the n-th order moment for TSS is15

E(Sλ,α(t))n ∼ (αλα−1t)n, as t→∞.16
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Next, we discuss the algorithm to simulate the sample trajectories of MTSS and its1

inverse.2

Example 1 (Simulation of MTSS sample trajectories and its inverse). The algorithm
for generating the sample trajectories of MTSS are as follows:
Step 1: fix the values of parameters; generate independent and uniformly distributed
in [0, 1] rvs U, V ;
Step 2: generate the increments of the α-stable subordinator Sα(t) from [13] with

pdf fα(x, t) using the relationship Sα(t+dt)−Sα(t)
d
= Sα(dt)

d
= (dt)1/αSα(1), where

Sα(1)
d
=

sin(απU)[sin((1− α)πU)]1/α−1

[sin(πU)]1/α| lnV |1/α−1
;

Step 3: for generating the increments of TSS Sα,λ(t) with pdf fα,λ(x, t), we use the3

following steps called “acceptance-rejection method”,4

(a) generate the stable random variable Sα(dt);5

(b) generate uniform (0, 1) rv W (independent of Sα);6

(c) if W ≤ e−λSα(dt), then Sα,λ(dt) = Sα(dt) (“accept”); otherwise go back to (a)7

(“reject”).8

Note that here we used (4), which implies
fα,λ(x,dt)
cfα(x,dt) = e−λx for c = eλ

αdt, and9

the ratio is bounded between 0 and 1;10

Step 4: cumulative sum of increments gives the TSS Sα,λ(t) sample trajectories;11

Step 5: generate Sα1,λ1(c1t), Sα2,λ2(c2t) and add these to get the MTSS, see (9).12

The inverse MTSS sample trajectories are obtained by reversing the axis.13

Figure 2: MTSS Figure 3: Inverse MTSS
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4. Asymptotic forms of potential density and renewal function1

In this section, we discuss the asymptotic behavior of the potential density at 0
(respectively at ∞) for MTSS and the asymptotic form of the renewal function for
the IMTSS. The potential measure of a subordinator S(t) is defined by [37]:

V (A) = E
∫ ∞

0

1(St∈A)dt. (40)

The LT of the measure V is given by

V (s) = E
∫ ∞

0

exp(−sSt)dt =
1

φ(s)
. (41)

Note that the potential measure represents the expected time the subordinator spent2

in the set A.3

Proposition 6. Let v be the potential density of the MTSS. For any α1, α2 ∈ (0, 1],4

we have5

v(x) ∼


xα1+α2−min(α1,α2)−1

Γ(min(α1,α2))(c1xα2−min(α1,α2)+c2xα1−min(α1,α2))
, as x→ 0,

1
c1α1λ1

α1−1+c2α2λ2
α2−1 , λ1, λ2 > 0, as x→∞,

xα1+α2−min(α1,α2)−1

Γ(min(α1,α2))(c1xα2−min(α1,α2)+c2xα1−min(α1,α2))
, λ1, λ2 = 0 as x→∞.

(42)6

Proof. We apply the Tauberian theorem [10], which connects the asymptotic form7

of a Laplace transform with its inverse Laplace transform for a function. We have8

V (s) =
1

φ(s)
∼ s−1

(α1λ1
α1−1 + α2λ2

α2−1)
, as s→ 0.9

Similarly, for λ1, λ2 > 0,10

V (s) ∼ 1

c1sα1 + c2sα2
, as s→∞.11

Applying the Tauberian theorem at x→ 0 (respectively at x→∞) gives the desired12

result.13

Remark 7. By substituting α1 = α2 = α and λ1 = λ2 = λ, with the condition
c1 + c2 = 1 in (42), we obtain the asymptotic behavior of the potential density for
TSS such that

v(x) ∼

{
λ1−α

α , as x→∞,
xα−1

Γ(α) as x→ 0.
(43)

Here, we discuss the asymptotic form of the renewal function for IMTSS. The14

renewal function is given by U(t) = E(Eα1,λ1,α2,λ2
(t)). The Laplace transform (LT)15

of U(t) is U(s) = 1
sφ(s) , see [23].16
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Proposition 7. The renewal function U(t) has following asymptotic form,1

U(t)∼


tα1+α2−min(α1,α2)

Γ(1+min(α1,α2))(c1tα2−min(α1,α2)+c2tα1−min(α1,α2))
, as t→ 0,

t
(c1α1λ1

α1−1+c2α2λ2
α2−1)

, λ1, λ2 > 0, as t→∞,
tα1+α2−min(α1,α2)

Γ(1+min(α1,α2))(c1tα2−min(α1,α2)+c2tα1−min(α1,α2))
, λ1 = λ2 = 0, as t→∞.

2

Proof. Using the Tauberian theorem [10], which says that U(t) ∼ tp l(t)
Γ(p+1) as t→∞

(respectively to 0) is equivalent to U(s)∼s−1−pl( 1
s ) as s→ 0 (respectively at ∞),

where l : (0,∞) → (0.∞) is a slowly varying function at 0 (respectively to ∞).
When s→ 0, the Laplace exponent behaves as

φ(s)∼s(c1α1λ1
α1−1 + c2α2λ2

α2−1), (44)

and hence

U(s) =
1

sφ(s)
=

1

s(c1 ((s+ λ1)α1 − λα1
1 ) + c2 ((s+ λ2)α2 − λα2

2 ))

∼ s−2

(α1λ1
α1−1 + α2λ2

α2−1)
,

which further implies that the renewal function has the asymptotic form3

U(t)∼ t

(c1α1λ1
α1−1 + c2α2λ2

α2−1)
, λ1, λ2 > 0, as t→∞. (45)4

For λ1 = λ2 = 0, we have

U(t)∼ tα1+α2−min(α1,α2)

Γ(1 + min(α1, α2))(c1tα2−min(α1,α2) + c2tα1−min(α1,α2))
, as t→∞.

Moreover,

φ(s)∼c1sα1 + c2s
α2 as s→∞, (46)

and hence5

U(s)∼ 1

s1+min(α1.α2)(c2sα2−min(α1.α2) + c1sα1−min(α1.α2))
, as s→∞, (47)6

where l(s) = sα1+α2−2min(α1.α2)

(c2sα1−min(α1.α2)+c1sα2−min(α1.α2))
is a slowly varying function at ∞ and

hence the renewal function

U(t)∼ tα1+α2−min(α1,α2)

Γ(1 + min(α1, α2))(c1tα2−min(α1,α2) + c2tα1−min(α1,α2))
, as t→ 0. (48)

7
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Remark 8. Substitute α1 = α2 = α and λ1 = λ2 = λ with condition c1 + c2 = 1 in
(50), which gives the asymptotic behaviour of the renewal function corresponding to
TSS Sα,λ(t), see [23],

U(t) ∼

{
tλ

α−1

α , as t→∞
tα

Γ(1+α) as t→ 0.
(49)

Next, we discuss the asymptotic behavior of the q-th order moments Mq(t) =
E(Eα1,λ1,α2,λ2

(t))q, q > 0, of Eα1,λ1,α2,λ2
(t). The LT of Mq(t) is given by Mq(s) =

Γ(1+q)
s(φ(s))q , see [21, 41, 42], where φ(s) is the Laplace exponent given in (15). Again

using the Tauberian theorem, we have the following asymptotic behavior for Mq(t):

Mq(t) =


tq(α1+α2−min(α1,α2))Γ(1+q)

Γ(1+qmin(α1,α2))(c1tα2−min(α1,α2)+c2tα1−min(α1,α2))q
, as t→ 0,

tq

(c1α1λ1
α1−1+c2α2λ2

α2−1)q
, λ1, λ2 > 0, as t→∞,

tq(α1+α2−min(α1,α2))Γ(1+q)

Γ(1+qmin(α1,α2))(c1tα2−min(α1,α2)+c2tα1−min(α1,α2))q
, λ1 = λ2 = 0, as t→∞.

(50)

Remark 9. α1 = α2 = α and λ1 = λ2 = λ with condition c1 + c2 = 1, c1, c2 ≥ 0 in
(50) gives the asymptotic behavior of Mq(t) for TSS Sα,λ(t) such that

Mq(t) ∼


Γ(1+q)

Γ(1+qα) t
qα, as t→ 0,

λq(1−α)

αq tq, λ > 0, as t→∞,
Γ(1+q)

Γ(1+qα) t
qα, λ = 0, as t→∞.

(51)

In the next remark, n-th order mixtures of TSS are discussed.1

Remark 10. We define the n-th order mixtures of TSS as a Lévy process with LT:

E
(
e−sSα1,λ1,α2,λ2,...,αn,λn

(t)
)

= e−t
∑n
i=1 ci((s+λi)

αi−λiαi ), s > 0, (52)

where ci ≥ 0 and
∑n
i=1 ci = 1. The alternative representation of the n-th order

MTSS is given by

Sα1,λ1,α2,λ2,...,αn,λn(t) =

n∑
i=1

Sαi,λi(cit),

with the conditions ci ≥ 0,
∑n
i=1 ci = 1. Using similar approaches as in previous

subsections, we can obtain analogue results for the n-th order mixtures of TSS. The
pdf of the n-th order mixtures of TSS is difficult to obtain using complex inversion.
For 0 < p < 1, the asymptotic behavior of the p-th order moments of the n-th order
mixtures of TSS is given by

E (Sα1,λ1,α2,λ2,...,αn,λn(t)p) ∼

(
n∑
i=1

(ciαiλi
αi−1)

)p
tp, as t→∞. (53)
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The generalized pdf gα1,λ1,α2,λ2...,αn,λn(x, t) for the n-th order mixtures of TSS sat-
isfies the following FPDE with condition gα1,λ1,α2,λ2...,αn,λn(0, t) = 0,

∂

∂t
gα1,λ1,α2,λ2...,αn,λn(x, t) =−

n∑
i=1

ci

(
λi +

∂

∂x

)αi
gα1,λ1,α2,λ2...,αn,λn(x, t)

+

(
n∑
i=1

λαii ci

)
gα1,λ1,α2,λ2...,αn,λn(x, t).

Further, the asymptotic behaviour of v(x) for the n-th order mixtures of TSS is1

obtained in the same manner and given by2

v(x)∼



x
∑n
i=1 αi−(n−1)min(α1,α2,...,αn)−1

Γ(min(α1,α2,...,αn))
(∑n

i=1 cix
∑n
j 6=i αi−(n−1)min(α1,α2,...,αn)

) , as x→ 0,

1

(
∑n
i=0 ciαiλi

αi−1)
, λ1, λ2, . . . , λn > 0, as x→∞,

x
∑n
i=1 αi−(n−1)min(α1,α2,...,αn)−1

Γ(min(α1,α2,...,αn))
(∑n

i=1 cix
∑n
j 6=i αi−(n−1)min(α1,α2,...,αn)

) ,
λ1, λ2, . . . , λn = 0, as x→∞.

3

The asymptotic behavior of the renewal function corresponding to the n-th order
compositions of TSS is given by

U(t)∼



t(
∑n
i=1 αi−(n−1)min(α1,α2,...,αn))

Γ(1+min(α1,α2,...,αn))
(∑n

i=1 cit
∑n
j 6=i αi−(n−1)min(α1,α2,...,αn)

) , as t→ 0,

t

(
∑n
i=0 ciαiλi

αi−1)
, λ1, λ2, . . . , λn > 0, as t→∞,

t(
∑n
i=1 αi−(n−1)min(α1,α2,...,αn))

Γ(1+min(α1,α2,...,αn))
(∑n

i=1 cit
∑n
j 6=i αi−(n−1)min(α1,α2,...,αn)

) ,
λ1, λ2, . . . , λn = 0, as t→∞.

Further, the corresponding Mq(t) has the following asymptotic form:4

Mq(t)∼



tq(
∑n
i=1 αi−(n−1)min(α1,α2,...,αn))Γ(1+q)

Γ(1+qmin(α1,α2,...,αn))
(∑n

i=1 cit
∑n
j 6=i αi−(n−1)min(α1,α2,...,αn)

)q , as t→ 0,

tq

(
∑n
i=0 ciαiλi

αi−1)
q , λ1, λ2, . . . , λn > 0, as t→∞,

tq(
∑n
i=1 αi−(n−1)min(α1,α2,...,αn))Γ(1+q)

Γ(1+qmin(α1,α2,...,αn))
(∑n

i=1 cit
∑n
j 6=i αi−(n−1)min(α1,α2,...,αn)

)q ,
λ1, λ2, . . . , λn = 0, as t→∞.

5

5. Applications of MTSS and IMTSS as time changes6

In this section, we introduce a time-changed Poisson process and Brownian motion7

by considering MTSS and IMTSS as time-changes. Note that a Poisson process8

time-changed by MTSS generalizes the space-fractional Poisson process [30] and9

the Poisson process time-changed by IMTSS generalize the time-fractional Poisson10

process ([25] and references therein). Further, Brownian motion time-changed by11

IMTSS generalize Brownian motion time-changed by the inverse stable subordinator12

model which is the scaling limit of continuous time random walk with the infinite13
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mean waiting time [27]. It is worth mentioning here that the governing equation1

of Brownian motion time-changed by the inverse stable subordinator is a fractional2

analogue of the heat equation which involves a fractional derivative in a time vari-3

able. We discuss the governing fractional differential equations of these time-changed4

processes.5

5.1. The mixture tempered-space fractional Poisson process6

(MTSFPP)7

In this section, we introduce and give the governing fractional difference-differential8

equation of the mixture tempered space-fractional Poisson process (MTSFPP). A9

subordination representation of the MTSFPP can be written as10

X(t) = N(Sα1,λ1,α2,λ2
(t)), (54)11

where a homogeneous Poisson process N(t) with intensity µ > 0 is independent of12

Sα1,λ1,α2,λ2(t). The main purpose is to generalize a homogeneous Poisson process13

in fraction sense by introducing a fractional difference operator in the governing14

equation in the state space. The PMF r(k, t) = P (X(t) = k) of the MTSFPP can15

be easily obtained in an infinite series form by the standard conditioning argument.16

The probability generating function (PGF) G(z, t) = E[zX(t)] for X(t) is given by17

G(z, t) = e−t(c1{(λ1+µ(1−z))α1−λ1
α1}+c2{(λ2+µ(1−z))α2−λ2

α2}), |z| ≤ 1, µ ≤ λi
2
, i = 1, 2.

(55)18

Proposition 8. The marginal distribution r(k, t) = P(X(t) = k) satisfies the fol-
lowing fractional difference differential equation:

d

dt
r(k, t) = −

2∑
i=1

ci{(λi + µ(1−B))αi − λαii }r(k, t), αi ∈ (0, 1), (56)

with the conditions r(0, 0) = 1 and r(k, 0) = 0 for k 6= 0, where B is the backward19

shift operator.20

Proof. Using the PGF, it follows

∂

∂t
G(z, t) =−

2∑
i=1

ci

[ ∞∑
l=0

(
αi
l

)
λi
αi−lµl

∞∑
m=0

(
l

m

)
(−1)m

∞∑
k=0

zkrk−m(t)

−λiαi
∞∑
k=0

zkrk(t)

]

=−
2∑
i=1

ci

[ ∞∑
l=0

(
αi
l

)
λi
αi−lµl

∞∑
m=0

(
l

m

)
(−z)m − λiαi

]
G(z, t)

∂

∂t
G(z, t) =−G(z, t)

2∑
i=1

ci [(λi + µ(1− z))αi − λiαi ] .

The result follows by using G(z, 0) = 1 and (55).21
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5.2. The mixture tempered time-fractional Poisson process1

(MTTFPP)2

One can also define a mixture tempered time-fractional Poisson process (MTTFPP)3

by subordinating homogeneous Poisson process N(t) with the IMTSS process4

Eα1,λ1,α2,λ2
(t) such as5

Y (t) = N(Eα1,λ1,α2,λ2
(t)), (57)6

where N(t) and Eα1,λ1,α2,λ2
(t) are independent. Next, we derive the governing7

fractional difference differential equation for the marginal distribution of MTTFPP8

Y (t).9

Proposition 9. The marginal PMF pµ(k, t) of Y (t) satisfies the following governing
equation:[

c1

(
λ1 +

∂

∂t

)α1

+ c2

(
λ2 +

∂

∂t

)α2
]
pµ(k, t)

= −µ[pµ(k, t)− pµ(k − 1, t)] + [λα1
1 c1 + λα1

2 c2]pµ(k, t)

− c1t−α1M1−α1
1,1−α1

(−λ1t)δ(x)− c2t−α2M1−α2
1,1−α2

(−λ2t)δ(x), k ≥ 1.

Proof. Let p(k, t) be the PMF of the standard Poisson process. By a standard
conditioning argument and using (16), we have[

c1

(
λ1 +

∂

∂t

)α1

+ c2

(
λ2 +

∂

∂t

)α2
]
pµ(k, t)

=

∫ ∞
0

p(k, u)

[
c1

(
λ1 +

∂

∂t

)α1

+ c2

(
λ2 +

∂

∂t

)α2
]
H(u, t)du

= −
∫ ∞

0

p(k, u)
∂

∂u
H(u, t)du+ [λ1c1 + λ2c2]pµ(k, t)

− c1t−α1M1−α1
1,1−α1

(−λ1t)δ(x)− c2t−α2M1−α2
1,1−α2

(−λ2t)δ(x),

and finally, integration by parts yields the desired result.10

5.3. Time-changed Brownian motion11

In this section, we introduce time-changed processes Z(t) and W (t) as Brownian
motion B(t) time-changed by MTSS Sα1,λ1,α2,λ2

(t) and IMTSS Eα1,λ1,α2,λ2
(t), re-

spectively, i.e.

Z(t) = B(Sα1,λ1,α2,λ2(t)), (58)

W (t) = B(Eα1,λ1,α2,λ2(t)), t > 0.

By applying the previous results, we can find the governing equations for the pdf of12

Z(t) and W (t) and the same can be generalized for the N -th order mixtures of TSS.13
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Proposition 10. The pdf rα1,λ1,α2,λ2(x, t) = P(Z(t) ∈ dx) of the time-changed
Brownian motion Z(t) defined in (58) satisfies the following space-fractional differ-
ential equation:

∂

∂t
rα1,λ1,α2,λ2

(x, t) =− c1
(
λ1 −

∂2

∂x2

)α1

rα1,λ1,α2,λ2
(x, t)

− c2
(
λ2 −

∂2

∂x2

)α2

rα1,λ1,α2,λ2
(x, t)

+ λα1
1 c1rα1,λ1,α2,λ2

(x, t) + λα1
2 c2rα1,λ1,α2,λ2

(x, t), (59)

with initial and boundary conditions1 
rα1,λ1,α2,λ2(x, 0) = δ(x)

lim|x|→∞ rα1,λ1,α2,λ2(x, t) = 0,

lim|x|→∞
∂
∂xrα1,λ1,α2,λ2(x, t) = 0.

(60)2

Proof. We will use Proposition 1 to prove this result. One can write

rα1,λ1,α2,λ2
(x, t) =

∫ ∞
0

q(x, u)G(u, t)du,

where q(x, t) is the pdf of the standard Brownian motion B(t). Further,

∂

∂t
rα1,λ1,α2,λ2

(x, t) =

∫ ∞
0

q(x, u)
∂

∂t
G(u, t)du

=(λα1
1 c1 + λα1

2 c2)rα1,λ1,α2,λ2(x, t)

− c1
∞∑
i=0

(
α1

i

)
λα1−i

1

∫ ∞
0

q(x, u)
∂i

∂ui
G(u, t)du

− c1
∞∑
j=0

(
α2

j

)
λα2−j

2

∫ ∞
0

q(x, u)
∂j

∂uj
G(u, t)du

=(λα1
1 c1 + λα1

2 c2)rα1,λ1,α2,λ2
(x, t)

− c1
∞∑
i=0

(−1)i
(
α1

i

)
λα1−i

1

∫ ∞
0

∂i

∂ui
q(x, u)G(u, t)du

− c1
∞∑
j=0

(
α2

j

)
(−1)jλα2−j

2

∫ ∞
0

∂j

∂uj
q(x, u)G(u, t)du

=(λα1
1 c1 + λα1

2 c2)rα1,λ1,α2,λ2(x, t)

−

[
c1

∞∑
i=0

(
α1

i

)
λα1−i

1

(
− ∂2

∂x2

)i

+c2

∞∑
j=0

(
α2

j

)
λα1−j

2

(
− ∂2

∂x2

)j rα1,λ1,α2,λ2(x, t),

hence proved.3
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Proposition 11. The density wα1,λ1,α2,λ2(x, t) of the process W (t) defined in (58)
satisfies the following fractional differential equation:

∂2

∂x2
wα1,λ1,α2,λ2

(x, t) =−
[
c1

(
λ1 +

∂

∂t

)α1

+ c2

(
λ2 +

∂

∂t

)α2
]
wα1,λ1,α2,λ2

(x, t)

+ [λα1
1 c1 + λα1

2 c2]wα1,λ1,α2,λ2
(x, t)

− c1t−α1M1−α1
1,1−α1

(−λ1t)δ(x)− c2t−α2M1−α2
1,1−α2

(−λ2t)δ(x),

with initial and boundary conditions
wα1,λ1,α2,λ2

(x, 0) = δ(x)

lim|x|→∞ wα1,λ1,α2,λ2
(x, t) = 0,

lim|x|→∞
∂
∂xwα1,λ1,α2,λ2(x, t) = 0.

Proof. The result can be proved by using similar argument as given in Proposition1

10 and with the help of (16).2

Remark 11. The demeaned and rescaled standard Poisson process converges in3

D([0,∞)) with respect to J1-topology to a standard Brownian motion {B(t), t ≥ 0},4

which follows by the functional central limit theorem, i.e.5 (
N(t)− λt√

λ

)
t≥0

J1−−−−→
λ→∞

B(t).6

Using Theorem 13.2.2 of Whitt [43], since B(t) has continuous paths and7

Eα1,λ1,α2,λ2(t) has strictly increasing paths; then8 (
N(Eα1,λ1,α2,λ2(t))− λEα1,λ1,α2,λ2(t)√

λ

)
t≥0

J1−−−−→
λ→∞

B(Eα1,λ1,α2,λ2
(t)).9

Hence the process Y (t) defined in (57) and the process Z(t) defined in (58) are10

connected through the scaling limit.11
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[10] J. Bertoin, Lévy Processes, Cambridge University Press, Cambridge, 1996.16

[11] S. Bochner, Diffusion Equation and Stochastic Processes, Proc. Nat. Acad. Sci. USA,17

35(1949), 368–370.18

[12] K. Bogdan, T. Byczkowski, T. Kulczycki, M. Ryznar, R. Song, Z. Vondracek,19

Potential Analysis of Stable Processes and its Extensions, Lecture Notes in Mathemat-20

ics, Springer-Verlag Berlin Heidelberg, 1980.21

[13] D. O. Cahoy, V. V. Uchaikin, W. A. Woyczynski, Parameter estimation for frac-22

tional Poisson processes, J. Statist. Plann. Inference, 140(2010), 3106–3120.23

[14] L. Comtet, Advanced Combinatorics: The Art of Finite and Infinite Expansions,24

Dordrecht, Holland/Boston, U.S., 1974.25

[15] R. Cont, P. Tankov, Financial Modeling with Jump Processes, Chapman & Hall26

CRC Press, Boca Raton, 2004.27
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