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Inositol hexaphosphate (IP6) is the most abundant inositol phosphate in nature and an
essential molecule for different biological functions. IP6 has a unique structure granting it
distinctive properties; a high negative charge density provides IP6 with an immense
chelating ability and valuable antioxidant properties. IP6 is also simple and cost-effective to
produce. These features have attracted researchers and entrepreneurs to further study IP6
for a wide variety of applications in areas such as pharmaceutical, food and chemical
industries, medicine, pharmacy, nutrition, and dentistry. The interest in IP6 in the dental
field unfolded many decades ago following identification of a cariostatic ability and a
positive impact on reducing enamel dissolution. Subsequently, IP6’s anti-plaque, anti-
calculus and cement-forming properties have been investigated. Despite encouraging
findings, there was a phase of decreased attention to IP6 which slowed down research
progress. However, the potential use of IP6 has recently been revisited through several
publications that provided deeper understanding into its mechanisms of action in the
aforementioned applications. Studies have also explored new applications in endodontics,
adhesive, preventive and regenerative dentistry, and IP6’s role in improving the
characteristics and performance of dental materials. Evidence of the merits of IP6 in
dentistry is now substantial, and this narrative review presents and discusses the different
applications proposed in the literature and gives insights of future use of IP6 in the fields of
orthodontics, implant and pediatric dentistry.

Keywords: adhesive, application, cariostatic, cement, dentistry, inositol hexakisphosphate, oral, phytic acid

INTRODUCTION

Phytic acid, known as inositol hexakisphosphate (IP6), inositol polyphosphate, or phytate when in
salt form, was first recognized by Pfeffer in 1872 (Pfeffer, 1872), and in 1903 the term “la phytine”was
used by Posternak (Posternak, 1903). In 1914, the IP6 structure was described by Anderson
(Anderson, 1914) and this was confirmed by Johnson and Tate in 1969 using nuclear magnetic
resonance spectroscopy (Johnson and Tate, 1969).

IP6 is a saturated cyclic acid and the phosphate ester of inositol, with the formula C6H18O24P6
(Figure 1). It has a high density of negative charges due to its six phosphate groups that become
partially ionized at physiological pH, where the negative charges are counterbalanced by cations,
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mainly sodium ions. Throughout the present review, IP6 is used
to refer to both phytic acid and phytic acid salt “phytate.” IP6 is
abundant in plants and has a significant nutritional role as the
principal storage form of phosphorus in many plant tissues,
especially bran and seeds. It is also considered a source of
myoinositol, a cell wall precursor (Reddy et al., 1982;
Schlemmer et al., 2009). In animal cells, myoinositol
polyphosphates are ubiquitous, and IP6 is the most abundant
form, with a concentration ranging from 10 to 100 µM in
mammalian cells, depending on cell type and developmental
stage (Szwergold et al., 1987; Sasakawa et al., 1995). The
interaction of intracellular IP6 with specific intracellular
proteins has been investigated in vitro, and these interactions
result in the inhibition or potentiation of the physiological
activities of proteins (Norris et al., 1995; Hanakahi et al.,
2000). The evidence suggests an intracellular role for IP6 as a
cofactor in DNA repair by non-homologous end-joining
(Hanakahi et al., 2000). Other studies using yeast mutants,
have also suggested that intracellular IP6 may be involved in
mRNA export from the nucleus to the cytosol (York et al., 1999;
Shears, 2001). IP6 has a potent anti-nutrient ability due to its
strong binding affinity to crucial dietary minerals in their
elemental form, including calcium, iron, and zinc; thus
inhibiting their absorption (Schlemmer et al., 2009; Gupta
et al., 2015). Studies have shown that there is a marked
decrease of calcium absorption in the presence of IP6 and an
enhanced availability after degradation. When iron or zinc binds
to IP6, insoluble precipitates form, contributing to deficiencies of
these elements in people whose diets rely on foods for their
mineral intake (Hunt, 2002; Hurrell, 2003; Kancheva and
Kasaikina, 2013). Thus, fortification of food, especially in
developed countries, is seen as a desirable measure to achieve
the recommended intakes of specific nutrients (FAO/IZiNCG,
2018).

The anti-nutrient effect of IP6 should not negate its health
benefits (Nissar et al., 2017), and its ability to form insoluble
complexes with calcium might also help decrease bone retention
of heavy metals such as lead (Rose and Quarterman, 1984). IP6’s
strong iron chelating property has been found to have a protective
effect in rat neuronal cells against apoptosis in iron-excess
conditions, a finding of importance in patients with

Parkinson’s disease where disrupted iron homeostasis and iron
overload in the brain is evident (Xu et al., 2008).

Studies have also shown that IP6 has an antioxidant effect
indicating a role for IP6 in preventing free radical formation
through chelation with iron that catalyses the generation of
hydroxyl radicals (Graf, 1983; Graf et al., 1987; Graf and
Eaton, 1990; Pallauf and Rimbach, 1997; Xu et al., 2008). The
protective effect of IP6 against kidney stones and cancer has also
been studied (Grases and Costa-Bauza, 1999; Grases et al., 2006;
Shafie et al., 2013), and scientists have suggested that IP6 may
partly explain why whole grains have been linked with a reduced
risk of colon cancer (Aune et al., 2011). IP6’s anti-cancer action
has been demonstrated both in vitro and in vivo and it is claimed
that there is enough evidence to legitimize the start of clinical
trials in humans for its use as an anti-neoplastic agent (Fox and
Eberl, 2002; Vucenik and Shamsuddin, 2006). IP6 has an
inhibitory effect on osteoclastogenesis in human cell lines,
suggesting it could play a role in reducing bone-mineral
density loss and preventing osteoporosis (López-González
et al., 2008; Arriero et al., 2012).

Due to its antioxidant properties, IP6 has been used as a food
preservative to prevent spoilage and discoloration (Graf and
Eaton, 1990). Adding IP6 to wine and other beverages would
reduce the side effects and toxicity of high metal content (e.g.
iron) in beverages (Trela, 2010). The pharmaceutical industry has
also used IP6, to enhance drug efficacy and reduce undesired side
effects. Adding IP6 to the drug content could improve drug
absorption and increase oral bioavailability (Xie et al., 2014; Kim
et al., 2016).

A finding that might be of interest to dental practitioners is the
ability of IP6, in the presence of calcium, to inhibit fluoride
bioavailability from the food matrix, thus attenuating the caries-
preventive effect of fluoride (Cerklewski, 1992). In dentistry, IP6
gained attention in 1960 when McClure et al. tested its cariostatic
effect on rats (McClure, 1960). In 1972, IP6’s plaque-inhibiting
effectiveness was examined (Nordbö and Rölla, 1972) and in
1975, Cole and Bowen tested its effect on microbial composition
of animal dental plaque (Cole and Bowen, 1975). IP6 continued
to generate a steady amount of interest due to its ability to bind to
hydroxyapatite forming a monomolecular surface layer that
limited both the growth and dissolution of hydroxyapatite
crystals, thus inhibiting caries, plaque formation and enamel
dissolution. These findings led to the development of several
patented oral care regimes (Reddy et al., 1982; Graf, 1983;
Kaufman, 1986; Sands et al., 1986; Reddy et al., 1989). IP6’s
cement forming properties were tested by Prosser et al., in 1983
(Prosser et al., 1983) where it was found to produce a fast setting
and acid-resistant cement. Although the scholarly interest in IP6
furnished a number of intriguing findings regarding its
application in dentistry, this interest reached a hiatus.
Recently, interest in IP6 has been revitalized with several
research papers exploring potential dental applications
including its use in dentifrices and cements, and other new
applications such as etchant in adhesive dentistry, chelating
agent in endodontics or anti-staining agent added to
dentifrices (Nassar et al., 2013; Nassar et al., 2015; Milleman
et al., 2018; Parkinson et al., 2018; Uyanik et al., 2019). In 1983,

FIGURE 1 | Phytic acid structure.
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Ernst Graf was highly active in researching different features of
IP6 and its potential in a vast array of applications. Graf was
probably the first to give an in-depth description of the
antioxidant and metal chelation properties. He stated that IP6
was an inexpensive, inert, non-toxic and abundant chemical that
was easily obtained from different plant sources by relatively
simple procedures. Despite all the encouraging data, limited
efforts had been given to IP6’s application for oral care and he
believed that if enough funding and support were secured, novel
oral health care products could have been developed (Graf, 1983).
Based on the reviewed literature, it seems that IP6 possesses
several properties that are valuable across a variety of dental
fields. In the last 60 years, the use of IP6 has been evaluated in
dentistry; this narrative literature review highlights the major
potential applications of IP6 and presents insights into other
future applications of this agent in dentistry.

POTENTIAL APPLICATIONS OF IP6 IN
DENTISTRY

Cements
Dental cements are a mainstay in modern day dentistry where
they are used in the restoration of prepared teeth for an indefinite
or definite period, depending on the physical characteristics and
projected longevity of the restoration (Hill, 2007). The
requirements of an ideal cement include, but are not limited
to, having sufficient working time and desired physical properties
for its intended use, strong enough to resist functional forces and
resistant to dissolution upon exposure to the oral environment
(de la Macorra and Pradíes, 2002). Dental cements are also
important for the success of fixed appliance-based orthodontic
therapy, where they are needed to attach bands and brackets to
tooth structure along with the ability to protect against dental
caries during the treatment period (Millett et al., 2016).
Nowadays, several varieties of dental cements are available and
the development of new or improved dental cements is still
ongoing; however, some have disappeared from the market.

Studies have shown that IP6 can drastically improve both the
chemical and physical properties of dental cements when used as
an additive. The notion of using IP6 was proposed in 1980, where
its addition to aluminosilicate glass, resulted in a rapidly setting
cement through an acid-base reaction. The resultant cement had
low vulnerability to early attack by water and acid, as well as
better adhesion to enamel compared with dentine, due to the
lower mineral content of the latter (Prosser et al., 1983).
Mechanical properties of zinc phosphate cements also
improved with addition of IP6. Increasing the concentration of
IP6 from 0 to 2% doubled the compressive strength. Replacing
some of the phosphoric acid with 3–5% IP6 resulted in maximum
compressive strength. When IP6 was added alone, the reaction
was rapid and the setting time was short and controllable based
on the ratio of IP6 and phosphoric acid or adjusting the water
content to attain a more practical setting time. The leach from the
resultant cement was reduced when some of the phosphoric acid
was replaced with IP6, and this was explained by the higher
stability of zinc phytate compared with zinc phosphate. This was

considered the main advantage of using IP6. Applications where a
large area of cement is exposed to saliva, such as in orthodontics
might benefit most from this property. However, at high IP6
concentrations, the resultant cement was too viscous, with a high
film thickness, thus rendering the cement unsuitable for dental
application (Li et al., 1994).

Calcium silicate-based cements are commonly used in pulpal
regeneration and hard tissue repair in endodontics along with
mineral trioxide aggregate (MTA) and more recently, with
Biodentine™. MTA exhibits a myriad of drawbacks such as a
long setting time, poor handling characteristics and low washout
resistance (Dawood et al., 2017). At a certain concentration, IP6
can effectively decrease the setting time of calcium silicate-based
cements without altering their diametral tensile strength, and this
effect was more pronounced with Biodentine™ compared with
MTA (Uyanik et al., 2019). Acceleration of the setting time could
be through the hydrophilic nature of IP6 having a synergistic
effect with calcium silicate-based cements, which sets through a
hydration reaction. It may also be explained by the highly
negatively charged phosphate groups in IP6 that strongly bind
to metallic ions within the cements (Hsieh et al., 2009; Silva and
Bracarense, 2016). Furthermore, the abundance of negative
charges in IP6 could play a role in the reaction process
through chelation with calcium in the cement. High water:
powder ratio increases porosity and solubility of the cement,
thus compromising the mechanical properties of the set material
(Li et al., 1994), and this is also applicable to MTA and
Biodentine™ as a high water:powder ratio would adversely
affect properties. The use of IP6 is thought to result in less
water in the mixed cement; however, no improvement in the
diametral tensile strength was detected (Uyanik et al., 2019).

Calcium phosphates occur in different forms, and have found
their way into many dental applications, such as preventive
dentistry (owing to high resemblance to natural enamel),
periodontal therapy, restorative and implant dentistry, and
pulp therapy (Al-Sanabani et al., 2013; Meyer et al., 2018).
The brushite type of calcium phosphate is considered as a
bone replacement material which possesses desirable
properties, but also suffers several drawbacks such as short
setting times, low mechanical strength and poor injectability,
all of which limits the more inclusive clinical application of this
cement, and trials to improve these properties are still ongoing
(Gbureck et al., 2004). In 2017, Meininger et al. reported that IP6
was a setting retardant of di-calcium phosphate cements, an effect
that was necessary to meet the clinical requirements of the
handling time of cement that usually sets in less than 1 min in
a retardant-free environment. IP6 is thought to exert this effect by
adsorbing at the active growth sites of di-calcium phosphate
crystals of the cement, thus delaying the crystal growth rate,
which also decreases the maximum setting temperature. In the
same study, the highest cement strength values were achieved
using citric acid, the most commonly used retarder in brushite
cements, followed by IP6, which led to higher values than those
obtained with retardant-free cement. These results were
correlated with the porosity of the set cement and confirmed
some differences in the used retardants regarding the type and
phase of the formed crystals in the set material. When IP6 was
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used as a retarder, monetite was the predominant phase formed
during setting, whereas citric acid resulted in the formation of a
mixture of both brushite and monetite. Interestingly, cements
with IP6 showed increased calcium concentration in the medium
where the cement samples were immersed, while citric acid
containing cement adsorbed calcium ions (Meininger et al.,
2017). The increased availability of calcium ions might be
advantageous in enhancing dentine formation in exposed
dental pulps (Foreman and Barnes, 1990), which has possible
implications in the field of regeneration as described later in this
review. Cements that contained IP6 had significantly better
cytocompatibility towards osteoblast cells compared with citric
acid-containing cement (Meininger et al., 2017). In 2018, Hurle
et al. studied the effect of IP6 on the hydration mechanism and
setting kinetics of brushite cements (Hurle et al., 2018). Their
findings were consistent with those obtained by Meininger et al.
(Meininger et al., 2017), where controlled concentrations of IP6
acted as a retarder of the cement setting reaction, resulting in
better mechanical performance and a cement that was composed
of a monetite crystalline structure (Hurle et al., 2018). The latter
finding was thought to be of clinical significance as this form of
crystalline structure does not undergo phase conversion with
aging in phosphate buffered saline (Sheikh et al., 2015). It was also
observed that IP6 improved the injectability of the cement, due to
the formation of a chelate complex between calcium ions and the
phosphate groups of IP6, which led to a delayed rise in paste
viscosity and a drastic retarding effect on cement hydration
(Hurle et al., 2018). Weichhold et al. found similar effects on
apatite cement and concluded that IP6 was a suitable additive for
the development of calcium phosphate cement with superior
properties (Weichhold et al., 2019).

Glass ionomer cement systems are versatile restorative and
luting materials and essential in restorative and pediatric
dentistry and orthodontics, because of their fluoride release
and chemical adhesion to tooth structure. The literature
supports their use in several clinical scenarios. These include
cementation of crowns, bridges, inlays, onlays and orthodontic
appliances, cavity base or liner, fissure sealant, tooth repair in
atraumatic restorative treatment technique and restoration of
certain cavity preparations in patients with high-caries risk and
teeth that are difficult to isolate (Berg, 2002; Sidhu and Nicholson,
2016). Researchers are constantly striving to improve the
performance of these cements as well as to develop new ones.
Several chelating additives such as tartaric acid and citric acid
have been described in the literature to enhance the
characteristics of glass ionomer cements (Sidhu and
Nicholson, 2016). It may also be interesting to see future
studies on the impact of IP6 on these cements; to the best of
our knowledge, such studies have not been performed yet.

Oral Care Products
Oral care products including dentifrices and mouthrinses are
multifunctional, offering an array of advantages to combat an
assortment of oral conditions e.g., caries, gingivitis, dentine
hypersensitivity, teeth whitening, and halitosis. The addition of
chemical agents to conventional products to augment their
intended functions such as prevention of caries, plaque

inhibition, or stain removal, represents an attractive field of
study (Lippert, 2013; Cummins, 2016; Milleman et al., 2018).

Interest in the potential protective effects of different classes of
phosphate compounds, including IP6, against caries is not new
(Grenby, 1973). The concept of using IP6 as a cariostatic agent
probably came from the speculative connection mentioned in
earlier studies. These studies revealed an increased caries
incidence with decreased intake of IP6 following changes in
dietary habits and food processing and refinement (Jenkins
et al., 1959a; Jenkins et al., 1959b; Jenkins, 1966). Several early
studies showed a reduction of experimental caries in animals fed
dietary IP6 (Taketa and Phillips, 1957; Buttner and Muhler, 1959;
McClure, 1960; Madsen and Edmonds, 1962; Vogel et al., 1962;
McClure, 1963; McClure, 1964; Dawes and Shaw, 1965;
Englander and Keyes, 1970; Cole et al., 1980); however, these
findings were not corroborated by other researchers, where IP6
had limited or no protective influence (Limbasuta et al., 1961;
König and Grenby, 1965; Grenby, 1966; Lllienthal et al., 1966).
The cariostatic mechanism of IP6 is not fully understood,
although several pathways have been suggested. A local rather
than a systemic effect is proposed bymost researchers. IP6 rapidly
adsorbs to hydroxyapatite forming a monomolecular layer on the
crystal surface that leads to increased resistance of enamel to acid
attack by acting as a diffusion barrier to ions (Magrill, 1973b)
while at the same time limiting the growth of the hydroxyapatite
(Koutsoukos et al., 1981; Grases et al., 2015). IP6 is mainly found
at the surface of hydroxyapatite but it is too large to diffuse into
the hydroxyapatite crystal. Another speculated mechanism is
through the formation and precipitation of calcium-IP6
complexes on the crystal surface (Magrill, 1973b). IP6 content
on the surface of hydroxyapatite was not significantly affected
after washing with water or partial dissolution by acid, which
indicated that IP6 was tightly bound to hydroxyapatite surfaces
(Magrill, 1973b). The adsorption of IP6 to hydroxyapatite might
also cause an alteration of the surface charge and free energy
characteristics, thus impeding formation of plaque by negatively
influencing the affinity of salivary proteins and bacteria to tooth
surfaces (Napper and Smythe, 1966; Grenby, 1967a; Grenby,
1967b; Grenby, 1967c; Kaufman and Kleinberg, 1970; Pruitt
et al., 1970; Nordbö and Rölla, 1972; Magrill, 1973b).

Recently, Fernández et al. showed that the adsorption energy
to hydroxyapatite was the highest for IP6 when compared with
other acids such as pyrophosphate, etidronate, and citrate. IP6
was able to form thirteen electrostatic interactions with
hydroxyapatite surfaces. No hydrogen bond interaction was
observed between IP6 and hydroxyapatite surfaces; however,
the protonated oxygen atoms of IP6 formed hydrogen bonds
with contiguous phosphate groups. In their study, there was a
positive correlation between the adsorption energy with the
number of functional groups and the total molecular negative
charge of the acid that interacted with hydroxyapatite surface
(Fernández et al., 2017).

The antimicrobial effect of IP6 on cariogenic bacteria is still
questionable. However, there is some indication that oral
streptococci and lactobacilli are sensitive to IP6 obtained from
diet (Grenby, 1967b). There are similar characteristics between
IP6 and linear condensed polyphosphates, and thus it might be
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expected that the former may have an inhibitory effect on
Streptococcus mutans by modifying certain portions of the
glycolytic enzyme system (Handelman and Kreinces, 1973), or
chelation of essential metabolites (Post et al., 1963; Elliott et al.,
1964; Shibata and Morioka, 1982). Despite the promising
potential of IP6 as a cariostatic agent, some researchers cast
doubt on the clinical impact of caries control in humans (Grenby,
1967b). Importantly, bacteria with the ability to accumulate
polyphosphate intracellularly can alter the chemical conditions
of the oral environment and promote caries (Breiland et al.,
2018).

Grases et al. showed that a mouthrinse containing IP6 retarded
dental calculus formation (Grases et al., 2009). This effect was
attributed to IP6 properties in altering protein binding to the
tooth surface and concomitantly acting as an inhibitor of
hydroxyapatite and brushite crystal formation (Grases et al.,
2000). These actions were related to its structural similarity to
pyrophosphate, the main polyphosphate used in inhibiting
calculus (Cohen et al., 1994). This mechanism has found use
in supplemented chewing gums which reduce calculus formation
(Porciani et al., 2003). To our knowledge, there are no studies to
date on the role of IP6 in chewing gum on removal of teeth stain
or inhibition of calculus formation.

Despite these rather equivocal findings, there has been a
reasonable endorsement to harness the cariostatic, anti-plaque
and anti-calculus properties of IP6 by its inclusion in several oral
care products that serve different dental and oral applications
such as mouthrinses, dentifrices, dentures cleaners, teeth
whitening and stain removal agents, and oral malodor rinses
(Graf, 1983; Sands et al., 1986; Garlich et al., 1994; Kleinberg et al.,
1998; Hoke et al., 2016; Nakauchi et al., 2017). Milleman et al.
evaluated the efficacy of stain removal of 0.85% w/w IP6
incorporated into an experimental dentifrice, which was better
for tooth stain removal than a reference control dentifrice. This
provided further evidence that IP6 acted similarly to condensed
polyphosphates in augmenting stain removal which was not
accompanied with increased abrasivity of the dentifrice. This
was considered highly important for people at risk of dentine
hypersensitivity. The presence of IP6 in dentifrices is expected to
not only remove stain, but also prevent new stain formation, and
this effect is thought to be through binding to tooth structure
surfaces. This, in turn, would disrupt protein binding to the
surfaces through chelating with calcium, thus negatively affecting
both the adhesion and the ionic crosslinking of pellicle and stain
molecules. The other notable finding in their study was the
usefulness of the experimental dentifrice for removing stains
from inaccessible and difficult-to-reach areas, and surfaces of
teeth that were typically missed during cleaning. The
experimental dentifrice was also well-tolerated by the subjects,
with no evidence of adverse effects in the oral cavity, at the IP6
level used (Milleman et al., 2018).

A study by Parkinson et al. tested the effect of increasing
quantities of IP6 on fluoride ability to promote remineralization.
No significant differences were encountered by addition of IP6 at
0.425% or 0.85% and there was no attenuation, or improvement
in fluoride’s caries prevention efficacy. Neither IP6 nor zinc ions
within the dose range tested affected fluoride’s ability to promote

remineralization or prevent demineralization of enamel in the
aforementioned model (Parkinson et al., 2018). Additional
experiments by Creeth et al. demonstrated that, compared
with fluoride-free controls, a dentifrice containing IP6 and
sodium fluoride had beneficial effects on the dynamics of
remineralization and demineralization for early enamel erosive
lesions. However, due to reduced fluoride uptake in the presence
of IP6, the remineralizing effect was inhibited. Thus, no benefits
for including IP6 were perceived (Creeth et al., 2018), which
contrasted with the results of Parkinson et al. (Parkinson et al.,
2018). It was stated that this marked contrast was the result of
using different models. Creeth et al. used a single-treatment
model with plaque-free enamel surfaces (Creeth et al., 2018),
whereas Parkinson et al. used plaque-covered surfaces which were
clinically more relevant to developing caries lesions (Parkinson
et al., 2018). Magrill reported an inhibition of mineralization in
enamel specimens pre-treated with IP6 solution. However, the
author was not concerned about similar in vivo effects as several
animal experiments had already demonstrated the cariostatic
properties of IP6 (Magrill, 1973a).

IP6’s interaction with cations has received the most attention.
However, IP6 also has the ability to interact with enzymes, starch
and proteins. These less studied interactions might also be crucial
in certain aspects of oral health including dental caries and the
longevity of resin-based restorative material in adhesive dentistry,
as described later. IP6 interacts with an array of enzymes such as
α-amylase (Deshpande and Cheryan, 1984; Knuckles and
Betschart, 1987), proteinases (pepsin, trypsin and
chymotrypsin) (Singh and Krikorian, 1982; Inagawa, 1987;
Deshpande and Damodaran, 1989), lipase (Knuckles, 1988),
β-glucosidases, alcohol dehydrogenase, and polyphenol oxidase
(Deshpande, 2002; Du et al., 2012). Interaction with these
enzymes results in mostly inhibition of the activity, but some
reported no effect or even a positive influence depending on the
IP6:enzyme ratio (Deshpande, 2002; Greiner et al., 2006).

Salivary α-amylase is one of the major components of saliva
and has a variety of biological functions requiring intact enzyme.
The ability of salivary α-amylase to bind to bacteria leading to
clearance might offer a protective effect (Scannapieco et al., 1993).
Alternatively, its ability to bind to bacteria and adsorb to tooth
enamel (Al-Hashimi and Levine, 1989; Scannapieco et al., 1994),
its presence in enamel pellicle (Yao et al., 2001), and its ability to
digest starch providing nutrients for cariogenic bacteria point
towards α-amylase’s role in promoting dental plaque and caries
formation (Scannapieco et al., 1993). The inhibitory effect of IP6
on the activity of α-amylase is via chelation of calcium (Cawley
and Mitchell, 1968), a cation necessary for activation and
stabilization of α-amylase (Morris et al., 2011), or through the
general complex-forming ability of IP6 with enzyme proteins
(Sharma et al., 1978; Deshpande and Cheryan, 1984). Knuckles
and Betschart confirmed an inhibitory effect of IP6 on
α-amylase’s ability to digest starch, and this effect was
dependent on the degree of phosphorylation, IP6
concentration, pH and enzyme source (Knuckles and
Betschart, 1987). The inhibitory effect was confirmed in vivo
by the inverse relationship between the intake of dietary IP6 and
the level of glucose in the blood (Yoon et al., 1983). Meanwhile,
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Björck and Nyman showed IP6 had negligible influence on the
activity of α-amylase (Björck and Nyman, 1987). The contrasting
results reveal the complexity of IP6 interactions and many of the
different findings may be due to experimental design, and the fact
that in vitro studies may poorly reflect in vivo behaviour of IP6
(Björck and Nyman, 1987).

Starches are one of the predominant dietary carbohydrates in
modern societies. The first step in the digestion of starch occurs in
the oral cavity by salivary α-amylase leading to the formation of
oligosaccharides, which may be fermented by oral
microorganisms, thus contributing to the caries process
(Touger-Decker and van Loveren, 2003; Butterworth et al.,
2011). Taking into account the high level of salivary α-amylase
in humans, Lingström concluded that food starches possess
significant cariogenic potential, and it was premature to
consider food starches as safe for teeth (Lingström et al.,
2000). The authors of a recent systematic review stated that it
was the intake of rapidly digestible starches and not total starch
intake that was associated with increased risk of caries. As such it
is recommended that dental health professionals encourage
consumption of food containing slowly digestible starches such
as whole grains, fruits, and vegetables (Halvorsrud et al., 2019).
Starch digestion is negatively affected by direct IP6 binding with
starch via hydrogen bond formation or indirect interaction of IP6
with the proteins (kafirin and glutelin) that bind to starch and are
necessary for its digestion, or with α-amylase or calcium that is
needed for α-amylase activity (Thompson and Yoon, 1984;
Rickard and Thompson, 1997; Oatway et al., 2001; Selle et al.,
2012). These interactions may modify the substrate leading to
compensatory increases in outputs of α-amylase in order to digest
starch (Selle et al., 2012). Thompson and Yoon studied the in vitro
digestion of starch in human saliva. IP6 reduced digestibility by
28% or 60% at 1 h or 5 h of incubation, respectively (Thompson
and Yoon, 1984).

Limited information is available about the in vivo interaction
of IP6 with human saliva. In 2019, Delimont et al. were among the
first to study salivary protein–IP6 interactions and explore the
effect of IP6 supplementation on salivary proteins. In their study,
proline-rich proteins did not bind to IP6, whilst IP6 formed weak
complexes with a non-enzymatic salivary protein called cystatin
SN (Delimont et al., 2019). The effect of IP6 on the functions and
properties of cystatin SN is not yet understood. Themain purpose
of cystatin SN in the oral environment is inhibition of host
cysteine proteases, which are involved in periodontal tissue
destruction (Baron et al., 1999) and in protection against
dental caries (Vitorino et al., 2006). Cystatin SN also adsorbs
to enamel surfaces (Al-Hashimi and Levine, 1989; Johnsson et al.,
1991) and has an effect on the sensitivity to bitter taste (Rodrigues
et al., 2019). Delimont et al. suggested that repeated IP6
consumption might enhance basic proline-rich proteins
production (Delimont et al., 2019), and this represented area
of research that needs further exploration as this salivary
component comprises about 70% of the total salivary proteins
(Carlson, 1993) and is involved in several important functions
that impact the oral health (Bennick, 1982; McArthur et al.,
1995). Salivary mucins are glycoproteins that are responsible for
several physical and chemical characteristics of mucus and play

an important role in lubrication of hard and soft tissues of the oral
cavity, modulation of oral microflora and formation of acquired
enamel pellicle (Tabak, 1990). IP6 was reported to reduce the
adsorption of native human whole salivary mucins to
hydroxyapatite by 50% (Amerongen et al., 1988). However,
deglycosylation of mucins increased their ability to compete
with IP6 for hydroxyapatite surfaces (Amerongen et al., 1991).

The effect of IP6’s interactions with dietary starch, proteins or
salivary components such as enzymes on dental caries, pellicle
formation and periodontal health is still unclear and the quantity
of IP6 available from dietary sources to modify the functions of
salivary components is still not known. However, in addition to
the previously mentioned cariostatic mechanisms of IP6, we
believe that the effect of IP6 on starch digestion and/or
amylase activity has a role to play in the perceived anti-caries
effect of IP6.

Etching Agent
Phosphoric acid at a concentration of 37% has been used in
dentistry as an etching agent for enamel (Buonocore, 1955) and
for dentine (Fusayama et al., 1979) since 1955 and 1979,
respectively. The interaction of the etching agent with dentine
is limited by the buffering effect of hydroxyapatite and other
dentine components (Wang and Hume, 1988). However, it is
believed that the depth of dentine demineralization also directly
relates to the concentration of the applied acid (Chiba et al., 1989;
Pashley, 1992). The acidic agent removes the smear layer and the
superficial part of the dentine, opens the dentinal tubules,
demineralizes the dentine surface, and increases the
microporosity of the intertubular dentine (Van Meerbeek
et al., 1992; Pashley et al., 1993; Sano et al., 1994). Although a
definitely more effective enamel bonding is achieved through
etching with phosphoric acid (Frankenberger et al., 2008), etching
of dentine with phosphoric acid is now considered too aggressive
(Van Meerbeek et al., 2011). Application of phosphoric acid to
dentine results in exposure of collagen fibrils that are totally
devoid of hydroxyapatite (Van Meerbeek et al., 1996; De Munck
et al., 2003). These fragile collagen networks are susceptible to
collapse, preventing optimal infiltration of resin (Prati et al., 1999;
El Feninat et al., 2001), thus resulting in compromised bonding to
dentine (Nakajima et al., 2002) and possible postoperative
sensitivity (Chersoni et al., 2004). In addition, phosphoric acid
regulates the activity of proteolytic enzymes in dentine
(Tezvergil-Mutluay et al., 2013; DeVito-Moraes et al., 2016),
thus jeopardizing the longevity of resin-based restorative
materials (Pashley et al., 2004). Several approaches have been
suggested to slow down the enzymatic activity associated with
phosphoric acid on dentine, including evaluating other agents to
replace phosphoric acid, such as maleic acid, citric acid, lactic acid
or ethylenediaminetetraacetic acid (EDTA) (Breschi et al., 2002;
Imbery et al., 2012; Trevelin et al., 2019). In addition, the use of
crosslinking agents to strengthen the exposed collagen network
has been proposed (Macedo et al., 2009).

In 2013, IP6 was evaluated as a dentine etching agent with
results showing that upon etching with IP6, the bond strength of
resin to dentine was significantly increased compared with
phosphoric acid (Nassar et al., 2013). IP6 was shown to

Frontiers in Materials | www.frontiersin.org March 2021 | Volume 8 | Article 6389096

Nassar et al. Phytic Acid Dental Applications

https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


effectively remove the dentinal smear layer at lower
concentrations than phosphoric acid, and it also had less
adverse effect on pulpal cells (Nassar et al., 2013). The
speculated mechanism of action behind the increased resin-
dentine bonding was attributed to two possible events. The first
mechanism was due to IP6’s ability to form insoluble complexes
with calcium at a pH above 4 (Grynspan and Cheryan, 1983). As a
result of the high dentine buffering capacity (Camps and Pashley,
2000), the pH of IP6 increases upon neutralization with dentine,
and thus facilitated the formation of the insoluble complex, which
might provide a certain level of stability for the exposed collagen.
The second speculated mechanism was through the collagen
crosslinking action of IP6 (Cheryan and Rackis, 1980; Lee et al.,
2011; Ravichandran et al., 2013). The nature of IP6 protein
interaction is governed by pH; at a pH below the isoelectric
point of the protein, insoluble binary protein-IP6 complexes
(Figure 2A) that dissolve only below pH 3.5 are formed by
electrostatic interaction between the anionic phosphate groups
of IP6 and the cationic groups of the protein. The binding sites
for IP6 within the protein at low pH are the α-NH2 terminal group,
the ε-NH2 of lysine, the imidazole group of histidine and guanidyl
group of arginine. The stability of binary complexes is affected by
the competitive action of multivalent cations (Cheryan and Rackis,
1980; Reddy and Salunkhe, 1981; Greiner et al., 2006; Selle et al.,
2012). Dentinal collagen has a positive net charge after exposure to
acidic solutions (Nezu and Winnik, 2000; Zhang et al., 2005) such
as IP6, and thus we assume formation of a binary interaction
between IP6 and dentinal collagen occurs. However, this
interaction takes a different form at a pH above the isoelectric
point, because both IP6 and the protein have a net negative charge
at high pH. A soluble ternary protein-cation-IP6 complex

(Figure 2B) is formed where cations such as calcium, bridges
the IP6 to protein. In these types of complexes, the major binding
sites are the non-protonated imidazole group of histidine and
probably the ionized carboxyl group of the protein. The ternary
protein-cation-IP6 complexes may be disrupted by high ionic
strength, such as high pH (>10), and high concentrations of the
chelating agents (Cheryan and Rackis, 1980; Reddy and Salunkhe,
1981; Greiner et al., 2006; Selle et al., 2012). Due to the buffering
capacity of dentine (Camps and Pashley, 2000), this type of
interaction might also occur between IP6 and dentinal collagen.
A third more recent mechanism has been proposed for IP6-protein
interaction, where IP6 acts as a Hofmeister anion through its six
anionic groups that have marked kosmotropic effects resulting in
stabilization and reduction of the solubility of proteins by
interacting with water in the surrounding medium. However,
this mechanism is a new concept that needs further
investigation (Selle et al., 2012). Certain IP6-induced protein
complexes result in decreased protein solubility and these
complexes might be recalcitrant to enzymatic hydrolysis or
require higher quantities of the enzymes to be degraded
(Ravindran et al., 1995; Selle et al., 2012).

In a study done by Nassar et al., the increased number of
mixedmode of failures at the adhesive–resin interface for the IP6-
etched dentine reflected a strengthening effect of IP6 on the
hybrid layer (Nassar et al., 2013). The reduced effect of IP6 on the
used pulpal cells compared with phosphoric acid was attributed
to the lower concentrations of IP6 used in the study (Nassar et al.,
2013) and the ability of IP6 to reduce the level of oxidative stress
through chelation with iron. This in turn, inhibits the ability of
iron to catalyze the formation of hydroxyl radicals through the
Fenton reaction (Xu et al., 2008). It is not only IP6, but also its
intermediate products of hydrolysis that have iron chelating
properties and are thus still effective in preventing iron ion-
induced lipid peroxidation (Miyamoto et al., 2000). The effect of
IP6 on dentinal collagen was later confirmed in a study that
reported improved ultimate tensile strength of demineralized
dentine upon treatment with IP6, which was comparable to
results obtained with glutaraldehyde, a gold standard
crosslinking agent used in dental research. Dentinal collagen
exposed by IP6 was also less susceptible to collapse by air-
drying and to collagenase degradation when compared with
the fragile network of collagen attained by the use of
phosphoric acid (Kong et al., 2015; Kong et al., 2017).

Wang et al. compared the use of IP6, glutaraldehyde and
genipin for acellular animal-derived tissue fixation. It was
postulated that IP6 with its strong electro-negativity reacts
with –NH2 on the tissues to form stable electrovalent bonds
that could prevent degradation. To enhance biocompatibility,
sodium hydroxide was used to elevate pH, which might also have
resulted in the formation of hydrogen bonds between the
negatively charged oxygen of phosphate anions and the
protons on amino groups. These types of hydrogen bonds
were said to far exceed ordinary hydrogen-bond interactions
as the oxygen anions of IP6 possessed strong electro-
negativity, and thus stable fixation was obtained. In their
study, 5% IP6 was used for tissue fixation which resulted in a
fixation index of 90%; no further enhancement occurred when

FIGURE 2 | (A) Binary protein-phytic acid complex at a pH below the
isoelectric point of the protein. (B) Ternary protein-cation-phytic acid complex at
a pH above the isoelectric point of the protein. This image was created using
BioRender (https://app.biorender.com/).

Frontiers in Materials | www.frontiersin.org March 2021 | Volume 8 | Article 6389097

Nassar et al. Phytic Acid Dental Applications

https://app.biorender.com/)
https://www.frontiersin.org/journals/materials
www.frontiersin.org
https://www.frontiersin.org/journals/materials#articles


7.5% or 10% IP6 was used. The crosslinking rate for
glutaraldehyde was quicker than IP6; however, the fixation
index was comparable. Genipin had the lowest fixation index
and rate. The microscopic porous structure was well preserved
after crosslinking with IP6, which was similar to those of natural
biological tissues and this intact structure plays an important role
in the mechanical support and strength. IP6 resulted in samples
with higher ultimate tensile strength compared with controls,
indicating more effective crosslinking and formation of a
compact intermolecular crosslinking network within collagen
fibers. The enzymatic degradation of IP6-fixed tissue by
subjecting the samples to collagenase was determined by
measuring the relative weight loss of the tissue. At 24 h,
control samples were 90.7% hydrolyzed compared with 49.2%
for IP6-fixed tissues. The authors stated that IP6 introduced
stable heteropolar bonds and hydrogen bonds through binding
amino group, resulting in obstruction and protection of the
cleavage site, blocking the action of the collagenase and
reducing tissue degradability. In their study, glutaraldehyde
resulted in the least relative weight loss indicating lower tissue
degradation compared with IP6 and genipin. However, IP6 was
more cytocompatible and enhanced secretion of angiogenic
growth factors from human endothelial cells; a result that
could increase cell proliferation and attachment and thus the
process of angiogenesis (Wang et al., 2017). Tu et al. reported that
the effect of IP6 on the self-assembly degree and kinetics of
collagen isolated from bovine tendon was dose-dependent.
Accelerated self-assembly kinetics and higher self-assembly
degree were best at a 1:1 ratio of IP6 to collagen (Tu et al.,
2018). These findings were attributed to the formation of
hydrogen bonding between IP6 and amino group of collagen
as described by Wang et al. (Wang et al., 2017). At higher IP6
concentrations, the self-assembly degree and kinetics were
negatively affected compared with the control due to
occupancy of hydrogen bonding sites on collagen by IP6 and
the repulsion between IP6 absorbed on adjacent collagen
molecules resulting in an inhibitory effect. The triple-helical
conformation of collagen in the presence of IP6 was not
altered; however, more slender and thinner morphology of the
fibrils was observed than for IP6-free collagen. The thermal
stability of collagen fibrils and the viscoelasticity of collagen
were also enhanced by IP6 (Tu et al., 2018). The results of
these studies are not only helpful to design future studies to
optimize bonding to dentinal collagen, but they also provide
insights into IP6’s use in regenerative dentistry, as described later.

Matrix metalloproteinases play an important role in the
degradation of the dentine organic matrix, which is mostly
composed of collagen, thus leading to failure of resin-dentine
bonding (Thompson et al., 2012) or progression of caries process
(Toledano et al., 2012). In dentistry, use of matrix
metalloproteinases inhibitors has gained much attention as a
strategy to improve adhesive bonding to dentine, and currently
there is intensive research towards their development (Nassar
et al., 2014; Boelen and Boute, 2019). The mechanism of action of
the first-generation of matrix metalloproteinases inhibitors is
based on zinc and calcium ions chelation (Toledano et al.,
2012); these ions are required to maintain optimum tertiary

structures and functional active sites of matrix
metalloproteinases (Visse and Nagase, 2003). EDTA has a
significant inhibitory effect on matrix metalloproteinases
through previously described mechanisms; however, EDTA
can be rinsed off easily from dentine (Thompson et al., 2012;
Toledano et al., 2012). In addition to IP6’s excellent ability to
chelate with calcium, it is also a potent chelator of zinc. The zinc-
IP6 complex is stable and insoluble (Oatway et al., 2001), and
these properties along with an ability to bind to collagen might
make IP6 a potential inhibitor of dentinal matrix
metalloproteinases.

Despite limited evidence, it seems that controlled
concentrations of IP6 are not aggressive to dentine and create
a stable collagen network which might be clinically translated to
better longevity of resin-based restorations. However, more
research is warranted on the effect of IP6 on dentinal matrix
metalloproteinases and cysteine cathepsin which play important
role in destruction of dentine organic matrix following etching of
dentine by acidic agents. We also believe that IP6’s interaction
with dentinal collagen and metals merits thorough and
comprehensive examination, and future studies could be
directed to evaluating the stability and enzymatic degradation
of IP6-treated dentinal collagen (Forgione et al., 2021).

Chelating Agent
The success of root canal therapy depends on both mechanical
and chemical debridement. Mechanical debridement forms a
smear layer inside the canal walls and is often associated with
the incomplete seal and lack of adaptation of obturation materials
to canal walls. Despite failure of reaching a consensus on whether
to remove the smear layer or not, much of the literature seems to
promote its removal (Violich and Chandler, 2010). Sodium
hypochlorite is the most widely used intra-canal irrigant;
however, it fails to fully remove the smear layer, which is the
basic rationale behind use of chelating agents in endodontics
(Haapasalo et al., 2014). Since 1957, EDTA at a concentration of
17% and an application time of 1–5 min has been the chemical of
choice for smear layer removal (Nygaard-Ostby, 1957; Calt and
Serper, 2002). EDTA is overused globally and is a major pollutant
(Sillanpää, 1997). Furthermore, EDTA is not readily
biodegradable and its extrusion into the periapical tissue needs
to be avoided (Amaral et al., 2007). Thus, despite its popularity, a
search for other chelating agents is ongoing. Solutions of chitosan,
phosphoric acid, citric acid, and MTAD (mixture of doxycycline,
citric acid and a detergent) have been studied as smear layer
removal agents (Torabinejad et al., 2003; Machado-Silveiro et al.,
2004; Prado et al., 2011; Silva et al., 2013). In 2015, Nassar et al.
highlighted the potential of IP6 as an alternative root canal
chelating agent (Nassar et al., 2015). The mechanism of the
chelating action of IP6 stems from its multiple negative
charges giving it a high affinity to calcium (Torres et al.,
2005). Application of IP6 at concentrations lower than those
used for EDTA removes the smear layer and widely opens
dentinal tubules, whilst also being biocompatible to
osteoblastic cells. The latter finding was based on the results of
alkaline phosphatase activity and viability tests, when compared
with EDTA, which might be reflected clinically as more rapid
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wound healing in the periapical area in cases of extrusion (Nassar
et al., 2015; Nassar et al., 2020). Milder effects on osteoblast cells
may be explained by the lower concentration of IP6 needed to
remove the inorganic component of the smear layer and its
beneficial properties to protect the cells from iron-induced
damage as described in the etchant section of this review.
Eymirli et al. demonstrated that IP6 and EDTA produced
similar results with regard to removing intracanal triple
antibiotic paste and calcium hydroxide from root dentine
(Eymirli et al., 2017). While Afshan et al. found that 1% IP6
had reduced erosive potential and smear layer removal ability
compared with 17% EDTA, and this finding was in line with
Jagzap et al. (Jagzap et al., 2017; Afshan et al., 2020).

When a new chemical is being evaluated as a smear layer
removal agent, it is important to consider its effect on the
chemical and physical characteristics of dentine by
measurement of dentinal roughness and microhardness. The
changes in roughness reflect altered topography and
wettability of dentine, which might have an effect on the
microbial and dental materials adhesion to dentine (Eick et al.,
1972; Attal et al., 1994; Hu et al., 2010; Xu et al., 2019). A change
in microhardness denotes an effect on the mineral content of
dentine represented mainly by the calcium:phosphorus ratio
(Hennequin et al., 1994; Doğan and Çalt, 2001). Decreased
microhardness assists mechanical instrumentation of the
canals (Cruz-Filho et al., 2002); however, a disproportionately
heavy demineralization might weaken the tooth structure
(Ulusoy and Görgül, 2013) and create a fragile collagen
network which is susceptible to collapse, resulting in
insufficient penetration of the adhesive or sealer, and
suboptimal sealing ability (García-Godoy et al., 2005). The
effect of IP6 on dentine roughness and microhardness has
recently been studied and compared with EDTA. Nikhil et al.
reported a higher reduction in dentine microhardness with 17%
EDTA compared with 1% IP6, while, Muana et al., showed that
1% IP6 resulted in significantly higher roughness and lower
microhardness compared with 17% EDTA (Nikhil et al., 2016;
Muana et al., 2020). The equivocal results from studies comparing
EDTA and IP6 on their effects on the smear layer, dentine
microhardness and roughness, may be attributed to differences
in pH, exposure time, and method of application of the tested
agents (Muana et al., 2020). In addition, though IP6 is often solely
referred to as IP6, commercial products of this solution often
contain considerable amounts of impurities in the form of
inositol with lesser degrees of phosphorylation, such as IP2,
IP3, IP4, and IP5, and free orthophosphate. This will lead to
different degrees of phosphorylation of the available products in
the market (Hoke et al., 2016). The lower forms of IP6 are known
to have reduced metal binding capacity (Persson et al., 1998),
which is a function of the number of phosphate groups on the
myo-inositol ring. The cation-myo-inositol phosphate complexes
are also more soluble as the number of phosphate groups
decreases (Greiner et al., 2006).

A characteristic of chelating agents is the ability to eradicate
bacteria. Enterococcus faecalis is the most common
microorganism associated with endodontic failure and
persistent infections, and is known for its ability to resist

several antibacterial agents (Stuart et al., 2006). The effect of
IP6 on E. faecaliswas recently assessed, where IP6 was found to be
both bacteriostatic and bactericidal. The minimum inhibitory
concentration (MIC) of IP6 was 0.156% while the minimum
bactericidal concentration was 0.625%. In the same study, the
MIC of EDTA was 0.14%; however, EDTA did not exhibit
bactericidal activity. Further studies are needed to fully
comprehend the mechanism of action of IP6 against
endodontic pathogens (Nassar and Nassar, 2017). In general,
the antimicrobial effect of IP6 has not been widely studied. Kim
and Rhee stated that IP6’s antimicrobial activity was expected to
be different than the mechanism for other organic acids, which is
the weak acid theory, and this is attributed to the unique structure
of IP6 and its wide acidity range (Kim and Rhee, 2016). IP6 was
found to be effective against some Gram-positive and Gram-
negative bacteria (Zhou et al., 2019), and the proposed
mechanism was by its chelating ability and cell membrane
disruption (Kim and Rhee, 2016), thus causing excessive cell
permeability, changes in cell morphology and reduction in
intracellular ATP concentration (Zhou et al., 2019).

Implantology
Implantology is a rapidly growing dental field, where research
aims to produce implants with superior properties (He et al.,
2019). Osseointegration is the target of the implant industry,
which is constantly modifying dental implant surfaces for
improved direct structural and functional connection between
the bone and the surface of the implant. The implant surface
morphology, composition and the interaction with the
surrounding tissues play key roles on the outcome of
osseointegration (Bowers et al., 1992; Martin et al., 1995;
Cochran et al., 1998; Pet}o et al., 2002). Conventionally,
phosphoric acid has been used to treat the implant surfaces
prior to its placement to increase surface porosity to promote
healing and attachment (França et al., 2018). The use of chemical
agents such as phosphoric acid is considered an integral part in
the protocol of decontamination of implant surfaces during
surgical peri-implantitis treatment (Hentenaar et al., 2017).

Recent studies tested IP6 as an alternative to conventional
surface treating agents. Titanium surfaces can be covalently
functionalized with IP6 through the direct reaction of
phosphate groups of IP6 with titanium oxide without the need
for a crosslinker. The resulting bioactive functionalized surfaces
had an osteogenic effect that is thought to result in reduced
progression of bone resorption and enhancement of
osseointegration. There was also decreased adhesion of
bacterial biofilm to the treated surfaces (Co ́rdoba et al., 2016).

The success of dental implants is a function of several
parameters, and the titanium oxide layer on the implant
surface is one of them. Thus, several reports have sought to
modify this oxide layer to enhance biological performance and
attain best clinical results (Palmquist et al., 2010; de Souza et al.,
2019; He et al., 2019). Use of IP6 to modify the titanium oxide
layer was studied by Zhang et al. In their research, the liquid
phase deposition of this layer was assisted by using an IP6
template that stimulated nucleation and promoted titanium
oxide development, leading to a homogeneous and compact
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film that displayed a notable hydrophilic behaviour and excellent
bending strength (Zhang et al., 2016). Due to the chemical
structure and properties of IP6, it is thought that IP6 can
serve as a bridge between the titanium implant surfaces and
calcium ions. This was the basis of the study conducted by Liu
et al. in 2019, where calcium was successfully bound to implant
surfaces via hydrothermal treatment with IP6 and this resulted in
a continuous release of calcium over time. The research also
reported the super-hydrophilicity of these modified surfaces, with
increased cell adhesion and proliferation, and up-regulation of
osteogenic-related genes (Liu et al., 2019).

Hydroxyapatite coatings have received a lot of attention from
the dental implant industry as they are thought to facilitate an
osteoconductive effect. However, enhanced susceptibility of
hydroxyapatite to bacterial activity is a major concern (Pajor
et al., 2019). To overcome this drawback, IP6 was used to
incorporate ionic sliver into a hydroxyapatite coating using a
low heat immersion process, thus granting the coating an
antibacterial feature (Funao et al., 2016). A magnesium ion-
integrated IP6 coating was also developed for improved
corrosion resistance, reduced degradation rate and to heighten
the osteocompatibility (Chen et al., 2014). Collectively, these
findings might direct researchers’ attention towards the use of
IP6 to produce implants with superior quality and enhanced
long-term clinical outcomes.

Regeneration
The potential for regenerative therapy in endodontics is rapidly
gaining attention. The principle aim is to restore and maintain
tooth vitality through biologically based procedures designed to
replace damaged tooth structure such as dentine and the pulp-
dentine complex (Murray et al., 2007; Kim et al., 2018). Both pulp
and dentine play crucial roles in regenerative endodontics. The
former has a population of dental stem cells with inherent
differential propensity, which gives the pulp its regenerative
capacity (Sloan and Smith, 2007; Govindasamy et al., 2010).
The dentine matrix is a source of bio-active dentine matrix
components that get released following tissue injury. Several
bioactive molecules have been identified in dentine such bone
morphogenetic proteins and growth factors, which are essential
for the regenerative process (Cassidy et al., 1997; Smith, 2003;
Mazzoni et al., 2015). Endodontic irrigants and materials have
been used to induce release of dentine-bound bioactive molecules
during regenerative procedures (Graham et al., 2006; Tomson
et al., 2007; Galler et al., 2016; Smith et al., 2016; Alghilan et al.,
2017). EDTA as an irrigant has gained particular attention and is
considered the gold standard in regenerative endodontics
(Duncan et al., 2018; Atesci et al., 2020) due to its ability to
demineralize dentine and release growth factors from the dentine
matrix (Yamauchi et al., 2011; Galler et al., 2015; Galler et al.,
2016). EDTA also has a positive influence on dental pulp stem cell
adhesion, their migration to dentinal walls, and differentiation to
odontoblast-like cells (Sonoyama et al., 2008; Galler et al., 2016).
Equivalent studies using IP6 are limited. In 2018, Deniz Sungur
et al. compared the effect of 1% IP6, 17% EDTA and 9% etidronic
acid on growth factor release, and dental pulp stem cell migration
and viability. IP6 was found to promote release of transforming

growth factor (TGF-β), which in turn influenced cellular activity
and increased pulpal cell migration and proliferation. The
amount of release was lower than for EDTA or etidronic acid.
However, the differences were not statistically significant.
Furthermore, EDTA and IP6 resulted in similar migration and
proliferation of the cells after 24 h exposure. However, at this
exposure time, EDTA resulted in a contracted and spherical
morphology, while IP6-treated cells displayed a polygonal
morphology that was more stretched out onto the dentine
surface (Deniz Sungur et al., 2019). Recently, Atesci et al.
studied the effect of 17% EDTA and 1% IP6 on the release of
different types of growth factors and mesenchymal stem cell
behaviour (Atesci et al., 2020). No adverse impacts of these
agents on stem cell proliferation and attachment to root dentine
were demonstrated. The amount of TGF-β or vascular
endothelial growth factor released with either EDTA or IP6
was statistically similar. IP6 showed the highest release of bone
morphogenetic protein 2 and fibroblast growth factor 2 in cell-
free solutions that contained dentine discs. However, the
difference did not reach the level of significance compared to
EDTA (Atesci et al., 2020).

Bioactive glasses are involved in the regeneration of dental
hard tissues through two different processes, namely in situ
remineralization of enamel and dentine, and inducing
odontogenic differentiation of dental pulp cells leading to
tertiary dentine formation (Mocquot et al., 2020). The need
for a bioactive glass with superior bioactivity and
biodegradability has led to the use of IP6. The structure of IP6
and its extensive phosphorus component confer an ability to be a
good candidate for the synthesis of bioactive glass with high
phosphate content. Modifying the phosphate content allowed
production of bioactive materials with bioactivity over a wider
composition range and different degradation rates that suit the
intended application. The bioactive glasses derived from IP6 also
showed improved resistance to dissolution compared with other
phosphorus precursors, and absence of calcium nitrate, a toxic
material, thus expanding its application range. In the presence of
IP6, calcium ions incorporate within the gel network without the
need of further calcination treatments at higher temperature (Li
and Qiu, 2011). Ren et al. compared the effect of three different
phosphorus precursors on the bioactivity and structure of
bioactive glass. It was found that the material prepared with
IP6 remained amorphous with more phosphorus atoms present
as orthophosphate, and also had more bioactivity compared with
other phosphorus precursors (Ren et al., 2017).

In 2017, Cui et al. compared the effect of IP6-derived bioactive
glass (PSC) and traditional bioactive glasses on the differentiation
of dental pulp cells and formation of dentine. PSC promoted
earlier hydroxycarbonate apatite precipitation, which could be of
a clinical importance in establishing a rapid bond between the
bioactive material and the soft and hard tissues of the pulp-
dentine complex. This in turn would enhance regeneration and
repair of the complex. PSC also exhibited better biocompatibility
as it provided a stable pH and protected the pulpal cells from
severe inflammation. The larger surface area of PSC resulted in
the release of higher amounts of phosphorus and silicon which
led to more effective cell proliferation and odontogenic
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differentiation. Differences in up-regulation of certain genes for the
bioactive materials were found to affect the quality of the formed
dentine. Reparative dentine stimulated by PSC was found to be
thicker and formed in a continuous layer of dentine-like tissue with
well-organized dentinal tubules (Cui et al., 2017). PSC has been also
used to improve the mechanical performance and bioactivity of poly
(1,8-octanediol-co-citrate). The latter is a synthetic biodegradable
polyester used for soft tissue engineering. However, it lacks certain
properties, thus limiting its application in bone regeneration. Poly
(1,8-octanediol-co-citrate) composited with PSC exhibits higher
mechanical strength, bioactivity, and biocompatibility with a
reduced degradation rate. It also integrated well with the
surrounding tissues which would result in better bone
regeneration (Ren et al., 2017). PSC/bioactive bone cement
composite also showed improved injectability and maintained its
shape which made it easier to manipulate during the operation (Zhu
et al., 2017). A patent describing PSC-polymer bone scaffold has
been recently disclosed in 2019 (Deng et al., 2019). The effect of IP6
on the characteristics of polyelectrolyte hydrogel, a tissue engineering
scaffold, was studied. It was concluded that IP6 produced a hydrogel
scaffold with improved mechanical properties and antimicrobial
capability (Bui and Huang, 2019). Several other researchers reported
enhanced characteristics of biocements with the use of IP6; however,
its effect on the setting time is dependent on several factors that are
beyond the scope of this review (Horiguchi et al., 2008; Konishi et al.,
2012; Christel et al., 2015; Medvecky et al., 2020).

IP6 has the potential to be used in regenerative dentistry.
However, further studies are needed with regard to verifying this
aspect of its use (Cui et al., 2017). Collectively, the previously
mentioned findings do not capture the various aspects needed

when evaluating an emerging agent in the field of regeneration.
Consequently, we believe that these studies serve the same
fundamental objective, which is to provide guidance about
future research ideas on the use of IP6 in regenerative dentistry.

CONCLUSIONS AND FUTUREDIRECTIONS

IP6 is a versatile agent that lends itself to the development of new
oral care products and the improvement of currently available
materials in a variety of applications in the field of dentistry
(Table 1). Most IP6-related research is still in its infancy, and in
experimental stages at best, though its uniqueness and
importance for several potential dental applications had been
recognized early. However, in recent years, novel and rather
compelling experimental data have been produced. The
evidence for use of IP6 in dentistry is growing and the results
are too compelling to be ignored. However, there are several
limitations within the available literature, which demand calls for
further rigorous research approaches towards clinical studies to
further augment this evidence. Consideration of some of the
recommendations and suggested future studies described in this
review paper could facilitate more efficient use of IP6 in several
facets of dentistry.
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