
1600  |   	﻿�  Magn Reson Med. 2021;86:1600–1613.wileyonlinelibrary.com/journal/mrm

Received: 12 May 2020  |  Revised: 20 January 2021  |  Accepted: 24 January 2021

DOI: 10.1002/mrm.28730  

F U L L  P A P E R

Toward more robust and reproducible diffusion kurtosis imaging

Rafael N. Henriques1  |   Sune N. Jespersen2,3  |   Derek K. Jones4,5  |   Jelle Veraart6

1Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
2Center of Functionally Integrative Neuroscience (CFIN) and MINDLab, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
3Department of Physics and Astronomy, Aarhus University, Aarhus, Denmark
4CUBRIC, School of Psychology, Cardiff University, Cardiff, UK
5Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
6Center for Biomedical Imaging, New York University Grossman School of Medicine, New York, NY, USA

This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original 
work is properly cited.
© 2021 The Authors. Magnetic Resonance in Medicine published by Wiley Periodicals LLC on behalf of International Society for Magnetic Resonance in Medicine.

Correspondence
Jelle Veraart, Center for Biomedical 
Imaging, New York University Grossman 
School of Medicine, 660 First Avenue, New 
York, NY 10016, USA.
Email: jelle.veraart@nyulangone.org

Funding information
Wellcome Trust, Grant/Award Number: 
096646/Z/11/Z and 104943/Z/14/Z; 
National Institute of Neurological Disorders 
and Stroke, Grant/Award Number: R01 
NS088040; Engineering and Physical 
Sciences Research Council, Grant/Award 
Number: EP/M029778/1; National Institute 
of Biomedical Imaging and Bioengineering, 
Grant/Award Number: P41 EB017183 and 
R01 EB025133

Abstract
Purpose: The general utility of diffusion kurtosis imaging (DKI) is challenged by its 
poor robustness to imaging artifacts and thermal noise that often lead to implausible 
kurtosis values.
Theory and Methods: A robust scalar kurtosis index can be estimated from powder-
averaged diffusion-weighted data. We introduce a novel DKI estimator that uses this 
scalar kurtosis index as a proxy for the mean kurtosis to regularize the fit.
Results: The regularized DKI estimator improves the robustness and reproducibil-
ity of the kurtosis metrics and results in parameter maps with enhanced quality and 
contrast.
Conclusion: Our novel DKI estimator promotes the wider use of DKI in clinical 
research and potentially diagnostics by improving the reproducibility and precision 
of DKI fitting and, as such, enabling enhanced visual, quantitative, and statistical 
analyses of DKI parameters.

K E Y W O R D S
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1  |   INTRODUCTION

Despite a growing interest in biophysical models of diffusion 
in white matter to develop specific biomarkers of microstruc-
tural changes,1 signal representations, for example, diffusion 
tensor imaging (DTI)2 or diffusion kurtosis imaging (DKI),3 
retain the potential to become invaluable tools in diagnos-
tic and clinical research settings. Such signal representations 
provide metrics that are highly sensitive to microstructural 

changes associated with development,4,5 aging 6,7, disease and 
disorder without adopting (often contested1,8-10) model as-
sumptions. An extensive literature has demonstrated the sen-
sitivity of DKI parameters to white and gray matter alterations 
in, for example, aging,7,11,12, stroke,13,14-17 traumatic brain 
injury,18-20 multiple sclerosis,21 schizophrenia,22,23 autism 
spectrum disorder,24,25 epilepsy,26,27 migraine,28 Parkinson’s 
Disease,29 and Alzheimer’s disease.30,31 Despite a focus on 
neuroapplications, DKI also has emerging applications in 
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body MRI.32,33 However, sensitivity is not enough; diagnos-
tics and clinical research may only adopt biomarkers that are 
also accurate, precise, and robust.34

Technically, DKI forms a straightforward extension of 
DTI and provides, aside from the diffusion tensor, an esti-
mate of the diffusion kurtosis tensor which quantifies the 
degree of directional non-Gaussian diffusion.3,35,36 DKI 
parameters, for example, the mean kurtosis (K), radial kur-
tosis (K⊥), and axial kurtosis (K‖),

35-37 have been shown to 
yield clinically relevant information that is not captured by 
a more conventional DTI representation. Moreover, DTI pa-
rameters (eg, mean diffusivity, radial diffusivity, axial diffu-
sivity and fractional anisotropy38) are themselves estimated 
more accurately when evaluated within the DKI framework 
(ie, estimating the diffusion tensor and kurtosis tensor si-
multaneously).39 Compared to DTI, DKI requires a slightly 
more extensive scan protocol in the sense that there must 
be at least 3 distinct b-values (typically one of these is set 
to b = 0), which differ only in their gradient magnitude.3,40 
Given the widespread availability of accelerated image ac-
quisition techniques such as simultaneous multiband im-
aging,41,42 data compatible with whole-brain DKI-analysis 
can be acquired in a few of minutes, thereby facilitating 
clinical utility. Moreover, many recent large cohort stud-
ies, for example, the Human Connectome Project,43,44 UK 
Biobank,45 Adolescent Brain Cognitive Developement,46 
and the Cambridge Centre for Ageing Neuroscience 
(CamCAN),47,48 provide now large-scale multishell data 
that are well-suited to DKI analyses.

Unfortunately, DKI has been challenged ever since its 
introduction by a poor robustness to imaging artifacts and 
thermal noise that often leads to non-physical kurtosis val-
ues during the fitting, especially in voxels with very low 
radial diffusivity.37,49-51 Indeed, implausible negative values 
are ubiquitous in many kurtosis maps, hampering visual, 
quantitative, and statistical analysis of the data. Advances in 
artifact correction, noise removal, and constrained param-
eter estimation have reduced, but not eliminated the prob-
lem.37,49,52-55 Alternatively to the full tensor estimations, 
a scalar kurtosis quantity can be obtained from diffusion-
weighted signals averaged across different isotropically 
distributed gradient directions (and for each individual b-
value): that is, the powder kurtosis K̇,10,12,56 distinct from 
mean kurtosis. Due to the higher signal-to-noise ratio 
(SNR) of the powder signals and decreased number of es-
timated model parameters, K̇ can be computed with higher 
precision than other kurtosis tensor derived metrics. We 
will demonstrate in this work that K̇ can be used to provide 
a robust prediction of the mean kurtosis without the need to 
estimate the kurtosis tensor. However, the powder-averaged 
signal does not allow for the estimation of directional kur-
tosis values, which have been shown to provide unique in-
formation in well-aligned structures.57-59 Moreover, a robust 

estimation of the full kurtosis tensor is required for biophys-
ical modeling60-62 and tractography.63-65

Here we propose and evaluate a novel technique for more 
robust and precise estimation of the full kurtosis tensor and 
derived metrics. We introduce a regularized DKI estimator in 
which the estimated mean kurtosis is evaluated against a ro-
bust prediction of the mean kurtosis, which in turn is derived 
from the powder kurtosis. We will describe the technical de-
tails and demonstrate how they improve the reproducibility, 
robustness and precision of DKI parameters.

2  |   METHODS

2.1  |  Diffusion kurtosis imaging

DKI provides a representation of the diffusion-weighted sig-
nal S in terms of the second and fourth cumulant as a function 
of the diffusion-weighting strength,3 or b-value, b. In 1D or 
in the case of isotropic diffusion,

with DAPP and KAPP the apparent diffusion and apparent kur-
tosis coefficients, respectively. Since proton diffusion in bio-
logical tissue, e.g. brain white matter, is typically anisotropic, 
3D diffusion and kurtosis tensors are needed to describe the 
orientational dependence of the diffusion-weighted signal 
adequately40,65:

Here, g is the unit vector along which the diffusion-weighting 
gradient is applied, and Dij represents the ijth element of the 
fully symmetric second-order diffusion tensor D for which a 
third of the trace equals the mean diffusivity D. In addition, Wijkl 
denotes the ijklth element of the fully symmetric fourth order 
diffusion kurtosis tensor W. Because both tensors are fully sym-
metric, D and W have 6 and 15 degrees of freedom, respectively.

From D and W, various diffusion and kurtosis param-
eters can be derived.35,37,38,66,67 Fractional anisotropy 
(FA), mean diffusivity (D), radial diffusivity (D⊥), axial 
diffusivity (D‖), mean kurtosis (K), radial kurtosis (K⊥), 
and axial kurtosis (K‖) are amongst the most widely ad-
opted DKI parameters.35,36,62,65 Without loss of generality 
we here limit ourselves to the original definition of mean 
kurtosis K, computed by evaluating the apparent kurtosis 
from the KAPP(g) along a large number of directions g fol-
lowed by averaging.

(1)logS(b)=S|b=0−bDAPP+
1

6
b2D2

APP
KAPP+�(b3),
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2.2  |  Powder kurtosis

Analogous to Equation (1), the decay of the powder-averaged 
signals Ṡ as a function of b can be approximated using the 
cumulant expansion10,12:

where Ḋ and K̇ are the scalar diffusivity and excess-kurtosis 
of powder signals, respectively. Since powder-averaged signals 
are independent of the orientation distribution of microscopic 
components,56,68-70 the scalar quantity K̇ extracted from these 
signals are decoupled from mesoscopic properties such as tis-
sue dispersion or fiber architecture configurations.

2.3  |  Robust prediction of mean kurtosis

In this section, we will present 3 strategies to predict the mean 
kurtosis K̂ without relying on the full tensor. First, from the 
powder kurtosis, K̂ can be computed analytically10 from the 
signal in the limit b → 0:

with

The correction term � mainly depends on the anisotropy cap-
tured by the elements of the diffusion tensor Dij. Importantly, 
the derivation of this expression relies on the mean kurtosis ten-
sor definition proposed by Hansen et al,36,67 which was shown 
to present nearly identical contrast to the original mean kurtosis 
definition K.36

Second, for an isotropic diffusion tensor D, the correc-
tion term � is zero and K̇ yields an accurate prediction of the 
mean kurtosis:

Third, for finite b-values, a mean kurtosis prediction can be ob-
tained from K̇ and the diffusion tensor D using a polynomial 
regression model in which the thousands of non-problematic 
voxels, that is, positive apparent kurtosis in each direction, serve 
as training data. Note that due to the strong dependence of DKI 
parameters on scan settings, b-values,71 and subject-specific al-
teration of the underlying tissue microstructure, the training vox-
els must be sampled from the same subject or from datasets with 
the same acquisition parameters. In this strategy, coined voxel 
quality transfer, the polynomial coefficients �N are estimated 

using multivariate polynomial regression in which the parame-
ters D, K̇, and � = D2

11
+ D2

22
+ D2

33
+ 2D2

12
+ 2D2

13
+ 2D2

23
 are 

included up to the Nth order. Hence,

with �N a multivariate polynomial function of order N. In this 
work N = 3.

To summarize, the predicted mean kurtosis K̂ can be es-
timated robustly from the diffusion tensor D and the powder 
kurtosis K̇ using 3 strategies: (a) powder kurtosis with analyt-
ical correction, (b) without analytical correction, or (c) voxel 
quality transfer using polynomial regression. Where deemed 
relevant, the strategy will be specified using the superscript 
index. If not specified, K̂ ≡ K̂

(3)
 as motivated by our re-

sults (see below).

2.4  |  Regularized kurtosis fitting

After establishing a robust prediction of the mean kurtosis K̂ 
(using 1 of the 3 strategies described above), we will use this 
metric to regularize the DKI fitting. Here we propose the fol-
lowing regularized nonlinear least squares (NLS) estimator:

with � the regularization weight and h the operator that com-
putes the mean kurtosis K from the tensor coefficients �.36,67 
Note that exp( − B�) is an alternative formulation of the DKI 
model in Equation (2) in which B represent the extended b-
matrix.72 For � = 0, the estimator reduces to the ordinary NLS 
estimator, a widely adopted estimator for DTI and DKI.37,49,73

We hypothesize that the prediction of the mean kurtosis 
K̂ from the powder-averaged data is a much more robust and 
reproducible metric than K estimated from the fitted kurtosis 
tensor and, as such, the L2 norm of the difference between K 
and K̂ regularizes and stabilizes the DKI fit.

The nonlinear fitting is initiated by a starting point ob-
tained by fitting the DKI model using the ordinary NLS 
estimator. In the few cases where the estimator does not con-
verge to a plausible solution, the estimation is repeated with a 
starting point that is the result of a constrained DKI fitting in 
which positivity of KAPP(g) is imposed.

2.5  |  Alternative fitting strategies

We compare performance of the regularized NLS estimator to 
commonly used fitting strategies: (a) ordinary NLS, (b) ordi-
nary NLS after smoothing the data with a 2D isotropic Gaussian 
filter with a [5 × 5] kernel and full-width-half-maximum of 
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1

6
b2Ḋ
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1.25 times the voxel size, and (c) constrained NLS. The con-
strained NLS estimator solves the same objective function as 
the ordinary NLS estimator, but imposes one or more con-
straints on the estimated parameters.37 Here, we only adopted 
the constraint that the apparent kurtosis coefficient KAPP(g) 
must be positive in each gradient direction g.

2.6  |  Data

2.6.1  |  Simulated data

Monte Carlo simulations with 2500 trials were performed to 
evaluate the performance of the regularized DKI estimator. 
For each trial, diffusion-weighted signals were generated by 
evaluating the DKI signal for the diffusion encoding scheme 
of our study-specific data (vide infra). The ground truth dif-
fusion tensor and diffusion kurtosis tensor coefficients were 
randomly sampled from the plausible DKI estimates of the 
HCP data. Gaussian noise was added to the simulated data 
with a corresponding SNR of 30 for the non-diffusion-
weighted signal. We opted for Gaussian noise instead of 
complex Gaussian noise to avoid the Rician noise bias as a 
confound in our interpretation.74 The effect of Rician bias on 
the estimation of DKI parameters has previously been stud-
ied and documented in detail.49,72,75

2.6.2  |  Study-specific MRI data

Data were collected under the approval of the Cardiff 
University School of Psychology Ethics Committee. Five 
healthy volunteers were recruited and data were collected 
on 2 different scanning sessions with exactly the same im-
aging protocol on a Siemens Connectom 3T MR scanner 
using a 32-channel receiver coil. For each volunteer, the 2 
test-retest scanning sessions were performed on the same day 

interleaved by a short break. In both sessions, subjects were 
re-positioned by the same operator. The repeated images 
were analyzed individually, without data averaging.

The diffusion gradients were characterized by 
Δ∕� = 30∕15 ms and maximal gradient amplitude of 78 mT∕m;  
note that in this work the full power of the Connectom 
gradient system was not exploited to ensure translation of 
the findings to clinical scanners (where gradient amplitudes 
of 80 mT/m are prevalent). Diffusion weighting was ap-
plied along 30 isotropically-distributed gradient directions76 
for b = 0.5, 1, and 2.5 ms∕μm2, with TR∕TE: 3500∕66 ms, 
matrix: 88 × 88, and 54 slices with a spatial resolution of 
2.5 × 2.5 × 2.5 mm3. Data acquisition was accelerated using 
simultaneous multiband (SMS = 2) and GRAPPA (R = 2), 
but partial Fourier encoding was turned off. In addition, 4 
non-diffusion-weighted images were acquired with the same 
and reversed phase encoding to enable susceptibility-induced 
geometrical correction. The total acquisition time was 6 m 15 
seconds per session.

2.6.3  |  Additional MRI data

Additional experiments are based on arbitrarily selected 
data sets from various public neuroimaging repositories (eg, 
Openneuro) that include multi-shell diffusion-weighted MRI 
data. We selected data from a wide variety of (clinical) re-
search projects: MGH Adult Diffusion Data from the Human 
Connectome Project (HCP,43,44,77), the MASiVar project,78 
the Mexican substance use disorder database neuroimaging 
dataset (SUDMEX),79-81 and Cambridge Centre for Ageing 
Neuroscience (CamCAN) dataset inventory.47,48 Although 
all datasets meet the minimal requirements for DKI analysis, 
various scan and subject parameters vary widely. A compre-
hensive summary of the protocols and subjects is presented in 
Table 1—full protocol details can be found on each project’s 
resource pages.

T A B L E  1   Overview of the scan parameters

HCP MASiVar SUDMEX CamCAN Study-specific data

Scan protocol

TE (ms) 57 79 127 104 66

b-values (ms∕μm2) 0, 1, 3 0, 1, 2 0, 1, 3 0, 1, 2 0, 0.5, 1, 2.5

# directions 5, 64, 64 16, 40, 56 8, 32, 96 3, 30, 30 5, 30, 30, 30

Voxel size (mm3) 1.25 × 1.25 × 1.25 2.1 × 2.1 × 2.2 2 × 2 × 2 2 × 2 × 2 2.5 × 2.5 × 2.5

Subject information

Age (years) 40-44 23 43 66 26

Gender F M M M F

Preprocessing

HCP77 PreQual87 Designer52 Designer52 see Section 2.6.2
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2.7  |  Image processing

The study-specific data were corrected for Gibbs ring-
ing,82 eddy current and susceptibility-induced geometrical 
distortions,83, and gradient nonlinearities84 prior to DKI 
analyses. As a part of the eddy current correction, signal 
outlier detection to identify, for example, motion-corrupted 
slices was performed.85 Seven regions of interest (ROIs) 
were automatically segmented in the native spaces of the 
images to minimize data interpolation. The ROIs included 
major white matter tracts, that is, genu and splenium of 
the corpus callosum (GCC and SCC), corticospinal tract 
(CST), arcuate fasciculus (AF), inferior fronto-occipital 
fasciculus (IFO), superior longitudinal fasciculus (SLF), 
and optic radiation (OR). The automated segmentation of 
all white matter bundles was performed using the TractSeg 
algorithm.86

If (minimally) preprocessed data were available for the 
cohort data, then we used those data sets without applying 
additional processing steps for DKI analyses. Otherwise, 
the DESIGNER pipeline was applied to correct for thermal 
noise, Gibbs ringing, and eddy current distortions.52 This in-
formation is also listed in Table 1.

2.8  |  Statistics

The test-retest reliability of the estimated ROI-averaged K 
was evaluated for each fitting strategy using the test-retest 
variability (TRV). Note that the test and retest data were not 
aligned to each other, since reproducibility was only evalu-
ated for ROIs that were segmented in the native spaces of the 
images to minimize data interpolation. The TRV was com-
puted across N subjects by averaging the ratio of the absolute 
difference and the average of the test-retest estimates over 
the N = 5 subjects. A scaling factor of 

√
�∕2 was applied to 

derive the standard deviation from the mean absolute differ-
ence for Gaussian distributed variables.

3  |   RESULTS

3.1  |  Robust prediction of mean kurtosis

In Figure 1, we show the scatter plot of predicted mean kurtosis 
K̂ against the corresponding K in simulations and experimen-
tal data, using the 3 prediction strategies. In the simulations, 
K is the ground truth value, whereas for the experimental data 

F I G U R E  1   Simulations: a scatter plot shows the relationship between the actual mean and predicted mean kurtosis for the simulated and 
study-specific data
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K is estimated using an ordinary NLS estimator. For the ex-
perimental data, we only include all 441,271 voxels of the 5 
study-specific retest data with positive K. The similarity be-
tween K and K̇ (or K̂

(2)
) is high. The voxelwise percentage 

error is 3.4 ± 11.50% and 1.64 ± 5.26% (mean ± standard de-
viation) for the simulations and all experimental data, respec-
tively. The correction using the analytical correction term Ψ 
(K̂

(1)) reduces the accuracy significantly, leading to an increase 
of the mean percentage errors with an order of magnitude; 
−10.24 ± 17.56% and −7.63 ± 12.02% for the simulations 
and all experimental data, respectively. The third strategy, that 
is, correction using polynomial dictionary learning (K̂

(3)
), 

provides more accurate predictions of mean kurtosis than the 
other two. The mean percentage error is only 0.05 ± 11.08% 
for the simulated data and 0.10 ± 5.21% for the experimen-
tal data. Of importance, the polynomial regression model was 
trained on all voxels of the 5 study-specific test data with posi-
tive K. The Pearson correlation coefficients between K and 
K̂

(1)
, K̂

(2)
, and K̂

(3)
 was 0.70, 0.95, and 0.95, respectively, for 

the simulated data, and 0.82, 0.99, and 0.99, respectively, for 
the experimental data.

In Figure 2, it is apparent that the predicted mean kurtosis 
K̂

(3)
 is more robust than K. Indeed, the prevalence of the ubiq-

uitous “black voxels” in major white matter structures is re-
duced significantly, even almost nullified. The percentage of 
voxels in the whole brain with negative K varies from 0.95 to 
3.27%—with an average of 1.84%—in the ten study-specific 
data sets. In contrast, for K̂

(3)
, this percentage dropped on 

average to 0.07%. Therefore, the quality of the maps is in-
creased, allowing for a less confounded visual and statistical 
analysis. The robustness is similar for all 3 strategies to pre-
dict the mean kurtosis.

Based upon the above results, we opt for the third strategy 
to compute the predicted mean kurtosis K̂. Hence, for the re-
mainder of this work, K̂ ≡ K̂

(3)
.

3.2  |  Accuracy of regularized tensor fitting

Figure 3 summarizes the simulation results by showing the 
ground truth reference of DKI parameters versus their es-
timates obtained using the ordinary (red) and regularized 
NLS (blue) estimator. The average percentage difference 
between the estimated and ground truth mean kurtosis is 
−4.14 ± 14.12 and −0.65 ± 11.30% for the ordinary and 
regularized NLS estimators. For the radial kurtosis, the av-
erage percentage difference decreases from −11.14 ± 28.53 
to −5.10 ± 21.72% when regularizing the tensor fitting. For 
axial kurtosis, the percentage difference is minimally altered: 
5.20 ± 28.30 and 6.07 ± 28.35%.

For the study-specific data, the ground truth kurtosis 
values are missing. However, for the majority of the gray 
and white matter voxels, the ordinary NLS estimator yields 
plausible and non-problematic estimates with positive kur-
tosis values. In Figure 4A, we show the correspondence 
between estimated kurtosis parameters using the ordinary 
and regularized NLS estimator for those voxels. The aver-
age percentage difference between the ordinary and regu-
larized NLS estimators for K, K⊥, and K‖ is −0.15 ± 3.87% , 

F I G U R E  2   An representative map of the mean kurtosis K and the 
predicted mean kurtosis K̂-as estimated using the third strategy: voxel 
quality transfer using polynomial regression. The grayscale intensities 
are scaled between 0 and 2

F I G U R E  3   Simulations: Scatter plots show the relationship between the ground truth (“reference") and estimates of mean kurtosis (K), radial 
kurtosis (K⊥), and axial kurtosis (K‖) when fitting the DKI model using the ordinary (red) and regularized (blue) nonlinear least squares estimator
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−0.71 ± 6.03% , and 0.40 ± 6.60%, respectively. The Pearson 
correlation coefficients between the ordinary and regular-
ized NLS are 0.995 0.993, and 0.995 for K, K⊥, and K‖, re-
spectively. The effect of the regularized NLS estimator on 
the shape of the kurtosis tensor from voxels near the mid-
sagittal plane of the genus of the corpus callosum is high-
lighted in Figure 4B. The regularized NLS estimator shows 
to resolve the higher kurtosis values perpendicularly to the 
diffusion tensor main direction for both non-problematic 
and problematic voxels.

3.3  |  Reproducibility

Figure 5 shows the mean K within each ROI as computed in 5 
subjects using various fitting strategies for the test and retest 
data. In addition, we include the median K within each ROI 
for the ordinary NLS estimator.

In various tracts, that is, the SCC, GCC, and CST, the 
test-retest reproducibility is poor when using ordinary NLS 

estimators, with and without spatial smoothing, because in at 
least one of the scans the negative kurtosis outliers dominate 
the ROI-averaged K. The median operator is robust to such 
outliers and can be used as a reference target for reproducibil-
ity analysis.

The test-retest reproducibility is greatly improved by the 
use of the regularized fitting algorithm. The TRV of the ROI-
averaged metrics, computed over the 5 subjects, is tabulated 
per ROI in Table 2.

The percentage of negative K estimates per tract strongly 
impacts the TRV. The regularized NLS estimator decimated, 
if not nullified, this number in comparison to the ordinary 
NLS estimator, with and without smoothing. Importantly, 80-
90% of the voxels with negative K using the ordinary NLS 
estimator converged to plausible, positive, values with regu-
larized NLS estimator if the optimization was initiated with 
the outcome of the ordinary NLS estimator. For the remain-
ing 10-20%, the regularized fit needed to be repeated with a 
starting point that was obtained from the constrained NLS 
estimator.

F I G U R E  4   Study-specific MRI data: A, Scatter plots show the relationship between the ordinary and regularized NLS estimates of mean 
kurtosis (K), radial kurtosis (K⊥), and axial kurtosis (K‖) for all non-problematic voxels in the study-specific MRI data. Note that a “problematic 
voxel” has at least one negative K

APP
 when fitted with the ordinary NLS. B, The 3D kurtosis geometry, ie, apparent kurtosis coefficient evaluated 

along different directions, as estimated with the ordinary and regularized NLS for a non-problematic and problematic voxel. These 3D kurtosis 
geometry were extracted from a voxels near the mid-sagittal plane of the genus of the corpus callosum (direction marked by the black line 
corresponds to the principal direction of the diffusion tensor and K

APP
≤ −2.5 are truncated
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3.4  |  General applicability

In Figures 6 and 7, we show the maps of K, K⊥ and K‖ for a 
single, but representative slice of various data sets. The data 
quality varied highly from 1 dataset to another due to vari-
ations in SNR and number of diffusion-weighted images. 

However, in each dataset, traditional kurtosis estimation 
suffered from low robustness and many negative K in 
structures such as the CC. Overall, the quality of the maps 
improved drastically for all datasets, with a few remain-
ing black voxels (negative kurtosis values), mostly around 
some GM/WM boundaries, where the kurtosis and their 

F I G U R E  5   The tract-averaged K using various fitting strategies and K̂ (bottom row) for the test (filled marker) and retest data (open marker) 
each subject (labeled by marker shape). The graphs on the right column show the same data, but windowed differently for enhanced contrast. Seven 
major white matter tracts were evaluated: genu and splenium of the corpus callosum (GCC and SCC), corticospinal tract (CST), arcuate fasciculus 
(AF), inferior fronto-occipital fasciculus (IFO), superior longitudinal fasciculus (SLF), and optic radiation (OR)

T A B L E  2   The test-retest variability (% ) in the estimation of K for various tracts and fitting strategies

GCC SCC CST AF IFO SLF OR

Ordinary NLS - - - 1.66 2.21 1.62 2.38

Median 4.20 2.19 2.17 1.93 2.60 1.68 2.03

Constrained NLS 5.30 2.89 2.16 1.75 1.75 1.59 1.99

Smoothing + ordindary NLS - - - 1.65 7.51 1.63 2.37

Regularized NLS 4.76 2.08 2.27 1.65 2.10 1.49 1.77

K̂ 4.73 2.08 2.28 1.65 2.10 1.49 1.76

Notes: If the test-retest variability is dominated by outliers, that is, > 100%, the value is not listed. To illustrate the reproducibility of the predicted mean kurtosis K̂, we 
also show those results (bottom row).
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reference values are not well understood yet.54 In Figure 
6, we also show, for comparison, the map of the predicted 
mean kurtosis K̂.

4  |   DISCUSSION

Improving the robustness of DKI fitting has been an active 
topic of research since the introduction of the technique. 
Black voxels have been intrinsic to DKI and challenge the 
visual and statistical analysis of potentially clinically relevant 
biomarkers of tissue integrity. Despite increasing evidence of 
the potential value of DKI during the past decade, the lack of 
a robust parameter estimation prevents widespread clinical/
diagnostic adoption of the kurtosis biomarkers.

It might be impossible to attribute a single cause of the 
vulnerability of DKI to outliers. It has been shown that ther-
mal noise alone can result in extremely negative kurtosis 
values.49 However, imaging artifacts, such as signal voids, 
Gibbs ringing, CSF pulsation, and/or misalignment of the 
diffusion-weighted images might also contribute to the prob-
lem, even when the artifacts are largely corrected using state-
of-the-art image processing tools.12,52,53 The wide variety of 
signal fluctuations that might cause the DKI estimator to fail 

motivated the use of a strong image smoothing prior to pa-
rameter fitting and/or constraining the parameter estimation 
by enforcing positive kurtosis estimates.7,40,50,54

The biophysically implausible kurtosis estimates have pre-
viously been associated with artifactually low non-diffusion 
weighted signals. Motivated by this, Zhang et al88 recently 
proposed an approach in which the non-diffusion-weighted 
signal is altered in a selective data-driven range. Although 
the approach yields visually appealing kurtosis maps, the 
alteration is strongly dependent on a user-dependent tuning 
variable, while a selection criterion is missing.

However, for > 10000 voxels with negative mean kurtosis 
in our reproducibility data, only 18% of voxels have at least 
one diffusion-weighted signal exceeding the non-diffusion 
weighted signal, coined as “physically implausible signal 
(PIS)”89,90; see Figure 8C. Moreover, only 63% of all such PIS 
voxels resulted in a negative mean kurtosis. Hence, techniques 
focusing on the correction of the non-diffusion-weighted sig-
nal might be limited to a subset of the voxels only or bias 
the outcomes by forcing a correction on the non-diffusion-
weighted signal instead of considering spurious signal fluctu-
ations across the whole of the diffusion-weighted data.

Moreover, when comparing the fit residuals of the ordi-
nary and regularized NLS in the voxels of interest, that is, 

F I G U R E  6   The K maps for the various dataset are shown for the ordinary and regularized NLS in the top and middle row, respectively. 
Moreover, we show the map of the predicted mean kurtosis K̂ (bottom row) to illustrate the similarity in contrast
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the voxels with negative mean kurtosis, we observed that the 
signal prediction of the regularized NLS estimated was sig-
nificantly different for each b-value with both positive and 
negative signal offsets. This observation (data not shown) 
also suggests that only correcting non-diffusion-weighted 
signals is likely to be insufficient for a robust and unbiased 
estimator.

Up to 68% of all voxels with negative mean kurtosis 
within a single subject of our reproducibility data satisfied 
the Pearson’s �2 goodness-of-fit criterion91 (Figure 8D shows 
in red voxels in which signals did not satisfied the Pearson’s 
�2 goodness-of-fit for a zoomed brain region of the subject 
reproducibility data). Hence, despite the implausible kurtosis 
estimate, the fit residuals were normally distributed and no 

signal outliers were detected using a residual analysis. Robust 
estimators, such as RESTORE92 and related techniques,93,94 
would not make any difference to the outcome. Indeed, those 
methods are designed to improve the robustness of the fit to 
signal outliers, but are not necessarily tackling the problem 
described here.

Overall, smoothing has proven to be a very effective way 
to suppress the signal fluctuations that might lead to nega-
tive kurtosis.7,40,54 However, such a brute force strategy in-
troduces image blur and partial volume artefacts. Analogous 
to other artifacts, for example, Gibbs ringing,53,82,90 there is 
a recent trend toward the development of image processing 
tools that are more specifically targeted to correct a partic-
ular artifact and to avoid smoothing. The development of a 

F I G U R E  7   The K⊥ and K‖ maps for the various dataset are shown for the ordinary and regularized NLS in the top and bottom row of each 
panel
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robust kurtosis estimator that does not require image smooth-
ing prior to fitting is more in line with such a strategy and, 
ultimately, will result in sharper images with higher effective 
spatial resolution.

The constrained NLS estimator only yields positive kur-
tosis values by design. Hence, the constrained NLS typically 
appears to be more accurate and robust in the estimation of 
DKI parameters. However, imposing constraints is likely to 
bias the estimator in any single voxel. In 99% of all voxels 
with negative K using the ordinary NLS estimator, the con-
strained NLS estimator provides a solution that lies on the 
bounds of the search landscape. Although such estimates 
technically satisfy the imposed constraints, they are not nec-
essarily closer to the most biophysically plausible solution, 
see Figure 8.

All of these considerations are visualized and summarized 
in one representative figure that shows the Genu of the CC of 
one the study-specific MRI data sets, Figure 8.

In this work, we demonstrated that the mean kurtosis 
can be very well predicted without the need to estimate the 
kurtosis tensor. Indeed, the powder kurtosis is already a 
good approximation of the mean kurtosis, despite a signif-
icant approximation error that depends on the anisotropy of 
the underlying process. We showed that this approximation 
error can be reduced significantly by using a polynomial re-
gression model in which the mapping between the powder 

kurtosis, the mean diffusivity, an anisotropy index, and the 
mean kurtosis can be learned from the hundreds of thousands 
of non-problematic voxels in the same or similar data sets. By 
doing so, we transfer the excellent quality of the DKI estima-
tion in the majority of the gray and white matter voxels to the 
few, but persistently problematic voxels.

The accurate and robust prediction of the mean kurtosis 
might be relevant and sufficient for various studies. However, 
the regularized fitting is a necessary additional step for all 
studies that have interest in directional kurtosis metrics (eg, 
radial or axial kurtosis), DKI-derived biophysical modeling 
(ie, WMTI60), or tractography.63,66

Similar to the negative kurtosis, various models devel-
oped to analyze diffusion MRI data suffer from an abun-
dance of biophysically implausible outcomes or, more subtly, 
a multitude of biophysically plausible solutions for which the 
goodness-of-fit is not significantly different.95 Although be-
yond the scope of this work, we hypothesize that using the 
regularization term presented in this work might increase the 
stability and precision of parameter estimators of such mod-
els. Similarly, the regularization term can be added to various 
variations of the loss function, including the log-linearized or 
maximum likelihood function.

The implementation of this regularized estimator is pub-
licly available on https://github.com/jelle​veraa​rt/Robus​t​
DKIF​ittin​g/.

F I G U R E  8   The K map of the GCC of a single subject of the reproducibility data is shown for the various fitting strategies (A, B, E, F). 
The grayscale intensities are scaled between 0 and 2. In (C), the voxels in which at least one diffusion-weighted signal was larger than the non-
diffusion-weighted signal, “physically implausible signal (PIS)” are highlighted in red. In (D), the voxels that do not satisfy the Pearson’s �2 
goodness-of-fit criterion are indicated in red. Many problematic voxels in terms of plausibility of K pass the PIS or goodness-of-fit criterion. G, A 
scatter plot shows the relationship between the K as estimated using the constrained and regularized NLS, for the voxels that were characterized 
with a negative K using the ordinary NLS estimator. The probability density estimate is color-encoded

https://github.com/jelleveraart/RobustDKIFitting/
https://github.com/jelleveraart/RobustDKIFitting/
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