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Abstract

Nowadays, smartphones are gradually being integrated in our daily lives, and they can be considered powerful tools for mon-
itoring human activities. However, due to the limitations of processing capability and energy consumption of smartphones com-
pared to standard machines, a trade-off between performance and computational complexity must be considered when developing
smartphone-based systems. In this paper, we shed light on the importance of feature selection and its impact on simplifying the
activity classification process which enhances the computational complexity of the system. Through an in-depth survey on the
features that are widely used in state-of-the-art studies, we selected the most common features for sensor-based activity classifi-
cation, namely conventional features. Then, in an experimental study with 10 participants and using 2 different smartphones, we
investigated how to reduce system complexity while maintaining classification performance by replacing the conventional feature
set with an optimal set. For this reason, in the considered scenario, the users were instructed to perform different static and dynamic
activities, while freely holding a smartphone in their hands. In our comparison to the state-of-the-art approaches, we implemented
and evaluated major classification algorithms, including the decision tree and Bayesian network. We demonstrated that replacing
the conventional feature set with an optimal set can significantly reduce the complexity of the activity recognition system with only
a negligible impact on the overall system performance.
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1. Introduction

Human Activity Recognition (AR) plays an important role in different applications such as smart home monitoring
systems, assistive technologies and healthcare applications such as human activity monitoring for health assessment,
rehabilitation, assistance for people with cognitive disorders, context-aware data acquisition for clinical purposes and
child and elderly care [10, 38].
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AR is a system that receives as input the acquired sensory information associated with human body motion, man-
ages and analyses the data flow, and returns the activity class as an output. Therefore, the common phases for AR are
considered to be data acquisition, feature extraction and activity classification.

The data can be acquired using inertial sensors [17], wearable sensors [32, 39], vision-based motion capture sen-
sors, etc. The acquired data is processed to extract low-level feature descriptors that fully represent the activities. To
distinguish the human activities relevant to the acquired data, several classification methods have been developed: as
decision trees, Support Vector Machine (SVM), k-nearest neighbours, naive Bayes, neural network, Hidden Markov
Model (HMM), Gaussian mixture models, etc [1, 12].

In developing an AR system, in addition to the type of the classifier, the efficiency of the AR system depends on
the complexity of feature extraction process and the number of selected features. As reported in [42] increasing the
number of features and including all features do not necessarily improve AR accuracy. Therefore, in this work we shed
light on the importance of feature selection, in which by obtaining an optimal feature set (that can be employed instead
of a group of features) the complexity of the AR system is reduced significantly. To investigate it, in our scenario we
look for features, which are important cues for distinguishing different activities.

In this paper, we first presented an in-depth survey on the features that are widely used in sensor-based activity
recognition systems, and then we selected the most common features which we called conventional features. After-
ward, in an experimental study, we collected 100 minutes of labelled data of 10 participants and using 2 different
smartphones, where users freely held a smartphone in their hands and were instructed to perform different static and
dynamic activities. We then obtained an optimal feature set and by replacing the conventional feature set with an
optimal set, we investigated the trade-off between AR complexity and overall performance. For this reason we imple-
mented and evaluated different classification algorithms, including the Bayesian network and decision tree. Through
an experimental evaluation we demonstrated that by replacing the conventional feature set with an optimal set the
complexity of the AR system can be significantly reduced, with only a negligible impact on AR accuracy.

2. Related Works

Human activity recognition has received substantial interest recently, because of the various potential applications
in different research fields, such as home automation [10, 15]. The literature review indicates that several AR systems
have been proposed using inertial sensors.

Bulling et al. in [11] focused on AR using on-body inertial sensors, discussed the challenges and provided an
overview of AR methods. They presented the AR chain as a general framework to design and evaluate AR systems.
Following the described framework, they recognised different hand gestures using inertial sensors. Gupta and Dallas
in [23] implemented an accurate AR system that recognised six daily living activities and transitional events using a
single waist-mounted triaxial accelerometer. They performed feature selection algorithms to select the best features
among a range of conventional features and the features they introduced. They carried out AR and compared the
results using naive Bayes and k-nearest neighbours algorithms. Capela et al. [12] used the embedded smartphone
accelerometer and gyroscope sensors and collected the AR data of able-bodied, elderly and stroke patients. They
calculated 76 features and selected the subsets of these features, which were then evaluated using naive Bayes, support
vector machine and J48 decision tree classifiers. They concluded that feature subsets resulted in better or similar
accuracies compared to using the entire feature set. Bayat et al. [7] implemented an AR system to recognise various
everyday activities using a single smartphone triaxial accelerometer. They have considered a new set of features and
used different classifiers to evaluate recognition performance.

The remainder of this section presents an in-depth survey on the widely used features for AR in the state-of-the-art,
as well as the classification methods.

2.1. State-of-the-art on Feature Extraction

Feature extraction plays an important role in an activity recognition system. The purpose of feature extraction is
to obtain the common characteristics of the acquired signals associated to the same class of activities [4]. The term
feature refers to data that is computed based on the sensor’s raw signal using any desired method (e.g., mean value of
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Fig. 1. Classification methods used for state recognition.

the acquired signal from the sensor). The complexity of obtaining the features and the number of features required for
AR directly affect the system’s performance, which is particularly crucial when using smartphones.

The literature review on the features used for AR shows that the commonly used features or conventional features
can be categorised as frequency domain, time domain and time-frequency domain. Table 1 shows the widely used
features in the state-of-the-art in all three categories. Each category is detailed as follows.

2.1.1. Frequency Domain

The features in the frequency domain provide information about the signal’s periodicity, which can be used for
recognition of activities that their relevant acquired signals have different periodic patterns. Converting a time series
of acquired signals into frequency domain has an advantage of reducing the data dimension. Table 1 shows different
widely used features in the frequency domain. Among them, the discrete Fourier transform (DFT) (e.g., in [42])
together with the enhanced fast Fourier transform (FFT) can be considered as the bases of frequency domain features.
Other features such as single DFT coefficients, the 1* and 2" dominant frequencies (e.g., in [46]) or spectral energy
and entropy [51] that recognise the activities with the same level of energy are used in the state-of-the-art.

2.1.2. Time Domain

Time domain features provide signal statistics, and they are usually less computationally intensive [12]. The widely
used features are mean, variance, energy and zero crossing rate. The time domain features can be obtained directly
from the sensor’s acquired signals applying different mathematical functions. More details on different time domain
features in the state-of-the-art are reported in Table 1. Signal magnitude area (SMA) is another feature, which is used
in several AR systems. Some works (e.g., [4]) categorised this feature as a heuristic feature; however, in this work we
report it among time domain features.

2.1.3. Time-Frequency Domain

These features are useful for evaluating the characteristics of complex signals in both time and frequency domains
[4]. The widely used features in the time-frequency domain are wavelet coefficients (e.g., [41]), signal-pair correlation
(e.g., [51, 3]) and tilt features (e.g., [34]).

2.2. State-of-the-art on Classification Techniques

To distinguish the user’s activity or state, the extracted features are being used as inputs of the classifiers. Avci et al.
[4] considered the classification methods as three main categories: threshold-based, pattern recognition and artificial
neural networks, which are illustrated in Figure 1.

Table 2 reports the comparison of different classification methods in the same framework. Table 3 summarises
some of the IMU-based AR systems using different classification methods that reports in Figure 1.
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Table 1. Conventional features used in activity recognition systems.

Features References
Frequency Domain
FFT and DFT coefficients [31,42, 11, 16]
Ist and 2nd dominant frequencies of the acceleration [46, 42, 45]
Amplitude of the 1st and 2nd dominant frequencies of the acceleration [42, 45, 46]
Amplitude scale and difference of two dominant frequencies [42]
Spectral entropy [6, 51, 3, 27, 23, 20]
Power spectrum centroid [51, 50]
Spectral energy [52, 50, 23, 20]
Dominant frequency of gyroscope [45, 46]
Time Domain
Mean value of the acceleration along x-axis, y-axis, z-axis and norm of acceleration [34, 44, 35,42, 6,51, 11, 13,23, 12,5, 7, 21, 14, 16, 20]
Mean and variance of sensory data [43, 19, 29]
Mean value of the dynamic acceleration in the vertical and horizontal plane [42, 23,22, 7]
Mean value of the horizontal and vertical gravity free acceleration [35, 42]
Variance of the acceleration along x-axis, y-axis, z-axis and norm of acceleration [27, 46,42, 11, 23, 21, 16, 20]
Variance of the dynamic acceleration in the vertical plane and horizontal plane [42, 23]
Variance and mean value of the heading, and heading change [42]
Zero crossing rate [51,11, 12,5, 20]
Peak counting, amplitude, sum of the differences of peaks or time between peaks [48, 13,9, 14]
Time interval between peaks [35]
Binned distribution and cumulative histogram [35, 29, 14]
Accelerometer energy [34, 6, 46, 27]
Gyroscope energy [46, 45]
Percentile [51,44]
Interquartile range [51,12]
Signal Magnitude Area (SMA) [52, 3, 24, 31, 20, 33]
Standard deviation [35, 44, 24, 3,51, 13,5,9,7, 14, 16, 20]
Variance of gyroscopic signal [45, 46]
Minimum and maximum of acceleration [44, 7]
Root mean square (rms) [13,9, 7, 20]
Kurtosis and skewness, and kurtosis of gravity vector [13,12,9]
Time-Frequency Domain
Wavelet coeflicients [41, 13]
Signal-pair correlation [6,51, 3,13, 12,7, 21, 20]
Tilt angle features [34, 20, 33]

Table 2. Comparison of classification methods (@ > b means using classifier a resulted in the higher accuracy compared to classifier b).
Phone Ref. Method Comparison

No [12] Decision Tree > Naive Bayes > SVM

Yes [14] Neural Networks > Decision Tree > Logic Regression

No [11] SVM > KNN > HMM > Naive Bayes

No [20] Neural Networks > Decision Tree > KNN > SVM > Naive Bayes

No [19] Neural Networks > Naive Bayes > HMM

Yes [71 Neural Networks > SVM > Random Forest > LMT > Simple Logistic > Logit Boost
Yes [41] Naive Bayes > Decision Tree > KNN > Neural Networks > SVM

Yes [42] LS-SVM > Decision Tree > Linear Discriminant Analysis > Quadratic Dis. Analysis > Bayesian Network-GMM
Yes [44] Quadratic Discriminant Analysis > KNN

Yes [35] Neural Networks > Decision Tree > Logistic Regression

Yes [51] Decision Tree > SVM > KNN > Naive Bayes

No [52] Neural Networks > KNN

No [6] Decision Tree > KNN > Naive Bayes > Decision Table

3. Experimental Evaluation and Feature Selection

In this work we consider commonly performed motions including pedestrians’ static and dynamic activities, while
having a smartphone freely in the hand. The dynamic activities refer to the activities where the user has significant
displacement in the global coordinates, such as walking and going on the stairs. Static activities refer to the activities
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Table 3. Categorization of related works on AR based on the classification methods.

Classifier Ref. Phone Sensor Accuracy(%)
[12] No Accelerometer & Gyroscope 97.12
[14] Yes Accelerometer 86.08(av.)
Decision Tree [20] No Accelerometer 96.4
[46] No Accelerometer & Gyroscope 97
[51] Yes Accelerometer 90
[6] No Accelerometer 84
[12] No Accelerometer & Gyroscope 90.44
Support Vector [20] No Accelerometer 92.7
[7] Yes Accelerometer 88.76
[11] No Accelerometer & Gyroscope 96
Machine [42] Yes Accelerometer & Magnetometer 95.53
[3] Yes Accelerometer & Gyroscope 89
[34] Yes Accelerometer 90
[23] No Accelerometer 98.4
K-Nearest [20] No Accelerometer 96.2
[11] No Accelerometer & Gyroscope 94.1
Neighbour [30] Yes Accelerometer NA
[44] Yes Accelerometer 94.5
[12] No Accelerometer & Gyroscope 97.43
[20] No Accelerometer 89.5
[23] No Accelerometer 97.8
Naive Bayes [11] No Accelerometer & Gyroscope 78.2
[50] No Accelerometer, Gyroscope & knee angle sensors NA
[18] No NA 83.97
[11] No Accelerometer & Gyroscope 85.6
[21] No Accelerometer 71
HMM [53] No Accelerometer 87.36
[36] No Accelerometer, Microphone & Light sensor 90
[49] No Accelerometer & Microphone 72.14
Gaussian Mixture [28] No Accelerometer 88.76
Models [2] No Accelerometer 76.6
[8] No Accelerometer 89.14
Threshold-Based [26] No Accelerometer & Gyroscope NA
[40] No Accelerometer NA
[14] Yes Accelerometer 88.76(av.)
[20] No Accelerometer 96.8
Neural Networks [47] Yes Accelerometer NA
[52] No Accelerometer 95

where the user has no displacement in the global coordinates, and includes standing, slight motions while standing,
and can include a freely moving hand. Figure 2 shows a few sample activities considered in this work, which are
described as follows:

In an experimental study, we instructed 10 users of both genders, different body constitution and age groups to
hold a smartphone (either Samsung Galaxy or LG Nexus) in their left/right hands and performed different static
and dynamic activities during a free walk inside and outside of multi-storey buildings at the Technical University
of Munich, for 10 minutes each on average, in particular they performed all the dynamic (i.e., walking, and going
on the stairs) and static (i.e., standing) activities, whilst they were able to choose unobtrusively the current activity
using a graphical user interface of an app. We collected the labeled data measured by all of the smartphone built-in
sensors with a sampling rate of 50 Hz, however since accelerometers are embedded in most of today’s smart devices,
in this work we focus on the features extracted from three-axial accelerometers. Figure 3 shows the sample data of
accelerometer collected during static and dynamic activities. We windowed the acceleration signals over two-second
intervals with 75% overlapping (to minimize the loss), which is sufficient for recognition of individual activities.
The two-second intervals is chosen to support two periods of a periodic activity considering the fact that step periods
typically lie below 1 second. We implemented signal processing and feature extraction, which resulted in extraction of
above 600 features (refer to Table 1). We implemented different classification algorithms, including decision tree and
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Bayesian network, and evaluated all of the extracted labelled features to identify the optimal set for AR. Classifiers
were trained using the labelled data, while following [5] 10-fold cross-validation was performed.

We employed the supervised attribute filter [25] as a pre-processing method to perform feature selection for clas-
sifying activities. In order to apply feature selection techniques for identifying the most discriminative features, we
applied a combined approach of forward/backward feature selection (which searches through the space of feature
subsets) employing a hill-climbing algorithm [37], which has provided the best performance in this work and on our
feature set. Afterward, in order to further investigate the resulting feature sets and select the optimal feature set, im-
plementing a decision tree and naive Bayes classifiers, we evaluated the performance of the AR system using each
feature set. Amongst the classification algorithms we used decision tree and naive Bayes following [41, 12] reported
in Table 2. As a result of classification, the feature set that distinguished activities with the best performance was
selected as an optimal feature set for recognition of static vs. dynamic activities.

4. Result and Discussion

As a result of experimental feature evaluation presented in section 3, we identified the features that resulted in the
highest accuracy in recognition of static versus dynamic motions. Since using the other feature descriptors, presented
in Table 1 resulted in the lower accuracy, we opted them out from the selected feature set. Table 4 reports the top
three features together with the corresponding weighted accuracy using 10-fold cross validation, where using each
of these features solely, the AR system can recognise the static motions versus dynamic motions with high accuracy.
As shown, among these winner features, we selected the range of acceleration along z axis, which is obtained as the
difference of the maximum and minimum values of the acceleration along the z axis over each segmentation. This
feature is selected because it can be obtained with less computation compared to other ones, in addition to providing
the best performance for the AR system.

In order to evaluate the importance of the obtained optimal feature, implementing a decision tree and naive Bayes
classifiers we compared the performance of the AR system using obtained optimal features and three different groups
of features from the state-of-the-art. The first group includes the conventional features which are selected amongst the
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Table 4. Selected features for distinguishing static and dynamic motions.

No. Feature Name Accuracy(%)
1 variance of horizontal acceleration 99.0
2 range of the maximum minus the minimum value of the acceleration in the vertical plane over the segmentation 98.9
3 range of the maximum minus the minimum value of the acceleration along z axis over the segmentation 99.2

most commonly used acceleration-based features as reported in Table 1. Furthermore, to provide practical evaluation
and comparison, we employed two accelerometer-based groups of features presented in [46] and [42]. Table 5 presents
the features of all three groups.

Table 5. Acceleration-based features taken from the state-of-the-art.

Name Features

. Mean value of acceleration along x, y, z, and norm of acceleration

. Variance of acceleration along X, y, z, and norm of acceleration

. Mean value and variance of the horizontal acceleration and the vertical acceleration minus gravity acceleration
. Variance and mean value of the dynamic accel. in the vertical and horizontal planes of the global coordinates
. Amplitude of 1* and 2"¢ dominant frequencies of the acceleration

1% and 2" dominant frequencies of the acceleration

Amplitude scale and difference of two dominant frequencies

Accelerometer energy

. Variance of acceleration

. Amplitude of 1*" and 2"¢ dominant frequencies of the acceleration

. Dominant frequencies of the acceleration

DFT coefficients

. Amplitude of 1% and 2"¢ dominant frequencies of the acceleration

15" and 2" dominant frequencies of the acceleration

. Spectral entropy spectral energy

. Variance of acceleration along X, y, z, and norm of acceleration

. Mean value of the horizontal acceleration and the vertical linear acceleration

. Mean value of acceleration along x, y, z, and norm of acceleration

. Signal magnitude area

. Percentile and interquartile range

10. Accelerometer energy

11. Binned distribution and cumulative histogram

12. Peak counting, amplitude and time interval between peaks

13. Zero crossing rate

14. Variance and mean value of the dynamic acceleration in the vertical and horizontal planes of global coordinates

—_

Group I [42]

Group II [46]

Conventional

I - N N e O N e PR Y I SR

o

Figure 4 illustrates the results of the AR performance evaluation and comparison for each feature set using a
decision tree and naive Bayes classifiers. As shown, there is no statistical significance among the groups and using
the optimal feature has only a negligible impact on the overall system performance, while using the optimal feature
solely instead of a group of features, significantly reduces the complexity of the activity recognition system. We used
classifiers to distinguish between static versus dynamic motions and to support the recognition of wider range of
activities such as walking versus going on the stairs in a single framework.

5. Conclusion

In this paper, we discussed the importance of feature selection for activity recognition and its impact on system
complexity and performance, which is crucial in developing smartphone-based activity recognition. Considering a
trade-off between the performance and the computational complexity, we obtained an optimal feature which can
solely distinguish static from dynamic activities. To achieve a fair evaluation, in an experimental study we recorded a
data set with 10 users and 2 different smartphones, where users were instructed to perform different static and dynamic
activities holding a smartphone in their hands. We selected a conventional feature set through an in-depth survey on
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Fig. 4. Performance comparison of activity recognition for different feature sets using a decision tree and naive Bayes classifiers.

the features that are commonly used in the state-of-the-art. Implementing a decision tree and Bayesian network, we
compared activity recognition performance using optimal feature and conventional feature sets. The experimental
evaluation demonstrated that replacing the conventional feature set with an individual optimal feature has only a
negligible impact on the overall system performance, while it can significantly reduce the complexity of the activity
recognition system.

In future work, we plan to extend the proposed approach to distinguish more activities, such as walking and going
on the stairs.
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