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Abstract

A large number of recent studies have aimed at understanding short-duration rainfall extremes,
due to their impacts on flash floods, landslides and debris flows and potential for these to worsen
with global warming. This has been led in a concerted international effort by the INTENSE
Crosscutting Project of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology
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Panel. Here, we summarise the main findings so far and suggest future directions for research,
including: the benefits of convection-permitting climate modelling; towards understanding
mechanisms of change; the usefulness of temperature-scaling relations; towards detecting and
attributing extreme rainfall change; the need for international coordination and collaboration.
Evidence suggests that the intensity of long-duration (1 day+) heavy precipitation increases with
climate warming close to the Clausius-Clapeyron (CC) rate (6-7% K%), although large-scale
circulation changes affect this response regionally and rare events can scale at higher rates, while
localised heavy short-duration (hourly and sub-hourly) intensities can respond more strongly (e.g.,
2xCC instead of CC). Day-to-day scaling of short-duration intensities supports a higher scaling,
with mechanisms proposed for this related to local-scale dynamics of convective storms, but its
relevance to climate change is not clear. Uncertainty remains in the influence of many factors,
such as large-scale circulation, convective storm dynamics, and stratification, on changes to
precipitation extremes. Despite this, recent research has increased confidence in both the
detectability and understanding of changes in various aspects of intense short-duration rainfall.
To make further progress, the international coordination of datasets, model experiments and
evaluations will be required, with consistent and standardised comparison methods and metrics,
and recommendations are made for these frameworks.

1. Introduction

Climate models project a general intensification of extreme rainfall during the 21st century on
continental to global scales, consistent with observed trends [1][2]. However, large uncertainties
in regional patterns and the rate of change [3][4] hamper the development of efficient adaptation
strategies for flooding (IPCC 2013), presenting a formidable challenge to public safety, services,
critical infrastructure and the economy. There is a particular lack of understanding around
changes to short-duration (sub-daily) rainfall extremes which are especially hazardous and
responsible for fatalities [5], as they lead to flash floods, landslides and debris flows that occur
with little warning [6]. Short-duration, high intensity rainfall events are also responsible for pollution
incidents from combined sewerage networks [7]. Cities are particularly vulnerable to floods
generated by heavy short-duration rainfall due to ageing drainage infrastructure systems
designed to deal with lower historical rainfall intensities, and an increase in impermeable surfaces.
Better understanding of the impacts of global warming on sub-daily (particularly hourly to 3-hourly)
extreme precipitation is therefore crucial for societal adaptation [8], through the management of
the water environment (see Orr et al. this issue) and application to design of stormwater drainage
infrastructure systems (see Dale et al. this issue), among others.

Over the last six years an enormous international effort, led by the INTENSE (INTElligent use of
climate models for adaptatioN to non-Stationary hydrological Extremes) Crosscutting Project on
Sub-Daily Extremes [9] of the GEWEX (Global Energy and Water Exchanges) Hydroclimatology
Panel, has produced multiple studies which have advanced scientific knowledge of climate
change impacts on short-duration rainfall extremes, enabling substantial advances in quantifying
historical changes and providing improved physical understanding for regional projections (Figure
1). These range from the development of convection-permitting models (CPMs) and idealized
model experiments to the collection and assessment of precipitation observations. Very high-
resolution CPM simulations (e.g. [10]) can explicitly simulate km-scale motions in convective
storms and how these change with global warming but do not yet resolve turbulent cloud
dynamics. CPMs have enabled the simulation of local storm dynamics [11], e.g. the diurnal cycle
of convection [12], orographically-enhanced extreme precipitation [13], the spatial structure of
rainfall and its duration-intensity characteristics [14][15], and hourly and sub-hourly precipitation
intensities [16][17].
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INTENSE also led an effort to collate and quality-control a global database of sub-daily
precipitation data across multiple continents. The Global Sub-Daily Rainfall (GSDR) dataset [18]
comprises observations from >25,000 gauges, quality-controlled using open-source Python
codes [19]. This quality-controlled data has been used to develop UK-wide gridded 1km resolution
hourly precipitation products [20], blended gauge-radar-satellite datasets [21] and to examine the
ability of hourly gauge data to capture hourly rainfall extremes [22]. The GSDR has also been
used, together with reanalyses and remotely-sensed products, to produce global 0.1° daily and
3-hourly precipitation probability distribution climatologies for 1979-2018 [23]. These add to
existing merged products as a key resource for the community to validate climate model outputs
[11] and provide a significant platform for future development.

INTENSE has provided a global assessment of observed extreme rainfall characteristics in the
GSDR [24] and, by linking with CPM simulations, used to better understand drivers of change.
Trend analyses in the UK [25] and US [26] have shown that trends in winter extremes are
emerging first in hourly precipitation for both magnitude and frequency statistics and that these
can in part be linked to rising temperatures. Similar work over the Netherlands has shown that
most hourly precipitation extremes are part of large-scale circulation systems [27]. Large-scale
drivers of hourly precipitation extremes have been explored further, by linking these to
atmospheric circulation patterns over Europe [28][29], the US [30], Australia [31], and globally
[32]. Analysis of CPMs has established the large-scale precursors of small-scale storms over the
UK [33]. This work has enabled access to rainfall extreme metrics for impact researchers, and
provided a platform for the exploration of the role of storm dynamics in state-of-the art climate
models.

However, whilst progress is evident in model capability, leading to new insights to km-scale
atmospheric responses to climate change, the use of CPMs to guide decision-making in a real-
world context is still challenging (Orr et al. this issue). This is primarily because of under-sampling
of either model uncertainty at these finer scales (e.g. relying on output from a single, or small
sample of, model(s)), or wider global climate model (GCM) uncertainty (i.e. the number of CPM-
GCM combinations). From an extremes-perspective, the relatively limited length of a CPM
simulation can also be a limitation for CPMs to provide guidance on future change. For example,
analyses of precipitation 'extremes' are still often focused on relatively frequent events from an
impacts perspective (e.g. 99th percentile of hourly rainfall) whereas decision-makers are mostly
interested in rare events such as the "1 in 100 year’ event.

On a more positive note, the advent of CPMs allow for a more detailed assessment of the
applicability of the Clausius-Clapeyron (CC) relation to different environmental conditions and
storm intensities and structures. The CC-relation describes the relationship between saturation
vapour pressure and temperature or, more simply, the moisture holding capacity of an airmass
relative to its temperature. According to this relationship, specific humidity increases at
approximately 6-7% per degree warming (K?) near to the Earth’s surface [34]: a rate used as a
first approximation to indicate how rainfall extremes may change with a warming climate. It is
assumed that this relationship can be transferred because rainfall extremes tend to occur when
the atmosphere is at, or near, saturation and they are limited by the amount of atmospheric
moisture converged into the storm; therefore, changes to rainfall intensities are, to a first
approximation, expected to scale with CC [35]. This CC rate of increase has been confirmed for
observations and projections of daily extreme rainfall intensities when averaged globally (e.qg.
[1][2][36]), even if it is modulated by dynamical changes regionally [4]. For shorter durations,
however, intensities can scale at higher than CC rates in some cases (e.g. [37]) and evidence
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suggests this is caused by physical processes related to dynamical feedback mechanisms in
clouds (e.g. [38]).

In this paper we present the outcomes of expert discussion around scientific knowledge of climate
change impacts on short-duration rainfall extremes held at a Discussion Meeting at the Royal
Society in February 2020. The research challenges associated with understanding future impacts
on rainfall extremes are extensive and covered in a dedicated review paper (Fowler et al., in
press). Here we focus specifically on topics that garnered specific attention by the participants of
the Royal Society meeting and seen as interest areas for future work, including the benefits of
convection-permitting climate modelling, towards understanding mechanisms of change, the
usefulness of temperature-scaling relations, towards detecting and attributing extreme rainfall
change, and the need for international coordination and collaboration. In a concluding section we
then consider the gaps that remain and how we might further advance scientific knowledge of
climate change impacts on short-duration rainfall extremes and their links to decision-making.

2. The Benefits of Convection-Permitting Climate Modelling

Over the past decade, computational advances and improvements in CPMs have enabled a step-
change in the capacity of the climate modelling community to simulate short-duration rainfall
extremes (see Kendon et al. this issue). CPMs substantially improve the simulation of local storm
dynamics and better capture the details of convective organisation but some biases remain, such
as an overestimation of heavy rainfall due to under-resolved cloud processes such as entrainment
(e.g. [15][39] and Prein et al. this issue). CPMs are not able to capture the small-scale details of
storms, with rainfall cells tending to be too large with too much heavy rainfall (Prein et al, this
issue, [40]). However, they are able to capture mesoscale organisation and perform well in cases
of large convective storms, and overall give a much more realistic representation of hourly
precipitation than convection-parameterized models.

CPMs produce quite different projections of change to short-duration rainfall extremes than
convection-parameterized models, especially in convection-dominated environments, with
studies so far suggesting increases in the future intensities of short-duration extremes at the CC
rate or greater [41]. INTENSE CPM results over Northern Europe suggest that storms will become
more intense and longer in duration [42] with climate warming, but that storm profile does not
significantly change [43]. This is similar to results from radar observations, where storms were
found to become more intense and larger in size with warmer temperatures [44]. It also
corroborates work with CPMs over the US [45] but is different to storm profile changes identified
in observations in Japan [46] and Australia [47][48] which found intensification of the storm core
but a smaller storm size with warmer temperatures. The seasonality of intense hourly events was
also found to change with global warming, with more events in autumn months in Europe, at the
expense of summer [49].

CPMs have been run for multi-year climate simulations over many regional domains, e.g. UK
[15][10][50], southwest Germany [39], Sydney, Australia [51], the Colorado headwaters [52], the
Alps [12][53][54], Scandinavia [55], and whole continents, e.g. the USA [56], Europe [49][57] and
Africa [58]. Coordinated CPM intercomparison projects, such as the CORDEX Flagship Pilot
Study (CORDEX-FPS) [59], the European Climate Prediction System (EUCP) [60] and the first
ensemble of CPM projections from the UK Climate Projections (UKCP) [61][62] have enabled the
first multi-scale assessments of precipitation extremes, from coarser convection-parameterized
models down to CPMs, and improved understanding of uncertainties in extreme rainfall
projections [63]. Short runs of CPMs have even been run globally [64][65], and it is also possible



to close the gap between planetary and convective scales in more idealized simulations (see
O’Gorman et al. this issue). However, the growth in data volume from these very high-resolution
simulations has given rise to problems in data sharing between scientists working with these
models, and standard CMIP/CORDEX approaches for data sharing might be usefully replaced by
more efficient approaches [66].

We recommend that the capacity to share and compare model outputs, in combination with the
use of high-resolution observational products for model evaluation, could aid climate model
development and increase confidence in model performance among practitioners. The
comparison of CPMs at different horizontal resolutions and the sharing and benchmarking of
events/scenarios is in its infancy but has started under projects like EUCP and community efforts
such as CORDEX-FPS. This will help to answer fundamental questions that are robust across
different models, such as the benefits and features of using CPM resolution (e.g. [67]). We
recommend that further investigation is made of adequate and ideal model setups for CPMs
(e.0.[68]) and why this varies according to modelled region, e.g. Europe vs US. We suggest that
multi-scale approaches, with downscaling from GCMs and RCMs to CPM scales, may also be
enhanced by the use of machine learning approaches to connect models and processes at
different scales, and perhaps enable improved representation of structural uncertainties between
different climate models or the development of new convective parameterizations [69][70]. We
suggest that CPM output could also help guide the development of scale-aware parameterizations
[71]. In general, we acknowledge the scope for further analysis of the large number of existing
simulations. We recommend that better use is made of these simulations, with the sharing of CPM
data among modelling groups. However, we suggest that the development of CPM reanalysis
products using numerical weather prediction (NWP) simulations would be a useful addition to
current model sets. The ongoing C3S initiative, CERRA, is taking a lead here to produce a 5.5
km dynamically-downscaled ERAS5 regional reanalysis: https://climate.copernicus.eu/copernicus-
regional-reanalysis-europe-cerra.

Widely used in CPMs are pseudo global warming (PGW) experiments, allowing us to explore the
implications of a warming atmosphere on different precipitation regimes [72][73]. Key to this has
been the use of PGW simulations to explore in-storm changes due to thermodynamic effects, e.g.
[34]. A key challenge to address in PGW experiments is the convergence between model
projections and observations regarding the existence of super-CC scaling rates and
understanding the mechanisms behind them (see Lenderink et al. this issue). However, in regions
where dynamical processes are important, such as changes to large-scale circulation patterns,
we recommend that a full downscaling from GCM to CPM scales should be preferred. Although
CPM analyses have so far mainly concentrated on ‘peak intensity’ changes over fixed durations,
e.g. daily, multi-day, hourly, etc., likely structural changes to different storm types in the future are
important to understand for both impacts and for updating of design guidance (see Sharma et al.
this issue).

Many characteristics of larger storm systems (e.g. cyclones, fronts) may be better understood
using CPMs, with their better representation of the mesoscale structures associated with
slantwise instabilities within fronts. We suggest that the objective identification of different types
of storm system and their associated hazards (heavy precipitation, strong winds) in CPMs may
help to identify likely spatial and temporal changes to hazards, as well as the likelihood of change
in dominant event types, with global warming. One example of this is change to within-storm
characteristics, such as the frequency of intense short-duration precipitation bursts within longer
duration events, which are better simulated by CPMs. Indeed, the improved representation of



advection from sea to land and the triggering of convective showers in CPMs may be crucially
important for understanding changes to precipitation type, for example where stratiform changes
to convective [61]. We recommend the need for more research on changes to storm type,
organization, orientation, and movement [45] using CPMs, which are better at representing storm
movement and morphology and potential changes to within-storm characteristics than
convection-parameterized simulations (Prein et al. this issue). Additional studies are also
necessary to examine whether biases in GCM/RCM storm and convection propagation account
for the discrepancies in trends between observations and climate models. We recommend also
considering the possibility of unprecedented ‘black swan’ events or storm types. Together, this
work may allow us to establish the effect of changing temporal storm patterns on
geophysical/urban responses.

3. Towards Understanding Mechanisms of Change

INTENSE and other initiatives have established a firm scientific basis for the relation between
temperature and extreme precipitation intensities at daily and hourly durations; an infographic on
the acquired knowledge and the missing pieces is shown in Figure 2 and explained in the
following. The rate of intensification of rainfall extremes under climate change depends on various
processes that range from the microscale to the synoptic scale and planetary scale. Published
scientific evidence suggests that daily precipitation extremes for large-scale precipitation increase
with temperature at approximately the CC rate (6-7% K™) over large regions [1][2][36], while
warm, convective storms can potentially increase at higher rates (~1-2xCC)[37]. Uncertainty
remains in the influence that changes to large-scale circulation dynamics, temperature
stratification (affecting atmospheric stability), and latent heat release will have on the
intensification of extreme rainfall, particularly for short-duration extremes. Studies indicate that
local effects are important, but changes in precipitation efficiency, cold pool dynamics, and wind
shear effects are still poorly understood. This is partly due to the concentration of studies on ‘peak
intensity’ changes, the more complex analysis methods necessary to investigate change in small-
scale cloud processes, a lack of consistent analysis methods and a lack of observational datasets
to fully evaluate CPMs. Recent observational and CPM studies have enhanced understanding of
how these processes interact and how they might affect future extreme rainfall and a full review
of our current understanding is provided in Fowler et al. (in press).

We suggest that theory and idealized modelling experiments of convection in limited-size domains
have the potential to provide further guidance as to where and when higher rates of change of
precipitation extremes with climate warming (e.g. 2xCC) should be expected. For climate warming
experiments in the simplest setting of radiative convective equilibrium (RCE), warming is greater
higher in the atmosphere than at lower levels, hence increasing the dry static stability of the
atmosphere. In these RCE experiments we see the atmosphere following close to a moist adiabat
and the response of short-duration precipitation extremes is close to CC [74][75][76], although
changes in precipitation efficiency can cause deviations from CC at lower surface temperatures
[77]. When warming is uniform in the vertical, experiments yield higher rates of increase in
precipitation extremes [78][79] but since this experimental design imposes an increase in moist
instability this is an expected result. Thus, we suggest that to make theoretical progress it would
be helpful to develop a simple framework of convection (possibly in a disequilibrium state) in which
the vertical profile of warming is not externally imposed and yet super-CC rates of increase of
precipitation extremes can in some cases be realized in response to climate warming.
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There are some well understood mechanisms. Storms will tend to intensify due to increased latent
heat release and updraft velocities and increases in moisture-convergence producing larger
storms (Fowler et al. in press). These increases will be dampened by enhanced atmospheric
stratification due to a fundamental thermodynamic effect related to changes in the moist-adiabatic
lapse rate in a warmer atmosphere which increase static stability both in the tropics where the
atmosphere stays close to a moist adiabat [80] and in the extratropics [81]. These competing
effects of increased latent heating versus increased static stability are crucial for changes in
updrafts speeds and thus precipitation rates [78] (O’Gorman et al this issue)., The changes in
stratification also drive large-scale geographical patterns in surface warming and significant
changes in precipitation frequency and amount [82]. This effect is particularly important in tropical
regions and in extratropical summer conditions, and is a more robust response than large-scale
circulation changes that, for e.g., dominate precipitation changes during the European winter [82].
Changes to large-scale atmospheric dynamics are clearly important and not well-researched. We
recommend that it is important in future work to establish the relative contributions of atmospheric
stratification, dynamics and thermodynamics to changes to extreme precipitation not just for peak
intensities but with event-based analysis according to storm/precipitation type (see Moron et al.
this issue). We suggest that this will enable the disentangling of processes causing extreme
events and move us further towards answering questions like, why is intensification higher for the
most extreme events [83][84][85], and is this a simple result of changes in frequency mixing with
changes to intensity?

It will also enable us to establish the importance of small-scale dynamics vs. large-scale
dynamical changes on storm intensification and frequency. Local dynamical scaling might
enhance precipitation within an event but a large-scale shift of circulation patterns might move
the moisture sources sufficiently to affect the regional-scale response [86][87]. For example,
large-scale circulation effects caused by Arctic amplification may lead to change in jet stream
positioning over Europe, but overall there is low understanding due to multiple driving
mechanisms [88]. However, an increased gradient in moisture from low to high latitudes
determined by the CC relation will lead to more moisture transport into the Arctic which will alter
cloud/radiative/precipitation characteristics which, in turn, affect Arctic amplification [89]. Similarly,
changes in large-scale dynamics can strongly affect where precipitation extremes occur most
frequently in both the subtropics and the tropics. Uncertain dynamical influences must be explored
to establish more clearly the likely response of large-scale systems and the role they will play in
enhancing/dampening thermodynamically-driven extreme precipitation increases with warming.

Changes to small-scale cloud physics will also be important. In particular, continental convection
is generally much less “efficient” than maritime convection but its efficiency can be greatly
increased if it organises into a mesoscale convective system. At the moment little is known about
differing responses over the ocean and continents. However, if changing temperatures lead to
different modes of mesoscale organisation of the convection that could provide a mechanism for
a different response. The processes involved in the organization of extreme precipitation events
are multi-fold and vary by region. Extremes can self-organize due to feedbacks that are triggered
by small-scale processes (e.g., convective self-aggregation) or they can be organized and
intensified by larger-scale processes (e.g., fronts, orographic lifting). High-end extreme events
are, however, typically related to process interactions that amplify extreme rainfall [90]. In this
case, synoptic-scale processes usually trigger, organize, steer, and amplify mesoscale processes
[91] [92]. The role of changes in convective organization in the response of extreme precipitation
to climate change remains uncertain and is an important avenue for future research [93]. It is
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possible that there may be a difference, too, arising from the dominance of different microphysical
mechanisms: e.g. liquid vs ice dominated clouds and ice multiplication. All of these processes
must be further understood to fully understand potential regional changes.

4. The Usefulness of Temperature-Scaling Relations

INTENSE evaluated the potential usefulness of temperature-scaling for projections of changes to
precipitation extremes. It established that the scaling relation between extreme daily rainfall and
day-to-day variability in temperature, the ‘apparent’ scaling [94], across the globe approximately
follows the CC rate or below [95] when using a moisture component in temperature-scaling
[96][97]. This is consistent with both observed trends and projected changes to extreme daily
rainfall intensities [2]. An INTENSE study also indicated that sub-daily precipitation extremes are
in some regions increasing at faster rates, at up to three times, than would be expected from
atmospheric moisture increases alone [37]. This is consistent with super-CC apparent scaling
(rates larger than 6.5% K™?) found for sub-daily rainfall intensities in some locations (e.qg.
[98][99][100][101]). In CPMs apparent scaling with near-surface temperature is approximately CC
during warm days but decreases on the hottest days, as also seen in observations; scaling is
consistently CC or above if a moisture-component is included [102]. It is still uncertain what this
will mean for future projections of changes to precipitation intensities, due to the unknown effect
of large-scale circulation changes [43], but evidence is emerging that sub-daily rainfall
intensification is related to an intensification of flash flooding, at least locally [44].

CPMs have been used to establish some of the mechanisms for enhanced rainfall intensities from
local in-storm effects [38] and from urbanisation [103]. However, it is uncertain whether these
apparent scaling rates are suitable for projecting change to extreme precipitation with future
warming. For example, present day scaling may alias changes in meteorological regimes (e.g.
stratiform to convective) with temperature that are not relevant for climate change [94].
Temperature scaling could be expected to be the same for day-to-day variability and future
warming when considering some factors that affect extreme precipitation, such as moisture, latent
heating and hydrometeor type, but there is no a priori physical reason to think it will be the same
when considering changes in temperature stratification or mesoscale and synoptic circulations
which can also strongly affect extreme precipitation [4][78][104]. Nevertheless, we suggest that
evaluation of the scaling relationship in observations compared to climate models can identify
model weaknesses and potential under-simulation of change.

One of the main issues in establishing whether scaling is a useful prediction mechanism is the
lack of comparability among current studies, which use different metrics of ‘extremeness,’ different
datasets, different scaling methods, and often lack quality control methods. A full comparison of
existing methods — a meta-analysis on scaling — would provide information on the consistency of
scaling across space and whether this is a likely candidate to explain and predict future changes
to extreme precipitation from warming. This should focus on standard metrics and examine the
difference in using scaling variables such as surface air temperature, surface dew point
temperature or atmospheric observations at higher levels of the atmosphere, using quality-
controlled and standardised datasets. Additionally, all studies should include confidence intervals
on their scaling curves to allow uncertainties to be better established and should publish their
analysis scripts since small details in methodology can have significant impacts on resulting
scaling rates [105]. Furthermore, multi-decadal-long large-region or continental studies of



intensification and scaling should be executed to distinguish the climate signal of event
intensification from local day-to-day noise ([26], also see discussion in Wasko this issue). This
would also help to illuminate potentially coherent spatial patterns of change to extreme
precipitation frequency and intensity, and the potential effects of regional dynamics and local-
scale effects resulting from e.g. urbanisation [103].

It would also help to understand how storm-tracked scaling rates compare to gauge-level rates
and whether CC scaling (and perhaps changes with warming) are different within different parts
or types of storms (e.g. [47]). In particular, event attribution studies of individual tropical cyclones
in the US suggest that precipitation totals averaged over a storm’s duration and spatial extent
scale close to CC. However, in the heaviest precipitating regions of intense tropical cyclones,
precipitation rates scale at 2xCC or higher [106][107]. This is thought to be due to storm structural
changes in warmer environments [108] but requires further understanding. Further complicating
the issue is how climate change will affect tropical cyclone frequency. While most, but not all,
tropical cyclone permitting climate models (horizontal resolutions of 20-50km) project a decrease
in the global tropical cyclone count with global warming, there are competing viewpoints of
whether this is realistic [109][110][111]. While the community agrees that the fraction of tropical
cyclones that become intense will increase, a decrease in intense tropical cyclone frequency is
possible if the total storm count decrease is large. To facilitate these analyses, it would be useful
to update the definitions of storms that produce heavy rainfall and to produce automated tracking
systems: we currently define storm structures based on satellite images but could produce much
more detailed classifications based on new radar products (e.g. [44][112]), among others. These
could for example include vertical thermodynamic profiles, indispensable for understanding the
water and energy cycle [113].

5. Towards Detecting and Attributing Extreme Rainfall Change

Given the damages often associated with extreme short-duration rainfall, there is growing
importance on the reliable monitoring, attribution and prediction of such events. A key component
of this, in recent years, has been increasing interest in the detection and attribution of large-scale
changes in extreme precipitation and in the attribution of weather events involving extreme
precipitation, which seeks to calculate the extent to which anthropogenic factors have increased
the likelihood or intensity of particular types of event (e.g. [114]). There have also been attempts
to demonstrate the close link between conventional detection and attribution and event attribution
[115].

A subjective expert assessment, by the authors, of our current confidence in both the detectability
and understanding of changes in various aspects of extreme short-duration rainfall is provided in
Figure 3. Understanding, shown on the vertical axis, is based on both the volume of literature and
its consistency while detectability, shown on the horizontal axis, is based primarily on the volume
and quality of observations. Aspects on one side or the other of the diagonal line mean that
confidence is greater in understanding or attribution respectively. Extreme precipitation metrics
are shown in blue, selected severe storm types shown in red, and processes relevant across
storm types shown in black. Daily precipitation extremes from station data are well observed over
North America, Western Europe and parts of Asia and Australia but are sparse in the developing
nations [116]. Attribution to human influences of changes in daily precipitation extremes over land
at large-scales is well established [117][118], although uncertainties remain with respect to larger



magnitudes of change in observations than GCMs, the representativeness of stations both in
spatial distribution and scale, and the level of internal rainfall variability in GCMs. However,
observational uncertainties over oceans are large as a result of both retrieval algorithms and
temporal sampling. Nevertheless, the widespread increasing trend in observed annual maximum
1-day precipitation increases confidence and follows physical and climate model expectations
(Clausius-Clapeyron); with about 18% of moderate daily precipitation extreme events over land
now attributable to warming [115].

Sub-daily precipitation extremes are less well observed in general over land [119], hence we have
less confidence in our ability to detect changes. There has also been less work on detection
studies of 3-hour and 1-hour precipitation, including extremes. However, a growing number of
observational analyses indicate increases in the frequency and/or intensity of 1-hour extreme
precipitation in, e.g. Australia [120], parts of China [121], SE Asia [122], Europe [123][124] and
North America [26]; with [120] detecting large increases outside the range of natural variability
(up to 3xCC) for hourly extreme precipitation in Australia. A full review of this topic can be found
in Fowler et al. (in press) and suggests that extreme sub-daily precipitation will increase at the
Clausius-Clapeyron rate, or higher. This, coupled with the fact that we expect large-scale
circulation changes to affect sub-daily precipitation extremes less than thermodynamic drivers
and that we have reasonable understanding of the thermodynamic feedbacks, means that the
confidence in our understanding of the effect of climate change on extreme sub-daily precipitation
is nearly as high as for daily extreme precipitation.

Event attribution studies of extreme rainfall events have used a variety of approaches including
the statistical analysis of observational data and the analysis of large ensembles of climate model
simulations. There is no a priori reason to expect different types of intense storms to respond in
the same way to higher temperatures, and studies have so far not separated storm types. In fact,
there is substantial evidence that changes to the most intense storms may be quite different than
changes to more frequent, less intense storms of the same type [125][111][126]. The literature on
the effect of climate change on tropical cyclones is rapidly expanding due to advances in
computing and high-resolution climate modelling. Intense tropical cyclones (TC) are readily
identifiable in both the real world and in appropriate high-resolution simulations [127], placing
them relatively high and to the right in Figure 3, with attributable increases of the risk of extreme
rainfall found for Hurricane Harvey [128][107]. Intense extratropical cyclones (ETC) are well-
simulated in a wider class of climate models but are not as readily identified in models or
reanalyses [129][130] placing them to the left of intense tropical cyclones, although event
attribution was performed for the August 2016 flood-inducing event in South Louisiana [131]
Atmospheric rivers (AR) and frontal systems pose similar identification problems [132][133] so
they are placed at the same position at intense ETC on the detection axis. A sparsity of literature
on extreme precipitation changes in these two storm types places them lower on the
understanding axis [134]. For robust results from event attribution, observational and modelled
datasets of sufficiently high resolution are required, stretching current capabilities for event
attribution to the utmost. But with ensembles of CPMs becoming available there is a strong
potential for event attribution of localised extreme rainfall to make a big step forward in the next
few years.

Changes in specific humidity are well-observed to scale with temperature over oceans according
to the CC relationship and have been attributed to human activities [135]. Quality observations
and sound theory place it in the upper right corner of Figure 3. Changes in severe convection, on
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the other hand, are difficult to observe over wide regions of the planet but are well simulated in
very-high-resolution models not requiring convective parameterizations [136] [137], placing
severe convection far to the left but relatively high in Figure 3. Temperature scaling is not
independent of changes in large-scale circulation nor changes in modes of large-scale variability.
Changes in large-scale circulation such as the Walker and Hadley cells can affect the locations
of storm tracks of all types [88]. These changes are generally well understood and observed [138].
Changes in modes of inter-annual/decadal variability, such as the EI Nifio Southern Oscillation or
the Pacific Decadal Oscillation, are more difficult to detect due to a relatively short observational
record. Literature on this subject is extensive but not conclusive [138]. Temperature scaling of
short-term precipitation extremes, as discussed in this paper, involves these changes in
circulation and humidity but also potential changes in storm structural dynamics. These effects
could include changes in vertical uplifting, changes in convection, changes in translational speeds
and other structural changes, as previously discussed.

6. The Need for International Coordination and Collaboration

To further advance knowledge there is a clear need to foster international coordination and
collaboration around the identified scientific gaps in understanding. We suggest that a variety of
frameworks could be used to facilitate this, such as collaborative meetings, enabled by
programmes such as the European COST Actions or the US National Science Foundation’s
AccelNet programme. Follow-up meetings could also be arranged as satellite meetings, or
specialised meetings, e.g. American Geophysical Union Chapman conference, or BIRS Banff
workshop. In addition, funding or networking opportunities with intergovernmental organizations
(e.g. International Monetary Fund, World Bank, World Health Organisation) or re-insurance firms
should be explored. We recognise a need to improve connections between the climate research
community and related disciplines such as statisticians, weather forecasters, and the climate
impacts community, as well as policymakers and practitioners (see Figure 4 for a schematic
illustrating the benefits of the crossover between disciplines). This may also help communities
focussing on sustainable development to be made aware of developments in climate science,
and to allow them to be part of shaping funding streams and research directions useful for
decision-making processes. We suggest that is particularly important to include connections to
scientists in developing countries to build data availability in data-poor regions of the tropics, and
for capacity-building, as infrastructure may be more vulnerable in the low latitudes.

INTENSE, and the development of the GSDR dataset in particular, has been an exemplar of
international coordination and collaboration, but issues still hinder progress. These include data
availability, quality issues and biases in datasets; for example much of the GSDR dataset is not
shareable to the international community although efforts are underway to identify mechanisms
for dataset maintenance and updating to ensure the GSDR’s long-term legacy. While progress
has been made in this respect through initiatives such as Copernicus [139], an improved
international capacity to both monitor change and share data remains a significant challenge
[140]. In the meantime, the development of derived products, such as the Expert Team on Climate
Change Detection and Indices (ETCCDI [141]), provide the scientific community with information
on these restricted datasets. Since results can change significantly with quality control, we
recommend good quality-control of datasets in all scientific studies (e.g. [19][20]). We also
recommend taking account of biases in different data products and identify potential shortcomings
in short and sparse gauge data records. We recommend the increased use of different data types,
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such as remotely sensed (i.e. satellite and radar) datasets, reanalyses and blended products,
each with their own strengths and weaknesses; together these can further enable understanding
of how extreme precipitation is changing and help to elucidate key mechanisms.

We encourage more internationally coordinated intercomparison studies of CPMs. Such efforts
have started with CORDEX-FPS, EUCP and efforts focusing on organized convection in
Argentina and over the Tibetan Plateau (http://rcg.gvc.gu.se/cordex_fps_cptp/). We suggest that
comparison studies with standard metrics and coordinated model design criteria will further the
understanding of model biases and shortcomings. This should lead to model improvements,
greater understanding of mechanisms causing increases in extreme precipitation and allow the
evaluation of uncertainties. One key deficiency of existing models is land-surface feedbacks; we
recommend a priority should be improving the representation of the soil/water table which was
not designed for CPMs and seems to have a strong impact, especially on dry bias. Incorporating
physically-based hydrologic models within climate model land surface components could also
help to improve the simulation of local feedbacks in CPMs that partly drive convective processes
in continental regions. Similarly, improvements in the representation of urban landscapes would
improve related atmospheric feedbacks, such as rainfall intensification from urban heat island
effects [103], and CPMs could be really useful for examining the effects of planned urban/peri-
urban expansion on micro-climates, guiding local adaptation measures, such as implementation
of city wide green infrastructure. Alongside this, we suggest that comparison of CPM vs gauge
observations will be useful in understanding network density effects, which have also been
observed from radar vs gauge comparisons [22][142], and may severely affect our estimates of
regional return levels, crucially needed for design decisions.

7. Conclusions and Future Directions

Over the last six years the INTENSE Crosscutting project of the GEWEX (Global Energy and
Water Exchanges) Hydroclimatology Panel has led a concerted international effort to advance
scientific knowledge of climate change impacts on short-duration rainfall extremes. This
culminated in a Discussion Meeting at the Royal Society, London, UK where a number of experts
discussed the state-of-the-art in this research field and how to address remaining gaps.
Improvements in observations and the advent of CPMs has led to considerable advances in the
understanding of thermodynamic drivers of changes and their impacts on peak intensities, with
much clearer understanding of the potential role of relationships between day-to-day temperature
variabilities and precipitation (scaling) in projecting changes to rainfall extremes. Progress has
also been made on the understanding of changes to storm spatial structures and profiles with
warming with considerable evidence of changes with climate change. Considerable progress has
also been made on the understanding of local dynamical enhancements causing super-CC
scaling, such as latent heat release, enhanced vertical uplift and moisture convergence. Less well
understood is the moderating role of large-scale circulation on thermodynamic changes and the
climate change impacts on small-scale cloud dynamics (i.e., turbulence) and cloud microphysics
and their effects on changing extreme precipitation.

To further advance this research field, we recommend that an event-based conceptual framework
would be a useful approach to help clarify differences among various rainfall mechanisms and
scaling rates. This focus on local event properties is however balanced by a need to gain a better
understanding of the impact that potential changes to large-scale circulation patterns could have
on intense rainfall extremes. These questions are complementary, and of particular interest was
the possibility of circulation-driven changes to the dominant event type across regions. Despite
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high variability, observed changes can be vital to evaluate and challenge climate model
simulations. This can be done either by comparing attributed changes to model simulated
changes, or through emergent constraints where observations narrow uncertain climate model
projections.

Finally, to make this ever-increasing understanding useful to decision-makers, we recommend
that the international community must consider language, headline messages and communication
mechanisms as well as experimental design [143]. We suggest that there is also a need to
connect the atmospheric science community (e.g., climate modellers) with the hydrologic, and
climate impacts, community. Our current understanding is limited to changes in extreme
precipitation (this article is a good example of this), which is only part of the equation when we
are interested in future flooding. With the recent advances in atmospheric modelling, we
recommend now is the time to take the next step and tackle the question of how this relates to
changes in flooding. Although some instances exist of translation of current state-of-the-art model
results into flood design guidance, e.g. [144], this is still in its infancy (see Wasko et al. this issue
for an extensive review). To increase uptake from decision-makers we may need to change our
current approach to adopt alternative modelling strategies such as storylines [145]. As well as
producing a ‘likely’ range of change we need to consider the ‘plausible worst case’ scenario as
the most important risks rarely lie within the ‘likely’ range, e.g. [146]. This includes dealing with
the modelling of unprecedented yet physically plausible extremes and rare events such as the '1
in 100 year' event or 'Probable Maximum Precipitation' which are often missed in current
analyses. We suggest that understanding the extent to which the results are consistent across
the frequency distribution is also an important research priority.
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Figure 1: The INTENSE project’s key questions.
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Figure 2: Knowledge path on relationship between precipitation extremes and global warming:
consensus and missing pieces. Additional studies are required to dissipate uncertainties linked
to the influence of large-scale circulation dynamics, latent heat release and moist static stability,
changes in storms characteristics and temperature stratification. International collaboration is
needed to increase model confidence, to evaluate uncertainties, and to advance scientific
knowledge on poorly understood phenomena like cold pools, wind shear and precipitation
efficiency.
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Figure 3: Confidence in understanding causes and detection of changes in extreme precipitation.
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Large improvements in convective permitting
models have led to an improved

understanding of short-duration rainfalls and The thermodynamic response of rainfall to
are likely to uncover more insights in the warming is well understood but relative
future (Section 2). There is a need for . contributions of changes in stratification,
continued international collaboration to Climate Atmospherlc dynamics, and thermodynamics need
evaluate model simulations (Section 6). scientists phySiCiStS quantification (Section 3).
There is a need coordinate
on data sets (Section 6) and Flood A key deficiency in climate and high
move towards an event- resolution convective permitting
based framework analysis risk models is the ability to incorporate
of storms (Section 4). physically-based hydrologic models to

accurately simulate land surface

Meteorologists feedbacks (Section 5).

Hydrologists
The goal of improving understanding of

short-duration rainfall changes is to plan

for flash flood risk under climate

change. This will require better and . d
improved communication with decision- Engmeers an

makers (Section 6). practitioners

Figure 4: The INTENSE Project culminated in bringing together experts across multiple
disciplines at the Royal Society, London to discuss recent advances in understanding climate
change impacts on short-duration rainfall extremes and what is required to make further advances
in the field. This diagram is conceptual only and aims to illustrate the crossovers between
disciplines in a general sense. It is not to designed to be accurate in the placement of the Venn
diagram circles.
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