
Research Paper

A three-tiered intrusion detection system for

industrial control systems

Eirini Anthi 1,* Lowri Williams1 Pete Burnap1 and Kevin Jones2

1Department of Computer Science and Informatics, Queens Building, Cardiff University, 5 The Parade, Roath,

Cardiff CF24 3AA, Cardiff, UK and 2Digital Transformation Office, Airbus, Newport, UK

*Correspondence address. Department of Computer Science and Informatics, Cardiff University, Cardiff, UK. Tel: þ44

(0)29 2251 0056; E-mail: anthies@cardiff.ac.uk

Received 3 September 2020; revised 23 November 2020; accepted 21 January 2021

Abstract

This article presents three-tiered intrusion detection systems, which uses a supervised approach to

detect cyber-attacks in industrial control systems networks. The proposed approach does not only

aim to identify malicious packets on the network but also attempts to identify the general and finer

grain attack type occurring on the network. This is key in the industrial control systems environ-

ment as the ability to identify exact attack types will lead to an increased response rate to the inci-

dent and the defence of the infrastructure. More specifically, the proposed system consists of three

stages that aim to classify: (i) whether packets are malicious; (ii) the general attack type of mali-

cious packets (e.g. Denial of Service); and (iii) finer-grained cyber-attacks (e.g. bad cyclic redun-

dancy check, attack). The effectiveness of the proposed intrusion detection systems is evaluated on

network data collected from a real industrial gas pipeline system. In addition, an insight is provided

as to which features are most relevant in detecting such malicious behaviour. The performance of

the system results in an F-measure of: (i) 87.4%, (ii) 74.5% and (iii) 41.2%, for each of the layers, re-

spectively. This demonstrates that the proposed architecture can successfully distinguish whether

network activity is malicious and detect which general attack was deployed.
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Introduction

Critical national infrastructure concepts such as manufacturing, smart

grids, water treatment plants, gas and oil refineries, and healthcare

are heavily dependent on industrial control systems (ICSs). Such

systems include supervisory control and data acquisition (SCADA)

systems, which are computer systems responsible for gathering and

analysing real-time data, distributed control systems which is a spe-

cially designed automated control system that consists of geographic-

ally distributed control elements, and other smaller control systems

such as programmable logic controllers which are industrial solid-

state computers that monitor inputs and outputs and make logic-

based decisions for automated processes or machines [1]. Historically,

ICS networks and their components were protected from cyber-

attacks as they ran on proprietary hardware/software and were con-

nected in isolated networks with no external connection to the

Internet [2].

However, as the world is becoming more interconnected, there

has been a need to connect different ICS networks together and to

the Internet, allowing remote access and monitoring functionalities

of these systems. As a result, ICS are now subject to a range of secur-

ity vulnerabilities [2]. According to Industrial Control Systems

Cyber Emergency Response Team (ICS-CERT), the number of

cyber-attacks against ICS systems has significantly increased over

the past few years [3], some of which were of high impact. Such

attacks included the Stuxnet attack [4] which targeted the Iranian

nuclear enrichment plant and led to physical damages and delayed

operations, the Ohio Nuclear Power Plant attack [5] which crashed

the safety parameter display system, and the Ukrainian Power grid

attack [6] which left approximately 225,000 people without

electricity.

Given the importance of these systems, they are an attractive tar-

get to attackers. Thus, developing mechanisms that can
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automatically detect cyber-attacks in these networks is crucial.

Intrusion detection systems (IDS) which monitor and identify mali-

cious behaviour on network traffic have been extensively researched

and used in traditional IT infrastructures. However, limited effort

has been conducted in the designing and implementation of IDS that

are specifically tailored for ICSs [7]. Such tools play a key role in the

understanding the cyber-attack that has occurred and can aid a

faster and more efficient incident response rate.

ICS networks consist of specific characteristics which make the

development of IDSs challenging. First, ICSs have their own proto-

cols (e.g. Modbus, DNP3) which traditional IDSs neglect.

Moreover, as these systems are part of critical national infrastruc-

ture and handle sensitive processes, accessing the necessary data to

test and evaluate a proposed IDS may pose as a challenge. Because

of its cyber-physical nature, it is important to have access not only

to network/protocol information but also to information related to

physical process controls. However, the hardware of these systems is

very expensive, limiting the ability to set up ICS testbeds [7].

Applying traditional IDSs to ICS environments would be ineffi-

cient as they come with several limitations: (i) most conventional

IDSs are signature/rule/event-based which limits the number of

attacks they can detect and are inefficient against zero-day attacks;

(ii) popular IDSs such as SNORT and Bro are only efficient on trad-

itional IP-only networks and have not been designed to take into

consideration ICS-specific protocols [8] and (iii) existing IDSs lack

sufficient generality and flexibility to adapt to other systems [7].

To address the aforementioned limitations, this work examines

the viability of applying supervised machine learning to detect

cyber-attacks in ICSs. A machine learning-based IDS is adaptable

and more flexible, as they can automatically learn the general char-

acteristics from data, and thus can form decisions on unseen data

[9]. In addition, this approach does not require attack signatures or

pre-defined rules to detect attacks, and therefore, it can be effective

against zero-day attacks. As a result, this article proposes a three-

tiered IDS for the ICS environment which: (i) learns the normal be-

haviour of the system and identifies malicious activity on ICS/

SCADA networks; (ii) identifies the general attack type that has

occurred; and (iii) specifies the attack type even further by classify-

ing packets from (ii) as a specific attack type. Being able to detect

the generic type of the attack helps security engineers to quickly

understand the threat they have to combat. This is because there are

many forms of such attacks, that is, Denial of Service (DoS) [e.g.

ping flood, ping of death, bad cyclic redundancy check (CRC)].

However, if this detection can be expanded to also identify the exact

type of attack which has occurred, it is possible to respond even

more efficiently and launch the appropriate countermeasures. To

demonstrate the effectiveness of the proposed method, an annotated

Gas Pipeline dataset [10], which contains labelled packets from 7

generic attack categories and 35 specific attack categories, was used.

Previous research has mainly attempted to use machine learning

algorithms to distinguish between benign and malicious ICS traffic

and only one paper has attempted to identify the general attack type

that has occurred. Specifically, Beaver et al. [11] investigate how

supervised machine learning can be used to distinguish malicious be-

haviour in a gas pipeline ICS. They classify malicious packets as one

of seven main attack types. However, further analysis on Beaver’s et

al. [11] gas pipeline dataset showed that there was not enough ran-

domness among normal and attack behaviours [12]. As a result, the

machine learning algorithms detected the attacks with very high ac-

curacy (98–100%). This report [13] contains the details that classify

this dataset unsuitable for IDS research due to obvious correlations

between particular parameters and the result to be predicted.

Moreover, the main motivation of this article is not only to detect

general attack types but also to distinguish between 35 finer-grained

attacks.

According to the Cyber Security Incident Response Guide [14],

and National Cyber Security Centre, one of the toughest challenges

for organizations is to identify the type of cyber-attack which is

occurring on the network without having to perform an in-depth in-

vestigation, which can be a very time-consuming process. This is

particularly difficult in cases such as ICSs, where the different types

of attacks can be very similar (e.g. the slight modification of the

pressure values may not be detected) and can have the same initial

symptoms. Therefore, in the context of ICS, given that an attack

against these systems may have severe consequences and result in

hardware damage, injury, environmental impact, or even loss of life,

launching specific countermeasures to mitigate these attacks as soon

as they occur is critical. As a result, having a mechanism to not only

automatically identify malicious packets and their general attack

type (e.g. DoS), but also, provides information regarding the exact

type of attack (e.g. solenoid attack) is key to a faster, more efficient,

and targeted incident response to defend a critical infrastructure.

Particularly, the general attack type helps in identifying the implica-

tions of the attack. For instance, if a DoS is detected it is consequent

that a blackout might be caused. However, knowing the exact at-

tack that is occurring in the system, for instance, a ‘Negative

Pressure Attack’ has been identified, rather than a ‘Naive Malicious

Response Injection’ can significantly assist in locating the attack and

defending against it significantly faster by launching

countermeasures.

A contributions

Therefore, this article expands on Beaver’s et al. [11] approach in

the following ways:

• The data used to support the experiments provided in this article

were presented by Morris et al. [10], who document approaches

for sharing data for the ICS IDS research community. This data-

set was also collected from a gas pipeline ICS but is considered as

being more realistic than Beaver et al., as it contains more ran-

domness among benign and malicious scenarios.
• The main contribution of this article is not only to distinguish be-

nign/malicious packets or to identify the general attack type of

the malicious packets but to attempt to detect the specific type of

the attack that has been deployed by classifying malicious pack-

ets as 1 of 35 attack types. As machine learning offers early at-

tack detection, this information would add significant value

during incident response by rapidly reducing the time needed to

launch-specific countermeasures, and therefore, decreasing the

impact of the cyber-attack.
• In comparison to Beaver et al. [11], Morris’ et al. [10] dataset

contains more features, and thus in this article, their importance

towards identifying malicious behaviour is investigated.
• In this article, 10 supervised machine learning classifiers are eval-

uated based on previous ICS IDS research [11, 15, 16].

Related work

Several studies concerning ICS security have attempted to investigate

how both supervised and unsupervised machine-learning techniques

can be used to support the adaptive capabilities of automated IDSs.
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In addition to Beaver’s et al. [11] evaluations, Nader et al. [17]

use one-class classification techniques which are the Support Vector

Data Description and the Kernel Principal Component Analysis for

intrusion detection in SCADA systems. They demonstrate that their

approach can successfully detect intrusions; however, they do not

identify the type of attack which has occurred. Bigham et al. [18] in-

vestigate how statistical Bayesian networks can be adopted to reduce

false positive rates and increase the accuracy of anomaly detection

systems in SCADA networks. Moreover, Shengyi et al. [19] applied

common path mining techniques to develop a hybrid intrusion de-

tection system for power grids. The IDS uses features of signature

and specification-based IDSs and is able to classify system behaviour

over time, normal control operations, and cyber-attacks.

Nevertheless, this work is based on synchrophasor measurement

data, which can limit the applicability of this system.

Feng et al. [7] developed a multi-level anomaly detection system

for ICS, which uses packet signatures and LSTM networks, to suc-

cessfully detect anomalies in gas pipeline systems. Though do not at-

tempt to classify specific attack types. Parthasarathy and Kundur

[20] developed a bloom filter-based IDS for smart grid SCADA,

where the regular communication patterns of SCADA and the phys-

ical states of power systems have been used to implement light-

weight IDS that detects malicious activity. Goh et al. [21] proposed

a novel unsupervised approach to detect cyber-attacks in cyber-

physical systems using recurrent neural networks. They demon-

strated that this approach can successfully detect most cyber-attacks

with very low false-positive rates. Moreover, Maglaras and Jiang

[22] demonstrated that one-class support vector machine (OCSVM)

can be promising in detecting anomalies in SCADA communication

networks; however, they need to evaluate the proposed system fur-

ther. Maglaras et al. [23] also used OCSVM to implement novel IDS

named as K-OCSVM, which has the capability of detecting occur-

ring attacks with high accuracy.

In addition, Pan et al. [24] employed a Bayesian network to

graphically encode the causal relations among the available infor-

mation to create patterns with temporal state transitions, which

are used as rules in a proposed intrusion detection framework for

electric power systems. They demonstrated that the IDS was ef-

fective in detecting anomalies on the electric system. Kravich et al.

[2] used convolutional neural networks to detect cyber-attacks in

a secure water treatment plant. They demonstrated that this ap-

proach can successfully detect the majority of attacks with low

false-positive rates. Linda et al. [25] developed an IDS using a

combination of neural networks which successfully detected net-

work intrusions in a critical infrastructure testbed. Ghaeini et al.

[26], employed supervised machine learning algorithms to imple-

ment a stateful detector that focuses on identifying stealthy attacks

on ICSs.

Furthermore, Gao et al. [27] also developed a neural network-

based IDS which monitors the physical behaviour of a SCADA sys-

tem and detects artefacts of command and response injection

attacks. Inoue et al. [28] compare the efficiency of deep neural net-

works and OCSVM to detect anomalies in cyber-physical systems.

They found that deep neural networks is more efficient and gener-

ates lower false-positive rates. Jones et al. [29], proposed an SVM-

like algorithm which finds a description in a signal temporal logic

formula of the known region of behaviours. This approach often

creates a readable description of the known behaviours; however, if

the system behaviour does not allow for a short description in signal

temporal logic, this method will not work.

Finally, there are a few commercially available solutions that em-

ploy machine-learning algorithms to detect cyber-attacks provided

by companies such as Darktrace [30] and Veracode [31]. However,

there is no transparency of the methodology and algorithms

employed by these companies, and therefore it is not possible to dir-

ectly compare this work with these products. Finally, in their docu-

mentation, they focus mainly on identifying malicious activity and

do not attempt to classify the attack that is occurring on the

network.

To summarize these approaches, Table 1 shows existing IDSs for

ICS and categorizes them according to detection method, attack

type [binary (malicious/benign), general attack (e.g. DoS, reconnais-

sance), specific attack (e.g. setpoint attack, pump attack), and valid-

ation dataset]. We can see that although significant work has been

undertaken to identify malicious and benign traffic, only two previ-

ous papers have attempted to drill into the attack traffic in more de-

tail to categorize them as general types, and none to date have

identified specific attacks. We argue that this information can sig-

nificantly enhance the incident response process, as knowing the

specific attack may lead to launching the most effective and targeted

countermeasures.

Regarding the work of the two aforementioned papers that have

attempted to classify general attack types, one of them uses a dataset

that is not suitable for IDS research, the other one is based on syn-

chrophasor data which limits its ability to generalize to other sys-

tems. Finally, although previous research has also attempted to

distinguish between benign and malicious traffic, the majority of the

methods used are tailored to specific features derived from the spe-

cific ICSs (e.g. attributes from train’s brake system). As a result,

these are not comparable to this work. To the best of our know-

ledge, this article is the first to use machine learning to not only de-

tect the presence of a cyber-attack but also to detect finer-grained

attacks in a Gas Pipeline system.

Methodology

System overview
Figure 1 provides an overview of the proposed IDS architecture. In

more detail, on the left, there are various ICS components which

generate network data. The data are then being picked up from the

IDS tool which constantly listens to the network traffic. The first

stage includes the data preprocessing, where the relevant features

are being extracted from the network data. At the second stage, the

machine-learning algorithm will classify the packets as benign or

malicious. If the tool classifies the packet as malicious, then the third

and fourth layer will attempt to identify the general attack type and

the specific attack type. As a result, in the event of an attack, the

output of the proposed system is as follows: (i) benign/malicious; (ii)

if malicious the system classifies the packet into one of the seven

general attack types it has been trained on and (iii) it will also at-

tempt to identify the specific attack. Knowing both the general at-

tack type and specific attack that is occurring in the ICS

environment is critical to better understand the risk and implications

of the attack, but also to locate it and defend against it. In order to

identify which algorithms are best suited for the implementation of

the proposed system, a series of experiments were conducted and

discussed in the following sections.
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Gas pipeline ICS testbed
Mississippi State University’s in-house SCADA lab implemented a

scaled-down version of a real gas pipeline system (see Figure 2). The

system consists of three major components: sensors/actuators, a

communication network and a supervisory control; and operates in

three main modes: automatic, manual and off. Its main communica-

tion protocol is serial Modbus RTU. This system was used to

Table 1: summary of current work on IDSs for ICS

References Detection

method

Malicious/

Benign

General

attack type

Specific

attack type

Dataset

[11] Supervised þ þ � Gas pipeline (2013)

[17] Unsupervised þ � � Gas pipeline and water storage tank

[18] Supervised þ � � Electricity management system

[24] Hybrid þ þ � Synchrophasor system

[7] Unsupervised þ � � Gas pipeline dataset (2013)

[20] Bloom Filter þ � � ICS Modbus based data

[21] Unsupervised þ � � Secure water treatment plant (SWat)

[22] Unsupervised þ � � SCADA dataset

[18] Specification-based þ � � Power system

[2] Unsupervised þ � � SWat

[25] Unsupervised þ � � ICS Modbus based data

[28] Unsupervised þ � � SWat

[29] Supervised � � � Train’s brake system

[26] Supervised þ � (focused on one at-

tack ZeRA)

� Secure water treatment plant (SWat)

Current article Supervised 1 1 1 Gas pipeline dataset (2015)

Figure 1: Architecture of the proposed three-tier IDS system for ICS.

Figure 2: Gas pipeline ICS testbed.
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generate both benign and malicious data in Turnipseed [12], where

more information on the system’s specifications can be found.

Data collection
A new framework for collecting data was used to generate the data-

set discussed in this work. This new method allowed the creation of

a more randomized, realistic and representative dataset. Specifically,

to create a more authentic benign dataset, auto IT scripts to simulate

real operator activity and to switch between the different operation-

al modes were used. Specific details regarding the generation of the

new more realistic dataset are discussed in Morris et al. [10].

Similarly, in order to generate the malicious dataset, scripts that

randomized and parameterized the launch of a range of attacks were

used [12]. The provided dataset represents network packets that

were delivered to either the RTU or MTU unit. Each instance in the

dataset contains mainly network and payload information.

Cyber-attacks in ICS ecosystems

Multiple studies [12, 32–34] have demonstrated that ICSs are

most vulnerable to attacks that fall under four general categories:

interception, interruption, modification and fabrication.

Specifically:

• Interception: Attackers are able to gain information about the

devices, their network behaviour, their normal operation, the

system information, etc. An example of such an attack is man-in-

the-middle.
• Interruption: Attackers use such attacks in order to disrupt and,

most of the time, make communications between the devices in

the ICS network completely unavailable. An example of such an

attack is a DoS.
• Modification: These attacks allow attackers to alter the values,

parameters, or states in a system. For example, in the gas pipeline

system, an attacker would have the capability to modify the set-

point parameters which control the pressure levels, causing se-

vere damage to the system.
• Fabrication: The attacker is able to craft new packets that may

seem to be legitimate, but contain altered values that intend on

causing damage to the system.
Popular cyber-attacks that fall under the aforementioned catego-

ries and thus included within [12] are:

1. Naive Malicious Response Injection;

2. Complex Malicious Response Injection;

3. Malicious State Command Injection;

4. Malicious Parameter Command Injection;

5. Malicious Function Code Injection;

6. DoS and

7. Reconnaissance.

Such attacks may further be broken down into finer-grained at-

tack types. Table 2 describes the 35 specific attacks that were

deployed on the ICSs and their effects.

Final dataset
Figures 3–5 show the overall distribution of packets across all

classes for each experiment. More specifically, the dataset consists

of 60,048 malicious and 214,580 benign packets (Fig. 3). Figure 4

demonstrates the distribution of packets across the seven general at-

tack types, with the (4) ‘Malicious Parameter Command Injection’

attack having the highest number of packets (20,412) and the (6)

‘DoS’ attack having the lowest (2,176). Similarly, Fig. 5

demonstrates the distribution of packets across the 35 specific attack

types, with (35) ‘Slow attacks’ having the highest number of packets

(2,204) and (20) ‘Device scan attack’ having the lowest (666).

Supervised machine learning

The experiments presented in this article were performed using

Weka [35], a popular and widely used suite of machine learning

software.

Feature selection
In order to perform machine learning classification experiments, it is

essential to identify which attributes best describe the dataset. In this

case, the instances within the dataset contain attributes associated

with the RTU’s network and payload information. The complete set

of features used to evaluate a series of machine-learning classifiers is

shown in Table 3. However, for the experiments conducted in this

article, features that represented identifying properties were

removed (i.e. address and time) to ensure that the model was not

making decisions dependent on the specific device or time.

To gain a better insight as to which features are most relevant

for distinguishing attack types, a selection filter

(InfoGainAttributeEval) was applied. This filter evaluates the worth

of an attribute by measuring the information gain with respect to

the class. The filter was applied to all attributes for all three different

experiments. The results are shown in Table 4.

The results demonstrate that for all three experiments the top

three most important features are the ‘CRC, the Modbus frame

length, and function code values’. Specifically, the CRC allows the

system to check for errors within a frame that is sent to either the

master or the slave device. An attacker could potentially transmit

altered/malicious CRC values to cause attacks such as DoS. The

‘Modbus frame’ feature is fixed for each command or response

query. In the gas pipeline system, a set of write and read commands

are used to repeatedly perform block writes and block reads from

specific registers. To detect attacks, frames that are not of specific

length may be detected as anomalous [12]. Finally, during normal

behaviour, the function codes used in the gas pipeline system are

usually represented as read (0�03) and write (0�16) commands.

However, there exist 256 possible function codes. Some of these

function codes can potentially be used for malicious purposes. For

example, the 0�08 function code is generally used for diagnostics

purposes, but it can be used to force a slave device into a listen only

mode.

Conversely, for all three experiments, the bottom three features

are ‘pump state, solenoid value and control scheme’. Each of these

features is represented by binary values. For example, the ‘pump

state’ indicates off (0) or on (1) state. The system can be put into a

critical state if an attacker was able to change the system mode to

manual and turn the pump on, causing serious physical damage

[12]. The ‘solenoid’ value also has two possible values: closed (0) or

opened (1). Similar attacks to the pump may be performed, affecting

the system’s pressure and causing damage. Finally, the ‘control

scheme’ in the gas pipeline determines whether the system will be

controlled by the ‘pump’ or by the ‘solenoid’.

Intuitively, given that the top three features have specific values

under normal behaviour, but can accept a range of other values

which may indicate abnormal behaviour, such features justifiably in-

fluence the classifier in distinguishing whether an attack has

occurred. On the other hand, the lowest three features are repre-

sented only by binary values which are easier to mask attacks,
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making it more difficult for the classifier to distinguish malicious be-

haviour. Understanding which features are most relevant to the clas-

sifier is important as it identifies which features must be present in

order to best discriminate between the classes. Features which are

least relevant to the classification problem may add noise and lead

to inaccurate predictions.

Classification experiments
To explore how well classification algorithms can detect cyber-

attacks in the ICS environment, the evaluation methodology

described in Anthi et al. [36] was used.

More specifically, in order to perform classification experiments,

a random subset of 60% of each dataset described in ‘Use case’

Table 2: Thirty-five cyber-attacks in which compromise ICS systems’ vulnerability [12]

ID Name Type Description

1–2 Setpoint attacks MPCI Changes the pressure set point outside and inside of the range of normal operation

3–4 PID gain attacks MPCI Changes the gain outside and inside of the range of normal operation

5–6 PID reset rate attacks MPCI Changes the reset rate outside and inside of the range of normal operation

7–8 PID rate attacks MPCI Changes the rate outside and inside of the range of normal operation

9–10 PID deadband attacks MPCI Changes the dead band outside and inside of the range of normal operation

11–12 PID cycle time attacks MPCI Changes the cycle time outside and inside of the range of normal operation

13 Pump attack MPCI Randomly changes the state of the pump

14 Solenoid attack MPCI Randomly changes the state of the solenoid

15 System mode attack MPCI Randomly changes the system mode

16–17 Critical condition attacks MPCI Places the system in a critical condition. This condition is not included in normal activity

18 Bad CRC attack DoS Sends Modbus packets with incorrect CRC values. This can cause denial of service

19 Clean registers attack MFCI Cleans registers in the slave device

20 Device scan attack Recon Scan for all possible devices controlled by the master

21 Force listen attack MFCI Forces the slave to only listen

22 Restart attack MFCI Restart communication on the device

23 Read Id attack Recon Read ID of slave device. The data about the device are not recorded, but is performed

as if it were being recorded.

24 Function code scan attack Recon Scans for possible functions that are being used on the system. The data about the

device are not recorded, but is performed as if it were being recorded

25–26 Rise/Fall attacks CMRI Sends back pressure readings which create trends on the pressure reading’s graph

27–28 Slope attacks CMRI Randomly increases/decreases pressure reading by a random slope

29–31 Random value attacks NMRI Random pressure measurements are sent to the master

32 Negative pressure attack NMRI Sends back a negative pressure reading from the slave

33–34 Fast attacks CMRI Sends back a high set point then a low set point which changes ‘fast’

35 Slow attacks CMRI Sends back a high set point then a low set point which changes ‘slow’

Figure 3: Distribution of packets across attack detection.

Figure 4: Distribution of packets across seven general attack types.

Figure 5: Distribution of packets across 35 specific attack types.

Table 3: Twenty packet features

ID Feature Type

1 Address Network

2 Function Command payload

3 Length Network

4 Set point Command payload

5 Gain Command payload

6 Reset rate Command payload

7 Deadband Command payload

8 Cycle time Command payload

9 Rate Command payload

10 System mode Command payload

11 Control scheme Command payload

12 Pump Command payload

13 Solenoid Command payload

14 Pressure measurement Command payload

15 CRC rate Network

16 Command response Network

17 Time Network
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section was selected for training, with the remaining 20% used for

testing and 20% used for evaluating the performance of the trained

models even further on an unseen dataset. When using the

percentage-split function in Weka, the software splits the data so

that the distribution of classes in the original dataset is reflected in

each dataset produced in the split. In this case, the training datasets

for each experiment reflect similar distributions of classes as noted

in Figs 3–5.

According to the ‘no free lunch’ theorem [37], there is no univer-

sally best learning algorithm. That is, the choice of algorithm should

be based on its performance for that particular problem and the

properties of data that characterize the problem. As a result, a var-

iety of classifiers distributed as part of Weka were evaluated.

More specifically, for the specific classification problems consid-

ered in this work, 10 classifiers were selected based on their ability

to support multi-class classification and high-dimensional feature

space. The classifiers included:

• generative models that consider conditional dependencies in the

dataset or assume conditional independence (e.g. Bayesian

Network, Naive Bayes) and
• discriminative models that aim to maximize information gain or

directly maps data to their respective classes without modeling

any underlying probability or structure of the data (e.g. J48

Decision Tree, Support Vector Machine).
Moreover, the aforementioned algorithms were also chosen as

they produce classifications models that can be easily interpreted,

allowing a better understanding of the classification results.

Results
Tables 5 and 6 report the overall weighted-averaged performance

for all 10 classifiers for both the testing and validation datasets, re-

spectively. To gain a better insight into the performance of the clas-

sifiers across the experiments, the confusion matrices in Tables 7

and 8, which show how the predicted classes for individual packets

compare against the actual ones, were analysed.

Detecting cyber-attacks

When detecting malicious behaviour, the Random Forest achieved

the best classification performance with an F-measure of 87.4%.

Overall, the confusion matrix in Table 7 demonstrates some confu-

sion. This could be explained by the fact that the attacks that were

performed during data collection involve altering the values of the

core features of the gas pipeline in a discrete manner, for example,

changing the ‘pump state’ from being on or off.

Classifying general attack types

When distinguishing the type of attack among seven attack types,

the J48 classifier achieved the best classification performance with

an F-measure of 74.5%. Overall, the confusion matrix in Table 8

also demonstrates some confusion. In particular, the first (‘Naive

Malicious Response injection’) and the second (‘Complex malicious

response injection’) attacks and the third (‘Malicious state command

injection’) and fourth (‘Malicious parameter command injection’)

are often misclassified. This misclassification can be explained by

the fact that such attack types are based upon other attacks, and al-

though they have incurred minor modifications, their compositions

are similar.

On the other hand, the fifth (‘Malicious function code injec-

tion’), sixth ‘(DoS’) and seventh (‘Reconnaissance’) incur very little

confusion. This may be explained by the fact that although normal

function codes are usually represented by two values, an attacker

can inject up to 256 different values. As a result, this can be easily

detected. Finally, reconnaissance activity can also be easily distin-

guished as it is significantly different from all the other attacks in the

dataset.

Table 4: Ranked features following info gain ratio attribute filtering

Detecting cyber-attack General attack type Specific attack type

ID Ranking ID Ranking ID Ranking

15 0.1532478 2 1.541319 2 1.63269

3 0.0938004 3 1.421765 3 1.46279

2 0.0837514 15 0.97309 15 1.35428

14 0.0379864 16 0.268157 14 0.67725

16 0.0244906 16 0.094191 6 0.38805

6 0.0066772 6 0.0629 4 0.35651

4 0.0052191 4 0.060944 16 0.27546

5 0.0037535 7 0.03744 7 0.25728

9 0.0034525 5 0.013275 5 0.1134

8 0.0030155 10 0.009748 8 0.09489

7 0.0020796 8 0.008695 9 0.08478

10 0.004007 9 0.006817 10 0.03639

12 0.0000764 12 0.004089 12 0.02187

13 0.0000213 13 0.001602 13 0.01008

11 0 11 0.0022 11 0.00345

Table 5: Weighted average classification results across 10 classifiers on a testing dataset

Detecting cyber-attack General attack type Specific attack type

Classifier P R F P R F P R F

Bayesian network 86.8 87.4 86.8 76.3 74.7 70.1 46.7 37.9 37.5

Naı̈ve Bayes 86.1 83.1 78.1 73.1 58.9 52.8 0.0 23.1 0.0

J48 85.5 86.0 85.7 78.8 76.4 73.0 54.1 42.2 43.2

Zero R 0.0 79.1 0.0 0.0 34.0 0.0 0.0 2.9 0.0

One R 82.3 83.3 80.1 0.0 68.5 0.0 0.0 13.0 0.0

Simple logistic 85.5 82.5 77.1 0.0 71.8 0.0 0.0 26.5 0.0

Support vector machine NA NA NA 0.0 72.1 0.0 0.0 23.7 0.0

Multi-layer perception 83.8 83.7 80.2 64.4 72.3 65.1 0.0 27.3 0.0

Random forest 87.9 88.4 87.8 79.2 75.6 72.4 58.6 43.4 44.5

Decision table 86.0 85.9 83.6 0.0 70.7 0.0 0.0 28.4 0.0

Notes: They highlight the best performing classifiers for each problem.
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Classifying specific attack types

When distinguishing the specific type of attack among 35 attack

types, the J48 classifier achieved the best classification performance

with an F-measure of 41.2%. Intuitively, this is due to the fact that

the classifiers (which are often used for binary classification) are

faced with a multi-class classification problem. Thus, further experi-

ments are required to determine whether other approaches, such as

ensemble learning, or dividing the dataset according to each attack

and evaluating models on each attack type, improve the

performance.

The confusion matrix for this classification is too large to be

included in this article. However, all attacks from the first to the

seventeenth (Table 2) are often misclassified as the eighteenth attack

(‘Bad CRC Attack’). Decision Tree classifiers operate by splitting

the data based on rule/decision boundaries. In the first two experi-

ments, these algorithms seemed to perform very well. However, due

to the way it operates, when the algorithm is presented with 35

classes, it creates too many boundaries while not having enough dis-

tinct features to base its decisions upon. This might explain why in

this experiment its performance is quite poor. Nevertheless, detect-

ing whether a ‘Device scan attack, Force listen attack’, ‘Read Id at-

tack’ and a ‘Negative pressure attack’ has occurred or not

demonstrated very little confusion, with all packets being correctly

classified.

Use case
Although the architecture of the system proposed in this work has

been evaluated on a Gas Pipeline dataset, such an approach can also

be applied to other ICSs (e.g. water treatment plants). Intuitively,

the features used to evaluate the machine learning classifiers in this

article will change depending on the features used to describe the

packets collected from other ICS environments.

Moreover, the experiments presented in this article were con-

ducted in an offline setting. This allowed us to investigate the feasi-

bility of the machine-learning approaches. Nevertheless, the positive

findings reported herein demonstrate that the proposed system can

be implemented as a lightweight machine-learning tool, which can

sit on a pipeline to monitor ICS networks and detect attacks in real-

time. In more detail, the system can use a network packet sniffer to

monitor packets and extract the relevant attributes in order to sup-

port the automated classification of malicious packets and their at-

tack types. These results can significantly help in locating the cyber-

attack and launching specific countermeasures.

Conclusion

In this article, a novel three-tiered IDS for the ICS environment is

presented. The system consists of three stages as follows: (i) identi-

fies malicious packets on the network when an attack is occurring;

(ii) classifies the type of the attack that has been deployed from

seven main attack types and (iii) specifies the attack type even fur-

ther by classifying packets from (ii) as 1 of 35 attack types.

Currently, only two previous papers have attempted to drill into the

attack traffic in more detail to categorize them as general types, and

none to date have identified specific attacks. Knowing both the gen-

eral attack type and specific attack that is occurring in the network

is extremely important, as they help understand the risk, impact,

and what function has been affected. As a result, they significantly

enhance the response and defence time.

To evaluate the performance of the proposed system a range of

supervised machine learning classifiers were applied on data from a

gas pipeline ICS. The performance of the system’s three core func-

tions results in an F-measure of: (i) 87.4% (Random Forest); (ii)

74.5% (J48) and (iii) 41.2% (J48). This demonstrates that the pro-

posed architecture can successfully distinguish between malicious

Table 8: Identifying general attack type confusion matrix (J48)

Predicted

1 2 3 4 5 6 7

Actual 1 1,711 653 0 0 0 0 0

2 1,263 2,505 0 0 0 0 0

3 0 0 652 1,805 0 41 0

4 0 0 176 6,249 0 72 0

5 0 0 0 0 1,736 0 0

6 0 0 14 308 0 276 0

7 0 0 0 0 17 0 1,080

Table 6: Weighted average classification results across 10 classifiers on an unseen validation dataset

Detect cyber-attack General attack type Specific attack type

Classifier P R F P R F P R F

Bayesian network 84.4 85.1 84.6 75.9 75.5 72.4 44.8 33.8 34.1

Naı̈ve Bayes 85.4 82.1 77.1 71.9 59.9 54.5 0.0 21.7 0.0

J48 85.7 86.3 85.9 77.5 76.7 74.5 52.9 40.7 41.2

Zero R 0.0 77.5 0.0 0.0 35.0 0.0 0.0 3.2 0.0

One R 79.5 81.0 77.5 0.0 69.5 0.0 0.0 15.1 0.0

Simple logistic 84.3 81.3 75.8 0.0 73.1 0.0 0.0 25.5 0.0

Support vector machine NA NA NA 0.0 73.5 0.0 0.0 23.7 0.0

Multi-layer perception 85.2 83.4 79.7 63.8 72.4 65.3 0.0 25.5 0.0

Random forest 87.5 88.0 87.4 79.1 76.7 74.2 51.8 39.2 39.1

Decision table 84.6 84.7 82.5 0.0 70.7 0.0 0.0 26.7 0.0

Notes: They highlight the best performing classifiers for each problem.

Table 7: Attack detection confusion matrix (random forest)

Predicted

Malicious Benign

Actual Malicious 11,458 7,100

Benign 2,785 61,046
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and benign behaviour and detect the general type of attack which

has occurred. Although the performance of classifying specific

attacks is lower than expected, this initial analysis is promising, as

this is the first step towards identifying an appropriate classification

approach for specific attacks. This is key in ICS ecosystems, as

knowing the exact attack that is occurring can significantly help in

locating the cyber-attack and launching even more specific

countermeasures.

In addition to classification experiments, the study provides an

insight as to which features are most relevant in detecting malicious

behaviour and distinguishing among different attack types in ICSs.

The findings demonstrate that ‘CRC, Modbus frame length, and

function code’ are the top three most important features which indi-

cate malicious activity in a gas pipeline system. An analysis of the

features that are most relevant to the classifier is important as it

identifies which features must be present in order to best discrimin-

ate between the classes. On the other hand, it least relevant features

may add noise and lead to inaccurate predictions. Although the

reported results are intuitive, further research and evaluation are

required to generalize these findings across other ICS systems.
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