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Abstract
Data Science is today one of the main buzzwords, be it in business, industrial or academic settings. Machine learning,
experimental design, data-driven modelling are all, undoubtedly, rising disciplines if one goes by the soaring number of
research papers and patents appearing each year. The prospect of becoming a “Data Scientist” appeals to many. A discussion
panel organised as part of the European Data Science Conference (European Association for Data Science (EuADS)) https://
euads.org/edsc/ asked the question: “What makes Data Science different?” In this paper, we give our own, personal and
multi-faceted view on this question, from a Statistics and an Engineering perspective. In particular, we compare Data Science
to Statistics and discuss the connection between Data Science and Computational Sciences.

Keywords High-dimensional statistics · Data assimilation · Interdisciplinary research · Data Science · Data fusion ·
Computational Sciences · Machine Learning · Scientific Computing · Data-driven modelling · Modelling · Applied
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1 Introduction

According to IBM, 90% of the data available today has been
generated over the last 2 years [1]. We have been experienc-
ing a data-flood, fuelled by a surge in (mobile) computing
power which has enabled the creation of devices which can
create, collect, store and transfer increasingly complex and
large data sets. This accelerated data-gathering ability has
been drastically changing the world of science and business.

The authors would like to dedicate this work to the late Professor
Sabine Krolak-Schwerdt, main organiser of the conference where this
work was born.
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The “internet of things” and wearable technologies densely
maculate our world with digital footprints. These massive
amounts of data are continuously being gathered in geogra-
phy, geophysics, medicine, genetics, social science (media),
finance, climatology and engineering. Evidence suggests that
the intensity of this surge will only increase with time. We
are living in the “Big Data” era and this yet ill-defined con-
cept is now ubiquitous, be it in science, business, healthcare,
media, industry, business, politics or sports. The challenges
posed by the Big Data phenomenon are numerous, and the
discipline known as “Data Science” may well be a natural
consequence of the data outpour we have been witnessing.

But what does Data Science actually stand for? What
makes it different from other, well-established disciplines?
Why has it become so popular over the past years? Is Data
Science merely Statistics? Is it Computer Science, Machine
Learning? Wikipedia provides the following answer to the
first question:

Data Science, also known as data-driven science,
is an interdisciplinary field about scientific meth-
ods, processes and systems to extract knowledge or
insights from data in various forms, either structured
or unstructured, similar to Knowledge Discovery in
Databases.Wikipedia, accessed on 23 February 2017.
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This definition, likemany others, remains vague and is surely
insufficient to differentiate this discipline from its cousins.
Many have attempted to define Data Science through articles
[2–5] as well as numerous panel discussions at the highest
level aswell as conference/seminar presentations. There have
also been significant discussions on teaching and education
in Data Science [6,7], approaches to building Data Science
teams [8] and the use of Data Science for various applica-
tions ranging fromSocial Sciences [9] to thematerial genome
initiative [10].

But, in spite of all these developments, what has really
changed since the 1962 article entitled “The future of data
analysis” by John W. Tukey in The Annals of Mathematical
Statistics?

We wish to contribute to this active discussion via the
present paper, which is based on a panel discussion to which
we contributed during the European Data Science Confer-
ence in November 2016 in Luxembourg. The originality
of our approach is the combination of two apparently dis-
joint domains which Data Science may have already brought
closer together, namely Statistics and Computational Sci-
ences.

Should the reader wish to delve more into the details of
particular BigData disciplines, the reviewpapers [1] and [11]
are excellent sources of information.

2 A simple classification of Data Science
approaches

Before looking at how Data Science approaches can be clas-
sified, let us first think of examples of typical Data Science
problems. Data Science answers sharp and quantitative ques-
tions such as:

Quantify: How many coffee bean futures should I order
assuming the temperature in the tropics rises by 5
degrees? This is done using regression algorithms.
Detect anomaly: Has this credit card been stolen?
Classify and make predictions: Will this aircraft door fail
within the next 2,000 flights? How likely is a returning
customer to become a regular customer? Given images of
a brain, what is the probability that the tumour is located
within 10 mm of an eloquent region of this brain?
Organise: How is the data organised? For example, clus-
tering algorithms help organise data. This can be useful
to predict behaviour and events.
Choose the next step: What innovation directions should
this country follow apart from maximising its GDP?
These algorithms are known as “reinforcement learn-
ing” and can be used to control autonomous systems,
for example self-driving cars or climate control systems.
They learn by trial and error.

Clearly, attacking such problems in their full complexity
requires a serious mathematical arsenal. The mathematical
methods behind Data Science applications can seem mysti-
cal to the neophyte, see for instance [12] for open problems
in the Mathematics of Data Science. We summarise here
very briefly how we believe Data Science methods can be
classified.We distinguish between bottom–up and top–down
approaches.

In top–down approaches, a model is built which repre-
sents the information contained in the data. This is usually a
statistical model, for example a regression approach, possi-
bly Bayesian when information is scarce. In practice, what
makes a top–down Data Science algorithm successful is the
craft with which the above statistical models are used in con-
cert. We discuss some of this orchestration and how Data
Science relates to Statistics in the next section.

In bottom–up approaches, on the contrary, the starting
point is the data and the model of this data is generated
by a computer (and updated continuously as new data is
acquired) to match observations. However powerful these
methods have become, (skilled) human intervention is still
necessary to filter outliers, optimise the learning paradigm
to ensure the accuracy of classifications, tune the parameters
involved in the model, etc.

In fact, successful Data Science algorithms are usually a
combination of the top–down and bottom–up approaches.
The top–down approach brings domain- (or application-)
knowledge which leads to significant savings in the com-
puting power required by the bottom–up approaches, for
example by accelerating classification.

3 How does Data Science relate to Statistics?

3.1 Nomen est omen

The first author has recently asked the students of his Data
Mining class what the word Data Science meant to them.
After a long silence, the following answer came: “Data Sci-
ence is the discipline that makes sense out of data”. For a
statistician such an answer is surprising, as this is precisely
what Statistics aims to do. What causes this difference in
perception between professional statisticians and non(or not
yet)-statisticians? The reason is simple: Data Science seems,
just by its name, to be a more data-oriented area than Statis-
tics. And more attractive. If you say to a random person on
the street that you are a statistician, the typical reaction of that
person is to think you are dealing with spreadsheets, which
can seem monotonous as job. However, if you happen to say
you are a data scientist, then that same person will have no
clue about your job, yet he/she will have the feeling your job
must be exciting. The core task is in both cases data anal-
ysis, but the marketing effect of the name Data Science is
incontestable.
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Asimilar effect happens to prevail also among peoplewith
an advanced understanding of data analysis. While Statistics
appears to be a rigid field, filled with rules to follow and
warnings of how to correctly quantify the uncertainty inher-
ent to any data set, Data Science seems to invite theoreticians
and practitioners to play around with data in an unrestricted
way. This is, again, just a subjective impression.

3.2 Statistics in the Big Data era

A core role of Statistics is the quantification of the uncer-
tainty accompanying any data analysis. Sir Ronald Fisher
has laid a solid mathematical background for this endeav-
our in the beginning of the 20th century. Estimation, testing
and regression procedures were devised on the basis of
this formalism. These methods, however, can no longer
be blindly applied to 21st-century data which happen to
be complex and occur in unprecedented quantities. We
illustrate this statement through two classical statistical pro-
cedures:

• Linear regression: suppose we are interested in mod-
elling the relationship between a one-dimensional out-
come variable Y and p one-dimensional predictors
X1, . . . , X p, and we have good reasons to believe the
relationship to be of the form

Y = β0 +
p∑

i=1

βi Xi + ε,

where ε is an error term (typically assumed to follow a
normal distribution) and β0, β1, . . . , βp are the regres-
sion parameters we need to estimate. The standard solu-
tion to this estimation problem is least squares estimation.
This approach works very well as long as the number
n of observations ((Y1, X11, . . . , X1p), . . . , (Yn, Xn1,

. . . , Xnp)) is larger than the dimension p. However, in
many data sets nowadays the situation is rather reversed,
with p being larger than n. Think of Genetics, where
every single gene should in principle be taken into
account to measure the impact of a new treatment. Least
squares estimation breaks down in such a context because
the empirical covariance matrix is no longer invertible.
As a response, variable selection methods have been pro-
posed. This idea is based on the belief in sparsity: the
majority of predictors, here genes, shall only have a very
small, irrelevant impact on the outcome variable, hence
should be discarded. Variable selection does precisely
this: it focusses on a small number of predictors that
really domatter in the linear regression. Linear regression
combined with variable selection can deal with p > n

situations. The perhaps most famous example is the so-
called Lasso regression of [13].

• Hypothesis testing: suppose we have n data points XXXi =
(Xi1, . . . , Xip)

′, i = 1, . . . , n, of dimension p and we
wish to perform a typical hypothesis testing problem
of the form H0 : μμμ = μμμ0 versus the alternative H1 :
μμμ �= μμμ0 forμμμ0 some particular value of the parameterμμμ
(which can be a parameter of location, scatter, skewness,
etc.). Suppose that the classical (meaning n → ∞ while
p remains small) asymptotic distribution of the associ-
ated test statisticT n

p follows a chi-square distributionwith
p degrees of freedom, which we denote χ2

p, and thatH0

is rejected whenever T n
p > χ2

p;1−α
, the α-upper quan-

tile of the χ2
p distribution. Now, when the dimension p

itself becomes very large, potentially larger than n, this
test becomes worthless as the chi-square distribution will
diverge (recall that its expectation is p and its variance is
2p). Consequently, the test statistic needs to be modified,
for instance into

T̃ n
p := T n

p − p√
2p

D−−−→
n→∞

X p − p√
2p

D−−−→
p→∞ N (0, 1) (1)

where X p stands for a χ2
p random variable and D means

convergence in distribution. From (1) we see that com-
paring the modified test statistic T̃ n

p to quantiles of the
standard normal distribution would allow us to have a
new large-p test for our hypothesis of interest, provided
the so-called (n, p)-asymptotic result from (1) holds true.
Indeed, as both n and p grow large, there is no guarantee
that the limit when both n and p go to infinity can be cal-
culated by first letting n become large and then p. This
must be formally proved. In certain cases it turns out to
be a valid manipulation, but in other situations it does
not and the initial test statistic must be changed more
substantially. An example of such distinct situations is
provided in the seminal paper by Ledoit and Wolf [14]
who considered scatter matrices.

These two examples underline twonovel challenges statis-
ticians are facing when dealing with Big Data. The need to
cope with such data has given rise to a popular new research
direction, called high-dimensional statistics (see, e.g. [15]).
Besides this new research line, the entire field of Statistics has
undergone changes as a reaction to the new data paradigm1.
Supervised and unsupervised learning, shrinkage techniques,
graphical models, data mining, functional data analysis and
methods to deal with intractable likelihood models are just
a few of the new hot topics in statistical research. There
is also an increasing trend towards Statistics occupying a

1 Samworth in [16] provides a concise and very accessible overview
on the new data-driven statistical research.
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central role in Science in general, as discussed in the next
section.

3.3 Data Science = Statistics2.0

The idea of a statistician (or mathematician) working in an
Ivory Tower is obsolete. Several fields are in need of statisti-
cians to help them analyse their data; conversely, significant
advances in Statistics have been driven by such demands
and the collaboration with experts having complementary
knowledge. The Big Data era offers Statistics plenty of new
possibilities and has brought this traditional field to the lime-
light of modern scientific research. The era of data may be
that of the rebirth of Statistics. Hal Varian, chief economist
of Google, said in 2009 “I keep saying the sexy job in the
next ten years will be statisticians. People think I’m joking,
but who would’ve guessed that computer engineers would’ve
been the sexy job of the 1990s?”.

Where precisely lies the boundary betweenmodern Statis-
tics and Machine Learning? How much Statistics is present
in Computational Biology, in Bioinformatics? Health Sci-
ences havebenefitted enormously from tailor-made statistical
research, see [17] for examples. The same holds true for
Systems Biomedicine, Finance and Environmetrics, among
many others. Diggle in [17] expresses his opinion that Statis-
tics is actually the Data Science of our modern times. We
concur with him and like to say that Data Science is actually
Statistics2.0, hereby underlining the new orientation Statis-
tics has taken.

4 How does Data Science relate to
Computational Sciences?

The soaring amount of data has brought a new life to Statis-
tics, and by doing so has also opened new doors to the
discipline known as “Computational Sciences” or “Scien-
tific Computing.”We discuss briefly in this section howData
Science relates to Computational Sciences and how it may
revolutionise the way we think about modelling, simulations
and computations and enable a transformation of the engi-
neering ecosystem.

First, let us agree that Science is defined as the activ-
ity concerned with the systematic acquisition of knowledge
and is an enterprise that builds and organises knowledge in
the form of testable explanations and predictions about the
universe. Engineering we define as the application of sci-
entific and practical knowledge for the benefits of mankind.
For example, Theodore von Kármán, a leading mathemati-
cian, aerospace engineer and physicist, developed theories
for aerodynamics, in particular supersonic and hypersonic
airflow characterisation, which have been essential to the
design and fabrication of modern jet engines and rockets.

Computational Sciences have been an essential tool for such
theories to bear upon modern design approaches.

To produce new knowledge and apply this knowledge to
practical fields, scientists and engineers use the “scientific
method”which tests statements that are logical consequences
of scientific hypotheses (theories or computer models and
simulations) through repeatable experiments and observa-
tions. This production of knowledge has been fuelled by a
significant revolution which has taken place over the last 50
years, throughwhich a new, inherentlymulti-disciplinary pil-
lar of Science has emerged to complement these theories and
observations: Computational Sciences. Computational Sci-
ences is the tri-disciplinary endeavour concerned with the
use of computational methods and devices to enable scien-
tific discovery and engineering applications in Science.

In this new era, the wealth of Data has transformed the
world of scientific discovery and engineering innovation.We
believe that the fusion of Computational Sciences with Data
Science will lie at the core of future scientific and engineer-
ing research. A new ability will play a central role, namely
that of extracting knowledge from this wealth of information
by storing, compressing, classifying, ordering and analysing
data.

In particular, we will witness the emergence of smart sys-
tems, able to adapt to their environment through advanced
data gathering and treatment approaches. These develop-
ments will be multi-disciplinary withMathematics, in partic-
ular Statistics and Numerical Analysis, as well as Computer
Science at its core.

In short, the fusion of Computational Sciences, a half-
century old scientific field, with Data Science, which could
be argued is a modern embodiment of Statistics, will fuel
the development of exciting new research, technology and
businesses. The interested reader can refer to [18,19].

5 Interdisciplinarity aspects

Data Science is, by definition, an interdisciplinary field. It
incorporates knowledge from Statistics, Computer Science
and Mathematics and hence can tackle challenging applica-
tion domains which had remained out of reach because of
a combined lack of data and computer power. In what fol-
lows we shall illustrate this interdisciplinary nature of Data
Science by means of two case studies.

5.1 Case study 1: protein structure prediction

Predicting the correct three-dimensional structure of a pro-
tein given its one-dimensional protein sequence is a crucial
issue in Life Sciences andBioinformatics.Massive databases
of DNA and protein sequences have become available, and
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many research groups are actively pursuing their efforts to
solve the protein folding problem.

A promising approach has been put forward by the
research group of Prof. Thomas Hamelryck from the Uni-
versity of Copenhagen. It combines inputs from Biology,
Statistics, Machine Learning, Physics and Computer Sci-
ence, and hence is a nice example of Data Science in action.
One of their main ingredients are graphical models from
Machine Learning such as dynamic Bayesian networks,
which they analyse from a statistical physics standpoint.
An essential part of every protein sequence are the dihedral
angles between certain atoms. Predicting their most likely
values is a key component in understanding the protein struc-
ture at a local level. These pairs of angles, however, are no
typical quantities since 0◦ and 360◦ represent the same value,
hence pairs of angles need to be represented as data points
on a torus. Devising statistical models and methods for such
data is part of a research stream called Directional Statis-
tics (see the book [20] for a recent account) and requires,
besides Mathematics, also Computer Science skills. Finally,
the Hamelryck group uses probability kinematics to combine
their findings on local and non-local structures in a meaning-
ful way.

We refer the interested reader to the monograph [21] for
details about this approach.

5.2 Case study 2: Digital Twins in engineering and
personalisedmedicine

Our second case study is concerned with the problem of
data-driven model selection in engineering and medical sim-
ulations. We split the discussion in two parts, starting with
engineering applications in which digital twins are the most
advanced and where ethical considerations are more easily
addressed.

All systems devised today in Engineering fall within the
category of Complex Systems, i.e. a system composed of
many components which interact with each other. Natural
systems such as the human body or the environment are
other examples of Complex Systems. It is not possible to
study, design and optimise complex systems using analyti-
cal methods, i.e. hand calculations. Recourse is always made
to some type of mathematical model, usually a set of par-
tial differential equations (PDEs). The resulting problem is
solved numerically using a wide variety of discretisation
methods including finite element methods [22–26], finite dif-
ferences, meshfree methods [27], isogeometric approaches
[28,29], geometry independent field approximation [30,31],
scaled-boundary finite elements [32–36], boundary element
approaches [37], enriched boundary elements [38] or com-
binations thereof [39–41].

Discretisation methods have been subject to a large
amount of research but a much more difficult task is the

choice of a suitably descriptive mathematical model. In other
words, computational engineers need to answer the question:
“What is the best model for this system given computational
constraints and the quantities I am interested in?” Once the
model is chosen, selecting a suitable discretisation approach
is usually straightforward.

Let us look at this problem of model selection via two
connected examples. First, consider modern engineering
materials, such as composites which have been developed
to perform well in increasingly challenging environments2.
The durability of gigantic composite structures such as the
Airbus A380, over 79 m in wingspan, is influenced by phys-
ical phenomena occurring at the scale of carbon fibres which
are around 5 microns in diameter. The brute-force approach
consisting of including all carbon fibres in the simulation of
1 cubic millimetre of composite material would require solv-
ing a set of 8 billion equations in 8 billion unknowns, making
the problem intractable over the size of the aircraft. The task
of the computational engineer is therefore to select a model
which can deal with engineering-scale simulations in a com-
putationally affordable manner, but preserves the important
effects taking place at the smaller scales.

Once a suitable model has been selected, the associ-
ated parameters must be identified in light of experimental
observations, i.e. the model must be calibrated. In Materi-
als Engineering, the traditional approach to this has been
to perform experiments within laboratory conditions, which
are most often far removed from those which the structure
or system will undergo during its service life, in particular
when harsh environmental effects are of interest. Statistical
approaches can be used, but they only partially overcome the
hurdle as they are reliant upon predefined statistical distri-
butions, which do not account for “unknown unknowns” or
in-service conditions which were not considered during the
experimental campaigns, “rare events” in particular. Param-
eter and model identification and selection are, today still,
open problems.

Increasingly miniatured and versatile sensing devices,
embedded into engineering and natural systems offer an
exciting alternative to traditional (and insufficient)
“Experiment-in-the-lab-to-model-behaviour-in-the-field”
approaches by leveraging (Big) Data gathered on the fly, dur-
ing the service life of the system to drive model selection and
parameter identification.

To achieve this, Statistics (namely Bayesian inference)
andMachine Learningmethods [42–47] have been leveraged
for a fewyears. TheBayesian paradigm, in particular, enables

2 In particular for space applications where not only mechanical but
radiation and thermal effects become critical.
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the enrichment of prior (expert) knowledge about the system
with new data, as it is being acquired.3

Whilst important in Engineering, the need to update mod-
els on the fly as new data becomes available in order to
better control Engineering Systems is strictly necessary in
Personalised Medicine where all patients are different and
in vivo experiments are not possible. In this field, it is nec-
essary to infer the best possible model for a patient from
a priori knowledge obtained from other patients. Success-
ful approaches have been recently published [19,47] which
enable predictive science in Medicine, for example for laser-
treatment of tumours [42]. The reader is referred to [47] for a
recent discussion of the emerging field known as “Computer-
GuidedPredictiveMedicine”, to [52] for applications to brain
tumourmodel personalisation and to [53] for sparseBayesian
image registration.

This quest for on-the-fly data assimilation and fusion into
computer models has been fuelling the development of “dig-
ital twins”, a digital replica of the real system, which lives a
“digital life” in parallel to the real system and can be inter-
rogated to make decisions. These “twins” require predictive,
high-fidelity models to learn from real-time data acquired
during the life of the system, accounting for “real” conditions
during predictions. These Twins could enable to predict the
motion of target areas during surgery with predefined accu-
racy [54–56] or fuel virtual reality engines [57] enabling
the surgeons to “see through” the patient, investigate the
potential response of a patient to a given treatment [58]. Dig-
ital Twins could also enable to transition from “factors of
safety” and associated over-engineering to adaptive struc-
tures and systems which adapt to their environment [59–64].
For this revolution to take place, Data Science approaches
must be harnessed by computational scientists. This will
require significant multi-disciplinary efforts in educating the
next-generation computational and data scientists.

6 Conclusions and discussion

We discussed in this paper what we believe makes Data Sci-
ence different. We offered various interpretations of Data
Science and differentiated between bottom–up and top–down
DataScience approaches.Wealso definedScience,Engineer-
ing and Computational Sciences/Scientific Computing and
attempted to relate Data Science to these more established
disciplines. Through personal examples and two case stud-
ies, we provided possible explanations for the singularity of
Data Science.

In short, we conclude that Data Science enhances the
traditional and more conservative world of Statistics with

3 A discussion of pros and cons of the Bayesian approach for model
calibration is provided in [48–51].

advanced algorithms to enable us to make sense out of soar-
ing amounts of data. Here are our conclusions:

– Data Science fuses the fields of Statistics, Mathematics
and Computer Science. Computers are of key impor-
tance in Data Science, in particular for bottom–up
approaches, but the creation of suitable models, manda-
tory to make these approaches computationally tractable,
requires expert knowledge which we believe will be
brought forward by statisticians. In this sense, we per-
ceive Data Science as a modernised version of Statistics,
which we term Statistics2.0.

– Data Science has the potential to have strong impact in
application domains, in particular on Engineering and
Medicine. Some of the exciting applications of Data Sci-
ence include the delivery of the next-generation smart
and autonomous devices able to learn from and adapt to
their environment.

– Through a crafty coupling with Computational Sciences,
Data Science can help create “digital twins” of complex
systems. Those are replicas of the actual system which
live a parallel, virtual/digital life and can be interrogated
in order tomake decisions on the (cyber-)physical system
itself.

– Data Science is an attractive name which makes Data
Science sound young, exciting, innovative, and partially
mysterious. Thismay endow those entering this fieldwith
a particularly creative and less conservative mindset than
in other, more established disciplines.

– Data Science is the right discipline at the right time:
the data deluge creates urgent needs and challenging
problems, in academia, industry and business. Spurred
by a rapid increase in computer power and the abil-
ity of mobile devices to generate large amounts of data
everywhere we leave our digital footprints, Data Science
appears to be the tailor-made discipline to help make
sense out of (very) large amounts of data.

Having made the above reflections, there are a number
of points which seem important to us going forward in the
world of Data Science:

– Ensure that we do not fall for the “hype of Data Science”
and ignore theories to the benefit of algorithms. There is
need for a “scientist in the loop” even when bottom–up
approaches are advocated.4

– Devise suitable training programmes at all levels, in par-
ticular through continuing education, in order to help

4 A referee pointed out to us that “part of the industry tends to confuse
Data Science with the ability to use the (penalised)logistic regression in
Python”. Data Science is obviously much more than that, as our article
and the numerous references clearly demonstrate.
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create sound careers for data scientists, at the interface
between Statistics and Computer Science, with robust
mathematical foundations.

– Nurture an intellectually coherent core relying on Math-
ematics, Statistics and Computer Science to provide
rigourous abstractions to application domains and receiv-
ing in return stimulating problems and challenges to
address.

– Develop research and teaching programmes at the inter-
face between Computational Sciences and Data Science.

– Foster communication between the disciplines at play
by encouraging jargon-free discussions and joint confer-
ences.

In our opinion, an exciting research direction lies at the
interface between bottom–up and top–down approaches. In
many systems, pure computing power and algorithms are
insufficient to obtain results within a reasonable time frame.
At the same time, full mathematical models involving the full
complexity of the system at hand are also computationally
intractable, for example in quantum physics [65–69]. Build-
ing such hybrid strategies, we expect, will continue to be
exciting research directions, at the interface between Statis-
tics, Computer Science and application domains, see, e.g.
[70–72]. These hybrid approaches will provide users with a
new way to design experiments, based on data acquired on
the fly [73,74].

We presented what are but our personal opinions. The
reader is free to disagreewith us.Wehopenonetheless to have
contributed a fresh and multi-disciplinary view to the under-
standing of what makes Data Science different and hence so
popular as discipline.
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