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In gravitational-wave observations of binary black holes (BBHs), theoretical waveform models are used
to infer the black-hole properties. There are several sources of potential systematic errors in these
measurements, including due to physical approximations in the models. One standard approximation is to
neglect a small asymmetry between the þm and −m spherical-harmonic modes; this is the effect that leads
to emission of linear momentum perpendicular to the orbital plane, and can result in large recoils of the final
black hole. The asymmetry is determined by both the magnitude and direction of the spin components that
lie in the orbital plane. We investigate the validity of this approximation by comparing numerical relativity
(NR) simulations of single-spin NR systems with varying in-plane spin directions and magnitudes
(including several “superkick” configurations). We find that the mode asymmetry will impact measure-
ments at signal-to-noise ratios (SNRs) between 15 and 80, which is well within current observations. In
particular, mode asymmetries are likely to impact measurements at comparable SNRs to those at which we
might hope to make the first unambiguous measurements of orbital precession. We therefore expect that
models will need to include mode-asymmetry effects to make unbiased precession measurements.
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I. INTRODUCTION

Since the advent of the Advanced LIGO [1] and Virgo
[2] gravitational-wave detectors in 2015, up to October
2019 there have been a total of 50 gravitational wave
signals detected which include multiple binary-black hole
mergers, binary neutron star mergers and possible neutron-
star-black-hole merger [3–11]. The BBH observations have
begun to reveal the astrophysical rate of black-hole merg-
ers, and the astrophysical distribution of black-hole masses
and spins [12–14]. To measure the binary’s properties the
detector data are compared against a set of theoretical
model waveforms. The accuracy of the measured param-
eters depends not only on the details of the source, the
signal-to-noise ratio (SNR) of the signal, and parameter
degeneracies, but also on the accuracy of the waveform
models. Two families of waveform models, IMRPhenom
[15–20] and SEOBNR [21–25], were used to calculate the
reported parameters during the first two observation runs.
Both rely on several physical approximations, as discussed
in, for example, Ref. [26]. In this paper we test the validity
and impact of a subset of those approximations.
Binary-black-hole inspiral is the result of orbital energy

and angular momentum loss through gravitational radia-
tion. If the radiation from a binary is decomposed into spin-
weighted spherical harmonics, −2Ylmðθ;ϕÞ, the signal is
dominated by the “quadrupole” contribution in the l ¼ 2

harmonics. Gravitational waves also carry linear momen-
tum, and for nonspinning or aligned-spin binaries (where
the black-hole spins Si are parallel to the orbital angular
momentum, L, so that L × Si ¼ 0), the resultant recoil of
the center-of-mass within the orbital plane is manifest in the
signal through interplay between different multipoles; see,
for example, Ref. [27]. Current aligned-spin binary wave-
form models that include higher multipoles capture all of
these physical effects, with varying degrees of accuracy
[16,22,28]. In generic binaries, where the spins are mis-
aligned with the orbital angular momentum, the orbital
plane and spins precess during the inspiral. Generic
binaries also radiate linear momentum perpendicular to
the orbital plane. This effect, which shows up in the GW
signal through an asymmetry between the þm and −m
multipoles, is not present in current precessing SEOBNR
[29] and IMRPhenom [30] models. Although these models
include the spin directions while computing the precession
dynamics used to generate the precessing waveform, the
effect of varying spin directions on the full waveforms
remains unmodeled. Our goal is to make a first estimate of
the effect of these omissions on GW source parameter
measurements.
We begin by describing in more detail the phenomenol-

ogy of BBH systems, and the construction of generic-
binary waveform models.
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A BBH system undergoing non-eccentric inspiral can be
characterized by eight parameters, the individual masses
ðmiÞ, and the components of the two spin vectors ðSiÞ,
specified at some fiducial point during the inspiral, for
example a chosen orbital frequency. The GW signal is also
parametrized by the binary’s sky-position ðα; δÞ, inclination
(ι), coalescence phase (ϕc), distance ðdLÞ, polarization (ψ )
and time of arrival ðtcÞ at the detector. As noted above, the
complex GW strain can be decomposed into spin-weighed
spherical harmonics as,

hðt; θ;ϕÞ ¼ hþðtÞ − ih×ðtÞ ¼
X
l;m

hlmðtÞ−2Ylmðθ;ϕÞ; ð1Þ

where ðθ;ϕÞ give the position of the observer on a sphere
centered on the center-of-mass of the binary.
Based on the black-hole (BH) spin configurations,

coalescing BBH systems with spins can be considered to
be either:

(i) Aligned-spin: The BH spins are parallel or antipar-
allel to L, so L × Si ¼ 0, where i ¼ 1, 2 for each
BH. From the symmetries of the system, the BHs
orbit in a fixed plane, i.e., the direction of the orbital
angular momentum L̂ remains fixed. In the frame
where L̂kẑ, symmetry also implies that

hl;m ¼ ð−1Þlh�l;−m; ð2Þ

and that any linear momentum emission is
perpendicular to L; although the orientation of the
orbital plane remains fixed, the center-of-mass can
recoil within this plane.

(ii) Precessing: One or both BHs have nonzero spin
components perpendicular to L̂. We denote the

parallel components by Sk
i and the perpendicular

components by S⊥
i . The presence of S⊥

i causes
the orbital plane to precess over the course of the
coalescence. This leads to modulations of the am-
plitude and phase of thewaveform. Emission of linear
momentum is now also possible perpendicular to the
orbital plane, which breaks the symmetry of Eq. (2)
between the �m multipoles.

As was shown in previous studies [31–33], a precessing
waveform can be decomposed into the waveform as
observed in a co-precessing frame, hCP, and a time- or
frequency-dependent rotation that describes the preces-
sional dynamics. The rotation can be expressed in terms of
three Euler angles, ðα; β; γÞ, and the l ¼ 2 modes of the
precessing-binary waveform hP constructed as

hP2m ¼ eimα
X
m0

e−im
0ϵd2mm0 ðβÞhCP2m0 ; ð3Þ

where d2mm0 denote the l ¼ 2 Wigner-d matrices. In the
current precessing models (IMRPhenom and SEOBNR),

the coprecessing-frame waveform is based on an underlying
nonprecessing-binary model (with some modifications), and
this procedure preserves its orbital-plane symmetry, Eq. (2).
These models therefore do not include the �m mode
asymmetry of full precessing-binary waveforms.
The magnitude and direction of the out-of-plane angular

momentum loss _pk (and therefore the level of mode
asymmetry) is related to the angles between the in-plane
spins S⊥

i and the separation vector between the two black
holes n̂, as most easily seen in the PN treatment in Sec. III.
E of Ref. [34]. During one orbit the spin directions change
little, so _pk oscillates approximately on the orbital time-
scale. In the “twisted-up” models described above, this
effect is not present, and an overall rotation of the spin(s) in
the orbital plane introduces only an offset in the precession
angle α, which is degenerate with the azimuthal angle, ϕ,
since it enters the spin-weighted spherical harmonics as
eimϕ. The model waveforms are therefore degenerate with
respect to a constant rotation of the in-plane spins, while
true waveforms include an additional effect that varies
sinusoidally with respect to this spin rotation.
Out of plane recoil in the context of mode asymmetries

has been discussed in NR simulations in [35], and
further illustration of the effect in GW signals is shown
in [26]. Earlier studies on in-plane effects on waveforms
and/or mode-asymmetries for precessing systems include
[36–38].
In this study, we investigate the effects of varying the in-

plane spin direction for single-spin precessing NR wave-
forms for a given combination of mass-ratio and spin. We
also consider the special case of the “super-kick” configu-
ration [35,39,40]: these are equal-spin configurations
where the spins lie entirely in the orbital plane, and
S1 ¼ −S2. Due to the symmetry of this configuration,
the orbital plane does not precess, but does bob up and
down due to linear momentum loss, making this an
especially clean system for the study of mode asymmetry.
We choose these configurations to estimate the importance
of mode-asymmetric content on parameter measurements.
Using the waveform with in-plane spin initially aligned to
the position vector as a proxy template, we compute
matches (see Sec. III A) against systems with different
in-plane spin directions. Using a relationship between the
match value and SNR at which two signals are distinguish-
able, we provide an estimate of the SNR at which mode
asymmetries will impact parameter measurements. We also
use a selection of waveforms with the same spin direction
as the proxy template but with differing in-plane spin
magnitude to estimate the relative strength of the effect of
varying spin direction versus varying spin magnitude.
For all results, we use only the ðl ¼ 2; m ¼ �2Þ modes

of the waveforms in the coprecessing frame. Higher modes
are much weaker than the ðl ¼ 2; jmj ¼ 2Þ multipoles, but
far stronger than the asymmetry contribution to the dom-
inant modes, and we choose to consider only the dominant
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modes in order to more easily isolate effects due to the
mode asymmetry.
The paper is organized as follows. Section II provides

details of the simulations generated for this study, Sec. III A
and Sec. III B discuss the computation of precessing
matches and the connection between the match and
detectable SNR respectively. The specific results presented
are motivated in Sec. IV with the actual results in Sec. V.
The conclusions we draw from this work, and some of its
limitations and potential future extensions, are discussed
in Sec. VI.

II. NR WAVEFORMS

For this study, a set of 12 new NR simulations were
performed with the BAM code [41,42]. Configurations are
defined by the mass ratio, q ¼ m2=m1, where we choose
the convention m2 > m1, and the spin vectors specified at
the start of the simulation, Si. In the unequal-mass
simulations, only the larger black hole is spinning, so that
S1 ¼ 0. (We could also assign spin to the secondary black
hole, but placing spin on one black hole is sufficient to
produce the asymmetry effects that we wish to study.) For
these simulations we can completely specify the spin
direction at the beginning of the simulation by two angles,
(i) the angle between the spin vector and angular momen-
tum vector, which we call θSL, and (ii) the angle between
the separation vector (n⃗) and the projection of spin onto the
orbital plane (S⊥

i ), which we call ϕSn. The codes available
at the beginning of this study for initial data generation did
not allow for user specified ðθSL;ϕSnÞ values, and so an
iterative method was developed for obtaining the required
initial parameters for single-spin precessing systems. The
initial data generation method is described in detail
Appendix. Section II A gives the details of the simulations
with parameters of all the simulation listed in Table I.

A. Details of the simulations

The simulations are split into three sets based on the
mass-ratio of the system: q ¼ 2, q ¼ 4 and a super-kick
series at q ¼ 1.
The q ¼ 2 series is a set of fourq ¼ 2NRwaveformswith

a total in-plane spin of (dimensionless) magnitude χ2 ¼
S2=m2

2 ¼ 0.7, with θSL ¼ π=2 and ϕSn ¼ ð0; π=2; π; 3π=2Þ.
For the q ¼ 4 series, the spin is χ2 ¼ 0.8, with the same
ðθSL;ϕSnÞ configurations as for the q ¼ 2 series.
The q ¼ 1 simulations are two-spin systems in the “super-

kick” configuration, where both black holes are spinning,
with equal and opposite in-plane spins of χi ¼ 0.8. The
super-kick configurations are nonprecessing and due to the
symmetry of the system, the final recoil is along �ẑ.
For the simulation names, the following convention

is used: qðmass-ratio of systemÞaðtotal spin of systemÞ×

pðvalue of ϕSnÞ, following which, the first simulation in
the q ¼ 2 series is q2a07p0. The angle, θSL, between L̂

and Ŝ is always π=2 for these systems, i.e., Sk
i ¼ 0. For the

q ¼ 1 series waveforms, remember that the total spin
satisfies S1 þ S2 ¼ 0, but we follow the above naming
convention with “sk” in subscript for simplicity. We also
use three extra NR simulations with different total in-plane
spin magnitudes (with same θSL and ϕSn ¼ 0), which are
used as comparison cases, and were produced as part of the
waveform catalogue presented in Ref. [43].
For the q ¼ 2 series, once the parameters for the ϕSn ¼ 0

configuration were obtained, the parameters for the other
simulations in the series were obtained simply by rotating
the initial spin in the plane; the resulting eccentricities were
all within our tolerance. For the q ¼ 4 and q ¼ 1 series,
however, the initial-parameter code was run separately for
each value of ϕSn.
Initial momenta consistent with low-eccentricity inspiral

were estimated using the PN/EOB evolution code described
in Refs. [44–46], with modifications as discussed in
Appendix. We perform a short simulation of less than
1000M duration, and estimate the eccentricity from the co-
ordinate separation, as given in Eq. (3) of Ref. [47]. For the
q ¼ 2 and q ¼ 1 series, the eccentricities were all
<5 × 10−3, and we used the same initial momenta for
production simulations. For the q ¼ 4 configurations,
however, further eccentricity reduction was required.
Reference [45] describes an efficient procedure to further

reduce eccentricity for nonprecessing binaries. For the
precessing simulations used here, we adopted a simpler
procedure: we performed a series of simulations with
momenta increased or decreased by multiples of 0.1%,
until an eccentricity below our threshold was obtained.
Note that the eccentricity for a system with ϕSn → ϕSn � π
has the same value.

BAM’s mesh-refinement scheme is constructed as
described in Refs. [41,42]. In particular, a nested set of
boxes centred on each black hole. For each simulation in
this series, the boxes around the BHs consisted of 80 points
in each direction, with a grid-spacing on the finest level of
m1=56, m1=36 and m1=44 for the q ¼ 1, q ¼ 2 and q ¼ 4
series respectively. Further details of the grid setups are
provided in Ref. [43]. For two of the cases (q2a07p0 and
q2a07p90), we performed higher-resolution runs with 96-
point boxes, and a finest-level resolution of m1=48. Using
these two waveforms, we computed the match between the
different resolution runs over a range of ðθ;ϕÞ values [see
Eq. (1)] using only the l ¼ 2modes (as these are the modes
used throughout the paper). We find that over the range of
ðθ;ϕÞ values considered, we obtain matches of ∼0.9995–
0.99995. This shows that using the 96 point runs will not
qualitatively change our results, but we will discuss this in
more detail in Sec. IV; see discussion pertaining to Fig. 1.
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III. ANALYSIS METHODS

This section provides the details of the match compu-
tation procedure employed for computing matches between
the various precessing waveforms and the connection
between the match and the SNR at which the template
and signal can be distinguished from each other. This is the
primary method we use to interpret the results in Sec. V.

A. Match computations

For the given physical system (with fixed intrinsic
parameters), the detector response is uniquely determined
by the system’s sky-position, inclination (ι), coalescence-
phase (ϕc), polarization (ψ) and time of arrival (tc). The level
of agreement between two gravitational waveforms can be
ascertained by computing the match, M, between the two
waveforms. Avalue ofM ¼ 1 implies the waveforms are in
perfect agreement. The smaller the value ofM, the larger the
disagreement between the two waveforms.
For a GW source directly overhead the detector, i.e.,

ðα; δÞ ¼ ð0; 0Þ, the real valued detector response (hdetðt; λ⃗Þ),
in terms of the two gravitational wave polarizations is,

hdetðt; λ⃗Þ ¼ hþ cosð2ψÞ þ h× sinð2ψÞ ¼ Re½hðt; λ⃗Þe2iψ �;
ð4Þ

with hþ and h× as defined in Eq. (1). Here, due to
ðα; δÞ ¼ ð0; 0Þ, the individual detector response depends
only on ψ .
For precessing systems, the match between the signal

(h̃sðfÞ) and template (h̃t) waveform is given by [48],

max
σ

�
h̃sðfÞ

kh̃sðfÞk

���� ˜htðfÞ
k ˜htðfÞk

�

¼ M

k ˜hsðfÞk

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N1 − N2 cosðσn þ 2σmÞ

N2
1 − N2

2

s
: ð5Þ

where,

N1 ¼
Z

∞

−∞

jh̃tðfÞj2
SnðjfjÞ

df; N2eiσn ¼
Z

∞

−∞

h̃tðfÞh̃tð−fÞ
SnðjfjÞ

df:

ð6Þ

and

Meiσm ¼
Z

∞

−∞

h̃�t ðfÞ
SnðjfjÞ

½h̃sðfÞe2iψ þ h̃�sð−fÞe−2iψ �: ð7Þ

Given a template and signal waveform with given signal
polarization, Eq. (5)-Eq. (7) give the match optimized over
template polarisation. For further details on computation of
match as above, see Appendix B of Ref. [48].
For the match computations in this study, the ϕSn ¼ 0

system from each of the q ¼ 1, q ¼ 2, and q ¼ 4 series of
NR simulations is used as the proxy template with the other
waveforms in each corresponding series as the signal wave-
forms. For thematch computations, the signal is recomposed
from only the l ¼ 2 modes using Eq. (1) and Eq. (4). Each
signal is uniquely defined by its inclination θs, phase ϕs, and
polarisation ψ s. (Note that we are considering a single
detector network with the sky-position of the system exactly
overhead the detector. Hence the angles ðθ;ϕÞ can be
interpreted as the inclination and phase with respect to the
detector.) For each unique signal, the match is maximised
over the template ðθt;ϕt;ψ tÞ. A total mass of 100 M⊙ is
used for both signals and templates, PSD used is the
aLIGOZeroDetHighPower PSD from LALSimulation
package of LALSuite and the match is computed with
ðfmin; fmaxÞ ∈ ð20; 600Þ Hz.
For each system, the signals (θs;ϕs) are isotropically

distributed over a sphere with 30 points in θs and 25 points
in ϕs. For each signal (θs;ϕs), we choose four values of
ψ s ∈ ½0; π=2Þ and then maximise the match over the
template (θt;ϕt;ψ t). The match maximisation procedure
goes through the following four steps,

FIG. 1. The left, middle, and right columns show ρc for signals q1a08p180sk, q2a07p180, and q4a08p180 as seen by templates
q1a08p0sk, q2a07p0, and q4a08p0 respectively, across the signal θ space. For each signal θ, the match is computed with the template at
θ þ π, over a range of ϕ values, and the black, dashed-red and blue lines show the minimum, mean and maximum match (ρc) across the
ϕ space. We observe a larger variation of ρc for the q ¼ 2 and q ¼ 4 cases as compared to the q ¼ 1 due to presence of nonzero
subdominant modes, ðl; mÞ ¼ ð2; 1Þ, (2,0) and (2,-1).
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(i) Isotropically grid the template ðθt;ϕtÞ space over the
sphere with 41 points in θt and 81 points in ϕt.

(ii) For each value of template θti, we compute the match
across template ϕt

j. For each (θti;ϕ
t
j) combination,

the code gives the match optimized over template ψ t.
(iii) For each θti, the match is interpolated over the ϕt

j
values, from which the maximum match over ϕt for
each θti is obtained.

(iv) Thus, we get a set of match values across the template
θti values, which are then interpolated to obtain the
maximum match over template ðθt;ϕt;ψ tÞ.

The choice of 41 × 81 grid for the template waveforms for
match maximization was chosen by balancing the (i) accu-
racy of final result and (ii) computational time required for
each match computation. Using a few random signal ðθ;ϕÞ
values, we found that doubling the grid size changed the
results by at most 5% while doubling the computa-
tional cost.

B. Confidence intervals from match values

Given two waveforms close to each other in the
parameter space, i.e., h1ðλ⃗1Þ and h2ðλ⃗2Þ such that
λ⃗1 ∼ λ⃗2, where we have the SNR (ρ) of the signals and
the match ðMÞ between the two, both waveforms will have
consistent posterior distributions within 90% confidence
interval of each other if,

M½h1; h2� ≥ 1 −
χ2kð1 − pÞ

2ρ2
: ð8Þ

Alternatively, two waveforms would be distinguishable
from each other if the posteriors recovered for the two have
different confidence intervals. So, given a match value, the
above gives us a condition for the SNR (ρc) at which the
waveforms would be distinguishable,

ρc ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
χ2kð1 − pÞ
2ð1 −MÞ

s
: ð9Þ

For the systems under consideration, there are a total of 7
parameters which can be varied and hence, k ¼ 7. At k ¼ 7

for 90% confidence intervals, χ2kð1 − pÞ ¼ 12.02.
See Ref. [49] for a detailed discussion for the condition

used above, although previous studies [50–54] have used
similar definitions to determine the distinguishability/accu-
racy requirements of gravitational waveforms. As was
pointed out in Ref. [55], the equality in Eq. (9) is a
sufficient, but not always a necessary condition, to deter-
mine the accuracy between two waveforms. For a given
signal and template waveform with maximum match M
and corresponding ρc, if the signal ρ < ρc, biases due to
detector noise will dominate biases due to model system-
atics. Alternatively, if the opposite is true, biases may arise
during parameter inference and so, the above equality is a

conservative estimate of accuracy requirements. Hence,
using the set of match values computed from Sec. III A for
each system and Eq. (9), we can then estimate the SNR ðρcÞ
at which the signal system could be distinguished by the
proxy template.

IV. ORGANIZATION OF RESULTS

In subsequent sections we study the SNR (ρc) at which
configurations with differing spin directions or spin mag-
nitudes are distinguishable, as defined by Eq. (9). In this
section we make some general comments on the accuracy
of ρc for our simulations, some general properties of the
waveforms with respect to changes in the in-plane spin
direction, ϕSn, and examine how ρc varies with respect to
different binary orientations. This motivates the way we
will present our results for the remainder of this paper.
Let us first discuss accuracy. As reported in Sec. II, the

matches between the 80- and 96-point runs (for q2a07p0
and q2a07p90) are ∼0.9995–0.99995, which translates to
ρc between 110 and 350. This suggests that we can identify
two waveforms as indistinguishable up to SNRs of at least
110. We also computed the matches between the ϕSn ¼ 0,
π=2 systems using the corresponding 80- and 96-point
waveforms over a range of ðθ;ϕÞ values, and found that the
relative error between them is Oð0.05%Þ. These numbers
suggest that although we should be cautious when inter-
preting very large values of ρc, we expect the qualitative
behavior of the matches to remain unchanged with more
accurate simulations.
Given the accuracy limits of our simulations, we are now

in a position to study how the waveforms vary with respect
to different initial directions of the in-plane spin. We begin
by noting an approximate symmetry between systems with
a ϕSn difference of π. An in-plane spin rotation of π
corresponds to flipping the direction of the out-of-plane
recoil, and therefore we would expect that the signal from a
system with a given value of ϕSn to be identical to that from
a system with ϕSn þ π, if observed from the opposite
side of the orbital plane, i.e., with θ → θ þ π. We have
verified that the optimal match is indeed found when
θtemplate ≈ ðθsignal þ πÞ. In Fig. 1 we plot the ρc across
signal θ for a range of signal ϕ for which M is computed
with ðθtemplate;ϕtemplateÞ ¼ ðθsignal þ π;ϕsignalÞ and the
match is optimized only over template ψ . The ρc ≥ 100
for all ϕSn ¼ π signals for the q ¼ 1 and q ¼ 2 systems,
with the ρc ≥ 50 for each θsignal for q ¼ 4 system. We do
not observe an exact symmetry (i.e., a mismatch of zero),
because in the q ¼ 1 and q ¼ 4 systems, we did not simply
rotate the spin between each configuration, but instead
calculated initial parameters individually for each value of
ϕSn, so these do not form a one-parameter family. Even
with rotated spins within a series, as in the q ¼ 2 series, we
have not changed the momenta; we would expect even
lower mismatches if the out-of-plane momenta, in the
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initial data, had been reflected in the orbital plane between
the ϕSn and ϕSn þ π configurations.
When we rotate the initial in-plane spin direction ϕSn,

this will, by definition, rotate the initial orbital angular
momentum about the total angular momentum, i.e., a
change in the α Euler angle in Eq. (3). But we do not
expect it to have a significant impact on the opening angle β
between the orbital and total angular momenta, at least
during the inspiral. In Fig. 2 we plot the differences in the β
Euler angle for the q ¼ 2 and q ¼ 4 systems with
differences in ϕSn of π=2 and π. We can see that Δβ ∼ 0
for q ¼ 2, but rises to a few ∼Oð1°Þ for q ¼ 4; this is
consistent with our expectation as the construction of the
q ¼ 2 series configurations better represent the symmetry.
We note that in comparing the ϕSn ¼ 0 and ϕSn ¼ π=2
configurations, there is a clear difference in β during the
merger and ringdown.

We now wish to estimate how easily two configurations
can be distinguished for different choices of binary
orientation, ðθ;ϕÞ. In all of these comparisons, we average
ρc over four choices of waveform polarization. As men-
tioned in Sec. III A, for each signal system we have
(25 × 30 × 4 ¼ 3000) match values and the SNR for each.
To average across different choices of signal polarisation,
ψ s, we follow Refs. [18,56,57] and average the match for
each ðθs;ϕsÞ across the signal polarization ψ s by weighting
them with their SNR. This approximately accounts for the
likelihood of the signal being detected. This SNR-averaged
match is defined as,

M̄ ¼
�P

iρ
3
iM

3
iP

iρ
3
i

�
1=3

; ð10Þ

where the sum is over all four signal polarization values.
So, for a given system, we have 750 values of the SNR
averaged match.
Figure 3 shows contour plots of the variation of ρc across

the signal ðθ;ϕÞ for the q2a07p90 and q4a08p90 signals as
seen by the q2a07p0 and q4a08p0 systems respectively,
where the match at each ðθ;ϕÞ point is maximized over
template ðθ;ϕ;ψÞ and then averaged over the signal ψ
values using Eq. (10) and ρc is computed using Eq. (9). For
these systems with ϕSn differences of π=2, the major
contribution to the mismatch would be from a combination
of their slightly different precession motion (as seen from
Fig. 2) and mode-asymmetry behaviour. For the q ¼ 2
system, 20≲ ρc ≲ 72, whereas for the q ¼ 4 system,
11≲ ρc ≲ 32. Precession effects are more pronounced at
edge-on than face-on inclination, so the lower ρc for
q2a07p90 at θ ∼ π=2 is expected. For q4a08p90, this
behaviour seems to reverse (higher ρc at edge-on compared
to face-on). In Sec. V C, we remove the mode-asymmetry
from the waveforms and compute the matches between the
symmetrized waveforms for the ϕSn ¼ π=2 signals as seen

FIG. 2. Top panel: difference in the β Euler-angle (in radians)
between the ϕSn ¼ 0, π=2 (Blue) and ϕSn ¼ 0; π (Red) configu-
rations of the q ¼ 2, χ ¼ 0.7 system. Bottom panel: the same as
above, but for the q ¼ 4, χ ¼ 0.8 system. The legend gives the
mass-ratio and spin of signal waveform and the parameter varied
between the signal and template waveform. For both systems, Δβ
is small during late-inspiral, with the majority of differences
arising near merger.

FIG. 3. The left and right panels show the contour plot of ρc for the signal q2a07p90 and q4a08p90 as seen by template q2a07p0 and
q4a08p0 respectively over the signal ðθ;ϕÞ values with the label on the right of each plot showing the values of ρc. See text for further
discussion.
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by ϕSn ¼ 0 template. For the q ¼ 2 system, the band of low
ρc near edge-on inclination broadens for all ϕ and for the
q ¼ 4 system, the peaks of high ρc shift slightly away from
near edge-on inclinations with an overall increase in ρc for
both cases. This implies that the behavior of ρc across the
(θ;ϕ) space can be strongly affected by mode-asymmetric
content for these systems.
We see from Fig. 3 that there is a wide variation in the

SNR at which these configurations would be distinguish-
able, depending on their orientation to the detector. Also,
the exact way in which precessional motion and mode-
asymmetry affect distinguishability over the ðθ;ϕÞ space is
hard to characterize. For the main results in this paper, we
find it more instructive to use a measure that would give an
idea of the variation of ρc across all orientations. For a
given signal and template configuration, we define the
quantity ΓðρÞ which gives the percentage of signals
distinguishable at a given SNR by the template. This
quantity can be defined formally as,

ΓðρÞ ¼ 100
lenðSid2∶id1½ρc < ρ�Þ

lenðSid2∶id1Þ
; ð11Þ

where Sid2∶id1½ρc < ρ� is the set of all signals with dis-
tinguishability SNR (ρc) smaller than a given SNR value
(ρ) and Sid2∶id1 is the set of all the available signals. In the
following sections, this cumulative measure of the fraction
of signal distinguishable at a given SNR or lower, will be
used as our main tool to quantify the differences between
binary configurations.

V. RESULTS

We now consider in detail the distinguishability of our
NR configurations. To reiterate, for each system at a given
mass-ratio, the ϕSn ¼ 0 system is used as the proxy
template waveform. For the results hence, compared to
the proxy templates, the signals either have a different spin
direction or the magnitude. Also, due to the approximate
symmetry between the ϕSn � π systems, the results for the
ϕSn ¼ 3π=2 and ϕSn ¼ π=2 are very similar, and hence, we
will only present results for the ϕSn ¼ π=2 systems.
We first summarise the main differences that we observe

between the different configurations, by averaging the
match and distinguishability SNR ρc over all 3000 ori-
entations and polarizations. The results are shown in
Table II. We see that variations in the in-plane spin direction
can be distinguishable at an SNR of 60, and sometimes as
low as ∼20. Similarly, waveforms from systems with
different spin magnitudes can be distinguishable are
SNRs of ∼60 for spin differences on the order of 0.1.
These results encapsulate the two key conclusions we
derive from this study: differences in the waveforms
between configurations with different in-plane spin direc-
tions may be measurable with observations in the near
future (the highest BBH SNR to date has been GW150914,
with an SNR of ∼24 [58]), and the SNRs at which in-plane
spin magnitudes could be measured are comparable to
those at which the spin direction will also impact the
results. This strongly suggests that waveform changes due
to the in-plane spin direction (beyond an overall offset in
the precession angle α) need to be included in waveform
models.

TABLE I. Table of NR simulations used for this study. From left to right, the columns show the name of the simulation, the mass-ratio
of the system, value of the spin on the larger black hole at the reference frequency, the separation between the black holes at the reference
frequency, the total momenta of the system at the reference frequency, the reference frequency at which the simulation starts, and the
values of the ϕSn and θSL angles respectively. For the q ¼ 1 series, note that S2 ¼ −S1.

Config q S⃗2 r⃗ ¼ D=M p⃗ ¼ p⃗1 − p⃗2 ωstartðfMÞ ϕSn θSL

q1a08p0sk 1 (0, −0.799, −0.001) (0, 11.623, 0) (−0.174, −0.001, 0) 0.0225 0 π=2
q1a08p90sk 1 (0.7999, 0, −0.0012) (0, 11.623, 0) (−0.174, −0.001, 0) 0.0225 π=2 π=2
q1a08p180sk 1 (0, 0.7999, −0.0012) (0, 11.623, 0) (−0.174, −0.001, 0) 0.0225 π π=2
q1a08p270sk 1 (−0.7999, 0, −0.0012) (0, 11.623, 0) (−0.174, −0.001, 0) 0.0225 3π=2 π=2

q2a07p0 2 (−0.001, 0.699, 0.006) (0., 10.810, 0.) (−0.105, −0.001, 0.123) 0.025 0 π=2
q2a07p90 2 (−0.451, −0.005, 0.535) (0., 10.810, 0.) (−0.105, −0.001, 0.123) 0.025 π=2 π=2
q2a07p180 2 (0.006, −0.699, −0.002) (0., 10.810, 0.) (−0.105, −0.001, 0.123) 0.025 π π=2
q2a07p270 2 (0.448, −0.005, −0.537) (0., 10.810, 0.) (−0.105, −0.001, 0.123) 0.025 3π=2 π=2

q4a08p0 4 (0.0007, 0.799, −0.005) (0., 11.486, 0.) (−0.111, −0.0004, 0.014) 0.0225 0 π=2
q4a08p90 4 (−0.793, 0, 0.099) (0., 11.486, 0.) (−0.111, −0.0005, 0.014) 0.0225 π=2 π=2
q4a08p180 4 (−0.0007, −0.799, −0.005) (0., 11.486, 0.) (−0.111, −0.0004, 0.014) 0.0225 π π=2
q4a08p270 4 (0.792, 0, −0.110) (0., 11.486, 0.) (−0.111, −0.0005, 0.0147) 0.0225 3π=2 π=2
q4a04p0 4 (−0.001, 0.399, −0.00007) (0., 11.486, 0.) (−0.111, −0.0004, 0.014) 0.0299 0 π=2
q2a04p0 2 (−0.00008, 0.3999, −0.0008) (0., 11.6299, 0.) (−0.153, −0.0009, 0.015) 0.0224 0 π=2
q2a08p0 2 (0.0005, 0.799, −0.003) (0., 11.5709, 0.) (−0.153, −0.0009, −0.0243) 0.023 0 π=2
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The remainder of this paper considers these results in
more detail, and we also attempt to isolate the physical
effects that lead to these waveform differences.
In Sec VAwe compare the full NR waveforms (using all

the l ¼ 2 multipoles). This allows us to identify the range
of SNRs in which the configurations with different choices
of ϕSn will be distinguishable, and to compare this with the
effect of changing the in-plane spin magnitude.
We then attempt to isolate the causes of these differences.

In Sec. V B, we transform the waveforms into the copre-
cessing frame (where modes with jmj < 2 ≈ 0) and study
the matches between the waveform with symmetrized
ðl; jmjÞ ¼ ð2; 2Þmodes for ϕSn � π=2 systems. This allows
us to estimate the distinguishability of two waveforms
when both precession and mode-asymmetry effects are
muted, due primarily to small differences in the inspiral rate
and merger-ringdown differences. These coprecessing-
frame symmetrized modes are then transformed back to
the inertial frame and Sec. V C presents the results of
analysis with those waveforms. These results estimate the
impact of neglecting mode-asymmetry on the distinguish-
ability of precessing-binary waveforms.

A. Full waveform analysis

The key results of this work are shown in Fig. 4. The
figure shows the percentage of signals with different spin
direction (top panel) or magnitude (bottom panel) that will
be distinguishable below a given SNR with the correspond-
ing ϕSn ¼ 0 template for the q ¼ 1, 2, 4 systems. In the
legend, we mention the mass-ratio and spin of the signal
waveform and the parameter varied between the signal and
template waveform. Unless mentioned otherwise, for all
plots hence, systems with q ¼ 1, 2, 4 are color coded with
red, black, and blue respectively.
For the q ¼ 1 super-kick configurations, the detectability

between ϕSn � π=2 systems is due to asymmetric radiation
of gravitational modes. The detectable SNRs for these
super-kick systems, 45≲ ρc ≲ 80, are in the possible range
of ground based detectors, but will be rare; we expect less
than one in every hundred signals to have such high SNRs.

The recoil velocities for the q ¼ 1waveforms used here are
∼700 km=s (ϕSn ¼ 0) and ∼2700 km=s (ϕSn ¼ π=2). For
systems with lower spins (and hence lower recoil veloc-
ities), we can expect larger values of ρc, meaning that these
differences will be more difficult to measure. These results
are consistent with those presented in Refs. [59,60].
The ρc for the q ¼ 2 systems with ϕSn ¼ π=2 are in the

range of 20≲ ρc ≲ 75, and for q ¼ 4 they are 12≲ ρc < 35.
Given that GW signals have already been observed with
SNRs as high as 30 [61], and the detection threshold is at an

TABLE II. Match and distinguishability SNR ρc between different configurations, averaged over all ðθ;ϕ;ψÞ
values. We consider three template waveforms (left), and a variety of different signals. See text for further
discussion.

Template Signal Average match ρc

q ¼ 2; χ ¼ 0.7;ϕSn ¼ 0 “q2a07p0” ϕSn þ π=2 0.9983 60
ϕSn þ π 0.9999 250
χ þ 0.1 0.9983 60
χ − 0.3 0.9952 36

q ¼ 4; χ ¼ 0.8;ϕSn ¼ 0 “q4a08p0” ϕSn þ π=2 0.9811 17
ϕSn þ π 0.9997 143
χ − 0.4 0.9936 30

q ¼ 1; χ ¼ 0.8;ϕSn ¼ 0 “q1a08p0sk” ϕSn þ π=2 0.9981 57
ϕSn þ π 0.9998 197

FIG. 4. ΓðρÞ as defined in Eq. (11). Top panel: q ¼ 1, 2, 4
systems with ϕSn differences of π=2. Lower panel: q ¼ 2, 4
systems with different spin values. The results for q ¼ 1, q ¼ 2
and q ¼ 4 are shown in red, black, and blue respectively. The
solid lines show the results for systems with ϕSn differences of
π=2 and the same χp, the dashed-lines show the results for large
χp differences (0.3 for q ¼ 2 and 0.4 for q ¼ 4) with the same
ϕSn, and the dotted-dashed for small χp differences (0.1 for
q ¼ 2) with the same ϕSn. See text for further details.
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SNR of approximately 10, these are well within the range of
current ground-based detectors. We emphasize that these
results do notmeanwe can necessarilymeasure, for example,
the spin direction at the frequency when the signal enters the
detector’s sensitivity band; this quantity may be degenerate
with other physical properties.However, they do indicate that
systems with different values of ϕSn can be distinguished
from each other, and if we do not take into account the effects
on the waveform of varying ϕSn (as in current Phenom and
EOB models), then these differences will manifest them-
selves in biases in at least one physical parameter for
sufficiently strong signals.
We might expect that the effect of ϕSn on measurements

will be far smaller than that of the spin magnitude. The
lower panel of Fig. 4 shows that this is not necessarily the
case. For example, the q ¼ 2 system with χp of 0.8, the
distinguishability SNRs are in the range 30≲ ρc ≲ 80. A
change in the spin of 0.1 is therefore, in general, slightly
more difficult to distinguish than a change in the in-plane
spin direction of π=2. A change in the spin magnitude of
0.3 (for the q ¼ 2, χp ¼ 0.4 system) is distinguishable at
SNRs in the range 25≲ ρc ≲ 45. As we can see by
comparing with the upper panel, this is comparable to
the distinguishability of a spin rotation of π=2. In the q ¼ 4
configurations, we see that a spin change of 0.4 (between
0.8 and 0.4) is distinguishable in the SNR range
13≲ ρc < 35, again comparable to what we see for a spin
rotation. These results suggest that the SNRs at which in-
plane spin magnitudes become measurable are also the
SNRs at which changes in the waveform due to spin
rotations also become measurable. As noted above, this
study cannot tell us which physical measurements will be
biassed by models that neglect mode asymmetries or
changes in the binary dynamics, but our results raise the
possibility that accurate measurements of precessing sys-
tems, i.e., of black-hole spins, will not be possible without
the inclusion of some or all of these effects in waveform
models.
For the q ¼ 2 and q ¼ 4 systems with different spin

directions, we observe a slight difference in the merger
times, mode-asymmetric content as well as precessional
dynamics (as can be seen from the Δβ plot in Fig. 2). These
differences are the main reason for distinguishability of
systems with different spin directions. These effects will
become weaker for lower spins, but one should bear in
mind that precession effects and black-hole spins will also
become more difficult to measure [62]. As such, we expect
these results to be largely independent of spin magnitude. A
more important caveat on these results is that they are
restricted to signals of total mass of 100 M⊙. For lower-
mass systems we expect the mode asymmetries to con-
tribute less to the SNR, and therefore to have less impact.
We leave a study of the impact of mode asymmetries on
parameter measurements to future work.

B. QA frame symmetrized waveform analysis

As mentioned previously, for the q ¼ 2 and q ¼ 4
systems with different ϕSn, the mismatches are primarily
due to differences in their precessional motion (i.e.,
differences in the ðα; β; ϵÞ angles) and mode-asymmetric
content. In this section our aim is to remove, as much as
possible, the precession and mode-asymmetry effects, and
to quantify the impact of all other effects (inspiral rate and
merger-ringdown behavior). We transform the q ¼ 2 and
q ¼ 4 waveforms into the coprecessing frame (specifically,
the quadrupole-aligned, “QA,” frame [31–33]) using
Eq. (3). This minimizes modulations due to precession.
In this frame the dominant power is in the ðl ¼ 2; jmj ¼ 2Þ
harmonics. We then symmetrize these harmonics, to
remove the effects of mode asymmetries. In terms of the
QA frame modes ðhQA

lm Þ, the symmetric waveform in the
QA frame ðhQA;symm

22 Þ is defined as,

hQA;symm
22 ¼ 1

2
ðhQA

22 þ h�QA
2;−2Þ; ð12Þ

where h�l;m is the complex conjugate of the mode. Using this,

we can define the ð2;−2Þ mode as, hQA;symm
2;−2 ¼ h�QA;symm

2;2 ,
using the relation hlm ¼ ð−1Þlh�l;−m. Doing this for the
q ¼ 2 and q ¼ 4 systems removes the precession modu-
lations and mode-asymmetry. As the super-kick simulations
are non-precessing, thosewaveforms are symmetrized in the
inertial frame using Eq. (12).
Matches calculated between symmetrised QA (2,2)

modes are independent of orientation and polarization,
so the averaging that we performed previously is no longer
necessary. Between the ϕSn � π=2 configurations at mass
ratios q ¼ 1, 2, 4, the indistinguishability SNRs are now
120, 90 and 30, respectively. If we contrast these with the
top panel of Fig. 4, we see that for the q ¼ 2 and q ¼ 4
cases, differences in the signal phase make a noticeable
contribution to the indistinguishability SNR. In Fig. 5 we
show ρc over a range of fmax values. Figure 6 shows the
q ¼ 2 series waveforms in time and frequency domain, to
illustrate where these choices of fmax occur during the
binaries’ coalescence. These figures show that, as we might
expect, most of the disagreement between the waveforms
accumulates during merger and ringdown.
These results should be taken with a few caveats. As

already mentioned, for the q ¼ 2 waveforms obtained with
80- and 96-point resolutions, over the θ space, the match
lies between 0.9995–0.99995 which translates to ρc of
∼110–345. So, although the QA frame symmetrized
matches are close to the minimum match due to NR
uncertainties, over the majority of the θ space, the QA
frame symmetrized results should hold even for more
accurate NR waveforms. For the q ¼ 4 system, to obtain
the low eccentricity parameters, the momenta between the
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ϕSn ¼ 0, π=2 systems are slightly different, which could be
one of the sources of disagreement between the QA-
frame symmetrized waveforms. However, the similarity
of the trends of the match vs fmax for all three systems
indicate that the above results should hold within these
uncertainties.

C. Inertial frame symmetrized waveform analysis

We now transform the symmetrized QA frame wave-
forms to the inertial frame using Eq. (3) and the corre-
sponding ðα; β; ϵÞ angles for each system. This is similar to
how current waveform models construct the precessing
waveforms in the inertial frame, i.e., they transform a
model for the corresponding aligned-spin QA frame wave-
form to the inertial frame using a model for the precession
Euler angles. Using these waveforms, we perform the same
analysis as in Sec. VA and plot the ΓðρÞ quantity in Fig. 7.
Note, that for the q ¼ 1 system, the symmetrized waveform
matches will be the same as presented in Fig. 5 and we will
not discuss that system here.
We consider first the twoϕSn ¼ π=2 configurations for the

q ¼ 2 and q ¼ 4 systems. Between the symmetrized q2a07
systems, the distinguishability SNR is 25≲ ρc ≲ 115.
Between the symmetrized q4a08 systems, the distinguish-
ability SNR is 25≲ ρc ≲ 60. In both cases, this is signifi-
cantly higher than for the waveforms with mode-asymmetry
included, and the range is either side of the value for the
symmetrizedQA-framewaveforms. In particular, we see that
the presence of asymmetries makes the q2a07 cases distin-
guishable at SNRs as low as 20, and the q4a08 cases
distinguishable at SNRs as low as 10, while, if the asymme-
tries did not exist, they would not be distinguishable for
SNRs lower than ∼30.
If we now consider the distinguishability between

configurations with different spin magnitudes, comparing
Figs. 4 and 7, we see a similar effect. Although for q ¼ 2
configurations the ρc for different spin magnitudes show an
overall increase, a few of the signals with a χp difference of
0.1 are now easier to distinguish than a χp difference of 0.3.
The most pronounced effect is for q ¼ 4 configurations,

FIG. 5. This plot shows the ρc computed from the match (M)
between the symmetrized QA frame waveforms for the q ¼ 2,
q ¼ 4 systems (solid-black, solid-blue respectively) and sym-
metrized q ¼ 1 waveforms (solid-red), with varying values of the
upper cutoff frequency in fmax for the match calculation. The
legend follows the same naming convention as Fig: 4.

FIG. 6. In the top [bottom] panel, we plot the q2a07p0 (blue)
and q2a07p90 (black) time [frequency] domain QA frame
symmetrized waveforms. For the top panel, the dashed lines
show the time at which the waveform has a specific frequency
used as fmax value for Fig: 5. For the bottom panel, the dashed
lines show the position of that frequency with respect to the
frequency domain waveform. Frequency values of (50, 100, 200,
300, 400) are given in dashed (red, blue, black, green, gray) lines
respectively.

FIG. 7. ΓðρÞ from matching waveforms symmetrized in the
QA-frame and then transformed back to the inertial frame. The
systems q2a07p90 (solid-black), q2a08p0 (dashed-dotted -black),
q2a04p0 (dashed-black) are matched with the q2a07p0 proxy
template. The q4a08p90 (solid-blue) and q4a04p0 (dashed-blue)
systems are matched with q4a08p0 template. The legend shows
the mass-ratio and spin of signal and the difference in the relevant
parameter with respect to the template.
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where the spin difference of 0.4 is now easier to distinguish
than the rotation of the spin.
Neither of the previous analyses reflects the scenario of

current GWmeasurements, where the signals correspond to
“full” waveforms, i.e., signals with both precession and
mode-asymmetry, and they are analysed using models that
correspond approximately to the symmetrized waveforms

of the previous analysis. In order to estimate the impact of
using symmetrized models in analysis, Fig. 8 shows ΓðρÞ
for the ϕSn ¼ 0, π=2 full waveform signals matched against
the symmetrized inertial frame ϕSn ¼ 0 templates for the
q ¼ 1, q ¼ 2 and q ¼ 4 simulations. We observe that for
ϕSn ¼ π=2, it is generally easier for the symmetrized
template to distinguish the signal as compared to the full
waveform templates. This effect is very strong for the
q ¼ 1 super-kick cases where the distinguishability SNR
reduces by almost 20 for all signals. We also see that
removing the mode-asymmetric content leads to large
mismatches between waveforms of the same systems
causing the full ϕSn ¼ 0 signal to be distinguishable
from the symmetrized ϕSn ¼ 0 template at moderate
ð10< ρc < 40Þ SNRs for all mass ratios. All these results
indicate that the absence of mode asymmetries in current
models will lead tomeasurement biases in these systems.We
expect that even for comparable-mass systems, if the total
mass is high (>100 M⊙) and the in-plane spins are high,
systematic errors are likely to be significant.
In Table III, we list the SNR averaged match values over

all the signal ðθ;ϕ;ψÞ values to provide one single number
for the distinguishability of the signal. We can see that
when both signal and templates are symmetrized, for all
systems, the agreement between the waveforms increases
leading to larger distinguishability SNR. When sym-
metrized waveform templates are matched with full wave-
form signals, we see an overall decrease in the
distinguishability SNR. Even when both the signal and
template systems are the same, with symmetrized tem-
plates, ρc is comparable to that of ϕSn � π=2 results.

FIG. 8. ΓðρÞ from matching signal waveforms with both
precession and mode-asymmetry against symmetrized template
waveforms. Here, the full waveform ϕSn ¼ π=2 signal and
ϕSn ¼ 0 signal as seen by the symmetrized ϕSn ¼ 0 template
are shown by the dashed and dotted lines respectively. The legend
shows the mass-ratio and spin of signal and the difference in the
relevant parameter with respect to the template. Where no
parameter difference is mentioned, it shows the result for the
signal with both precession and mode-asymmetry against its
symmetrized self.

TABLE III. The SNR averaged match, Eq. (10), over all the ðθ;ϕ;ψÞ values for the systems considered in this study. From left to right,
the columns state the template waveform configuration, difference in the relevant parameter between the template and signal waveform,
signal effects (full waveform or symmetrized), teamplate effects (full waveform or symmetrized), average match value and
corresponding SNR respectively, using Eq. (9). See text for further discussion.

Template Signal Signal effects Template effects Average match ρc

ϕSn þ π=2 Full Full 0.9983 60
q ¼ 2; χ ¼ 0.7;ϕSn ¼ 0 “q2a07p0” ϕSn þ π=2 Symmetrized Symmetrized 0.9991 83

ϕSn þ π=2 Full Symmetrized 0.9954 36
ϕSn þ 0 Full Symmetrized 0.9969 44
χ þ 0.1 Full Full 0.9983 60
χ þ 0.1 Symmetrized Symmetrized 0.9986 65
χ − 0.3 Full Full 0.9952 36
χ − 0.3 Symmetrized Symmetrized 0.9969 44

q ¼ 4; χ ¼ 0.8;ϕSn ¼ 0 “q4a08p0” ϕSn þ π=2 Full Full 0.9811 18
ϕSn þ π=2 Symmetrized Symmetrized 0.9935 30
ϕSn þ π=2 Full Symmetrized 0.9737 15
ϕSn þ 0 Full Symmetrized 0.9785 16
χ − 0.4 Full Full 0.9936 30
χ − 0.4 Symmetrized Symmetrized 0.9942 32

q ¼ 1; χ ¼ 0.8;ϕSn ¼ 0 “q1a08p0sk” ϕSn þ π=2 Full Full 0.9981 57
ϕSn þ π=2 Full Symmetrized 0.9882 22
ϕSn þ 0 Full Symmetrized 0.9934 30
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VI. CONCLUSIONS

We have investigated when changes in the in-plane spin
direction of binary-black-hole systems, the effects of which
are not included in current Phenom and EOB models, will
be distinguishable in GWmeasurements. To do that, we use
a set of NR simulations obtained from the BAM code (see
Table I). We quantify the distinguishability of systems with
different choices of in-plane spin direction ϕSn by calcu-
lating matches between them. This approach allows us to
estimate the SNR at which the signals will be distinguish-
able. Our study is restricted to a small number of configu-
rations at mass ratios q ¼ 1, 2, 4, and large in-plane spin
magnitudes of 0.7 and 0.8, with two configurations with
moderate in-plane spin of 0.4. All of our calculations are
performed on systems with total mass 100 M⊙.
Changes in ϕSn have several effects on the binary

dynamics and the waveform. One effect that we discuss
in detail is the asymmetry between the �m waveform
modes. Another is small changes in the phasing of the
binary, and in the merger and ringdown signal. By
removing asymmetry and/or precession effects from our
waveforms, we show that all of these effects contribute to
the waveform variations between different choices of ϕSn.
When mode-asymmetries are muted, the distinguishability
SNR ρc for all the systems (different ϕSn and different χp)
show a marked increase across the (θ;ϕ) space (see Fig. 7).
Disregarding mode asymmetries increases ρc by factors of
∼1.5–1.9 between systems of different ϕSn, indicating that
this is a significant feature of these waveforms.
Our main results are shown in Sec. VA, and show that

for large in-plane spins, variations in ϕSn will be distin-
guishable at moderate SNRs. More importantly, these
effects will influence measurements at SNRs comparable
to those at which in-plane spin magnitudes become
measurable. For example, in the q ¼ 2 systems we con-
sidered, a change in spin magnitude of 0.3 will be
distinguishable at a comparable SNR to a change in spin
direction of π=2. This effect will be reduced for smaller
spins, but so will our ability to measure the spin magnitude.
Precession effects and in-plane spin magnitude, typically
captured by the parameter χp, have not yet been identified
in individual observations [62]. Our results suggest that
when they are, the absence of in-plane spin direction effects
in the modelling could lead to significant parameter biases.
We plan to study the impact on parameter estimation in
future work.
There are a number of questions that require further

work. We have limited ourselves to small number of
configurations, and to one choice of total mass. We have
also neglected the effect of l > 2modes, which also impact
parameter estimation for systems with mass ratios of q ≥ 2
[63]. The impact of changes in ϕSn, and the importance of
mode asymmetries, also needs to be studied for systems
with lower masses, where the inspiral contributes more

power to the waveform, with mode-asymmetric effects
being weaker but with a larger number of precessional
cycles. However, in order to fully understand the impor-
tance of these physical effects, we require models that
include them, which can then be used in parameter-
estimation studies. This work has provided strong evidence
that these effects must be taken into account in order to
make unbiased physical measurements from GW observa-
tions, and therefore already provide a strong motivation for
such modeling. This has already been done for the
surrogate models described in Refs. [64,65]. Since these
models are valid only for high-mass systems and a limited
range of mass ratios, it would be advantageous to be
extended to other classes of model.
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APPENDIX: INITIAL DATA GENERATION

For this study, we required singe-spin precessing NR
waveformswith user specified ðθSL;ϕSnÞ at a given reference
frequency Mωorb. Over the course of inspiral, the spin
vectors of a precessing system oscillate about a mean value
with the oscillation frequency increasing as system nears
merger [48]. An iterative method was required to ensure the
required spin direction at the given reference frequency. The
code used for solving the PN equations was one which was
used for BAM NR waveforms as used in [31,44,46]. The
method developed for initial data generation is as below. The
PN evolution is started in the J⃗ aligned to ẑ frame with L⃗
being the Newtonian angular momentum.
The angle between the spin vector and angular momen-

tum vector, ðθSLÞ, varies not more than∼1° over the inspiral
phase. Hence, once ðθSLÞ is specified, further iteration is
not required To obtain the required ϕSn, the algorithm goes
through the following steps:
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Step 1:
This step consists of two iterations.

Iteration 1: Initially, both the BHs are placed along the
x-axis with a given separation, the orbital plane is
the x-y plane, and the initial spin (Sini) parallel to n̂.
The spinvector is then rotated to obtain the required θSL
and the PNevolution code is run untilMωorb is reached.
We record the timewhen the specified orbital frequency
is reached (t0), the value of ϕSnðtÞ at t0 [ϕSnðt0Þ], the
closest time to t0 at which ϕSnðtÞ ¼ ϕtarget

Sn , which is
denoted t1, and finally the relative frequency error
(ωerr) between the orbital frequencies at t0 and t1. If, at
this iteration, ϕSn at t0 is not ϕ

target
Sn or if ωerr is larger

than a prespecified threshold (ωF
err), the value of ϕ

t1
Sn is

recorded; we call this ϕ1
Sn. Each iteration hence

also stores the value ϕt0;i
Sn . For these simulations, we

use ωF
err ¼ 1%.

Iteration 2: During iteration 2, Sini is rotated to obtain
the required θSL and then further rotated by (−ϕ1

Sn)
about the z-axis, and then the PN solver is again run. If
the conditions specified in Iteration 1 are met
(ωerr < ωF

err & ϕt1
Sn ¼ ϕtarget

Sn ) then the parameters at
t1 are recorded. If not, we would ideally simply repeat
the process. However, since ϕSn changes on the (rapid)
orbital timescale, the value of ϕSn at the NR reference
frequency is very sensitive to the choice at the

beginning of the PN evolution, and so this procedure
is not well-conditioned to fine-tune ϕSn. We instead
proceed to Step Two, and store the value of ϕt1

Sn of this
iteration as ϕ2

Sn.
Step 2: Depending on the parameters, this step can
consist of one or multiple iterations. For each iteration,
Sini is rotated to obtain the required θSL and then by
the specified −ϕrot about ẑ.

Iteration 3: For each iteration hence, we define a angle
correction parameter,ϕcorr.ωerr − ωF

err gives an idea of
how close we are to the required initial parameters and
value of ϕcorr is based on that. If, ωerr − ωF

err >
1
2
ωF
err,

then ϕcorr ¼ 10°, else ϕcorr ¼ 5° and then
ϕrot ¼ ϕ2

Sn þ ϕcorr. Using these angles, the spin is
rotated and PN solver is run. Again, the value of ϕt1

Sn
of this iteration as ϕ3

Sn.
Iteration n > 3: First, we check if ϕ3

Sn > ϕ2
Sn. If so, the

initial spin is being rotated in the wrong direction
and for each subsequent iteration, ϕrot¼ϕ2

Sn−ðn−3Þ×
ϕcorr, if not, ϕrot ¼ ϕ2

Sn þ ðn − 2Þ × ϕcorr. Thus, we
brute force the initial direction of Sini until the required
direction of S is obtained at the reference frequency.
To apply this procedure with a higher tolerance, one

should reduce ϕcorr in subsequent iterations. For the
simulations produced here, no more than two or three
iterations in step two were required.
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