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Abstract 

Industry 4.0 refers to the fourth industrial revolution, which has boosted the 

development of the world. An important target of Industry 4.0 is to maximize the asset 

uptime so to improve productivity and reduce the production and maintenance cost. 

The emerging techniques such as artificial intelligence (AI), industrial Internet of 

things (IIoT) and cyber-physical system (CPS) have accelerated the development of 

data-orientated application such as predictive maintenance (PdM). Maintenance is a 

big concern for an automobile fleet management company. An accurate maintenance 

prediction can be helpful to avoid critical failure and avoid further loss. Deep learning 

is a type of prevailing machine learning algorithm which has been widely used in big 

data analytics. However, how to establish a maintenance prediction model based on 

historical maintenance data using deep learning has not been investigated. Moreover, 

it is worthwhile to study how to build a prediction model when the labelled data is 

insufficient. Furthermore, surrounding factors which may impact automobile lifecycle 

have not been concerned in the state-of-the-art. Hence, this thesis will focus on how to 

pave the way for automobile PdM under Industry 4.0. 

This research is structured according to four themes. Firstly, different from the 

conventional PdM research that only focuses on modelling based on sensor data or 

historical maintenance data, a framework for automobile PdM based on multi-source 

data is proposed. The proposed framework aims at automobile TBF modelling, 

prediction, and decision support based on the multi-source data. There are five layers 

designed in this framework, which are data collection, cloud data transmission and 

storage, data mapping, pre-processing and integration, deep learning for automobile 

TBF modelling, and decision support for PdM. This framework covers the entire 

knowledge discovery process from data collection to decision support. 

Secondly, one of the purposes of this thesis is to establish a Time-Between-Failure 

(TBF) prediction model through a data-driven approach. An accurate automobile TBF 
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prediction can bring tangible benefits to a fleet management company. Different from 

the existing studies that adopted sensor data for failure time prediction, a new approach 

called Cox proportional hazard deep learning (CoxPHDL) is proposed based on the 

historical maintenance data for TBF modelling and prediction. CoxPHDL is able to 

tackle the data sparsity and data censoring issues that are common in the analysis of 

historical maintenance data. Firstly, an autoencoder is adopted to convert the nominal 

data into a robust representation. Secondly, a Cox PHM is researched to estimate the 

TBF of the censored data. A long-short-term memory (LSTM) network is then 

established to train the TBF prediction model based on the pre-processed maintenance 

data. Experimental results have demonstrated the merits of the proposed approach. 

Thirdly, a large amount of labelled data is one of the critical factors to the satisfactory 

algorithm performance of deep learning. However, labelled data is expensive to collect 

in the real world. In order to build a TBF prediction model using deep learning when 

the labelled data is limited, a new semi-supervised learning algorithm called deep 

learning embedded semi-supervised learning (DLeSSL) is proposed. Based on 

DLeSSL, unlabelled data can be estimated using a semi-supervised learning approach 

that has a deep learning technique embedded so to expand the labelled dataset. Results 

derived using the proposed method reveal that deep learning (DLeSSL based) 

outperforms the benchmarking algorithms when the labelled data is limited. In addition, 

different from existing studies, the effect on algorithm performance due to the size of 

labelled data and unlabelled data is reported to offer insights for the deployment of 

DLeSSL. 

Finally, automobile lifecycle can be impacted by surrounding factors such as weather, 

traffic, and terrain. The data contains these factors can be collected and processed via 

geographical information system (GIS). To introduce these GIS data into automobile 

TBF modelling, an integrated approach is proposed. This is the first time that the 

surrounding factors are considered in the study of automobile TBF modelling. 

Meanwhile, in order to build a TBF prediction model based on multi-source data, a 

new deep learning architecture called merged-LSTM (M-LSTM) network is designed. 
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Experimental results derived using the proposed approach and M-LSTM network 

reveal the impacts of the GIS factors.  

This thesis aims to research automobile PdM using deep learning, which provides a 

feasibility study for achieving Industry 4.0. As such, it offers great potential as a route 

to achieving a more profitable, efficient, and sustainable fleet management. 
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Chapter 1 Introduction 

1.1 Background  

Industry 4.0 stands for the fourth industrial revolution, which is bringing sweeping 

change to industries worldwide. The digitisation and intelligentisation are two key 

parts in Industry 4.0, which have generated meaningful impact in different parts of the 

industry (Behrendt et al., 2017, Vaidya et al., 2018). Under this context, new 

technologies such as AI, IIoT and CPS have accelerated the development of the 

industry (Rauch et al., 2020). AI is a cognitive science with the focuses in the areas of, 

image processing, natural language processing and robotics and so on. It has become 

one of the core technologies in Industry 4.0, which have gained increasing attention 

from both industry and academia (Lee et al., 2018). IIoT refers to interconnected 

sensors, instruments, and other devices connected with computers' industrial 

applications, which has greatly promoted the information process in real-time data 

collection (Boyes et al., 2018). With the deployment of IIoT, a large amount of 

industrial data is generated and collected, which greatly promotes the information 

process in monitoring, tracking, and interaction. The data collected from IIoT requires 

big data analytics techniques to build an integrated environment which can offer a 

transparent view of the production process and can be helpful in process control and 

management (Kang et al., 2016a). CPS is the integrations of computation, networking, 

and physical processes, which has been used to implement the efficient management 

of industrial big data collected from IIoT and implement analytics using AI techniques 
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(Zhang et al., 2018d). These techniques can be beneficial to different aspects of the 

industry, such as asset lifecycle management.  

Asset is important to the operation in the industry. Asset failure leads to great losses 

in revenues and productivity. Taking automotive manufacturing as an example, every 

minute of unplanned downtime can cost them as much as $15,000 - $20,000 and a 

single downtime event can cost approximately $2 Million (Cloudera, 2017). Since the 

business impact of the unexpected failure is significant, it is not surprising that the 

asset lifecycle management has become a key concern in modern industry. Big data 

has prevailed under the context of Industry 4.0. The analytic for industrial big data is 

a key concern for the industry which can bring valuable insights for decision-making. 

Industrial big data is labelled with ‘5V’ characteristics, which are volume, velocity, 

variety, veracity, value (Erl et al., 2016). These characteristics impose challenges to 

process industrial big data via traditional data processing techniques. The big data 

collected from the industry contains various information which is about the process 

and event from the assets. These data can be relevant to asset’s lifecycle. With the 

advancement of data analytics, it is possible to get insights to achieve better 

maintenance management (Sezer et al., 2018, Chen et al., 2020). 

Besides digitisation and intelligentisation, sustainability is another important topic in 

Industry 4.0 (Stock and Seliger, 2016). The role of asset maintenance is crucial in 

sustainable manufacturing (Rødseth and Schjølberg, 2016). If an asset breaks down 

seriously, some of the critical parts may need to be replaced or major repaired. The 

replacement and major repair will lead to high cost, extra energy consumption and low 

resource-efficiency, which have a negative impact on the environment. Moreover, 

critical failure can shorten the overall lifespan of the asset (Wang et al., 2014), which 

accelerate its pace to be scrapped or recycled. Achieving better asset lifecycle 

management can not only lower the economic loss and increase productivity, but it can 

promote the sustainability of the industry.  

Maintenance is critical as it is highly relevant to asset lifespan. The useful life of a 

system can be extended with the implementation of PdM. Figure 1.1 compares the 
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health status change under the strategy of PdM and passive maintenance. Passive 

maintenance is also known as run-to-failure. The maintenance is implemented when 

the health status of an asset decreases to 0. Then the downtime for the asset will be 

extremely long. In strike contrast, with the help of PdM,  the occurrence of failure and 

then implement maintenance can be predicted in the early stage of failure, which can 

dramatically shorten the asset downtime (Patil et al., 2017). With an accurate 

prediction of equipment failure time, maintenance can be scheduled beforehand so to 

decrease the probability of accidents, economic losses, and human casualty. Nowadays, 

PdM has been widely applied in different industries such as automobile (Prytz et al., 

2015), aircraft (Aremu et al., 2019), manufacturing (Baruah and Chinnam, 2005). The 

implementation of PdM can help a company to increase asset availability by 5% to 

15%, reduce maintenance costs by 18% to 25%, and reduce machine downtime by 30% 

to 50% (Behrendt et al., 2017). The automobile is a type of expensive asset. 

Automobile fleet management is the management of a business’s cars and vans, which 

is important to the logistics.  

 

Figure 1.1 The comparison of passive maintenance and PdM 
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For an automobile fleet management company, the maintenance of the possessed 

automobile is a significant concern because it is directly relevant to the maintenance 

planning, job scheduling and spare parts management (Chen et al., 2018). The asset’s 

pending failures can be detected and failure time can be predicted in advance using 

data analytic tools such as defined health factors, statistical inference methods, and 

engineering approaches (Susto et al., 2015). In PdM, it is essential to predict the next 

failure time accurately. If maintenance is implemented too early in advance, the 

benefits of more extended usage are lost. In contrast, if it is carried out too late, the 

asset may fail and result in a larger loss (Allah Bukhsh et al., 2019). If the upcoming 

failure of an automobile can be predicted, maintenance can be scheduled in advanced 

to avoid critical failure, which can bring tangible benefits to the fleet management 

company. Hence, achieving better prediction accuracy is one of the principal research 

targets in the era of Industry 4.0. 

1.2 Motivations 

The maintenance of the automobile is a major concern for fleet management 

companies. If the engine of an automobile fails when it is running, it might cause the 

accident and economy loss (Zhang and Liu, 2002). Fleet management companies need 

to take better maintenance management to ensure an automobile’s health status. There 

are two main types of maintenance strategies widely deployed in fleet management, 

which are run-to-failure and preventive maintenance (Mobley, 2002). Run-to-failure 

is a passive management technique, where maintenance is not carried out until failure 

occurs. Preventive maintenance is deemed as a time-driven maintenance strategy. With 

the deployment of preventive maintenance, an automobile takes a scheduled check 

after a certain period (Mobley, 2002). Apparently, run-to-failure management cannot 

lower maintenance cost. As for preventive maintenance, a critical issue part is that the 

scheduled check period is challenging to determine. If it is scheduled too frequently, 

the maintenance cost will increase, and a part of automobile usage will be sacrificed. 

However, if it is scheduled less frequently, an accident will happen (Cresci et al., 2017). 

Different from preventive maintenance and run-to-failure, PdM is a proactive 

maintenance strategy. The core of PdM is to predict the next failure time of equipment 
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in order to maximize the service life of equipment without increasing the risk of failure. 

If the maintenance can be scheduled before a critical failure occurs, it can lower the 

maintenance cost and downtime. The prediction of the next failure of an automobile 

can bring tangible benefits to maintenance management.  

Recently, data-driven approaches have been widely explored in PdM. Among these 

studies, condition-based PdM has gained increasing attention. With the development 

of the IIoT and CPS, an increasing amount of data relevant to the health condition of 

equipment can be collected with the aim to implement PdM (Edwards et al., 2017). 

Real-time sensor data offers dynamic information on the asset’s health condition, 

which can be used for the asset remaining useful life (RUL) modelling (Civerchia et 

al., 2017, Nuñez and Borsato, 2018). However, the deployment of IIoT requires extra 

cost, which cannot be afforded by a part of industrial companies. 

For an automobile fleet management company, telematics data that collected from IIoT 

such as speed and load can be obtained and stored in the intelligent device of an 

automobile. However, it is challenging to transmit these data to the cloud for further 

modelling. Two main reasons make this issue challenging. Firstly, the real-time 

telemetric data is high in volume, which results in heavy data transmission burden. 

Secondly, automobile as an asset working in a large area, its data connection to the 

cloud can be unstable. Because of that, realising real-time monitoring and condition-

based PdM for an automobile is challenging to deploy in the actual fleet management. 

Besides modelling asset RUL based on sensor data, another type of data called 

historical maintenance data can also be used for automobile failure time prediction. 

Historical maintenance data is the automobile maintenance records collected from a 

garage. Different from the collection of sensor data which requires extra cost, the 

collection of historical maintenance data is relatively easy. The PdM studies based on 

sensor data aims at RUL modelling, while the studies based on historical maintenance 

data can be used for automobile TBF modelling. Under the scenario that sensor data 

tends to be challenging to obtain due to the extra cost, exploring automobile TBF 

modelling can be another way for the next failure prediction of the automobile. 
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Moreover, the existing PdM research only considers modelling based on single data 

sources such as sensor data or historical maintenance data. However, both types of 

data can be used in automobile failure prediction. With the integration of historical 

maintenance data, the needed volume and features from sensor data can be decreased, 

which can lower the barrier towards condition-based PdM. Hence, there is a need to 

study the PdM based on historical maintenance data under the context of Industry 4.0. 

Recently, deep learning has been prevailing in big data analysis (LeCun et al., 2015). 

It was originated from the multilayer perceptron (MLP), and the prevailing structures 

such as convolutional neural network (CNN), recurrent neural network (RNN) and 

autoencoder has been widely used in the data analytics for industrial big data (Wang 

et al., 2018b). As a group of machine learning algorithms, deep learning is good at 

learning the hidden patterns within data (LeCun et al., 2015) and is prevailing in the 

multi-source data integration (Gao et al., 2020). In PdM, deep learning has been 

investigated in recent years (Carvalho et al., 2019), which mainly focused on the 

condition-based PdM. Since the historical maintenance data also can be high in volume 

and complex in composition, deep learning can be a useful tool in modelling based on 

historical maintenance data. 

1.3 Research Questions and Objectives 

Following the background and motivations, this research aims to investigate 

automobile PdM using deep learning under the context of Industry 4.0. To achieve the 

aim of this research, the following research questions have been formulated: 

1. The emerging technologies such as IIoT, CPS and AI have greatly boosted the 

development of the industry. Under this context, what is a suitable framework for 

automobile PdM based on the understanding of Industry 4.0? 

2. The prediction of TBF is important in automobile PdM. Since deep learning is a 

prevailing tool in big data analysis and it has been widely used in the RUL 

prediction. However, TBF modelling is also important in automobile PdM. How 
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can deep learning be used in automobile TBF modelling based on historical 

maintenance data? 

3. Deep learning is a type of data ‘hunger’ algorithm. When the labelled data is 

insufficient, how can the performance of deep learning not be significantly 

jeopardised in the study of automobile TBF modelling? 

4. It is understood that the automobile lifecycle is relevant to the surrounding factors 

such as weather, traffic, and terrain. However, due to the heterogeneous nature 

of these data, how to integrate them with historical maintenance data for 

automobile TBF modelling? 

With the identification of the research questions, the research objectives following 

these research questions are listed below: 

1. To propose a framework for automobile TBF modelling, prediction, and decision 

support based on the multi-source data. 

2. To investigate an approach that integrates deep learning and reliability analysis 

for automobile TBF modelling based on historical maintenance data. 

3. To propose a semi-supervised learning algorithm that can enable deep learning 

to be effective when the labelled data is insufficient. 

4. To study an approach to integrate the surrounding data collected from GIS into 

automobile TBF modelling. 

The details of these research will be reported in Chapters 3, 4, 5 and 6.  

1.4 Thesis Outline 

Chapter 1 aims to provide broader contexts and background as to the research 

motivation and significance in this thesis.  
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Chapter 2 provides a comprehensive literature review of the existing body of literature. 

It is divided into four main parts: (1) the condition-based PdM and the statistical-based 

PdM; (2) several prevailing deep learning algorithms and the application of deep 

learning in the industry, (3) semi-supervised learning and its application in industry, 

and (4) the studies of GIS using machine learning. 

In Chapter 3, a framework is proposed for automobile TBF modelling, prediction, 

and decision support based on the industrial big data. There are five layers designed in 

this framework, which are data collection, cloud data transmission and storage, data 

mapping, pre-processing and integration, deep learning for automobile TBF modelling 

and decision support for PdM. 

Chapter 4 reports a new approach called CoxPHDL, which can tackle the issues of 

data sparsity and data censoring that are common in the analysis of historical 

maintenance data. In this integrated approach, an autoencoder is adopted to convert 

the nominal data into a robust representation. Then, a Cox PHM is researched to 

estimate the TBF of the censored data. Finally, with the consideration of sequential 

patterns in historical maintenance data, a long-short-term memory (LSTM) network is 

established to train the TBF prediction model based on the pre-processed data. The 

experimental results revealed the effectiveness of CoxPHDL. 

Chapter 5 aims to propose a semi-supervised learning algorithm for automobile TBF 

modelling using deep learning called DLeSSL to enable deep learning still can reach 

decent performance when the labelled data is insufficient. Based on DLeSSL, the label 

of unlabelled data can be estimated using a semi-supervised learning approach that has 

a deep learning technique embedded so to expand the labelled dataset. Experimental 

results derived using the proposed method reveal that deep learning (DLeSSL based) 

outperforms the deep learning (supervised) and deep learning (label propagation based) 

when the labelled data is limited. In addition, the effect on performance due to the size 

of labelled data and unlabelled data is also reported. 
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In Chapter 6, another integrated approach is proposed to collect, pre-process 

heterogeneous GIS data and then these data are mapped with historical maintenance 

data. Meanwhile, a deep learning architecture called M-LSTM network is designed for 

the TBF modelling based on the heterogeneous data. The experimental results show 

the merits of M-LSTM network and reveal that the introduction of GIS data can be 

helpful to automobile TBF modelling. 

Chapter 7 concludes this thesis and presents the achievement of this thesis. The 

restrictions and future works are reported. Last but not least, the main research 

contributions to the body of knowledge resulting from this research are summarised. 

1.5 Research contributions 

This thesis makes several contributions to the wider body of knowledge. 

1. A research framework is important to support the research of automobile PdM. A 

contribution is made within automobile PdM with the framework to achieve 

Industry 4.0. This framework focuses on automobile TBF modelling, prediction, 

and decision support based on industrial big data. It outlines a technical path 

towards Industry 4.0 levelled automobile PdM. 

2. TBF prediction is important to fleet management. Deep learning is a prevailing 

technique that has been used in PdM, while how to bring deep learning into TBF 

modelling has not been investigated. In order to establish a TBF prediction model, 

a data-driven approach is proposed to integrate autoencoder, Cox PHM and LSTM 

network techniques.  

3. Deep learning is a type of data ‘hunger’ algorithm. Without a large number of 

labelled data, it would be challenging for deep learning to obtain satisfactory 

algorithm performance. Owing to the fact that the collection of labelled data is 

expensive, and the unlabelled data is relatively easy to obtain, a novel semi-

supervised learning algorithm called DLeSSL is proposed. 
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4. Since the surrounding factors such as weather, traffic and terrain also can have an 

impact on automobile lifecycle, while it is challenging to integrate these data into 

TBF modelling. An approach is proposed to integrate these multi-source data into 

automobile TBF modelling. In this approach, the GIS data collection, pre-

processing, mapping are reported. A new deep learning architecture called M-

LSTM is designed for TBF modelling based on the multi-source data. 
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Chapter 2 Literature Review 

 Introduction 

This chapter examines the related works and previous relevant research concerning the 

three main sections, Predictive Maintenance, deep learning, semi-supervised learning, 

and the studies of GIS using machine learning. Predictive maintenance can be 

classified as two main groups which are condition-based predictive maintenance and 

statistical-based predictive maintenance. The relevant studies of both approaches were 

reviewed in Section 2.2. Several prevailing deep learning algorithms and recent 

applications of deep learning in the industry were reviewed in Section 2.3. Section 2.4 

reviewed two types of prevailing methods in semi-supervised learning and its 

application in industry. The relevant studies of GIS using machine learning were 

reviewed in Section 2.5, and Section 2.6 summarises this chapter. 

 Predictive Maintenance 

 Condition-based Predictive Maintenance 

With the boosting volume of sensor data, the research of condition-based predictive 

maintenance has become prevailing in recent years. Machine learning can be a useful 

tool in the big data analysis for a large amount of sensor data. Machine learning is a 

subset of artificial intelligence, which is used to learn the hidden patterns in data. 

Recently, Machine learning model has been widely used in PdM and achieved 

satisfactory performance.  
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The studies of PdM using NASA’s Commercial Modular Aero-Propulsion System 

Simulation (C-MAPSS) dataset have gained increasing attention in recent years. This 

dataset consists of hundreds of cases of multivariate sensor data relevant to turbine 

engine in a run-to-failure manner. Various deep learning algorithms such as deep 

convolutional neural network (DCNN) (Li et al., 2018), dilated convolution neural 

network (Xu et al., 2020) and bi-directional LSTM network (Zhang et al., 2018b) were 

proposed and validated using this dataset. Li et al. (2018) presented a DCNN that only 

used 1D convolutional layers as hidden layers. The structure of DCNN is simple, while 

it can achieve satisfactory performance and low computational cost. Zhang et al. 

(2018b) presented a bi-directional LSTM network for RUL modelling. In their 

approach, they used a simple FCNN to construct the health index of the aero engine. 

Yuan et al. (2016) proposed a single layer LSTM network model to predict the RUL 

and failure probability of aero engine. All the above deep learning structures have only 

one training path. Al-Dulaimi et al. (2019) proposed a noisy and hybrid LSTM network 

which contains a CNN path and bi-directional LSTM path, where the inputs of both 

networks are the same. Right-censored data represents the maintenance was scheduled 

before an asset completely failed. The maintenance time located arbitrarily before the 

failure. In order to model the asset degradation, a method called Relative Entropy 

Weibull-SAX was proposed using HI and HS degradation modelling method for 

multivariate asset data. A HI of asset can be constructed using relative entropy. The 

experimental results based on C-MAPSS show that this method was able to represent 

the health stage of observed engine (Aremu et al., 2019). 

Zhao et al. (2017a) proposed a deep belief network (DBN) based method to predict the 

health condition of bearing in the rotating machine. DBN is a deep learning model 

with a hierarchical structure, and it consists of multiple stacked Restricted Boltzmann 

Machines. The proposed model is good at predicting the short-term health condition 

of bearing, and it does not rely on prognostic expertise. RNN is good at processing 

time-series data. Malhi et al. (2011) proposed a method based on competitive learning 

to predict long-term machine health status. The vibration data collected from rolling 

bearing was first pre-processed using continuous wavelet transform method. The 

features from raw data and the transformed data were then jointly used as the input of 
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an RNN. As traditional RNN is poor in studying long-term patterns of data, a more 

advanced algorithm called LSTM network was designed to catch and store both long-

term and short-term patterns of data (Hochreiter and Schmidhuber, 1997). Feature 

extraction is of importance to PdM. In order to reduce the effect of time‐lagged 

correlations on the feature extraction, Zhang et al. (2018c) deployed a curve‐

registration method to evaluate the time lags among sensors. After the time lags of 

sensors were adjusted, the data was then used to establish an LSTM network model to 

predict upcoming failure.  

Besides deep learning techniques, other prevailing machine learning algorithms also 

have been widely investigated in PdM. Wei et al. (2013) proposed a dynamic particle 

filter-support vector regression (PF-SVR) model to predict system reliability based on 

time series data. Parameter selection is a critical part of training a support vector 

regression model. In this study, a particle filter was used to learn measurement 

sequence of data so to estimate the parameters for SVR. Nieto et al. (2015) proposed 

a hybrid particle swarm optimisation support vector machine (PSO-SVM) to predict 

the RUL for aircraft engines. PSO was used to optimise the SVM kernel parameters in 

the model training process. PSO-SVM does not require the information previous 

operation stage but only use the returned engine information for modelling, which is 

of advantage in the application. With the combination of the optimisation algorithm, 

SVM model can be more robust and applicable in PdM. Lee and Pan (2019) proposed 

an approach to evaluate the reliability of a complex system. In this approach, discrete-

time Markov chains were deployed to predict the health state of the components in a 

complex system. Then a Bayesian network was used for modelling the reliability of 

the complex system. Another study on PdM for the multi-component system was 

proposed by Liang and Parlikad (2020) where a model was developed for the PdM of 

multi-system multi-components networks. In this model, analytical and numerical 

techniques were combined to optimize the maintenance policy. Furthermore, a genetic 

algorithm with the agglomerative mutation was adopted to effectively determine the 

maintenance policy.  
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Prytz et al. (2015) proposed a data-driven approach that can predict the upcoming 

failures of vehicles based on the historical maintenance data and the data collected 

onboard the vehicles. In this approach, the random forest algorithm was used in 

classification modelling to identify whether the RUL of vehicles was longer or shorter 

than the planned interval. In order to model the degradation of manufacturing systems, 

a hidden Markov model with auto-correlated observation was proposed. The current 

state of this model depends on both the corresponding hidden system state and the 

previous observations. Besides, EM (expectation maximum) was adopted to estimate 

the unknown parameters. Based on the prediction of RUL, an optimised maintenance 

policy was developed (Chen et al., 2017). Wang et al. (2014) proposed a predictive 

maintenance approach for a machine in manufacturing with deteriorating quality states, 

with the consideration of imperfect minor maintenance and perfect major repair. In 

this approach, a hidden semi-Markov decision process is used to estimate the system 

state. Then a reinforcement learning algorithm called Q-P learning is used to obtain 

the optimal policy. 

Zhou and Feng (2017) proposed a novel deep learning algorithm called deep forest 

(gcForest), which is a decision tree ensemble approach that requires fewer parameters 

and can generate decent algorithm performance in comparison with the deep neural 

networks. The gcForest also has been investigated in engineering, especially in fault 

diagnosis. Wang et al. (2018a) proposed an approach that combines a deep Boltzmann 

machine and a multi-grained forest for fault diagnosis. The deep Boltzmann machine 

was first used to transform the raw data into a binary representation. Then, the gcForest 

was deployed for modelling based on the pre-processed data. Wang et al. (2018a) 

proposed a combined method for fault diagnosis. A feature selection approach based 

on Spearman’s correlation was first deployed to remove redundant features. Then, the 

k-means algorithm was adopted to determine the label of data, which is the degradation 

of a machine. Finally, a gcForest was used to build a classifier based on the processed 

data. Liu et al. (2018b) deployed a gcForest for fault recognition of rolling bearing 

based on the sensor data. Liu et al. (2019) proposed a gcForest-based end-to-end 

intelligent fault diagnosis method for hydraulic turbine fault diagnosis based on sensor 

data. In this study, the robustness of gcForest to noise was tested and revealed.  
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Digital twin is a hot topic in smart manufacturing. Ding et al. (2019) proposed a digital 

twin approach for modelling the remaining useful life (RUL) of shearer key parts. 

Firstly, the simulation was implemented based on the real-world data to obtain more 

data such as position, posture, trajectory, which can be used for qualitative analysis. 

Then, autoencoder and bi-directional gated recurrent unit were used to construct an 

RUL prediction model based on the data collected from real-world and quantitative 

analysis. 

A summary for the most recent papers for condition-based PdM is shown in Table 2.1. 

It can be seen that the most recent research has focused on the PdM of system or sub-

system level. Deep learning, as a group of neural network-based algorithms, has been 

extensively investigated in the area of condition-based PdM. 

Table 2.1 A summary for the most recent papers for condition-based PdM 

Reference Data Analytics Techniques Target 

(Li et al., 2018), (Xu et al., 

2020) and (Zhang et al., 

2018b) 

Deep learning Turbine engine 

(Liang and Parlikad, 2020) genetic algorithm+ agglomerative 

mutation 

Multi-component system 

(Lee and Pan, 2019) discrete-time Markov chains+ 

Bayesian network 

Simulated system and components 

(Liu et al., 2019) gcForest Hydraulic turbine 

(Zhang et al., 2018c) LSTM network+ curve‐

registration 

power‐generation equipment 

(Chen et al., 2017) expectation maximum manufacturing system 

(Prytz et al., 2015) random forest Vehicles 

(Nieto et al., 2015) particle swarm optimization+ 

support vector machine 

Engine 

(Wang et al., 2014) Q-P learning A machine in the manufacturing 

process 

(Wei et al., 2013) particle filter+ support vector 

machine 

submarine diesel engine, 

turbochargers, and car engines 
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 Statistical-based Predictive Maintenance 

 

Statistical models have been investigated for decades. In some of the cases above, the 

datasets used in these studies are typically in small size. When the data size increases, 

statistical models might lack the ability to learn the hidden patterns in data due to the 

growing impurity and noise. The parametric model assumes time-to-failure or TBF 

follows a specific statistical distribution such as Weibull (Xie and Lai, 1996). The 

parametric models are useful when the sample follows a distribution, and the model 

parameters need to estimate accurately. However, in the actual cases, the algorithm 

performance tends to be compromised if the distribution is not specified correctly. Xie 

and Lai (1996) studied a Weibull model to estimate the lifetime distribution for 

electrical and mechanical components. The model is based on two Weibull survival 

functions, and a graphical estimation approach was adopted to estimate the parameters 

for the Weibull model. Mettas (2000) proposed a versatile accelerate failure time 

model to investigate the accelerate life data. The algorithm combines the life-stress 

relationships for one or two types of stresses with a model formulated by different 

distribution such as Weibull and Lognormal. The proposed model can be used to 

generate the relationship of product life with multi-stresses-types, while traditional 

AFT models can only generate the relationship of product life with single stresses-type. 

It can be seen from both cases that the data used for modelling was in small size. The 

robustness of the models in actual cases needs to be further investigated. 

Wang and Shi (2013) presented the estimation of parameters of hazard functions for a 

class of an exponential family. The record values used in this case followed the 

exponential distribution. Maximum likelihood and interval estimation were deployed 

to determine the model parameters. Furthermore, symmetric and asymmetric loss 

functions were used to obtain the Bayes estimators of reliability performance.  Zimmer 

et al. (1998) proposed Burr XII distribution, which is similar to log-normal distribution, 

for reliability analysis. The Burr XII distribution can effectively simplify the 

computation of the likelihood of censored data. Moreover, it also shows merits in 

representing failure data since the distribution has algebraic tails.  Saldanha et al. (2001) 

presented an application of the non-homogenous Poisson point process to the study of 
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the rates of occurrence of failures for the repairable component. In this approach, 

maximum likelihood parameter estimation and linear regression analysis are deployed. 

It was deemed as a useful tool to evaluate the maintenance policy for repairable 

components. 

Besides parametric models, another type of statistical model is semi-parametric. Cox 

PHM and its variants have been widely used in PdM due to its flexibility and ability 

in modelling based on uncensored and censored data (Anderson and Senthilselvan, 

1982, Kay, 1977, Kumar and Klefsjö, 1994). It was used to analyse the relationship 

between time-independent covariates and hazard function (Cox, 1992). As the 

standard Cox PHM is only suitable the time-independent covariates, researchers have 

proposed the variants of Cox PHM to consider the time-dependent covariates 

Anderson and Senthilselvan (1982) proposed a two-steps PHM for the time-dependent 

coefficient. The proposed approach allows the varying covariates to be used in PHM. 

Conditional likelihood estimation was used to determine the regression covariates in 

this study. The two-steps PHM showed better performance in a cancer mortality study 

compared to the performance of standard Cox PHM, while the estimation of its 

parameters can be further explored.  

A proportional intensity model based on the Cox PHM called Prentice, Williams, and 

Peterson (PWP) was introduced based on the nonhomogeneous Poisson process to deal 

with recurrent failure event data. A nonhomogeneous Poisson process with power-law 

intensity function was adopted in this study. The proposed model can achieve better 

performance based on large data size and increasing failure rate (Landers and Soroudi, 

1991). Owing to the fact that Cox PHM requires robust covariates for modelling, while 

it may not be able to learn the hidden patterns from sparse covariates, Sun et al. (2006) 

proposed a proportional covariate model (PCM) to tackle the sparsity issue in sensor 

data. Besides, different from the standard Cox PHM, PCM aims to predict the hazard 

of a system using covariates caused by the deterioration of a system, which can be 

used in dynamic system monitoring. 
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Since the spare part management is a critical issue in the industry, Kian et al. (2019) 

deployed a mathematical programming model to formulate the failure time of a vessel 

to optimize the spare part management based on sensor data. Meanwhile, the shortest 

path dynamic programming formulation is deployed to address the polynomial-time 

complexity. Cox proportional hazard model is a prevailing model in reliability analysis 

which can process both censored and uncensored data. Verhagen and De Boer (2018) 

used both time-independent and time-dependent Cox proportional hazard model to 

estimate the reliability of aircraft components based on historical operational and 

maintenance data. In this study, extreme value analysis and maximum difference 

analysis were adopted to identify operational factors which are relevant to component 

failure. Since Cox PHM has its limitation in providing the business recommendation 

straightforwardly, Wanga et al. (2018) combined the Cox PHM and decision tree to a 

conditional inference tree to conduct reliability analysis. 

In this study, raw system log information including time, id and description were 

extracted and then used to establish an SVM model for failure classification (Patil et 

al., 2017). Since the faulty data is far less than the normal data in the maintenance 

dataset, Susto et al. (2015) proposed a Multiple Classifier (MC) predictive 

maintenance approach to address the labelled unbalanced issues in maintenance 

datasets that arise in maintenance classification problems. This approach can be 

deployed in the machine, which carries out the repeated work. It was used to classify 

the healthy state and faulty state of the machine. Since log data can be beneficial to 

detect the abnormal event in a largescale network. Kobayashi et al. (2017) proposed a 

method based on a graph-based algorithm to extract failures and their causes from 

network system log data. In this method, a graph-based algorithm called PC algorithm 

is firstly introduced to infer causal structure from event time series efficiently. Then, 

a data pre- and post-processing methods from a set of log messages was proposed to 

improve the performance of PC algorithm. 

From literature, it is evident that various techniques in statistics and machine learning 

have been investigated in PdM. In recent years, there is an increasing interest in 

condition-based PdM. It can also be seen from the existing studies that machine 
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learning, especially deep learning, has been widely employed in PdM in recent years. 

One of the merits of deep learning is that it can identify essential features and 

determine model parameters automatically, which is different from other prevailing 

machine learning algorithms. 

 Deep Learning 

As a subset of machine learning, deep learning is able to learn the hidden patterns 

within given data automatically via stacking multiple nonlinear processing layers. 

According to the literature, the difference between deep learning and conventional 

machine learning in terms of modelling path was compared and shown in Figure 2.1. 

It can be seen that data pre-processing is needed for both deep learning and 

conventional machine learning, while the main difference is the way to process 

features. Conventional machine learning approaches need efforts on feature 

engineering such as feature extraction and feature selection. These processes strongly 

rely on domain knowledge. In strike contrast, deep learning can directly learn the 

hidden patterns automatically, which is more efficient and effective for the modelling 

process. However, its drawback is also apparent. The feature abstraction process in 

deep learning cannot be understood or explained, and therefore it is deemed as a black 

box. In this section, several main deep learning algorithms are introduced, and the 

applications of deep learning in the industry are reviewed. 
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Figure 2.1 The comparison between conventional machine learning and deep learning modelling path  

 

 Prevailing Deep Learning Algorithms 

• Fully Connected Neural Network 

The fully connected neural network is the basic type of neural network. It is also known 

as feedforward neural network or MLP. MLP was proposed by Rumelhart et al. (1986). 

The simplest MLP has three layers which are input layer, hidden layer and output layer. 

The input layer is used to process the input data, while the output layer is used to get 
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the result. The hidden layer is used to get the abstract features which are relevant to 

the output. The gradient explosion and vanish in the back-propagation process leads 

to the failure of the learning process. Hence, training an MLP with multiple hidden 

layers is challenging at that time. With the developments of advanced techniques such 

as Rectified Linear Unit (ReLU), dropout, and optimiser, a deeper neural network 

becomes achievable. A deeper FCNN has more powerful capability to model the 

nonlinearity of the input data. Figure 2.2 shows the structure of an FCNN. 

 

Figure 2.2 The structure of an FCNN 

 

Each layer in an FCNN is composed of different numbers of neurons. Each neuron is 

a computational unit. The neuron gets the output of the neurons in the previous layer 

as input (x1, x2, …, xn). The input will then multiply by the weights (wj1, wj2, …, wjn) 

and the products and a bias (bj) will be added together. The equation is shown below: 

𝑆𝑗 = ∑ 𝑤𝑗𝑛 ∗𝑛
𝑖=1  𝑥𝑛 + 𝑏𝑗                                      (2.1) 

Then 𝑆𝑗 will be sent into the activation function f (). The output yj from f () is the output 

of the neuron. The key issue in training the neural network is how to determine the 

weight (wjn) and bias (bj) of each neuron. In order to determine the weight and bias, 

the back-propagation (BP) algorithm will be used. An FCNN is firstly trained feed-

forward to get the rough weight and bias. The final output will be compared to the 
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actual value. If the error is large, the model will be trained from the output layer to the 

input layer in order to fine-tune the weight and bias. Typically, the BP algorithm needs 

to be implemented for multiple times to fine-tune the weight and bias, which will lead 

to the long training time (Goodfellow et al., 2016). Besides training the whole network 

using BP algorithm, a greedy layer-wise training approach was proposed to train a 

neural network layer by layer, which effectively avoids the issues of gradient explosion 

and vanish and allows the neural network to be designed with a deep structure (Bengio 

et al., 2007).  

• Convolutional Neural Network 

CNN is a type of neural network that can process the grid-like structure data such as 

an image. An image can be deemed as a two-dimensional matrix. CNN has a long 

history since the 1990s when it was investigated for speech recognition and document 

reading. After ImageNet (a deep CNN structure) was designed in 2012, CNN has 

become a mainstream in the area of computer vision. It shows merits in processing a 

large number of images which contains over a thousand of categories (LeCun et al., 

2015). Recently, the variants of CNN, such as ResNet-50 (Xie et al., 2017) and VGG-

16 (Simonyan and Zisserman, 2014) have achieved satisfactory performance and have 

been widely used. 

 In order to process the grid-like structure data in FCNN, the data needs to be flattened 

into one-dimension, which will lose part of the patterns in the data. Different from 

FCNN, CNN adopts the convolution operation to process the two-dimensional data. 

Convolution process is helpful to the neural network in the following three aspects: 

sparse interaction, parameter sharing and equivariant representation. Sparse 

interaction refers to the connection in a convolutional layer is less than fully connected 

layers with the same neuron size. Parameter sharing indicates that a kernel in a 

convolutional layer can process the data in different positions of the input, which is 

also different from the fully connected layer that can only process one position of 

inputs. Equivariant representation means if the input of a convolutional layer shift, the 

output will shift in the same way (Goodfellow et al., 2016). 



Literature Review 23 

 

Pooling is another vital component of CNN. In the pooling process, a two-dimension 

array can be segmented by different grids. A pooling function can downsample a grid 

with a summary statistic. There are several types of pooling functions such as max 

pooling and average pooling. Max pooling adopts the maximum values in a grid as the 

output, while average pooling adopts the mean values of the grid as output. 

Convolution and pooling operations are used to get the abstract representation within 

data. Normally, there are more than one convolutional layer and pooling layer in a 

CNN. After the abstraction and downsampling of the data, a large two dimensions 

array is transformed into multiple small two dimensions arrays. Then these arrays are 

flattened and sent to a fully connected layer for further processing (Goodfellow et al., 

2016). Figure 2.3 shows the structure of CNN. 

 

Figure 2.3 The structure of a CNN 

 

• Recurrent Neural Network 

RNN (Rumelhart et al., 1986) is a prevailing tool to handle the sequential data in deep 

learning. Since RNN was proposed, it has been widely used in the area of speech 

recognition and text mining. Different from FCNN that process each instance and 

update the weights and bias independently, there is a state unit in RNN, which can 

store the information of the past elements. In other words, the weights in an RNN are 

shared across different instances of the neurons (Goodfellow et al., 2016). 
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Figure 2.4 shows the time unfolded graph of an RNN. An RNN is considered as a 

dynamic system. There are three types of connections in an RNN, which is shown as 

U, V and W in the figure. These three connections are also the parameters of an RNN. 

U is the connection of input and hidden neuron. V is the connection of hidden neurons 

to output, and W is the connection of two hidden neurons. In the left side of the figure, 

RNN is demonstrated as a circuit. When it is unfolded, we can see the mechanism of 

RNN. The neuron at time t not just gets the input Xt, but also get the memory from 

time t-1. The memory is the output of S at time t-1. By using this connection method, 

the RNN is able to learn the sequential patterns in [Xt-1, Xt, Xt+1] (LeCun et al., 2015).  

 

Figure 2.4 The time unfolded graph of an RNN  

 

RNN can be deemed as an FCNN which all the hidden layers share the same weights. 

RNN was designed to tackle the issue that long-term dependency is hard to learn by a 

neural network. However, theoretical and empirical evidence indicates that RNN 

cannot store long-term memory (Bengio et al., 1994). In order to address this issue, 

long-short term memory (LSTM) network, as a variant of the standard RNN, was 

proposed (Hochreiter and Schmidhuber, 1997). In comparison with standard RNN, 

LSTM performs better in long-dependency learning, while it requires higher 

computational load. After that, another variant of RNN called gate recurrent unit (GRU) 

network (Cho et al., 2014) was proposed to lower the computational load without 

sacrifice the algorithm performance in comparison with LSTM network. 
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• Autoencoder 

Autoencoder is a deep learning structure for unsupervised learning. The input and 

output of autoencoder are the same. An autoencoder consists of two parts: encoder and 

decoder. Normally, the encoder and decoder share the same hidden layer, which is the 

middle layer of the neural network. The input layer and the first half of the hidden 

layer constitute the encoder, which aims to compress the input. In order to compress 

the input to a more dense and complex representation, the number of neurons in the 

layers of encoder needs to be decreased layer-wise. The dense and complex 

representation is known as code. In contrast, in order to construct the input data from 

the code, the decoder needs to be set symmetrically to the encoder. Hence, an 

autoencoder has a sand clock-like structure, where the output of the bottleneck (i.e. 

middle layer) is the code (Goodfellow et al., 2016).  

Autoencoder can be used for two primary purposes: dimension reduction and 

denoising. Traditional dimension reduction approaches, such as primary component 

analysis and linear discriminant analysis, has been widely used in dimension reduction. 

However, the loss of information is not always negligible. Moreover, feature 

engineering is always needed in dimension reduction. In contrast, autoencoder can 

automatically get a robust representation. Autoencoder can detect noise during the 

training process. That noise shows different patterns with other normal data. The 

weight of the noise will be very low in the middle layer, and therefore the ratio of noise 

in code will be lower (Goodfellow et al., 2016).  

There are several variants of autoencoder that has been widely used in machine 

learning fields. The layer of the autoencoder is not limited to a fully connected layer. 

Convolution layer and recurrent layer can also be used in autoencoder (Ghasedi Dizaji 

et al., 2017, Gensler et al., 2016), which enables autoencoder to process different types 

of data such as image and sequential data. Besides, a deep autoencoder tends to obtain 

more robust representation. Training a deep autoencoder could be challenging due to 

the gradient explosion and vanish issues. In order to address this problem, stacked 



26 Literature Review 

 

autoencoder (Vincent et al., 2010) was proposed, which adopted greedy layer-wise 

training (Bengio et al., 2007). 

 The Applications of Deep Learning in Industry 

With the dramatic increase deployment of the Internet of things, the data available in 

the industry has significantly increased. In this context, deep learning as a group of 

prevailing machine learning algorithms has gained increasing attention due to its 

capability in handling industrial big data (Wang et al., 2018b). As a particular type of 

machine learning, deep learning is popularly used to identify objects in images, 

transcribe speech into text, and select the required data from databases (Schmidhuber, 

2015). 

Fault defect detection is the main focus of CNN in the industry. CNN is well known 

for its capability in the image data processing. It is becoming increasingly prevailing 

in the industry. In order to detect the casting defects using X-ray images, Ferguson et 

al. (2019) proposed a standardised format for CNN, based on predictive model mark-

up language (PMML). Firstly, the pre-trained- Image Net models are converted to 

PMML format to optimise the distribution of deployment of these models. Then, these 

models are fine-tuned to get the classification results. Since deep learning is deemed 

black box due to the low interpretability. Grezmak et al. (2019) bridged the CNN and 

layer-wise relevance propagation (LRP) algorithm to enhance the interpretability of 

CNN in machine fault diagnosis. In this approach, CNN is first trained base on the 

sensor data. The prediction result of CNN and the input signal are then analysed by 

LRP to enhance the understanding of how CNN identify the linkages between fault 

types and the input data. Tool wearing is common in manufacturing.  

The application of CNN in the industry includes tool wear monitoring, design 

optimisation for additive manufacturing and human action recognition, etc. In order to 

predict the status tool wear, Huang et al. (2019) proposed a reshaped time series 

convolutional neural network (RTSCNN) for multi-sensor data fusion and predicted 

the wear degree. In this structure, the data collected from multi-sensors are first 
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reshaped into a two-dimension array, which is then passed into the convolutional layer. 

Williams et al. (2019) investigate the impact of design repository standardisation on 

the capability of CNN to analyse the geometric data of additive manufacturing. The 

identification of human action is a key task in human-robot collaboration. Xiong et al. 

(2020) reported an integrated method based on the optical flow and CNN-based 

transfer learning to address the issues of low accuracy and robustness of human 

motions identification and the deficiency of data volume. In this work, the optical flow 

images which contain the information of human motion are used as the input of a two-

stream CNN to predict the human motion. Then transfer learning is introduced to 

transfer the feature extraction capability from the pre-trained CNN into manufacturing 

scenarios. 

RNN is widely used in processing sensor data in the industry due to its powerful 

capability in mining the sequential patterns. In all the applications of RNN, LSTM 

network is the most prevailing RNN structure. In order to model the time-series data 

in the manufacturing process, Essien and Giannetti (2020) proposed a convolutional 

LSTM neural network autoencoder structure to learn the hidden representation of time 

series data. In this structure, convolutional layers are adopted as an encoder, while 

LSTM layers are used as the decoder. Wind speed forecasting is essential for the 

energy generation and conversion of the wind power industry. Hu and Chen (2018) 

presented a combined approach for wind speed forecasting. In this approach, LSTM 

network and Hysteretic Extreme Learning Machine are combined and used as wind 

speed prediction. 

Meanwhile, the differential evolution algorithm is adopted to optimise the parameters 

of the LSTM network. In order to accurately simulate the crystal growth process, 

LSTM network is used to build a thermal field model. Then, the support vector 

machine algorithm is used to identify model order and lag to determine network input 

so to improve the algorithm performance of LSTM network Zhang et al. (2019a). 

Traditional time series forecasting approaches have imposed the challenges of time-

consuming and full of complexity. To tackle these issues, a deep LSTM network was 
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proposed to obtain an accurate prediction. The configuration of the proposed deep 

LSTM network is optimised by genetic algorithm (Sagheer and Kotb, 2019). GRU is 

another structure of RNN, which is deemed more computationally efficient. Wang et 

al. (2019) developed an approach that combines deep heterogeneous GRU structure 

with local feature extraction. Specifically, the local feature extraction method is used 

to capture the temporal pattern within sequential data. Then the output of local feature 

extraction is sent to the bi-directional GRU networks with the weighted averaging 

layer. In the next stage, the output of each GRU networks are processed by fully 

connected layers. Finally, the data representation is concatenated and passed to an 

FCNN to get the final prediction. Another study that investigated the GRU network is 

that a multi-scale dense GRU network was proposed to leverage the feature extraction. 

In this study, the idea of ensemble learning is also adopted. With the introduction of 

multi-scale layers and dense layers, the proposed network is able to learn the sequential 

patterns and ensemble different time-scale patterns (Ren et al., 2019). 

Autoencoder also has attracted the researcher’s attention in recent years. Sun et al. 

(2018) presented a deep transfer learning network approach based on autoencoder for 

machine fault prediction. In this study, three transfer strategies which are weight 

transfer, hidden feature transfer and weight update, are used to train a sparse 

autoencoder. The experimental results indicated that the transferred sparse 

autoencoder can achieve similar performance in comparison with the supervised 

learning approach when the historical failure data is limited. Another study that 

combines transfer learning with autoencoder is that Wen et al. (2017) proposed a deep 

transfer learning method using a sparse autoencoder to extract features. In this method, 

the maximum mean discrepancy term is used to minimize the discrepancy penalty 

between the features from training data and testing data. Yu et al. (2019) proposed a 

stacked denoising autoencoder for the improvement of the performance of process 

pattern recognition in manufacturing processes. The proposed stacked denoising 

autoencoder is used to learn the effective features within sensor data, which can be 

helpful for the fault diagnosis. Anomaly detection is essential to a manufacturing 

system.  Liu et al. (2018a) developed a time delay autoencoder with the structure 

constructed from the event ordering relationship to detect anomaly in the 
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manufacturing processes. In this approach, the event ordering relationship-based 

neural network structuring process is adopted to identify the important neuron 

connections and the weight initialisation of the neural network, which can lower the 

network complexity and promote the algorithm performance. Besides fault and 

anomaly detection, autoencoder also has been investigated in bearing RUL prediction. 

In order to improve the RUL prediction accuracy of deep neural network, (Ren et al., 

2018) presented a deep autoencoder based approach that can abstract the features from 

time and frequency domains. The abstracted features are then sent to a deep neural 

network jointly with the original time and frequency domains features.  

The adoption of deep learning can effectively avoid the complex feature engineering 

and can be trained in an end-to-end learning manner, which can be implemented by 

adding layers to map the raw data and data label. With the development of IoT, more 

and more data such as image and vibration signals are available. In order to handle 

these industrial big data, deep learning can be a useful tool. 

 The Studies of GIS 

GIS is a powerful tool which has been widely used in spatial analysis. The knowledge 

obtained from GIS can be beneficial to decision making (Rikalovic et al., 2014). 

Recently, researchers have focused on introducing machine learning techniques into 

GIS. Pham et al. (2017) combined ensemble several methods with multiple perceptron 

neural Networks to establish a landslide classification model. GIS relevant features 

such as slope angle, slope aspect, elevation, curvature and plan curvature were adopted 

for modelling. Aiming to identify the contribution of the features to the landslide, a 

feature selection method called Relief-F method was used.  

Tehrany et al. (2014) proposed a flood susceptibility mapping approach based on the 

data collected from the records of flood occurrence. The terrain features used in this 

study included flood inventory, slope, stream power index, topographic wetness index, 

and altitude, etc. The weight-of-evidence method was applied to measure each relevant 

factor’s weight. Then, these factors were reclassified using the acquired weights and 
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entered the support vector machine model to evaluate the correlation between flood 

occurrence and each conditioning factor. Four types of the kernel (linear, polynomial, 

radial basis function and sigmoid) based SVM was used for modelling. The results 

indicate the RBF kernel based SVM can achieve the best performance. In order to 

detect the flash-flood occurrence, Costache et al. (2019) proposed a hybrid approach 

that combines multilayer perceptron and certainty factor method to predict the 

distributions of torrential valleys in an area of Romania. The flash-flood potential 

index was identified with the consideration of landscapes with the potential for 

torrential flow phenomena. Certainty factor is used to determine the susceptibility to 

flash-flood, which can be further used to obtain the class label of the data. Multilayer 

perceptron is then adopted to build a classifier based on the geographical input includes 

slope, land use, and lithology, etc. 

Naghibi et al. (2016) investigated groundwater potential mapping using tree-based 

algorithms. The main objective of this study was to produce groundwater spring 

potential maps in Koohrang, Iran. These GIS relevant factors include slope degree, 

slope aspect, altitude, topographic wetness index, lithology, and land use, etc. The 

groundwater spring potential was modelled and mapped using classification and 

regression tree, random forest, and boosted regression tree algorithms. Another study 

of groundwater potential mapping is that Rahmati et al. (2016) deployed random forest 

and maximum entropy models for groundwater potential mapping is investigated at 

Mehran Region, Iran.  

Massawe et al. (2018b) presented a mapping approach for soil taxa mapping based on 

heterogeneous data, which was collected from different sources including satellite 

image, digital elevation map and digital soil map. The collected features include soil 

classes, effects of living organisms (vegetation), terrain parameters and spatial location. 

Random forest and J48 algorithms were used to train the soil profile classification 

model separately.  

In order to build a classifier for different elements using spectral and spatial data, a 

spectral-spatial feature-based classification (SSFC) framework was proposed to lower 
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the dimension of spectral data and extract the features from spatial data. In this 

framework, a dimension reduction method called balanced local discriminant 

embedding (BLDE) was proposed to lower the dimension of hyperspectral images 

(spectral data with high resolution). CNN was used to extract abstract features from 

spatial images. The features obtained from BLDE and CNN were then combined and 

used to train a classifier (Zhao and Du, 2016). 

In order to improve soil information for decision making, a predictive soil map was 

developed using digital soil mapping techniques. The soil profile data was collected, 

and a numeric classification was performed on the collected data to obtain soil taxa. 

Then, the soil taxa were spatially predicted and mapped using two machine learning 

algorithms, which are random forest and J48. Results indicated that random forest 

shows merits in modelling in comparison with J48 (Massawe et al., 2018a). 

In the engineering field, Miles and Ho (1999) proposed several examples of GIS 

modelling application in civil engineering. The benefits of using GIS in engineering 

modelling was summarized. Lee (2005) proposed a logistic regression model to 

evaluate the hazard of landslides using GIS and remote sensing data. Several terrain 

features such as slope, curvature, and distance from drainage were selected to establish 

a logistic regression model.  

The rapid development of electric vehicles can significantly alleviate environmental 

problems and energy tension. Zhang et al. (2019b) proposed a multi-objective 

optimization model based on particle swarm optimization to plan the placement of the 

charging station of the electric vehicle. GIS was used in this study to identify the 

intersection of power system and traffic system maps. The intersections of the maps 

are the candidates of the charging stations. Machine learning techniques have been 

widely used in the study based on GIS relevant data. Owing to the fact that the lifecycle 

of assets can be affected by GIS factors such as weather and terrain, it is worthwhile 

to introduce GIS data into the study of PdM. However, to the best of our knowledge, 

such studies have not been found in the literature. 
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 Semi-supervised Learning 

Semi-supervised learning is a branch of machine learning, which takes the advantages 

of both supervised and unsupervised learning. In machine learning, supervised 

learning is prevailing, while it requires labelled data which a data instance consists of 

input x and output y. Supervised learning aims at mapping the relationship between 

input and output of a given labelled dataset. In contrast, unsupervised learning is 

implemented based on the unlabelled data, which is relatively easy to obtain. In the 

real world, the collection of a large sum of labelled data is relatively challenging. The 

performance of supervised learning algorithms is relevant to the data size. When the 

data size is limited, the algorithm performance of those prevailing machine learning 

algorithms such as deep learning tends to be compromised. In semi-supervised 

learning, a small sum of labelled data and a large sum of unlabelled data is utilised to 

build a supervised learning model. In other words, the unlabelled data is used to 

leverage the performance of supervised learning when the size of labelled data is 

limited. 

There are three necessary assumptions for semi-supervised learning, which are 

smoothness assumption, cluster assumption and manifold assumption: 

• Smoothness Assumption: If two data instances close to each other and located in 

a dense area, they possibly have the same label. In contrast, if two data instances 

are apart from each other in a sparse area, their labels tend to be different (Chapelle 

et al., 2006). 

• Low-density Assumption: The classifier boundary should pass through the low-

density area. The data instances in high density should not be separated into 

different classes (Chapelle et al., 2009). 

• Manifold Assumption: The data space is composed of multiple low-dimensional 

manifolds, where the data instances locating in. The data instances within a 

manifold have the same label (Ben-David et al., 2008). 
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The satisfaction of these assumptions is critical for semi-supervised learning. If the 

assumptions cannot be satisfied, the unlabelled data cannot be helpful to leverage the 

algorithm performance.  

In the research of semi-supervised learning, there are two main types: inductive and 

transductive given labelled data an unlabelled data. Inductive semi-supervised learning 

uses labelled data and part of the unlabelled data for training and predicts the label of 

the unseen unlabelled data. Transductive semi-supervised learning uses the labelled 

data for training to predict the label of the unlabelled data. Its assumption is the 

unlabelled data is the testing data. The purpose is to get the best generalisation ability 

in these unlabelled data (Van Engelen and Hoos, 2020).  

 Inductive Methods 

Inductive methods aim to construct a classifier or regressor that can predict the labelled 

for unseen data. It can be deemed as the extension of supervised learning which 

includes the unlabelled data. According to the ways of incorporation unlabelled data, 

the inductive methods can be classified as three types which are wrapper methods, 

unsupervised pre-processing methods and intrinsically semi-supervised methods (Van 

Engelen and Hoos, 2020). 

Wrapper methods are the most well-known approaches in semi-supervised learning 

(Zhu, 2005). The concept of wrapper methods is to train one or more learners using 

the labelled data and then predict the label of unlabelled data. The unlabelled data with 

the predicted label is then appended to the labelled dataset. In the next stage, one or 

more new learners are trained using the updated labelled dataset and predict the label 

of a new unlabelled data. This procedure is repeatedly implemented to increase the 

data size of labelled data (Triguero et al., 2015). There are three popular types of 

wrappers methods which are self-training, co-training and boosting. 

Self-training was proposed in 1995 for text mining (Yarowsky, 1995). In the training 

process, it first trains a model based on a supervised learning algorithm to predict the 



34 Literature Review 

 

label of unlabelled data. The unlabelled data instance with the most confident 

prediction is then added into the labelled dataset. Then re-train the model based on the 

updated labelled dataset and evaluate the performance. This process is repeatedly 

implemented until the algorithm performance converges. Self-training has been 

investigated in different areas such as object detection (Rosenberg et al., 2005), 

hyperspectral image classification (Dópido et al., 2013), and fake product reviews 

detection (Wu et al., 2012). 

Co-training is originated from self-training. It adopts multiple algorithms to iteratively 

train models based on labelled data. Assuming there are two trained models which are 

denoted as A and B. The trained models are used to predict the label of unlabelled data 

instances, respectively. The unlabelled data with the most confident prediction from A 

is then added into the training dataset of B, while the unlabelled data with the most 

confident prediction from B is then added into the training dataset of A. The prediction 

of an unseen data instance is the mean value of the predictions from model A and B 

(Zhou and Li, 2005). A critical condition for co-training is that the diversity between 

different models need to be evident so that the learners are able to learn the exchanged 

information (Zhou and Li, 2010). The application of co-training is mainly focused on 

image recognition areas, such as road detection (Caltagirone et al., 2019), multi-organ 

segmentation (Zhou et al., 2018), and hyperspectral classification (Romaszewski et al., 

2016). 

Boosting is a type of ensemble learning, which aims to get the prediction by 

aggregating the predictions of different basic learners. The idea of boosting is to use 

several weak learners to obtain a powerful learner. Given a dataset, a group of subsets 

can be sampled from the dataset. Different algorithms can be used to train different 

learners based on subsets. The prediction of each learner may not be reliable. In the 

boosting framework, the predictions of these learners are given different powers and 

then aggregated (Schapire and Freund, 2013). Boosting can be combined with semi-

supervised learning. By introducing the pseudo-labelled data into the subsets to 

increase the algorithm performance. Semi-supervised boosting methods have been 

investigated for a long time. Grandvalet et al. (2001) proposed a semi-supervised 



Literature Review 35 

 

boosting algorithm which is based on the Adaboost algorithm. (Mallapragada et al., 

2008) presented an algorithm called SemiBoost to tackle the issue of data points 

selection for training set construction. 

 Transductive Methods 

Transductive methods is another subset of semi-supervised learning. Inductive 

methods can generate predictors during the training process, and it has a clear training 

and testing stage. Different from inductive methods, it is difficult to identify the 

training and testing stage of transductive methods. The purpose of inductive methods 

is to predict the label for unseen data. In contrast, transductive methods only concern 

obtaining the label for the given unlabelled data. In other words, the generalisation 

ability of the algorithm is not considered. In transductive methods, a graph needs to be 

defined over all the given labelled and unlabelled data instances (Van Engelen and 

Hoos, 2020). Then identify the similarity between labelled and unlabelled data 

instances in the graph. An objective function is defined to match the most similar 

labelled and unlabelled data instances so to propagate the label (Zhu, 2005).  

There are three stages of graph-based semi-supervised learning: graph creation, graph 

weighting, and inference (Liu et al., 2012). In the first stage, all the data instances in 

the graph are fully connected. Then the edges are weighted. In the inference stage, an 

objective function is used to predict the label of unlabelled data. The graph-based 

methods not only consider the similarity between labelled data instance and unlabelled 

data instance, but it also considers the similarity between different unlabelled data 

instances. In other words, the label can be propagated from labelled data instance to 

unlabelled data instance, and then propagate to another unlabelled data instance (Van 

Engelen and Hoos, 2020). Transductive methods have been investigated in different 

fields. Baluja et al. (2008) applied graph-based semi-supervised learning approach to 

the video recommendation system. Rahman et al. (2019) proposed a transductive 

learning zero-shot object detection approach to reduces the domain-shift and model-

bias against unseen classes. Wang et al. (2017) presented a progressive graph-based 
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transductive learning approach for neurodegenerative disease classification based on 

multi-model imaging data. 

 The Application of Semi-supervised Learning in Industry 

Due to the obtain of labelled data is costly in the industry, researchers have studied 

how to bring semi-supervised learning into industrial machine learning modelling to 

address this issue. When the available labelled data is limited, establishing a 

classification model with decent performance tends to be hard. Ge et al. (2016) 

proposed a kernel-driven semi-supervised Fisher discriminant analysis (FDA) model 

for nonlinear fault classification. The proposed method uses a semi-supervised data 

matrix and FDA technique to extract the discriminant information, before k-nearest 

neighbours and Bayesian techniques were used for classification. The size of labelled 

data used in this case was 400, and there were 41 attributes in the dataset, with a ratio 

of labelled data to unlabelled data is 1:1.  

Zhou et al. (2014) proposed a semi-supervised probabilistic latent variable regression 

method to improve the performance monitoring of variations in the process and the 

features relevant to the product quality. The probabilistic latent variable regression 

approach was used for modelling, and an EM (Expectation Maximisation) algorithm 

was used to estimate the parameters of the semi-supervised model. In this case, 50 

labelled instances and 450 unlabelled instances were utilised for model building. The 

performance of a probabilistic latent variable regression model is the sole benchmark 

in this case, which makes it challenging to reveal the advantages of the proposed 

method compared to other approaches.  

Zhao et al. (2017b) proposed a semi-supervised model with a capped l2,1-norm 

regularisation. A loss term was used to measure the inconsistency between the 

prediction and the original labels to the labelled dataset. A global regression 

regularised term was developed to train a classification model which can achieve better 

performance. However, the size of the labelled and unlabelled data was not mentioned 

in this case.  
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Kang et al. (2016b) proposed a semi-supervised support vector regression (SS-SVR) 

method based on self-training and applied it to virtual metrology in a semiconductor 

manufacturing context. The distribution of labels for the unlabelled data was estimated 

by a probabilistic regression model, and the support vector machine algorithm was 

used to build the regression model. The data of semi-conductor manufacturing was 

collected from the sensors embedded in process equipment and previous metrology 

values. SS-SVR can achieve better prediction accuracy and efficiency compared to the 

conventional support vector regression. The combined quantity of the labelled and 

unlabelled data was over 60,000 in this study, and the labelled data make up 

approximately 6% in this total.  

Since the high-quality labelled image data for the deep learning modelling is costly to 

collect, Sayah et al. (2020) presented a semi-supervised learning approach for additive 

manufacturing quality identification. In this approach, the labelled image data is first 

distorted to generate new data samples. Gaussian noise is then added to the increase 

the model robustness. Several different loss functions are designed to achieve 

unsupervised group consistency and diversity. In the experimental study, 135 images 

were adopted to generate 5805 training samples in total. In additive manufacturing, 

semi-supervised learning has also been applied for the fault detection for laser powder-

bed fusion (Okaro et al., 2019) and in-situ video monitoring of selective laser melting 

(Yuan et al., 2019). Such semi-supervised cases mentioned above have demonstrated 

that a better modelling performance can be achieved with the help offered by 

unlabelled data. However, none of the presented studies has assessed the impact of the 

different ratios of labelled and unlabelled data on performance. 

 Summary 

In summary, two main types of PdM were reviewed in Section 2.1. With the 

development of IoT, the sensor data which contains the patterns strongly relevant to 

the lifecycle of component or asset is available. Hence, condition-based PdM has 

gained increasing attention in recent years. However, the deployment of such methods 

requires extra IoT equipment, which increases the burden of companies. The study of 
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statistical PdM is based on the historical maintenance data, which is relatively easy to 

obtain. It deserves more attention. In Section 2.2, several deep learning algorithms 

were introduced. With the capability in processing various types of data, it can be seen 

that deep learning has become prevailing in industrial big data analytics. Section 2.3 

reviewed two main types of semi-supervised learning and their application in industry. 

In Section 2.4, the studies of GIS were reviewed. It can be seen that GIS data have not 

gained sufficient attention in the industry. From the literature, it is evident that PdM is 

an important topic under Industry 4.0. Automobile is essential to the industry. 

However, very few existing studies have focused on automobile PdM. Deep learning 

as a prevailing tool is helpful in big data analytics of PdM. Since deep learning is a 

data ‘hunger’ algorithm, semi-supervised learning is a useful tool when labelled data 

is limited. Finally, the integration of GIS data is helpful to leverage the prediction 

accuracy of TBF. In order to investigate deep learning, reliability analysis and semi-

supervised learning in automobile PdM, several assumptions need to be made 

according to different techniques. Firstly, deep learning is sensitive to label accuracy. 

Due to the historical maintenance data are collected from the real world, the data with 

inaccurate label is deemed as the minority. Secondly, in order to implement reliability 

analysis, the failure time of automobile in historical maintenance data is deemed 

following a specific distribution, such as Weibull. Thirdly, there are three assumptions 

for semi-supervised learning mentioned in Section 2.6. For the historical maintenance 

data, the data have similar attributes deemed to have a similar label. 
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Chapter 3 A Framework for 

Automobile Predictive Maintenance 

under Industry 4.0 

3.1 Introduction 

Industry 4.0 refers to the fourth revolution of the industry, which mainly focuses on 

intelligence and automation (Qin et al., 2016). The emerging technologies such as AI, 

cloud computing and IoT has boosted the development of Industry 4.0. Owing to the 

fact that run-to-failure and preventive maintenance are the main strategies in most 

companies in the industry, PdM has gained increasing attention under the context of 

Industry 4.0 since it can significantly lower the maintenance cost and asset downtime. 

The state-of-the-art of PdM was reviewed in Section 2.2. However, there are no 

existing study reports on how to model automobile TBF under the context of Industry 

4.0. In order to leverage the automobile PdM into next generation, there is a need to 

investigate a PdM framework that can be helpful to the industry.  

In this chapter, a framework is designed for automobile TBF modelling, prediction, 

and decision support based on the industrial big data. The framework is designed by 

following the data lifecycle standards, which includes the sections of data collection, 

transmission, storage, pre-processing, filtering, analysis, and mining, etc (Siddiqa et 

al., 2016). The data and technique relevant to the proposed framework were reviewed 

in Section 3.2. 
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3.2 A Framework for Automobile Maintenance Modelling 

under Industry 4.0 

According to the literature review in section 2, the state-of-the-art of PdM mainly 

focuses on modelling based on sensor data or historical maintenance data, while the 

automobile lifecycle can be affected by various factors such as traffic or driving 

behaviour. With the development of IIoT technique, it is possible to collect these data 

which are relevant to automobile lifecycle. Hence, there is a need to introduce multi-

source data which is relevant to automobile lifecycle and then integrate for automobile 

maintenance modelling. Meanwhile, deep learning, as a prevailing tool in industrial 

big data analysis (Mohammadi et al., 2018), has been widely used in PdM and showed 

merits. Other techniques such as statistical model can also be helpful in PdM. 

Exploring how to combine different techniques in automobile maintenance modelling 

also needs to be considered in the framework. The proposed framework is illustrated 

in Figure 3.1.  

The proposed framework includes the following stages: data collection stage, cloud 

data transmission and storage stage, data mapping pre-processing and integration stage, 

deep learning for automobile TBF modelling stage, and decision support for PdM stage. 

The framework was designed referred to the concept of data mining, which was 

detailed in Appendix A1. The multi-source data is first collected and then uploaded to 

the cloud. Then the multi-source data is mapped, pre-processed and integrated before 

it is used for modelling. In the modelling stage, deep learning in conjunction with semi-

supervised learning and reliability analysis is adopted to establish a TBF prediction 

model. Finally, the predicted TBF of an automobile is used to optimise maintenance 

planning, spare parts management, and job scheduling. 
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Figure 3.1 A Framework for Automobile Maintenance Modelling under Industry 4.0
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3.2.1 Data Collection 

There are two main types of data widely used in PdM, which are sensor data and 

historical maintenance data. In automobile PdM, there are multiple types of data 

relevant to automobile lifecycle. Figure 3.2 shows the automobile lifecycle with 

different types of data. An automobile starts its service after registration, it will 

experience multiple times failures before the end of the lifecycle. After its first failure 

at t1, the historical maintenance data can be collected. There are three types of features 

in historical maintenance data. The manufacturing and geographical features are 

obtained when the automobile is registered, while the maintenance features can be 

captured after the faulty automobile is repaired at t2. With the wide deployment of 

sensors in automobile, the real-time telematics data such as speed, vibration and load 

can be collected during the working time of automobile. The frequent speed change 

could accelerate the failure of the engine, while the increase of vibration may indicate 

the component is in anomaly working stage. These real-time telematics data can 

directly reveal the health condition change of the components in an automobile. A 

challenge towards online monitoring and failure prediction can be how to transmit the 

large volume of sensor data to the cloud for modelling and prediction. 

 

Figure 3.2 The automobile lifecycle with various types of data 
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Historical maintenance data is the maintenance record collected from the garage of a 

fleet management company. The features in historical maintenance data include repair 

history, mileage, and automobile model, etc. An existing study has identified several 

features, including automobile age and maintenance frequency, etc., which are relevant 

to automobile TBF (Wang et al., 2018c). In comparison with sensor data, historical 

maintenance data is relatively easy to obtain. Normally, there are both numeric and 

nominal features in historical maintenance dataset. 

Besides sensor data and historical maintenance data, other data such as weather, terrain 

and traffic can also be relevant to the automobile lifecycle. Owing to the fact that 

collecting these data via IIoT remains challenging, it needs to be collected via the link 

with the outer data source. The real-time GPS (Global Positioning System) 

information of automobile can be easily obtained from automobile, and it can then be 

used to bridge the automobile with other data. The weather data, traffic data and terrain 

data of an automobile can be collected from the outer data source and processed using 

GIS. For a fleet management company which processes a large number of automobiles, 

the automobiles may work in different areas. The geographical relevant factors which 

may affect automobile lifecycle such as weather, terrain, and traffic are different from 

area to area. Hence, introducing these factors into the study of PdM can bring tangible 

benefits to the fleet management company. 

3.2.2 Cloud Data Transmission and Storage 

Under the context of Industry 4.0, the industry has been transformed to digital 

ecosystem (Finance, 2015). During the transformation, cloud technology has gained 

increasing attention since it opens new horizons in conjunction with other technologies 

such as IoT and Cyber-Physical Systems towards industrial digitalisation (Mourtzis 

and Vlachou, 2018). With the connectivity of the assets in the industry, the data is 

generated at high speed. Cloud technology enables the integration of hardware, 

software, network and other resources to realise the calculation, storage, processing 

and sharing of data (Sabahi, 2012).  
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After the sensor data was collected in the automobile, the data needs to be transmitted 

to the cloud via remote transmission technique such as 5G. However, since the sensor 

data is collected in high frequency which leads to a large data volume. Real-time 

transmission may lead to unaffordable transmission load. Hence, a technique like edge 

computing (Shi et al., 2016) can be deployed to address this issue. Furthermore, the 

historical maintenance data is low in data volume. The garage can be linked to the 

cloud, and then the historical maintenance data can be directly uploaded to the cloud. 

Meanwhile, the GPS information from the cloud can be obtained from the automobile. 

After the cloud receives the GPS information, it can link it with the outer database 

such as weather, traffic and terrain. These data are then collected to the cloud and then 

be processed by GIS. All these multi-source data can be stored in the cloud. When the 

data is needed for modelling, it can be extracted and modelled via cloud computing. 

3.2.3 Data Mapping, Pre-processing and Integration 

After the data is stored in the cloud, it can be used for modelling. The multi-source 

data are different in data types and granularities. In order to use multi-source data for 

modelling, the first step is data mapping. The sensor data is collected in high frequency 

which sampling rate can up to the scale of a millisecond, while the GIS data such as 

weather and traffic, the sampling rate can be minutes. In strike contrast, historical 

maintenance data can only be collected when a failure occurs, which may take years. 

Hence, the data need to be mapped into the same granularity before it is used for 

modelling.  

Then the multi-source data needs to be pre-processed. In this stage, the extreme and 

missing values in the dataset need to be removed or replaced. Then, the data needs to 

be normalised to increase data integrity (Codd, 1970). Finally, the data is collected 

chronologically, which may contain some local patterns. These patterns may not be 

representative in the whole dataset and therefore may be harmful to the algorithm 

performance in the modelling stage. Hence, the dataset needs to be reshuffled. After 

the multi-source data is pre-processed, it is then integrated into a heterogeneous dataset 
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which contains different types of data including time series, ordinary numeric data, 

and nominal data, etc. 

3.2.4 Deep Learning for Automobile TBF Modelling 

When the pre-processed data is obtained from the previous section, it can be used for 

modelling. Deep learning is a class of machine learning algorithms which are based 

on ANN (Deng and Yu, 2014, Bengio, 2009). Every neural network is a computational 

system which can process information through their dynamic state responses to 

external input. There are many interconnected and straightforward processing 

elements referred to as neurons. Traditional ANN normally has a shallow structure 

(the number of hidden layers is lower than 3). When there are too many hidden layers 

in ANN, the training process will be complicated due to the vanishing gradient 

problem. In recent years, as the development of optimizers, activation functions, and 

layers with various functions has continued, training of neural networks has been 

significantly improved. Current advances in the deep learning field, have developed 

neural networks with more complex structures, which can offer more powerful 

learning abilities. 

A neural network consists of different layers of three main types: the input layer, the 

hidden layers and the output layer. The design of a neural network needs to determine 

the necessary elements, which are the layers, activation function, loss function and 

optimizer. In order to build the prediction model, all the elements need to be well 

considered according to their properties and data characteristics. Moreover, the 

parameters of the deep learning model need to be well considered to optimize the 

outcome. 

Currently, in the deep learning field, there are various types of neural networks which 

consist of different types of hidden layers. These deep learning models, such as 

convolutional neural networks and recurrent neural networks are widely used in image 

recognition and text mining, respectively (LeCun et al., 2015). Each neuron is a tiny 

computational unit which uses an activation function to produce an output passed to 
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the next layer. When different values are transmitted to a neural network, the input will 

be given a unique weight. The product of different values and their weight will be 

added together with a bias. Then, the sum will be imported into the activation function 

to get the output which will be transmitted to the neurons in the next layer.  

In order to design a deep learning model, the following methodology is adopted. Firstly, 

the task and data type need to be identified. Different tasks and data types require 

different model components. Secondly, the structural components, the layer, activation 

function, optimizer and loss function, need to be determined according to the data type 

and the aims of the modelling. Different layers are suitable for different types of input 

data. For instance, convolutional layers are used to deal with image data, and fully 

connected layers are used to deal with numeric data. The activation function is used to 

calculate the output of the neurons. The optimizer is a component which is used to 

optimize the gradient descent during the neural network training process. The loss 

function is used for measuring the compatibility between the actual value and the 

predicted value. The output of the loss function is referred to as loss. The next step is 

to set the parameters of deep learning. There are several significant parameters which 

need to be well considered. These are the number of hidden layers, the number of 

neurons, batch size, learning rate, and epoch. If the number of neurons and hidden 

layers is insufficient, the neural network will not be capable of learning the hidden 

patterns in the data. If the number of neurons and hidden layers is too large, it will 

cause an expensive computation load. About the number of neurons in each hidden 

layer, the same size for all hidden layers generally worked better or the same as using 

decreasing size (Bergstra and Bengio, 2012). Batch size is the number of training 

instances that need to be fed into the neural network. The smaller batch size enables 

the faster training speed of the neural network, while it will sacrifice the estimating 

accuracy of the gradient. Learning rate is a significant parameter which defines the 

step size in the optimization stage. If the learning rate is too large, the optimization 

may not converge. If the learning rate is too low, the training process may take a long 

time. In the neural network field, an epoch contains two phases which are feedforward 

training and back-propagation. A larger number of epochs can obtain a better training 

performance but will result in longer training time. The fourth step is to train a deep 
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learning model. The training of deep learning models is always performed by a back-

propagation algorithm. In the forward training stage, the error of the entire network is 

calculated at the output. It is impossible to adjust the weight and bias of the layers only 

depend on the final error. Back-propagation aims to trace the error of each layer and 

make the corresponding adjustment so as to lower the final error (Nielsen, 2015). The 

final step is to validate the deep learning model. Validation is essential because it will 

indicate whether the model is well designed. If the results are disappointing, then the 

components and parameters need to be tuned. After the deep learning model is 

designed, the historical maintenance data can be fed into the neural network to train a 

TBF prediction model.  

Deep learning is a type of algorithms which requires a large number of labelled data 

to tune the parameters. However, collecting a large sum of data in the industry tends 

to be challenging as it requires extra cost, and the unlabelled data is relatively easy to 

obtain. Semi-supervised learning is a technique that can be used to build a regression 

or classification model based on a small number of labelled data and a large number 

of unlabelled data (Chapelle et al., 2009). Hence, it can be a useful tool in TBF 

modelling using deep learning when the labelled data is limited. Reliability analysis is 

a useful tool in processing event data, which can be used to obtain a hazard function 

which can reveal the relationship between failure probability and running time. With 

such a hazard function, the change of the failure probability alone with the running 

time can be studied. However, such a hazard function cannot indicate the specific 

failure time of an asset (Leitch, 1995). Some reliability analysis models such as 

Weibull (Xie and Lai, 1996) and Cox PHM (Cox, 1992) can be used for modelling 

based on censored data. Data censoring is a specific issue in reliability analysis. The 

label of the censored data is not accurate.  However, the label accuracy is essential for 

machine learning modelling. With the higher label accuracy, a more accurate machine 

learning model can be obtained (Cortes et al., 1994). In the state-of-the-art, there is no 

study that considers data censoring issue in modelling based on historical maintenance 

data.  
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Hence, bridging reliability analysis with deep learning can promote the prediction 

accuracy of TBF. 

3.2.5 Decision Support for Predictive Maintenance 

After the TBF prediction model is established, it can be used to predict the TBF for an 

in-use automobile. With a prediction of TBF, the automobile can be returned to the 

garage before the upcoming failure and therefore, the crucial failure can be prevented. 

If the maintenance can be scheduled in the early stage of the failure, the maintenance 

time and cost can be dramatically decreased (Patil et al., 2017). Moreover, the number 

of failure cars can be estimated with the support of the prediction model. Then the 

number of spare parts in the garage can be controlled at a reasonable level. Furthermore, 

the prediction of TBF can also be beneficial to job scheduling. For example, for those 

automobiles which TBF prediction is short, they can be allocated with short distance 

and non-heavy tasks so to extend their useful life. 

3.3 Summary  

With the leverage of the connectivity and intelligence in the era of Industry 4.0, PdM 

has become an essential key. In the data-rich environment, the surrounding data 

relevant to the automobile lifecycle such as sensor data, historical maintenance data 

and GIS data can all be collected and used for automobile TBF modelling. To achieve 

this target, a framework for automobile TBF modelling under industry 4.0 was 

proposed in this chapter. In this framework, the multi-source data is first collected and 

transmitted to the cloud for data mapping, pre-processing and integration. In the next 

stage, deep learning is used to establish a TBF prediction model. Finally, the TBF 

prediction of automobiles can be used to leverage the decision support in automobile 

PdM.  
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Chapter 4 Predictive Maintenance 

Using Cox Proportional Hazard Deep 

Learning 

4.1 Introduction 

Recently, machine learning, as a subset of artificial intelligence, has been widely used 

in different areas of industry such as energy consumption prediction (Qin et al., 2020), 

fault diagnosis (Wan et al., 2018), and adaptive control optimisation (Kruger et al., 

2011). Meanwhile, it also has been used in PdM (Prytz et al., 2015, Wei et al., 2013, 

Nieto et al., 2015, Lee and Pan, 2017, Zhao et al., 2017a, Li et al., 2018, Malhi et al., 

2011, Yuan et al., 2016, Zhang et al., 2018a). Among various machine learning 

methods, deep learning has gained considerable attention in PdM (Zhao et al., 2017a, 

Li et al., 2018, Malhi et al., 2011, Yuan et al., 2016, Zhang et al., 2018a). Deep learning, 

as a group of machine learning techniques, has shown its merits in modelling based on 

high dimensional and large size data (LeCun et al., 2015). LSTM network, as one of 

the deep learning techniques, has a specialized structure in processing sequential data 

(Hochreiter and Schmidhuber, 1997). Because the next TBF of an automobile is highly 

relevant to its previous failure and maintenance information, LSTM network can be 

employed in the modelling of automobile TBF.  

The algorithm performance of deep learning relies on the quality of the data label 

(Chen and Lin, 2014). Without an accurate label, deep learning may be challenging to 

learn the hidden patterns within data. In historical maintenance data, the label of the 
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censored data is not sufficiently accurate. Hence, the data censoring problem needs to 

be addressed. This study aims to propose an approach called CoxPHDL to build a TBF 

prediction model based on historical maintenance data. The main contributions of this 

chapter are: (1) Different from most of the existing studies aiming at RUL modelling 

based on sensor data, an automobile TBF modelling approach based on historical 

maintenance data is proposed in this study; (2) Due to the data sparsity might damage 

the algorithm performance of LSTM network and Cox PHM, autoencoder is 

introduced to convert the sparse data into a robust representation; (3) Because accurate 

data label is important for deep learning modelling, Cox PHM is introduced to estimate 

the correct label of censored data so as to improve the algorithm performance of LSTM 

network. The rest of this chapter is organised as follows: Section 4.2 introduces Cox 

proportional hazard deep learning. An experimental study is demonstrated in Section 

4.3, and its results are demonstrated in Section 4.4. Finally, Section 4.5 discusses the 

results obtained, and Section 4.6 summarises this chapter. 

4.2 Method: Cox Proportional Hazard Deep Learning 

A new modelling approach called CoxPHDL is proposed to establish the TBF 

prediction model based on the historical maintenance data, which contains both 

numeric and nominal features. The approach consists of three stages. The first stage is 

nominal data processing. Traditionally, the nominal data is converted to binary 

attributes for modelling. If the categories in nominal data are numerous, the dataset of 

binary attributes tends to be sparse. In order to lower the dimension of the sparse binary 

data without damaging the information dramatically, autoencoder, as a type of deep 

learning model which is good at extracting significant features, is introduced in this 

approach. The nominal data is first converted to binary data using one-hot encoding 

approach. Then autoencoder is used to further process the binary data. The details of 

the autoencoder are demonstrated in Section 4.2.1.  

The second stage is the censored data processing. Censored data is common in 

historical maintenance dataset. Cox PHM is a statistical model which is used to process 

censored and uncensored data (Cox, 1992). The data obtained from autoencoder is 
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combined with the numeric data and yield a new dataset. The features in the new 

dataset are then used as covariates. The new dataset is used to build a Cox PHM, which 

can reveal the relationship between survival time and reliability. The difference in 

reliability between corrective maintenance and preventive maintenance is case 

dependent, which needs to be determined in the actual case. With the difference in 

reliability, the difference in TBF between corrective maintenance and preventive 

maintenance can be estimated, and the censored data is compensated. The 

compensated labels of preventive maintenance instances are closer to their actual TBF, 

compared to their original label. The compensated censored data is used jointly with 

the uncensored data to train an LSTM model in the next stage. The details of Cox PHM 

are introduced in Section 4.2.2.  

Finally, after the data is pre-processed, LSTM network, a deep learning model, which 

is specialized in processing the sequential data, is used to train a prediction model. 

LSTM network is used to predict the next TBF based on the previous failure 

information. The details of the LSTM network will be introduced in Section 4.2.3. The 

flow chart of the proposed method is shown in Figure 4.1. 
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Figure 4.1 The flow chart of the proposed approach 

 

4.2.1 Autoencoder 

Autoencoder is an unsupervised learning technique, which has shown merits in feature 

extraction. It aims to learn the most significant features from data. The learned features 

are expected to reconstruct the original input completely (Hong et al., 2015). An 

autoencoder consists of two parts which are encoder and decoder. An autoencoder can 

be described as a multi-layer neural network. The input layer and the first half of the 

hidden layers constitute the encoder, and the second half of the hidden layers and the 

output layer constitute the decoder. The number of nodes in each hidden layer is less 

than the number of nodes in the input layer and the output layer.  
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The input vector of the autoencoder is denoted as 𝑥 . The features learned by the 

encoder, also known as code, is denoted as 𝑧.  

The relation between 𝑥 and 𝑧 can be denoted as: 

𝑧 = 𝑓(𝑊𝑥 + 𝑏)                                              (4.1) 

where 𝑊 is the weight matrix between the input layer and the hidden layer, 𝑏 is the 

bias, and the 𝑓() is the activation function. 

The features 𝑧 learned from the hidden layer is then used to construct a vector 𝑥′ which 

is expected the same as vector 𝑥. The relationship between 𝑥′ and 𝑧 can be represented 

as: 

                                𝑥′= 𝑓[𝑊′𝑧 + 𝑏′]                                             (4.2) 

where 𝑊′is the weight matrix between the input layer and the hidden layer, 𝑏′ is the 

bias, and the 𝑓() is the activation function. 

 

Figure 4.2 The structure of autoencoder 
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As autoencoder is a type of neural network, the parameters of (𝑊, 𝑏) and (𝑊′, 𝑏′) can 

be trained via back-propagation algorithm. However, in the actual modelling, the 

vector 𝑥′ cannot be completely the same as vector 𝑥. The difference between vector 𝑥 

and vector 𝑥′ can be measured by a loss function. The adoption of the loss function is 

data-dependent. The structure of a three-layer autoencoder is shown in Figure 4.2. 

4.2.2 Cox PHM  

Cox PHM is a statistical model which aims to analyse the relationship between time-

independent covariates and hazard function (Cox, 1992). The baseline hazard function 

is denoted as ℎ0(𝑡). The covariate is denoted as 𝛽𝑝 and the input vector is denoted as 

𝑋𝑝. The Cox PHM is denoted as: 

ℎ(𝑡, 𝑋) = ℎ0(𝑡) 𝑒𝑥𝑝(𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑝𝑥𝑝)                     (4.3)                                 

With the different adoption of ℎ0(𝑡), Cox PHM can be parametric or non-parametric. 

A widely used function for the ℎ0(𝑡) is the maximum likelihood estimator proposed 

by Breslow (Breslow, 1975).  

Figure 4.3 shows a reliability curve generated by Cox PHM. The actual TBF of the 

censored data needs to be estimated. The difference in reliability 𝛥𝑅  between 

corrective maintenance and preventive maintenance is assumed the same for all the 

equipment possessed by the same company. Hence, once 𝛥𝑅 can be determined, it can 

be used to determine the difference of TBF 𝛥𝑇 between corrective maintenance and 

preventive maintenance. 𝛥𝑅 strongly depends on the strategy of the fleet management 

company, which is hard to be determined. The method used to determine 𝛥𝑅 needs to 

be determined in the actual case. 𝛥𝑅 is used to yield 𝛥𝑇 for the censored data. Then 

𝛥𝑇  is used to compensate the TBF of the censored data. The censored data with 

compensated TBF is then used to modelling jointly with the uncensored data. The 

performance is noted and compared to determine the suitable value of 𝛥𝑅. 
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Figure 4.3 The reliability curve generated by Cox PHM 

 

4.2.3  Long-short-term Memory Network 

LSTM network is a type of deep learning model which is well known for processing 

sequential data. An LSTM layer has numerous cells. There are three gates, which are 

forgotten gate, input gate and output gate, used to control memory in each cell. The 

structure of an LSTM cell is shown in Figure 4.4.  

The 𝑐𝑖 and 𝑏𝑖 is the input and output of the LSTM memory cell. When 𝑐𝑖 is transmitted 

into the LSTM memory cell, it is first processed by an activation function. The output 

of the activation function is then multiplied by 𝑏𝜄. Secondly, the activation function 

output of the previous time step is multiplied by 𝑏𝛷 . The product is added to the 

memory. Finally, the output of the memory is multiplied by 𝑏𝜔 and then transmitted 

to another activation function to produce 𝑏𝑖. The factors 𝑏𝜄, 𝑏𝛷, 𝑏𝜔 are represented by 

three white circles in Figure 4.4. These three factors are determined by the input gate, 

forget gate, and output gate, respectively.  
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Figure 4.4 The structure of an LSTM cell 

 

The TBF tends to be shorter with the increase of maintenance frequency. Our previous 

study has demonstrated that the TBF after nth maintenance can be predicted using the 

automobile information collected in nth maintenance (Chen et al., 2018). However, the 

TBF of an automobile after nth maintenance is not only relevant to the automobile 

information collected in nth maintenance, while the previous maintenance information 

(before nth) also can be relevant to the TBF. Therefore, the information of the previous 

TBF and the previous maintenance information can be used for TBF modelling. Figure 

5 illustrates an LSTM network for TBF modelling. The TBF after nth maintenance is 

denoted as yn+1, the maintenance information collected in nth maintenance is denoted 

as xn, the previous maintenance information 𝑋 = [𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛] is expected to be 

used for TBF modelling. An LSTM network is denoted as 𝑓(), the TBF modelling 

using LSTM network can be expressed as follow: 
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𝑦𝑛+1 = 𝑓(𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛)                                  (4.4)  

In an LSTM network model, there are various parameters need to be determined, 

including the size of the network, optimiser, loss function, and learning rate, etc. 

Different parameters setting might result in different performance. The parameter 

setting is case dependent, which needs to be well selected. The performance of the 

proposed approach is evaluated in the following sections. The LSTM network for TBF 

modelling is shown in Figure 4.5. 

 

Figure 4.5 The diagram of an LSTM network for TBF modelling 

 

4.3 Experimental Setup 

The historical maintenance dataset used in this case was provided by our industrial 

collaborator, which is a sizable fleet service company in the UK. The company has a 

keen interest in the TBF prediction of automobiles. An accurate prediction of TBF can 

offer insights for the fleet maintenance and further help the inventory management of 

replacement parts. 

Firstly, it is worthwhile to provide general information on the company background. 

This company processes a large number of automobiles including various sizes of vans, 
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personal cars, 4 by 4 vehicles. There are two types of maintenance management in the 

company. The first maintenance management type is run-to-failure (corrective 

maintenance), whereby an automobile is sent back to the workshop for maintenance 

when it breaks down. Workshop records the actual date of automobile failure, and 

therefore the actual TBF can be calculated. Another maintenance management type is 

preventive maintenance, whereby soon-to-failure is determined in the scheduled check. 

If an automobile is deemed to be failed in the near future during the scheduled check, 

the preventive maintenance is then carried out. The automobiles which experienced 

preventive maintenance is also recorded. However, the maintenance date in the dataset 

is earlier than the automobile’s actual failure date, which will result in the calculated 

TBF is shorter than the actual TBF. Thus, the TBF of the preventive maintenance 

record is right-censored.  

Secondly, we focused on the procedure of data processing. With the domain 

knowledge, feature selection and data pre-processing can be implemented efficiently 

and accurately. Feature selection and data pre-processing are introduced in Section 4.2. 

Thirdly, the metrics used to reveal performance and the validation method need to be 

considered.  

Finally, in order to get comprehensive results from modelling, k-fold cross-validation 

was adopted. In this study, the value of k was set at 10. 

4.3.1 Data 

The data contains the maintenance record of the automobile engine. Each instance in 

the dataset represents one instance of a maintenance record. The data collection period 

had lasted for nearly nine years, from 2009 to 2017. There are over 12 thousand 

instances in the dataset. The quantity of censored data is 2,352, which takes 19.2% in 

the dataset. It can be seen that 40.9% of the automobile engines failed within 500 days. 

The average of the TBF of all the instances in the dataset is 850.64 days. 
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Table 4.1 The original features relevant to TBF 

Numeric  

Feature 
Note 

Nominal 

Feature 
Note 

nRepair 
The times of engine experienced 

maintenance 
Model The model of automobile 

PAge The age of automobile engine Garage The garage of automobile 

VAge The age of the automobile  Area The area of automobile 

CumM 
The cumulative miles when a failure 

occurs 
  

Model_Year The year of the first production   

Seq A time index for automobile   

Regions Four binary attributes    

isSch 
A label whether a failure is found in 

schedule check 
  

 

The features relevant to automobile engine’s lifecycle have been extracted from the 

dataset, which was used to build the TBF prediction model. The features are shown in 

Table 4.1. Among all the features, three of them are nominal and the rest are numeric. 

Due to the limitation of the number of features, all the features were selected for 

modelling. The numeric data can be directly used for modelling except for isSch 

because this feature cannot be determined before failure occurs. It is used to distinguish 

the right-censored data and the uncensored data in this case. Meanwhile, the nominal 

features, which are Model, Garage, and Area, are deemed highly relevant to the TBF 

according to the domain knowledge. One-hot encoding and autoencoder were used to 

further process the nominal data. The features mentioned above were selected to 

establish a TBF prediction model by adopting different machine learning algorithms. 

Figure 4.6 shows the TBF prediction model with numeric and nominal features. 
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Figure 4.6 TBF prediction model with features 

 

The data was collected from the real world, which contains some impurity and noise 

in the dataset. The impurity and noise in the dataset were caused by the meter failure 

and meter misreading. The dataset with noise and impurity may damage the algorithm 

performance. Hence, the data pre-processing needs to be carried out. Firstly, abnormal 

and missing values were deleted. For example, there are approximately 30 records 

where the CumM of the automobile is over 4,000,000 miles, significantly exceeding 

the mean CumM of 129,219 miles. These abnormal values were considered as the 

impurity which may be caused by meters failure or reading mistakes. Secondly, most 

of the missing values situated in the nominal features, while these missing values are 

hard to estimate and replace. Hence, the instances which contain the abnormal and 

missing values in the dataset were removed. Thirdly, Model Year is a feature of point-

in-time, which is meaningless to be analysed by machine learning algorithms. Hence, 

the difference between automobile registered year and its model year was used instead 

because it can represent the age of this automobile model. Finally, the data were 
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normalised in order to improve data integrity and lower data redundancy. Since the 

nominal data had not been converted in this stage, the normalisation was carried out 

later. 

4.3.2 Model Setup 

In the modelling stage, five machine learning algorithms, which are LSTM network, 

DCNN (Li et al., 2018), RNN, FCNN and support vector machine (SVM), are used for 

modelling. DCNN is a novel algorithm which shows merits in RUL modelling (Li et 

al., 2018). RNN and FCNN are two standard deep learning algorithms. Support vector 

machine is a prevailing machine learning algorithm which has been widely used in 

data analytics (Ma and Guo, 2014). The technical details of DCNN and SVM have 

been introduced in Appendix A2. All the algorithms were used to train a TBF 

prediction model separately based on the pre-processed dataset. We adopted the 

default settings of the prevailing machine learning algorithm. The deep learning 

models were designed and established using Python Keras package (Chollet, 2015). 

The aim of modelling is to build a prediction model based on historical maintenance 

data. When designing a deep learning model, there are several issues that need to be 

considered. 

 Firstly, the structure of deep learning model needs to be determined. The factors such 

as the type of layer, the number of layers, and the number of nodes in each layer 

directly affect the performance of the deep learning. If a model is designed extremely 

deep and large, it is able to predict TBF accurately. However, the computational cost 

will be extremely large as well. Hence, it is vital to balance the model complexity and 

computational cost. After several trials, three LSTM layer, one fully connected layer 

and three dropout layers were adopted as hidden layers in our LSTM network model. 

The size of the hidden nodes in LSTM and fully connected layers were set at 1000. 

Drop out layer is used to prevent overfitting by disconnecting a certain percentage of 

nodes in the training process. In this case, the percentage was set at 20%. The deep 

learning model designed in this study is an LSTM network model.  
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Secondly, the components and parameters of the LSTM network model, such as 

optimiser and loss function need to determined according to the data type and the aim 

of the study. The optimizer is used to optimise the learning process of the LSTM 

network model. RMSprop is an optimizer which is suitable for the LSTM network, 

and therefore it was adopted. The loss function is set to be the mean squared difference 

between the actual value and prediction value. 

The parameters relevant to the training process are the number of lookbacks, learning 

rate, batch size, and epochs. The number of lookbacks is the number of states that the 

LSTM network is considered at the same time. In this case, it was set at two, which 

means the variables in time t-1 and time t-2 are used to predict the output of time t due 

to the failure times of approximately 85.3% instances are lower than 2. The learning 

rate is the stride of the training process. In order to enable the LSTM network to 

sophisticatedly learn the hidden patterns of data, the learning rate was set at 0.001. The 

batch size was set at 150, which means 150 instances were fed into the LSTM network 

each time. The number of epochs was set at 45, which means the back-propagation 

process was repeated for 45 times to tune the parameters of the LSTM network. 

Meanwhile, the configuration of the FCNN model in this study was basically the same 

as the LSTM model, except all the layers of the FCNN are fully connected layers. 

In order to tackle the data sparsity issue of one-hot encoded data, autoencoder, another 

deep learning algorithm, was introduced in this study. Autoencoder is a neural network 

which can extract the most significant features from sparse data (Hong et al., 2015). 

The autoencoder designed in this case was a three-layer neural network comprising of 

an input layer, hidden layer, and output layer. The number of nodes of input and output 

layers was set at 160, which equals the size of one-hot encoding features. The number 

of nodes in the hidden layer is equal to the expected dimensions, which will be 

determined in the actual case. ℓ1-norm is a term that can be used to improve the 

prediction quality and its interpretability of modelling based on sparse data. It can be 

embedded in autoencoder to enhance its capability (Han et al., 2017). Because the one-

hot encoding data is sparse, ℓ1-norm was introduced in the autoencoder in this case.  
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The parameter setting of the autoencoder was different from the deep learning 

algorithms used for modelling. Firstly, due to the output of the autoencoder is binary, 

and therefore Adadelta, a prevailing optimiser was adopted. Secondly, binary-cross-

entropy was chosen as the loss function. Thirdly, the learning rate was set at the default 

value in Adadelta, which is 1. The batch size was set at three, and the number of epochs 

was set at 30. 

In this study, three scenarios were introduced. In scenario 1, prevailing machine 

learning and LSTM network were used for modelling based on the sparse data in 

conjunction with numeric data in historical maintenance dataset. In scenario 2, 

autoencoder was introduced to convert the one-hot encoding data to low dimension 

and robust data. Then the prevailing deep learning algorithms were used for modelling 

based on the robust data in conjunction with numeric data in historical maintenance 

dataset. Meanwhile, the relation between the algorithm performance and the number 

of the robust data dimension was explored. In scenario 3, based on the techniques in 

scenario 2, Cox PHM was introduced to tackle data censoring. In order to explore the 

impact of data sparsity on the algorithm performance of Cox PHM, two control 

experiments were set in scenario 3. In the first experiment, data compensation was 

based on a Cox PHM, which was trained by sparse data in conjunction with the 

numeric data in historical maintenance dataset. In the second experiment, data 

compensation was based on Cox PHM, which was trained by robust data in 

conjunction with the numeric data in historical maintenance dataset. After the censored 

data was compensated, the compensated censored data and uncensored data was jointly 

used for modelling using different algorithms. Also, the relation between the 

difference in reliability and the algorithm performance was explored in this scenario.  

4.3.3 Performance Evaluation 

Different metrics are needed to evaluate the algorithm performance from different 

perspectives. In this study, two metrics called Model correlation coefficient (MCC) 

and root-mean-square-error (RMSE) were chosen to evaluate the performance of 

algorithms. Both metrics have been widely used to evaluate the results of the 
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regression. They can reveal the algorithm performance in different perspectives. MCC 

is used to measure the correlation between two variables, and can be expressed 

mathematically as: 

MCC =
𝑆𝑃𝐴

√𝑆𝑃𝑆𝐴
,                                 (4.5) 

where, 

𝑆𝑃𝐴 =
∑ (𝑝𝑖 − 𝑝̅)(𝑎𝑖 − 𝑎̅)𝑖

𝑛 − 1
; 𝑆𝑃 =

∑ (𝑝𝑖 − 𝑝̅)2
𝑖

𝑛 − 1
; 

𝑆𝐴 =
∑ (𝑎𝑖 − 𝑎̅)2

𝑖

𝑛 − 1
; 

𝑝𝑖  is the predicted value and 𝑝̅ is the average of the predicted value. 𝑎𝑖 is the actual 

value and the 𝑎̅ is the average actual value. 𝑛 is the number of training data. 

It is a scale-dependent metric which measures the difference between the prediction 

value and the actual value. RMSE is 0 if the prediction value equals to the actual values. 

The expression of RMSE is:  

RMSE=√
∑ (𝒑𝒊−𝒂𝒊)𝟐

𝒊

𝒏
                                          (4.6) 

4.4 Experimental Results  

4.4.1 Scenario 1: Prevailing Machine Learning Algorithms VS. 

LSTM Network 

In this scenario, four deep learning and one prevailing machine learning algorithms 

were used for modelling based on numeric and one-hot encoding data. One-hot 

encoding was used to convert the nominal data to binary data, which can be processed 

by machine learning algorithms. There are three nominal features in the dataset which 

can be converted to 160 different categories using one-hot encoding technique. The 
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one-hot dataset was then concatenated with the other numeric data in historical 

maintenance dataset. One-hot encoding enables the nominal data to be converted to 

numeric form without any information sacrifice. However, with the one-hot encoding 

features, there was a large number of 0 in the dataset, which leads to significant sparsity 

in the dataset. After 10-fold cross-validation, the mean and standard deviation (STD) 

of MCC and RMSE were compared to reveal the algorithm performance. All tests were 

conducted on an Intel i5-6500 3.20Ghz PC with Nvidia GeForce GTX 1060 graphics 

card. The training time for each algorithm was marked and used to reveal the 

computational cost. 

The modelling results based on the one-hot encoding data are shown in Table 4.2, 

which indicate that the LSTM network achieved the highest MCC which is 0.8248 and 

the lowest RMSE which is 379.8 days. SVM shows the worst performance in this 

scenario, which RMSE is 432.4 days and MCC is 0.7738. The algorithm performance 

of LSTM network in terms of MCC and RMSE are better than other algorithms. 

Moreover, the STD of MCC and RMSE of DCNN are the lowest in this scenario. 

Although the algorithm performance of LSTM network in terms of MCC and RMSE 

are better than the benchmarking algorithms, it also requires the longest training time.  

Table 4.2 The results of machine learning modelling based on one-hot encoding data 

 LSTM Network RNN FCNN DCNN SVM 

MCC_Mean 0.8248 0.8221 0.8240 0.8240 0.7738 

MCC_STD 0.0122 0.0136 0.0101 0.0097 0.0173 

RMSE_ Mean (days) 379.8 382.1 387.2 387.2 432.4 

RMSE_ STD (days) 14.78 13.27 16.62 12.59 15.91 

Modelling time (s) 259.2 107.5 34.65 43.15 7.263 
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4.4.2 Scenario 2: Modelling Based on Features Converted by 

Autoencoder 

After the nominal data was converted using autoencoder, the one-hot encoding data 

was then combined with numeric data in historical maintenance dataset to generate a 

new dataset. The relation between the number of converted features and the algorithm 

performance in terms of MCC and RMSE are shown in Figure 4.7 and Figure 4.8. 

It can be seen that the algorithm performance of all deep learning algorithms in terms 

of MCC and RMSE fluctuated in the beginning, and then become worse along with 

the larger number of converted features. In contrast, the algorithm performance in 

terms of MCC and RMSE of SVM is relatively stable. The algorithm performance in 

terms of MCC and RMSE of all algorithms reached their lowest points when the 

number of converted features ranges from 10 to 20. With the consideration of 

computational cost in TBF modelling stage and algorithm performance, the number of 

converted features is set at 16 in the following tests. 

 

Figure 4.7 The relation between the number of converted features and the algorithm performance in 

terms of MCC 
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Figure 4.8 The relation between the number of converted features and the algorithm performance in 

terms of RMSE 

After the number of converted features was determined. The converted data was 

concatenated with the numeric data in historical maintenance dataset and used for 

modelling. The results of the comparison between the modelling based on one-hot 

encoding and autoencoding are shown in Figure 4.9 and Figure 4.10. With the help of 

autoencoder, the algorithm performance in terms of RMSE of all the algorithms 

witnessed a decrease. LSTM network has still achieved the highest MCC which is 

0.8348 and the lowest RMSE which is 369.3 days. When the autoencoder was 

introduced to convert the one-hot encoding data, the improvement of MCC and the 

decline of RMSE of the LSTM network are 0.91% and 1.84% respectively. The 

performance of the RNN in terms of RMSE increased by 1.13% and 2.10%, 

respectively. Meanwhile, FCNN experienced the largest RMSE reduction in this study, 

which is 2.23%. In contrast, the performance of SVM in terms of MCC and RMSE are 

merely increased with the help of autoencoder, while the STD of both MCC and RMSE 

are decreased dramatically. Finally, the STD of all the algorithms declined with the 

help of autoencoder. Hence, the results demonstrated that the robust features generated 

by autoencoder are helpful to improve performance in terms of MCC, RMSE and the 

stability to all the algorithms used in this study. 
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Figure 4.9 The algorithm performance comparison between one-hot encoding-based modelling and 

autoencoder based modelling in terms of MCC 

 

Figure 4.10 The algorithm performance comparison between one-hot encoding based modelling and 

autoencoder based modelling in terms of RMSE 
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4.4.3 Scenario 3: Modelling Based on Cox Proportional Hazard Deep 

Learning  

Data censoring leads to the inaccurate label of data. If the censored data is directly 

used for modelling, it may jeopardise the algorithm performance. If an appropriate 

compensation for the censored data can be estimated, the algorithm performance could 

be promoted. There are 2,352 censored instances in this study, which takes 19.2% in 

the dataset. In order to estimate the actual TBF for the censored data, Cox PHM was 

introduced into this study. Uncensored data was used to build a Cox PHM.  

Appropriate compensation based on the difference in reliability can be beneficial to 

performance. With Cox PHM, the relationship between reliability and TBF can be 

estimated. However, when the difference in reliability is too large, the algorithm 

performance tends to be damaged due to the tuned TBF is inaccurate. The difference 

in reliability was used to generate compensation for the censored data according to 

Cox PHM of each censored instance. When a difference in reliability is set, then the 

compensation of each censored instance can be determined. The censored data with 

compensation was then used for modelling jointly with the uncensored data. In this 

case, the ideal difference in reliability needs to be determined. The difference in 

reliability was first set in the range of 0% to 5%. If the algorithm performance can be 

promoted when the difference in reliability increases from this range, it would then be 

expended to find the optimal point. Two control experiments were conducted in this 

scenario to reveal the impact of data sparsity on the algorithm performance of Cox 

PHM. The results of the first experiment are shown in Figure 4.11 and Figure 4.12. 

A Cox PHM was trained by sparse data in conjunction with the numeric data in 

historical maintenance dataset, which was used for label compensation. It can be seen 

from Figure 4.11 that the fluctuation of all the deep learning algorithms is considerable. 

The algorithm performance of SVM in terms of MCC reached its peak when the 

difference in reliability is 2%, following by a monotonous fall. Also obvious is that, 

with suitable label compensation, the algorithm performance of different algorithms 

in terms of MCC were promoted. LSTM network achieved the highest MCC is this 
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experiment, which is 0.8383. With the help of label compensation, the maximum MCC 

improvement of LSTM network, RNN, FCNN, DCNN and SVM are 0.51%,0.55%, 

0.31%, 0.19% and 0.37%, respectively. From Figure 4.12, it is evident that the 

algorithm performance in terms of RMSE for all the algorithms fell to a low point 

before a monotonous increase. LSTM network achieved the lowest RMSE in this 

figure which is 364.5 days. RNN witnessed the largest algorithm performance 

improvement in terms of RMSE, which is 1.80%.  

 

Figure 4.11 The MCC of modelling based on Cox PHM trained by sparse data in conjunction with 

numeric data in historical maintenance dataset 
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Figure 4.12 The RMSE of modelling based on Cox PHM trained by sparse data in conjunction with 

numeric data in historical maintenance dataset 

 

With the robust features getting from scenario 2, a reliable Cox PHM trained by the 

robust data in conjunction with the numeric data in historical maintenance dataset was 

established. With the consideration of the impact of data sparsity on the algorithm 

performance of Cox PHM, the robust data in conjunction with the numeric data was 

used to train a reliable Cox PHM for label compensation. The modelling results are 

shown in Figure 4.13 and Figure 4.14. It can be seen from Figure 4.13 that the MCC 

of all algorithms are leveraged when the difference in reliability is chosen 

appropriately. The MCC of SVM has been increased to the highest point when the 

difference in reliability grows from 0% to 1.2%. In contrast, the performance of all 

deep learning algorithms in terms of MCC fluctuated slightly in all stages. The MCC 

of all deep learning algorithms firstly increased and then reached their peaks when the 

difference in reliability ranged from 0.5% and 2%, followed by a period of 

continuously decrease. LSTM network achieved the highest MCC in this scenario, 

which is 0.8395. The MCC of the LSTM network is higher than that of other 

algorithms in all the stage. It is also clear in Figure 4.14 that all the algorithms 
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experienced a similar trend when the difference in reliability grows from 0% to 5%. 

The RMSE of LSTM network, RNN, FCNN and CNN reach their lowest point when 

the difference in reliability is 0.8% or 1%. The lowest RMSE in this scenario is 359.1 

days, which is achieved by LSTM network. Meanwhile, the performance of SVM in 

terms of RMSE become better when the difference in reliability ranges from 0.3% to 

1.2%. The maximum RMSE decline in terms of RMSE of LSTM network, network, 

RNN, FCNN, DCNN and SVM is 2.75%, 2.56 %, 1.78%, 1.61% and 0.96% 

respectively. Hence, in terms of MCC and RMSE, the performance of all the 

algorithms was promoted with the help of the Cox PHM trained by in conjunction with 

the numeric data in historical maintenance dataset. 

 

Figure 4.13 The MCC of modelling based on Cox PHM trained by robust data in conjunction with 

numeric data in historical maintenance dataset 
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Figure 4.14 The RMSE of modelling based on Cox PHM trained by robust data in conjunction with 

numeric data in historical maintenance dataset  

 

Figure 4.11-4.14 demonstrated that the algorithm performance in terms of MCC and 

RMSE of all the algorithms were benefited more from the Cox PHM trained by the 

robust data in conjunction with the numeric data, which indicates that the data sparsity 

jeopardises the algorithm performance of Cox PHM. Since LSTM achieved the best 

algorithm performance in terms of MCC and RMSE, a further algorithm comparison 

is shown in Figure 4.15. It can be seen that with the solutions of data sparsity and data 

censoring, the algorithm performance of LSTM network in terms of MCC was 

promoted by 1.8% and RMSE was reduced by 5.4%. Besides, the standard deviation 

of MCC and RMSE in 10-fold cross-validation was shrunk with the help of 

autoencoder and Cox PHM. 
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Figure 4.15 The algorithm performance of LSTM in different schemes in terms of MCC and RMSE 

 

4.5 Discussion 

PdM is of importance to the industry. The issues of maintenance planning, job 

scheduling and spare parts inventory management have long been concerned by 

various industries such as fleet management. With the accurate prediction of TBF, 

better fleet management can be achieved. Most research in PdM has been conducted 

using sensor data. However, sensor data collection requires extra expenditure, which 

is unaffordable for some companies. Different from the existing research, this study 

focuses on PdM based on the historical maintenance data, which is relatively easy to 

obtain in the industry.  

LSTM network shows merits in TBF modelling. Another existing study investigating 

LSTM network in RUL modelling also indicates that LSTM shows merits in RUL 

modelling based on sensor data in comparison with RNN, FCNN and SVM (Zhang et 

al., 2018b), which indicate that the LSTM network can be a useful tool in PdM. The 
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results derived from this study cannot be compared with the results in the existing 

study since this is the first time that TBF modelling approach was proposed. The 

proposed TBF modelling approach will be further validated when another historical 

maintenance dataset is available. 

The results of scenario 1 indicate that the algorithm performance is positive to the 

computational cost in this study. The LSTM networks achieved the highest MCC and 

lowest RMSE in scenario 1, while it took the longest training time in comparison with 

the prevailing machine learning algorithms. What is noticeable in the results of 

scenario 2 is that the robust data representation converted by autoencoder is useful to 

improve the algorithm performance of all the algorithms used in this study, which 

indicates that data sparsity damages algorithm performance in terms of the MCC and 

RMSE of all the algorithms used in this study. The algorithm performance in terms of 

MCC and RMSE worsen along with the larger number of converted features. With this 

knowledge, the autoencoder can be better deployed in future studies. 

The results of scenario 3 firstly indicate that the data sparsity also has a negative impact 

on the algorithm performance of Cox PHM. With the robust features obtained from 

autoencoder, the effect of label compensation using Cox PHM was enhanced. After 

the conversion of the categorical variables using autoencoder and the estimation of the 

label of censored data using CoxPHM, the algorithm performance of the standard 

LSTM network in terms of MCC and RMSE are generally better than all other 

algorithms, which indicates it is more sensitive to the data sparsity and data censoring 

issue than other algorithms used in this study. The proposed technique can improve 

the algorithm performance in terms of MCC and RMSE of LSTM network, which is 

1.8% and 5.4% respectively. The relation between the difference in reliability and 

algorithm performance was revealed in this study. The ideal difference in reliability in 

this study ranges from 0.8% to 1.5%, which can offer some insights into the application 

of CoxPHDL. 
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4.6 Summary 

The prediction of TBF can bring tangible benefits to the industry so as to achieve better 

maintenance planning, job scheduling and spare parts inventory management. In this 

chapter, the focus was on the modelling and prediction of TBF based on historical 

maintenance data. Based on autoencoder, Cox PHM, and LSTM network, we have 

proposed a new approach called Cox proportional hazard deep learning (CoxPHDL) 

to predict TBF based on historical maintenance data. In this approach, autoencoder is 

used to convert the nominal data for Cox PHM and LSTM network. Cox PHM is used 

to estimate the label of censored data. After the data is pre-processed, LSTM network 

algorithm is used to build a TBF prediction model. An experimental study was carried 

out based on real-world automobile historical maintenance data. There are two key 

findings in our study. Firstly, LSTM network shows merits in TBF modelling in 

comparison with several prevailing machine learning algorithms, but it leads to a 

higher computation cost. Secondly, data sparsity shows a negative impact on the 

algorithm performance of Cox PHM and LSTM network. With the consideration of 

this issue, autoencoder was deployed to address this issue and promote the algorithm 

performance of LSTM network and most of the machine learning algorithms. Then, 

with the help of Cox PHM, the algorithm performance of LSTM network and most of 

the machine learning algorithms can be further leveraged. In the actual fleet 

management scenario, this is deemed very useful to improve the job scheduling, 

automobile maintenance planning and the inventory management of spare parts. 
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Chapter 5 Deep Learning Embedded 

Semi-supervised Learning (DLeSSL) 

for Automobile TBF Modelling 

5.1 Introduction 

The existing methods used for automobile TBF modelling rely on the quantity of 

labelled data. In Chapter 4, a large amount of real-world historical maintenance data 

was used for modelling. However, if the labelled historical maintenance data is limited, 

its underlying process of modelling and prediction tends to be difficult. In data mining, 

a technique called semi-supervised learning aims to make full use of the unlabelled 

data for a supervised or unsupervised learning task (Hady and Schwenker, 2013). In 

the real world, labelled data is often expensive to be collected as it requires efforts to 

categorise the data. One of the critical factors which affect the performance of the 

supervised learning algorithm is the size of the labelled data. In supervised learning, 

in order to train an accurate model, a certain amount of labelled data is required. When 

the labelled data is insufficient, machine learning algorithm tends to be challenging in 

mining the hidden patterns within the data. However, with the help of unlabelled data, 

the performance of a supervised learning algorithm could be improved (Hady and 

Schwenker, 2013). In semi-supervised learning, firstly, the unlabelled data was 

assigned a pseudo label via unsupervised learning. The data with a pseudo label is then 

used to enrich the labelled dataset. Then the supervised learning approach is used to 

build a classification or regression model based on the enriched dataset. With larger 

data size, The enriched dataset can promote the performance of supervised learning 
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(Zhu, 2011). Deep learning has gained increasing attention and widely used for 

supervised learning. Owing to the fact that the deep neural networks have a large 

number of parameters which need to be tuned during the training process, it requires 

high volume labelled dataset. Hence, it is worthwhile to study how the semi-supervised 

learning technique could enable deep learning to be applicable when the labelled 

dataset is small.  

The purpose of this study is to establish an automobile TBF prediction model through 

a big data-driven approach. Since the labelled historical maintenance data is often 

limited and expensive to obtain, while unlabelled data is abundant in the real-world 

industry, a semi-supervised learning approach, i.e., deep learning embedded semi-

supervised learning (DLeSSL), is proposed to tackle the issue. Based on DLeSSL, 

unlabelled data can be labelled and compensated using a semi-supervised learning 

approach that has a deep learning technique embedded so to expand the labelled 

dataset. An experimental study using a large amount of historical maintenance data 

shows the merits of the proposed approach. Results derived using the proposed method 

reveal that LSTM network (DLeSSL based) outperforms the LSTM network 

(supervised) and LSTM network (label propagation based) when the labelled data is 

limited. Besides, the effect on performance due to the size of labelled data and 

unlabelled data is also reported.  

This chapter proposed a semi-supervised approach for automobile TBF modelling 

based on insufficient labelled data. In Section 5.2, the algorithm details of DLeSSL 

are introduced. Section 5.3 reports the experimental setup and the experimental results 

are demonstrated in Section 5.4. Finally, Section 5.5 summarises this chapter. 
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5.2 Deep Learning Embedded Semi-supervised Learning 

 

We assume that there are a labelled dataset and an unlabelled dataset. The size of the 

unlabelled dataset is significantly larger than that of the labelled dataset. If the labelled 

data is insufficient to train a model with a decent performance, exploiting the 

unlabelled data emerges as an available option to improve the algorithm performance. 

Different kinds of supervised learning algorithms have been introduced for TBF 

modelling. Such tools show the advantages of building the prediction model based on 

labelled data. However, when the labelled data is insufficient, the performance of 

supervised learning approach tends to be unsatisfactory. In order to improve the 

algorithm performance when the labelled data is limited DLeSSL was proposed. The 

general flow of DLeSSL is shown in Figure 5.1. The proposed approach can be 

separated into two stages i.e. the label finding stage and the label compensating stage. 

The label finding stage is originated from the label propagation algorithm (Zhu and 

Ghahramani, 2002). In the label finding stage, new labels of the unlabelled data are 

determined. In the label compensating stage, the new labels are compensated using 

deep learning technique. When the compensated labels of the unlabelled data are 

obtained, the labelled data and the unlabelled data with the compensated label are 

combined as an enriched dataset. The enriched dataset obtained from DLeSSL is used 

to train a new deep learning model, which is used to predict TBF. 
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Figure 5.1 The flow chart of DLeSSL 

 

The label finding stage aims to identify the labels for the unlabelled data. Firstly, the 

most similar labelled instances for the unlabelled data is determined. In this case, we 

have adopted radial basis function (RBF) to determine the similarity between two 

instances base on its performance and convenience (Vert et al., 2004). The RBF is used 

to represent the similarity or distance between 𝑙𝑖 and 𝑢𝑗. When the 𝑅𝐵𝐹 (𝑙𝑖 , 𝑢𝑗) close 

to zero, it indicates the similarity between the label instance 𝑙𝑖  and the unlabelled 

instance 𝑢𝑗 is considerably high. An RBF is denoted as:   

𝑅𝐵𝐹 (𝑙𝑖 , 𝑢𝑗) = 𝑒𝑥𝑝 (−
𝑑(𝑙𝑖, 𝑢𝑗)2

2𝜎2 )                                  (5.1) 



Deep Learning Embedded Semi-supervised Learning (DLeSSL) for Automobile TBF 

Modelling 

81 

 

where σ is a parameter of RBF and 𝑑 is the Euclidean distance. 

Secondly, label propagation is carried out based on the 𝑅𝐵𝐹 (𝑙𝑖 , 𝑢𝑗), which means the 

most similar instance 𝑙𝑖 for 𝑢𝑗 will be found. Then, the label of 𝑙𝑖 is propagated to 𝑢𝑗. 

The details of the label propagation algorithm can be found in the work of (Zhu and 

Ghahramani, 2002). Basically, when 𝑦𝑖  is known and 𝑦𝑗  is unidentified, 𝑦𝑖  can be 

considered approximately equal to 𝑦𝑗 . The label propagation process can be 

represented as: 

(𝑙𝑖 , 𝑦𝑖) → (𝑢𝑗) =>( 𝑙𝑗 , 𝑦𝑖) =( 𝑢𝑗 , 𝑦𝑗)                     (5.2) 

However, even 𝑙𝑖 is the most similar instance for 𝑢𝑗 in the labelled dataset, it does not 

mean the new label 𝑦𝑗 is equal to the actual label of 𝑢𝑗. There is still a slight difference 

between 𝑦𝑗 and 𝑢𝑗. In order to get close to the actual label of 𝑢𝑗, compensation to 𝑦𝑗 

need to be carried out. In this stage, 𝑢𝑗 is unknown and the bias ∆𝑦𝑗 between new label 

𝑦𝑗 and the actual label of 𝑢𝑗 is estimated in the next stage. 

In the label compensating stage, we model the relationship between ∆𝑙𝑖 and ∆𝑦𝑖 by 

utilising deep learning technique due to its excellent performance in data analytics 

(LeCun et al., 2015). The number of ∆𝑙𝑖 is 𝑁 =
𝐼(𝐼−1)

2
, which grows rapidly when the 

number of label data increases. The model which is used to represent the relationship 

between ∆𝑙𝑖 and ∆𝑦𝑖  can be modelled using deep learning algorithms. It can be 

denoted as：  

∆𝑦𝑖 = 𝑓(∆𝑙𝑖)                                              (5.3) 

where 𝑓() is the label compensating model training deep learning algorithm.  
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After the label compensating model 𝑓() is obtained, it can be used to determine the 

bias ∆𝑦𝑗. In the label compensating model 𝑓(), ∆𝑢𝑗 is used as the input of 𝑓() to yield 

∆𝑦𝑗, which can be denoted as: 

∆𝑦𝑗 = 𝑓(∆𝑢𝑗)                                              (5.4)          

Finally, with the new label 𝑦𝑗 and the bias ∆𝑦𝑗, the compensated label 𝑦̂𝑗 is denoted as: 

𝑦̂𝑗 = 𝑦𝑗 +  ∆𝑦𝑗                                            (5.5)            

When the new label 𝑦𝑗 is obtained, the unlabelled data and the label data is combined 

as an enriched dataset. The enriched dataset yielded by DLeSSL is then used to build 

a deep learning model to predict TBF.  

5.3 Experimental Setup 

5.3.1 Data 

The data used in this experiment is the same as the data used in Chapter 4. In the 

dataset, there are three nominal features in the historical maintenance dataset were 

converted to numeric data using one-hot encoding and autoencoder techniques 

proposed in Chapter 4. Hence, both techniques were deployed in this study again to 

convert the nominal data to numeric data. After the nominal data was converted, the 

maintenance dataset was further pre-processed using Cox PHM to address the data 

censoring issues of the dataset. Besides, in the data pre-processing stage, the abnormal 

values in the dataset were then removed and the dataset was normalized. Then, the 

abnormal data entries were removed. The TBF of some data entries is too low which 

were deemed as noisy data. Hence, the data entries with TBF lower than 30 days were 

removed. After this stage, there are 28 features and over 10 thousand data entries in 

the dataset. Finally, the dataset was reshuffled to yield comprehensive results. 
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5.3.2 Model Setup 

In Chapter 4, LSTM network shows merits in TBF modelling based on historical 

maintenance data. Hence, it was adopted again in TBF modelling in this experimental 

study. In the label compensating stage of DLeSSL, a deep learning model is needed to 

get the compensation values of the actual label. The data used in the label 

compensating stage is the difference between data entries, which is ordinary numeric 

data. Hence, an FCNN is adopted in this stage to build a label compensating model. 

The algorithm details of the FCNN and LSTM network were demonstrated in Table 

5.1. Besides the main components mentioned in Table 5.1, other advanced deep 

learning techniques such as dropout (Srivastava et al., 2014) and regularisation (Cortes 

et al., 2012) were also adopted to prevent overfitting. 

Table 5.1 The network parameters of the deep learning algorithms 

Network parameters FCNN LSTM Networks 

Layer type Fully connected layer LSTM layer+ Fully connected 

layer 

Number of layers 4 4 

Number of neurons 400 500,500 

Optimizer Adam (Kingma and Ba, 2014) RMSprop (Bengio and CA, 2015) 

Loss function Mean squared error Mean squared error 

Learning rate 0.05 0.001 

Batch size 500 150 

Training epochs 40 45 

 

The deep learning models were designed and established using Python Keras package 

(Chollet, 2015). The targets of modelling are to establish a TBF prediction model when 

labelled data is limited and examine the impact of labelled data size on algorithm 

performance. 
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DLeSSL is composed of two stages: label finding stage and label compensating stage. 

As deep learning is used in DLeSSL, its parameters need to be well considered. The 

setting of deep learning used in label compensating stage is basically the same as the 

FCNN model mentioned in Section 5.3, except the activation function and the size of 

the nodes in each layer. After trails, linear function was adopted as the activation 

function in label compensating model as there are both positive and negative values in 

input data. Meanwhile, the number of nodes was reduced to 400. Because LSTM 

network achieved the best performance in terms of MCC and RMSE in TBF modelling 

in our previous study, both metrics adopted in this section. Meanwhile, 5-fold cross-

validation was implemented.  

In this study, two scenarios were designed to evaluate the performance of DLeSSL. In 

scenario 1, only a small part of the instances in the dataset were selected as labelled 

data. The size of labelled instances was set at different values in the range from 50 to 

1000. The rest instances in the dataset were used as unlabelled data, which labels were 

removed. In the modelling stage, after the compensated labels of the unlabelled data 

were obtained, the labelled data was combined with the unlabelled data with the 

compensated labels to an enriched dataset, which was used to train a TBF prediction 

model using deep learning. In order to reveal the performance of DLeSSL, a deep 

learning algorithm based on label propagation algorithm was adopted as a baseline. 

Meanwhile, a deep learning algorithm using a small size of labelled data was also 

adopted as a baseline. It is denoted as deep learning (supervised). Label propagation 

algorithm is a semi-supervised learning algorithm that used to determine the label of 

unlabelled data (Zhu and Ghahramani, 2002). 

In scenario 2, whether DLeSSL can boost the algorithm performance of LSTM 

network in terms of MCC and RMSE was investigated. The labelled data is sufficient 

to train a LSTM network with satisfactory performance in this scenario. The label of 

the extra unlabelled data was determined using DLeSSL and added into the training 

dataset. The relationship between different amounts of unlabelled data and the 

algorithm performance was revealed.  
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5.4 Experimental Results 

In this stage, DLeSSL was introduced into our study to label the unlabelled data. There 

are two purposes in this section. On the one hand, in what extent DLeSSL can be 

beneficial to the algorithm performance using a small size of labelled data and a large 

size of unlabelled data needs to be determined. On the other hand, what is the suitable 

range for the ratio of labelled data and unlabelled data for DLeSSL needs to be 

investigated. LSTM network was used for modelling. There are three different 

scenarios in this section, which are DLeSSL, label propagation and supervised learning. 

Figure. 5.2 shows the relation between the number of labelled data and the MCC of 

LSTM network based on different algorithms, where the x-axis represents the number 

of labelled data and the y-axis represents MCC. It can be seen that the performance of 

the LSTM network (DLeSSL based) in terms of MCC is the highest before the data 

size reach 1800. Starting at 0.372, there is a dramatic increase in performance when 

the number of labelled data increased from 10 before the growth slow down after 1000.  

In the meantime, the performance of the LSTM network (label propagation based) in 

terms of MCC are lower than that of the LSTM network (DLeSSL based). The trend 

of the performance of the LSTM network (label propagation) in terms of MCC is 

similar to that of the LSTM network (DLeSSL based). The performance of the LSTM 

network (label propagation based) in terms of MCC is obviously lower than that of 

LSTM network (DLeSSL based) when the data size locates in the range from 500 to 

800. When the data size reaches 1000, the merit of the LSTM network (DLeSSL based) 

is not obvious anymore.  

In this study, the LSTM network (supervised learning based) was only trained by 

labelled data. It can be seen that when the data size is limited, the algorithm 

performance of LSTM network (supervised learning based) in terms of MCC 

fluctuates at -0.1. When the data size reaches 1200, the algorithm performance of 

LSTM network (supervised learning based) in terms of MCC rises significantly. After 



86 Deep Learning Embedded Semi-supervised Learning (DLeSSL) for Automobile TBF 

Modelling 

 

the data size reaches 2000, the algorithm performance of LSTM network (supervised 

learning based) surpasses the MCC of both semi-supervised learning approach. 

 

Figure 5.2 The relation between the number of the labelled data and the MCC of LSTM network 

based on different algorithms 

 

Figure. 5.3 shows the relation between the number of labelled data and the RMSE of 

the LSTM network based on different algorithms. It can be seen that the algorithm 

performance of both LSTM network (DLeSSL based) and LSTM network (label 

propagation based) in terms of RMSE experienced rapid decrease before it tends to 

converge. The difference of RMSE in most stages between LSTM network (DLeSSL 

based) and LSTM network (label propagation based) is approximately 20 days. 

Different from the results of MCC, the algorithm performance of LSTM network 

(supervised learning based) in terms of RMSE decreased gradually. When the data size 
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reaches 2500, the algorithm performance of LSTM network (supervised learning based) 

in terms of RMSE becomes the lowest in comparison with both semi-supervised 

learning algorithms.  

 

Figure 5.3 The relation between the number of labelled data and the RMSE of LSTM network based 

on different algorithms 

 

It also can be seen from both figures that when the number of labelled data is over 600, 

the performance of the LSTM network (DLeSSL based) in terms of MCC and RMSE 

tends to converge. Moreover, when the number of labelled data range from 300 to 

1000, LSTM network (DLeSSL based) shows merits. When the labelled data increases 

to 1000, the difference in performance in terms of MCC between deep learning 

(DLeSSL based) and deep learning (label propagation based) is not considerable. 

Furthermore, when the data size reaches 2500, the algorithm performance of LSTM 
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network (supervised learning based) exceeds both semi-supervised learning 

algorithms. 

Hence, the range of labelled data between 300 to 1000 can be deemed as a suitable 

range for DLeSSL. The data size of labelled and unlabelled data in total is 8600. The 

suitable range for the ratio of labelled data and unlabelled data is 3.6% to 13.2% for 

DLeSSL algorithm. 

5.5 Discussion 

It is noticeable from the results that when the data size is insufficient, LSTM network 

shows poor performance in terms of MCC and RMSE. Moreover, the performance of 

the LSTM network tends to be unstable when the data size is small, which can be seen 

from the fluctuated trend of LSTM network (supervised). The experimental results 

demonstrate that the performance of the LSTM network (DLeSSL based) is better than 

the LSTM network (label propagation based) and LSTM network (supervised) when 

labelled data is limited. Hence, the experimental results indicate that DLeSSL can be 

a useful tool in automobile TBF modelling. In this case, the algorithm performance of 

the LSTM network (DLeSSL based) in terms of MCC and RMSE is 0.717 and 456.1 

days when the labelled data size is 1000. In order to achieve similar performance, 

LSTM network (supervised learning based) needs 2000 labelled data samples. With 

the help of unlabelled data, the requirement of the labelled data can be decreased by 

approximately 50%. 

When the labelled data size reached 1500, the algorithm performance of the LSTM 

network (DLeSSL based) in terms of MCC and RMSE tends to converge. The best 

results of MCC and RMSE that the LSTM network (DLeSSL based) achieved in this 

experiment were worsen than the results obtained from Chapter 4, which are 0.8395 

and 359.1 days. The reason can be that the assumption mentioned in Section 2.5 has 

not been sufficiently fulfilled. In the historical maintenance dataset used in this 

experiment, some data entries that have similar features while the TBF varies 

dramatically. This is because the features in the historical maintenance data have not 
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covered the features relevant to the automobile TBF. Hence, the smooth assumption 

cannot be perfectly fulfilled. When more features relevant to automobile TBF can be 

collected, the algorithm performance of the LSTM network (DLeSSL based) is likely 

to be further promoted. 

To the best of my knowledge, most of the existing efforts in semi-supervised learning 

have tended to investigate the algorithm performance. However, the deployment of 

semi-supervised learning also needs to be studied. The identification of the relationship 

between the ratio and performance can be beneficial to the deployment of the semi-

supervised approach in the actual case. In this case, we determined a suitable range 

from 3.6% to 13.2%. This insight can be helpful in the deployment of DLeSSL in the 

actual case. Moreover, DLeSSL is used to find and compensate the label of the 

unlabelled data. By using this method, unlabelled data can be used to help the 

supervised learning task. Several existing semi-supervised learning algorithms only 

use unsupervised learning method to determine the label for unlabelled data. Different 

from the existing efforts, both unsupervised learning (label finding) and supervised 

learning (label compensating) are used in DLeSSL to determine the label of unlabelled 

data. In the future, the difference between the proposed approach and the existing 

semi-supervised learning algorithms will be studied to further reveal the performance 

of DLeSSL and find potential ways to improve it.  

5.6 Summary 

In order to address the issue that labelled data is difficult to obtain in the real world, a 

new semi-supervised approach called DLeSSL (deep learning embedded semi-

supervised learning) for TBF modelling using a small size of labelled data and a large 

size of unlabelled data was proposed. Different from the existing efforts that use an 

unsupervised learning algorithm to determine the label of unlabelled data, DLeSSL 

uses both unsupervised and supervised learning algorithm to label the unlabelled data. 

This approach consists of two stages: the label finding and the label compensating 

stage. The aim of DLeSSL is to determine and compensate the labels of unlabelled 

data using deep learning technique. Thereafter, the new dataset yielded by DLeSSL is 
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used to train a deep learning model to predict the automobile TBF. A case study is 

carried out using real-world historical maintenance data. The results have shown the 

merits of the proposed approach. Experimental results also have indicated that with 

the help of DLeSSL, LSTM network tends to yield better performance when labelled 

data is scarce. Meanwhile, our finding highlights the suitable range for the ratio of 

labelled and unlabelled data in this study, which can offer insights to the actual 

deployment of the proposed approach. In PdM, DLeSSL can be a useful tool in 

automobile TBF modelling when labelled data is limited. 
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Chapter 6 M-LSTM Network-based 

Predictive Maintenance Enriched by 

GIS Data 

6.1 Introduction 

In PdM, most research has studied the equipment lifecycle only based on the sensor 

data or historical maintenance data. However, to the best of our knowledge, there is no 

research which considers the impact of GIS factor on the product lifecycle. For an 

automobile, its lifecycle can be affected by various factors such as weather, traffic, and 

terrain. Introducing these GIS data into the study of automobile PdM can improve the 

automobile TBF prediction accuracy, which can help a fleet management company to 

adjust its maintenance management. The previous study in Chapter 4 introduced 

weather data into automobile TBF modelling using deep learning. The historical 

maintenance data and weather data were directly concatenated and fed into the neural 

network for model training. The experimental results showed that prediction accuracy 

can be promoted with the help of weather data. However, the data integration of 

historical maintenance data and GIS data can be further investigated.  

Firstly, how to integrate historical maintenance data and GIS data needs to be 

considered. Automobile historical maintenance data is originated from the automobile 

maintenance record. In comparison with the sensor data which can reveal the 

automobile health status, historical maintenance data records the automobile 

information in a maintenance event. Each data entry in historical maintenance data 
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contains the automobile basic information such as mileage, age, last time to repair and 

model in the automobile start date (i.e. the date automobile after maintenance or first 

used). The output of each data entry is next TBF. Hence, a historical maintenance data 

entry is collected in a specific point-in-time. Besides, historical maintenance data can 

be further classified as two specific types which are sequential data and ordinary 

numeric data. The data which has sequential property is relevant to the maintenance 

history such as automobile age, the repaired time and mileage. Because the next TBF 

of an automobile tends to be shorter than the last TBF, the sequential features in last 

TBF is relevant to the next TBF (Wang et al., 2018c). The ordinary numeric features 

in historical maintenance data are constants such as model. In the study of Chapter 4 

and Chapter 5, all the ordinary numeric features are considered as sequential data and 

used to train an LSTM network model. The algorithm performance in terms of MCC 

and RMSE is better than that of FCNN. However, when the number of ordinary 

numeric features increase, this algorithm performance of LSTM network could be 

compromised. A new data integration technique needs to be explored for automobile 

TBF modelling based on these two types of data. 

A historical maintenance data entry can only be collected when maintenance is 

implemented. There are two types of data in GIS data which are sequential data and 

ordinary numeric data. If a feature such as temperature is changing alone with time, it 

is classified as sequential. Otherwise, it is classified as ordinary numeric data. The 

sequential GIS data can be collected chronologically and in a higher frequency. For 

example, the weather data can be collected daily, weekly and monthly, etc. If a GIS 

feature is collected monthly in a year, it is a one-dimension array with 12 samples. If 

multiple GIS features are collected in a long period according to a specific sampling 

frequency, a two-dimensions array can be obtained. Figure 6.1 shows the automobile 

historical maintenance data and GIS data. The features in historical maintenance 

dataset, which contains both sequential and ordinary numeric features, are a one-

dimension array. Because the historical maintenance data and GIS data are complex 

in data types and granularities, it is necessary to investigate a solution that can 

introduce GIS data into TBF modelling. 
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This chapter proposed a merged-LSTM Network for automobile TBF modelling based 

on historical maintenance data and GIS data. In Section 6.2, the methodology about 

how to introduce GIS data into TBF modelling and the algorithm details of M-LSTM 

was introduced. Section 6.3 reports the experimental setup, and the experimental 

results were demonstrated in Section 6.4. Finally, Section 6.5 discusses the 

experimental results and Section 6.6 summarises this chapter.   

 

Figure 6.1 The automobile historical maintenance data and GIS data 

 

6.2 Methodology 

This study proposed an approach to introduce GIS data into the study of PdM. In the 

proposed approach, firstly, the maintenance data need to be collected from the garage 
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of a fleet management company, while the raw GIS data need to be collected and then 

mapping according to the automobile working area to obtain mapped GIS data. Then 

the mapped GIS data is pre-processed and then sent into an M-LSTM network in 

conjunction with the sequential data and ordinary numeric data obtained from 

historical maintenance data. The flow chart of the proposed approach is shown in 

Figure 6.2. 

 

Figure 6.2 The flowchart of the proposed approach 

 

6.2.1 GIS Data Collection and Pre-processing 

Automobile lifecycle can be affected by various factors includes weather, traffic and 

terrain. A fleet management company processes a large number of automobiles which 

the working environment can be very different in terms of the GIS factors mentioned 

above. Hence, the GIS data of a specific working area need to be summarised and 

extracted using GIS software. Temperature and humidity can impact the lifecycle of 

an asset (Lüttenberg et al., 2018). Weather data such as temperature and rainfall of a 
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specific working area can be obtained from the weather observation stations within the 

working area. Meanwhile, automobile lifecycle can be affected by the traffic condition. 

In an area with heavy traffic, the frequency of acceleration and deceleration tends to 

be higher, which may accelerate the failure of an automobile. Traffic data of a specific 

working area such as traffic flow statistics can be collected from the traffic department. 

The terrain is another aspect that can impact automobile life. The mountainous area 

with a large number of ramps can accelerate the failure of the automobile. The terrain 

data regarding elevation and slope in a specific working area can be analysed and 

extracted from the elevation map in GIS software. The taxonomic graph of the 

historical maintenance data and GIS data is shown in Figure 6.3. It is interesting to 

note that some GIS factors such as weather and traffic are obviously changing alone 

with time, while other factors such as terrain are relatively stable in a period. In other 

words, weather and traffic data can be considered as sequential data, while terrain data 

can be considered as ordinary numeric data in the study of PdM.  

After the GIS data was mapped according to the automobile geographic location, it 

needs to be pre-processed before it is used for modelling. For the ordinary numeric 

data such as terrain, it can be directly used for modelling. For the sequential data such 

as weather and traffic, it would be challenging that using these sequential data for 

modelling due to the different granularities. Hence, the mean value and standard 

deviation of the sequential GIS data were extracted and then concatenated with the 

ordinary numeric GIS data. Finally, the processed GIS data can be obtained. 
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Figure 6.3 The taxonomic graph of the historical maintenance data and GIS data 

 

6.2.2 M-LSTM Network 

Since the conventional deep learning algorithms can only process single data type such 

as ordinary numeric data and sequential data, a novel deep learning structure called M-

LSTM is designed for modelling TBF based on both sequential data and ordinary 

numeric data in historical maintenance dataset and GIS data. Since the ordinary 

numeric data in historical maintenance dataset and processed GIS data come from 

different sources, designing two sub-networks for both data can be beneficial in hidden 

patterns learning. The structure of M-LSTM takes the advantages of LSTM network 

and fully connected network to handle the sequential data and ordinary numeric data 
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simultaneously. Figure 6.4 shows the structure of M-LSTM. There are four major parts 

in M-LSTM:  

1. Ordinary numeric data processing path: Since an ordinary numeric data entry 

in historical maintenance data is a one-dimensional vector, the ordinary numeric 

data obtained from the last section can be directly processed by fully connected 

layers in a neural network. Hence, a two-layers fully connected sub-network is 

designed in this path. The technical details of fully connected layer can be found 

in Section 2.3.1. 

2. Sequential data processing path: LSTM network is expertise in learning the 

sequential patterns within data. The technical details of the LSTM network can be 

found in (Hochreiter and Schmidhuber, 1997). The sequential data obtained from 

historical maintenance data can be further processed to three-dimensional format 

(i.e. features, data size and time step). In order to learn the hidden patterns within 

the sequential data, two LSTM layers are deployed in this path. Moreover, a flatten 

layer is set to transform the output of LSTM layer for further data integration. 

3. GIS data processing path: Since the processed GIS data is ordinary numeric data, 

a subnetwork consists of two fully connected layers is designed. The key features 

of GIS data relevant to automobile lifecycle are expected to be learnt and then 

passed to the data fusion stage. 

4. Data integration path: After the abstract representation is learnt by both paths 

mentioned above, a data fusion path is needed to fuse the representation and 

implement the regression task to predict the automobile TBF. In this path, a 

concatenate layer is deployed to concatenate the output from ordinary numeric 

data processing path and sequential data processing path. Then, two fully- 

connected layers are employed to further concatenate the representation and learn 

the hidden patterns relevant to automobile TBF. 
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Figure 6.4 The structure of M-LSTM network 

 

There are several essential components and parameters in M-LSTM network, such as 

optimiser, the number of neurons and batch size, need to be determined in the actual 

case. Besides, in order to avoid overfitting, batch normalisation, l2 regularizer and 

dropout techniques are deployed in M-LSTM network.  
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6.3 Experimental Setup 

6.3.1 Data 

The historical maintenance data used in this study is the dataset pre-processed in 

Chapter 4. The autoencoder and Cox PHM were deployed to address the data censoring 

and data sparsity issues. The GIS data was collected according to the mobility area and 

time. Firstly, there are over 60 garages in the fleet management company. The garage 

location was set as the centre of the mobility area for an automobile. A circular area 

with a mobility radius of 30 km was set as the mobility area for the automobiles in the 

same garage. All the garage location and mobility area were plotted in ArcGIS (Price, 

2010) software. Figure 6.5 shows two examples of garage and mobility area. Secondly, 

the GIS data in this area between the automobile start date and failure date was 

extracted and summarised. There are three types of GIS data, which are weather, traffic 

and terrain, were introduced in this study.  

 

Figure 6.5 Examples of automobile garage and mobility area 

 

Weather condition may affect the performance of an automobile. The weather data 

was collected from the website of the MET office, UK (2018). There are 
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approximately 40 weather observation stations all around the UK with data collected 

from 2009 to 2017. Some mobility areas may cover multiple weather observation 

stations and therefore the mean value of the data from these weather observation 

stations was adopted. Meanwhile, some other mobility areas do not cover any weather 

observation station, linear approximation based on the data of several near weather 

observation stations was implemented to yield the weather data in these mobility areas. 

The weather data used in this study was sampled monthly and includes the following 

features: Name of observation station, Time, Rainfall, Max_temp, Min_temp, Days of 

air frost, and Sunshine. The weather dataset is shown in Appendix B1. With the name 

of an observation station, the location of weather observation station can be identified 

and plotted in ArcGIS software. Then, the weather data in each mobility area was 

summarised.  

Traffic condition is another impact that can affect automobile lifecycle. The traffic 

data was collected from the public dataset of the department of transport, UK 

(Department-for-Transport, 2020). The traffic dataset is shown in Appendix B2. The 

traffic data of over 200 local authorities all around the UK, which was collected from 

2009 to 2017, were available. The traffic data was sampled yearly and includes the 

following features: Local authority name, Year, Link length (km), Link length, Cars 

and taxis, and All motor vehicles. In the above features, Link length (km) and Link 

length (miles) can be converted to each other. Hence, link length (km) was dropped. 

Similar to the process of weather data, the local authority name is used to identify the 

locations of the local authority in ArcGIS software, before the traffic data of each 

mobility area was summarised. 

The automobile lifecycle also can be impacted by the terrain condition. The terrain 

data used in this study was extracted from the elevation map in ArcGIS software. The 

terrain features of a mobility area can be directly extracted and summarised. The 

terrain data includes the following features: Mean elevation, Maximum elevation, 

Minimum elevation, STD of elevation, Mean slope, Maximum slope, STD of slope, 

Mean aspect, Longitude and Latitude. The terrain dataset is shown in Appendix B3. 

The summary of all the GIS data is shown in Table 6.1. 
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Since the weather data and traffic data were collected monthly and yearly. It is 

challenging to directly used these for TBF modelling such datasets have three 

dimensions which are features, time and location. In order to integrate these data with 

historical maintenance dataset, four key statistical features of each weather attribute 

and traffic attribute were extracted, which are mean value (M), standard deviation 

(StD), peak to peak (PtP) and skew (S) were extracted. 

Table 6.1 The summary of the GIS data 

Types 
Sampling 

frequency 
Feature Description Feature Description 

Weather Monthly 

Rainfall The rainfall (mm) Max_temp 
The maximum 

temperature (°C) 

Min_temp 
The minimum 

temperature (°C) 

Days of air 

frost 
The days of air frost 

Sunshine The sunshine hours   

Traffic Yearly 

Link length 

(km) 

The total length of 

each junction to 

junction link on the 

major road network 

Cars and 

taxis 

The number of cars 

and taxis 

All motor 

vehicles 

The amount of all 

motor vehicles  
  

Terrain NIL 

Mean 

elevation 

The mean elevation of 

the mobility area 

Maximum 

elevation 

The maximum 

elevation of the 

mobility area 

Minimum 

elevation 

The minimum 

elevation of mobility 

area 

STD of 

elevation 

The Standard deviation 

of elevation of 

mobility area 

Mean 

slope 

The mean slope of the 

mobility area 

Maximum 

slope 

The maximum slope of 

the mobility area 

STD of 

slope 

The Standard deviation 

of slope of mobility 

area 

Mean 

aspect 

The mean aspect of 

mobility area 

  Longitude 
The latitude of the 

longitude 
Latitude 

The latitude of the 

garage 
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For the features in GIS data, it is likely that there are some features that are highly 

correlated. The redundant features may damage the algorithm performance. Hence, it 

is necessary to remove redundant features. Figure 6.6 shows the heatmap of the 

extracted features of the GIS data. The heatmap was generated using Python Seaborn 

package (Bisong, 2019). The highly correlated features (correlation coefficient close 

to 1 or -1) which correlation coefficient is over 0.8 were identified via heatmap and 

then were removed. In the heat map, there are 42 features in total. After the removal 

of the GIS features, only 22 features were kept for further modelling. 

 

Figure 6.6 The heatmap of the GIS features 
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6.3.2 Experimental Setup 

After the historical data and GIS data is pre-processed. The parameters of the M-LSTM 

need to be determined. The number of neurons of the layers in the ordinary numeric 

data processing path, sequential data processing path, GIS data processing path and 

data integration path are 500, 500, 100 and 1600, respectively. Secondly, the 

parameters relevant to the training process were determined. RMSprop (Tieleman and 

Hinton, 2012) was selected as the optimizer with the learning rate set at 0.005. The 

batch size and training epochs were set at 150 and 10, respectively. Besides, the 

dropout rate was set at 0.5. 

In this study, two scenarios were explored to demonstrate the effectiveness of the 

proposed method. In scenario 1, the algorithm performance of M-LSTM was revealed. 

The modelling based on historical maintenance data was implemented. Hence, there 

are only two subnetworks in M-LSTM network. Several prevailing algorithms, 

including LSTM, FCNN, and SVM, were adopted as benchmarks. In scenario 2, the 

GIS data was introduced into modelling. The impact of different types of GIS data was 

revealed. Different types of GIS data are used for modelling. The algorithm 

performance changes can be used to reveal the importance of GIS features. 

In order to obtain comprehensive results, 10-fold cross-validation was adopted. The 

evaluation metrics for algorithm performance used in this study are MCC, RMSE and 

modelling time, which is the same as the metrics used in Chapter 4. 

6.4 Experimental Results 

6.4.1 Scenario 1: M-LSTM Network VS. Prevailing Machine 

Learning Algorithms 

In order to reveal the algorithm performance of M-LSTM network, in this scenario, 

four machine learning algorithms, which are M-LSTM network, LSTM network, 

FCNN and SVM were used for modelling based on historical maintenance data. Since 

GIS data was not introduced in this stage, the GIS data processing path in M-LSTM 
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network was removed. The results of the benchmarking algorithms were obtained from 

Scenario 3 in Chapter 4. The specific results comparison is shown in Table 6.2. 

Table 6.2 The results of TBF modelling using different algorithms 

 M-LSTM 

Network 

LSTM Network FCNN SVM 

MCC 0.8426 0.8389 0.8307 0.7778 

RMSE (days) 355.2 359.2 364.7 425.8 

Modelling time (s) 157.4 259.2 34.65 7.263 

  

It can be seen that M-LSTM network achieved the highest MCC and lowest RMSE in 

this scenario. The algorithm performance of M-LSTM in terms of MCC and RMSE 

are slightly better than that of LSTM network. The algorithm performance of deep 

learning in terms of MCC and RMSE are better than SVM, while deep learning 

algorithms require higher computational load. In comparison with LSTM network, the 

M-LSTM network not only shows merit in algorithm performance in terms of MCC 

and RMSE, but it can lower the modelling time by 39.2%. The M-LSTM network 

shows merits in TBF modelling. 

6.4.2 Scenario 2: Modelling based on Historical Maintenance Data 

and GIS Data 

With the introduction of GIS data, it is worth to investigate how the GIS features can 

impact the algorithm performance of different algorithms adopted in this study. In this 

scenario, the GIS data includes weather data, traffic data, and terrain data was 

introduced into modelling. Besides introducing all the GIS features, three different 

types of GIS data were introduced individually to examine their impact on automobile 

TBF modelling. Figure 6.7 shows the MCC of modelling based on historical 

maintenance data and different GIS data. It can be seen that the algorithm performance 

for M-LSTM network and FCNN in terms of MCC were boosted with the introduction 

of all the GIS features, while the algorithm performance of LSTM network and SVM 
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in terms of MCC was slightly compromised. When different types of GIS data are used 

individually for modelling, the impacts on the algorithm performance of different 

algorithms in terms of MCC were not the same. The algorithm performance of M-

LSTM network and FCNN were increased with the introduction of weather data, 

traffic data, and terrain data. With the help of the introduction of all GIS data, M-

LSTM achieved the highest MCC in this scenario, which is 0.8492. It was promoted 

by 0.79% in comparison with the modelling result without GIS data. When different 

GIS data was introduced individually, the algorithm performance in terms of MCC of 

M-LSTM network and FCNN were promoted. In contrast, the introduction of GIS data 

was not helpful to improve the algorithm performance in terms of MCC of LSTM 

network and SVM.  

 

Figure 6.7 The MCC of modelling based on historical maintenance data and different GIS data 
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Figure 6.8 shows the RMSE of modelling based on historical maintenance data and 

different GIS data. It can be seen that when all the GIS data is fed into the algorithms, 

the algorithm performance of M-LSTM network and FCNN were decreased. However, 

when different types of GIS data were introduced for modelling, the impact on 

algorithm performance in terms of RMSE is quite different. M-LSTM network 

achieved the lowest RMSE in this scenario with the help of all the GIS features, which 

is 348.3 days. The comparison of different types of GIS features shows that weather 

data has the most considerable impact on the decrease of RMSE for M-LSTM network. 

For the LSTM network, the introduction of all GIS features increased the RMSE by 

10.8 days, while the RMSE of FCNN and SVM were slightly changed with the 

introduction of GIS features. 

 

Figure 6.8 The RMSE of modelling based on historical maintenance data and different GIS data 
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6.5 Discussion 

From the results of scenario 1, what evident is that the M-LSTM network shows merits 

in modelling based on heterogeneous data which contains sequential data and ordinary 

numeric data. It promoted the algorithm performance in terms of MCC and RMSE, 

while it requires less computational load in comparison with LSTM network. Hence, 

it can be a useful tool in heterogeneous data modelling. The results of scenario 2 

indicated the introduction of individual groups of GIS features can promote the 

algorithm performance of M-LSTM network and FCNN in terms of MCC and RMSE. 

The introduction of the weather data promoted the largest algorithm performance 

improvement in terms of MCC and RMSE of M-LSTM network, which indicate that 

weather factors have a higher impact to the automobile lifecycle. However, the 

introduction of individual groups of GIS features worsens the algorithm performance 

of LSTM network in terms of MCC and RMSE. LSTM network is mainly used to 

process sequential data. When the proportion of ordinary numeric features 

dramatically outweigh than that of sequential features, LSTM does not show merits. 

The worst results of LSTM network may be caused by the introduction of numerous 

ordinary numeric features, which jeopardized the algorithm performance. The 

improvement of the algorithm performance of M-LSTM network is more significant 

than that of FCNN, which indicate that M-LSTM network is more suitable in 

modelling based on multi-sources data. 

The introduction of GIS data promoted the algorithm performance of M-LSTM and 

FCNN network in terms of MCC and RMSE, which indicate the automobile TBF is 

relevant to weather, traffic and terrain conditions. The M-LSTM network witnessed 

the most considerable performance improvement and decrease in terms of MCC and 

RMSE with the help of three types of GIS data, which demonstrated that M-LSTM 

shows merits in modelling with GIS data. However, the improvement of the algorithm 

performance in terms of MCC and RMSE are still limited. The reason can be the GIS 

data collected in this study does not match the actual surrounding factors of the 

automobile mobility area of each automobile. For example, if there are a mountainous 

area and a plain area in the data collection area, the maximum elevation and the slope 
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tends to be dramatic. However, there is not likely too many roads in such a 

mountainous area. Hence, the collected terrain data did show a positive impact on 

automobile TBF modelling. Its actual impact needs to be further investigated.  

6.6 Summary 

In automobile PdM, the existing studies only focused on modelling using sensor data 

or historical maintenance data which is directly relevant to the automobile failure. The 

surrounding factors, which can impact the automobile lifecycle, such as weather, 

traffic and terrain have not been considered in automobile PdM. These data can be 

captured and processed using GIS. In order to introduce GIS data into automobile PdM, 

an approach that can be used to develop an M-LSTM network-based predictive 

maintenance enriched by GIS data was proposed in this study. How to collect and pre-

process the GIS data was investigated. M-LSTM network, as a novel deep learning 

architecture, was proposed for modelling based on multi-source data. The 

experimental study validated the effectiveness of the proposed approach. The 

experimental results indicated that M-LSTM network shows merits in multi-source 

data modelling. The introduction of the weather and traffic data can be beneficial to 

promote the algorithm performance in terms of MCC and RMSE. 
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Chapter 7 Achievements and 

Conclusions 

7.1 Achievements 

The key purpose of this research was to model and predict the next TBF for the 

automobile so to optimise the maintenance management of a fleet management 

company. This motivation was explored at the beginning of this thesis and is 

underpinned by a discussion of the background of PdM. Despite the fact that 

significant media and academia have paid attention to the growing potential of 

condition-based PdM for asset RUL prediction, there has been little research which 

focused on TBF modelling based on historical maintenance data, though this can bring 

tangible benefit to fleet management. This research focused on integrating multi-

source data for automobile TBF modelling using deep learning. One of the key 

concepts in Industry 4.0 is ‘connected everything’ (Qin et al., 2016). In the past, only 

sensor data or historical maintenance data were adopted in the research of PdM. Under 

the context of Industry 4.0, other available public data such as GIS data can also be 

adopted in PdM. Though the real-time telematics data is absent in this research, the 

multi-source data, which contain historical maintenance data and three types of GIS 

data, were adopted for this research. In this thesis, there are four research questions 

proposed in Chapter 1. Based on the work achieved. The answers to the research 

questions are obtained. 



110 Achievements and Conclusions 

 

To determine the state-of-the-art research, the literature review was provided with the 

relevant technologies and relevant research. Firstly, the studies of condition-based 

PdM and statistical-based PdM were reviewed. In the state-of-the-art, different 

machine learning and statistical methods have been widely studied in PdM. Deep 

learning has been widely used in the studies of PdM and shows merits. The prevailing 

deep learning algorithms and the studies that deploy deep learning in the industry were 

reviewed. Since the surrounding data can be captured and processed by GIS, the 

studies of GIS were reviewed. Furthermore, semi-supervised learning is helpful for 

deep learning modelling when the labelled data is limited. Thus, two main types of 

semi-supervised learning algorithms and the application of semi-supervised learning 

in the industry were reviewed. 

The first research question is: what is a suitable framework for automobile PdM based 

on the understanding of Industry 4.0? Following the understanding of the-state-of-the-

art, a framework for automobile TBF modelling under industry 4.0 was proposed. By 

summarising several different perspectives, the main concepts of the automobile PdM 

under the context of PdM have been identified to inform the research aim. It can be 

seen that there was a gap between the current automobile PdM and the achievement of 

the automobile PdM under the context of Industry 4.0 in terms of the data used in the 

study of PdM. The current research of PdM only considers sensor data or historical 

maintenance data, rather than comprehensively integrate different types of relevant 

data to PdM into modelling. In order to fill this gap, there are three types of data 

included in this framework which are historical maintenance data, GIS data and real 

time telematics data. In this framework, the stage of data collection, data transmission 

and storage, data mapping, pre-processing, and integration were specified. After the 

data is prepared, deep learning as the primary TBF modelling tool is used in 

conjunction with reliability analysis and semi-supervised techniques for modelling so 

to obtain an accurate TBF prediction. Finally, the TBF prediction results can be used 

to leverage the decision support of fleet management.  

In order to explore how deep learning can be used in automobile TBF modelling based 

on historical maintenance data, a new approach called CoxPHDL was proposed. It 
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aims for modelling based on historical maintenance data by integrating deep learning 

and reliability analysis. There are two issues in the analysis of historical maintenance 

data, which are data sparsity and data censoring. In this approach, autoencoder and 

Cox PHM are adopted to address the data sparsity and data censoring issues. With the 

consideration of the sequential patterns in historical maintenance data, LSTM network 

was used to build a TBF prediction model based on the pre-processed data. The key 

findings in this study are: (1) With larger computational loads, LSTM network can 

achieve better algorithm performance in comparison with those prevailing machine 

learning algorithms; (2) With the help of autoencoder and Cox PHM, the algorithm 

performance of most algorithms deployed in this study can be promoted.  

After the TBF modelling approach is determined, an issue in TBF modelling using 

deep learning that needs to be considered is the label data size. With the consideration 

of the label data size, the third research question was proposed: when the labelled data 

is insufficient how can the performance of deep learning not be significantly 

jeopardised in the study of automobile TBF modelling? The sufficiency of labelled 

data is the prerequisite of satisfactory algorithm performance. Without a large amount 

of labelled data, the algorithm performance of deep learning will be jeopardised. 

Considering the unlabelled data is relatively easy to obtain in the real world, a new 

semi-supervised learning algorithm called DLeSSL was proposed for modelling based 

on limited labelled data. The experimental results indicate that (1) with the help of 

unlabelled data, the algorithm performance of deep learning can be boosted when the 

labelled data is limited; (2) the existing studies have not reported how the labelled data 

size impacts the algorithm performance, while this study revealed the relationship 

between the size of labelled data and algorithm performance, which can offer insights 

to the actual deployment of DLeSSL. 

The TBF modelling Chapter 4 and 5 are based on historical maintenance data. Besides, 

the features in historical maintenance data, various surrounding factors also are 

relevant to automobile lifecycle. The final research question focuses on investigating 

how to integrate the heterogeneous data with historical maintenance data for 

automobile TBF modelling. The data relevant to these factors can be collected and 
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processed by GIS. With the coordinate of the automobile garage, the corresponding 

GIS data can be obtained. The taxonomy of the GIS data was illustrated and how to 

process the GIS data for TBF modelling was detailed. A new deep learning architecture 

called M-LSTM was designed for multi-source data integration and TBF modelling. 

The experimental results show: (1) M-LSTM network shows better algorithm 

performance and less computational load in multi-source data modelling based on 

historical maintenance data in comparison with LSTM network; (2) The impacts of the 

three groups of GIS features were examined. The weather and traffic features can be 

helpful in TBF modelling. 

7.2 Future Works 

This thesis aims to research automobile PdM under Industry 4.0. In this study, due to 

the unavailability of telematics data, only historical maintenance data and GIS data 

were adopted in the experiment. The predicted TBF can offer insights to a fleet 

management company in terms of spare part management, maintenance planning and 

job scheduling. Firstly, the company can adjust its parts order in the coming year to 

avoid parts overstock or shortage. Furthermore, with the predicted TBF, the period of 

the scheduled check can be adjusted dynamically to better implement maintenance. 

Last but not least, the TBF prediction can help be helpful in job scheduling. For 

example, the automobile with long TBF prediction can be distributed with a heavy 

load, while the automobile with short TBF prediction can work in light load and short-

haul. In the future, with the enrichment of the telematics data, the features that relevant 

to the automobile health status can be obtained, and therefore the TBF prediction 

accuracy can be improved. Meanwhile, the effectiveness of the proposed approach can 

be further validated in future works when the telematics data is available. 

The proposed approaches can be further investigated to achieve better performance. 

The algorithm performance of CoxPHDL in terms of MCC and RMSE can be 

continuously improved and decreased in future research. In the historical maintenance 

dataset used in this study, we have noticed that some automobiles with a similar 

condition have different TBFs. In other words, there are some data whose features are 
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similar or even the same, while their labels are different. The main reason is that the 

features relevant to the automobile lifecycle were not sufficiently collected. The 

historical maintenance data may not contain sufficient patterns relevant to automobile 

engine degradation, which enable the algorithm to yield a precise prediction model. It 

is well known that the TBF of the automobile depends on various factors, including 

geographical environment, driving behaviour, and product design, etc. If these data 

can be collected and introduced into our study, the algorithm performance is likely to 

be further promoted. Moreover, the research on these data will also be helpful for the 

fleet management company to have a better understanding of how these factors impact 

the automobile lifecycle. The Cox PHM is under the assumption that the difference in 

reliability between corrective maintenance and preventive maintenance is the same for 

all automobiles owned by the same company. However, the difference in reliability of 

automobiles might slightly vary from each other. It can be caused by the following 

reasons. On the one hand, the data used in this case was collected from different 

garages of the fleet management company under investigation. The maintenance rules 

and standards could be slightly different in different garages. On the other hand, the 

preventive maintenance strategy deployed in the company’s garages also depends on 

the engineer’s judgment and experience which could lead to the variation of difference 

in reliability. If a better estimation of the difference in the reliability of each 

automobile can be achieved, it is possible to further lift the algorithm performance of 

LSTM network. Hence, a better approach used to estimate the difference in reliability 

needs to be investigated further.  

DLeSSL shows merits in TBF modelling when the ratio of labelled data and unlabelled 

data situated in the ranges from 3.6% to 13.2%. However, the best algorithm 

performance of DLeSSL in terms of MCC and RMSE in this range is worse than the 

modelling results from Chapter 4. This may be caused by the label accuracy of the 

data. If the label is not accurate, it is hard to get the accurate estimation of the TBF for 

DLeSSL. It is common that some data entries in historical maintenance dataset used 

in this thesis have similar features, while the TBF is dramatically different. The main 

reason is the missing of telemetric data. With the telemetric data which can indicate 

the automobile health status. The label determination for DLeSSL can be more 
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accurate. With an accurate estimation of the label of the unlabelled data, the algorithm 

performance of DLeSSL can be further promoted. Hence, one of the essential future 

works is to collect the automobile telemetric data and introduce it into automobile TBF 

modelling. 

In the future, with the development of IIoT, the real-time telematics data of automobile 

can be collected during the in-use period. With the GPS information, the real-time GIS 

data can be collected from the external data sources and then be transmitted to the 

cloud. The real-time telematics data, GIS data, and historical maintenance data can be 

used together to establish a more accurate automobile maintenance prediction model, 

which can offer real-time health condition monitoring and RUL prediction. 

Furthermore, the architecture of M-LSTM can be further explored. The M-LSTM 

designed in this thesis using FCNN and LSTM network for feature extraction. Then 

the extracted features are sent to concatenated layer for integration. Finally, a two 

layers FCNN is deployed for final TBF prediction. With the development of machine 

learning, there are various emerging algorithms proposed recently. It is worthwhile to 

explore whether the FCNN in the data integration path can be replaced by another 

machine learning algorithm. Moreover, since the impact of GIS features on automobile 

TBF is not significant, and therefore the impacts of the group of features on automobile 

TBF was tested. Since deep learning is a type of black-box algorithm, which cannot 

indicate how the features affect the final output. It cannot offer too many insights to 

the fleet management company. If the impact of each GIS feature can be identified, it 

can bring tangible benefits for the fleet management company to optimise the 

maintenance management. Hence, the future works also target on developing a new 

approach to identify the impact of each feature. 

7.3 Conclusions 

In conclusion, the common theme throughout this research was to promote the 

intelligence level of automobile PdM in terms of automobile TBF modelling. TBF 

modelling is essential in automobile PdM. In this thesis, a framework was designed to 

provide a roadmap for automobile TBF modelling, prediction, and decision support. 
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A modelling approach called CoxPHDL was proposed for TBF modelling based on 

historical maintenance data. Furthermore, since labelled data is expensive to obtain in 

the real world and the deep learning needs a large amount of labelled data to achieve 

satisfactory performance, a semi-supervised learning algorithm called DLeSSL was 

proposed. Finally, with the consideration of the impact on automobile lifecycle from 

the surrounding factors, an approach concerns how to integrate GIS data for TBF 

modelling was proposed. Meanwhile, a new deep learning architecture called M-

LSTM network was designed for multi-source data integration. This thesis has 

demonstrated how to model and predict automobile TBF based on multi-source data 

and address the issue that labelled data is limited. In the future, automobile PdM will 

gain increasing attention. The approaches developed in this thesis will bring tangible 

benefits to the automobile fleet management. 
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Appendix A. Advanced Data Analytics 

Technologies 

A1 Data mining 

In the last decades, data mining has attracted significant attention from the information 

industry, mainly because there is a large amount of data which can be widely used. 

There is an urgent need to convert this data into useful information and knowledge. 

The information and knowledge obtained from data mining can be widely used in a 

variety of applications including business management, production control, market 

analysis, engineering design, and scientific exploration, etc. (Hand and Adams, 2014) 

Data mining is the "mining" of knowledge from large amounts of data. In other domain, 

such as database, it is also known as ‘knowledge discovery in databases (KDD) 

(Piateski and Frawley, 1991). It also can be deemed as a stage for knowledge 

discovering. In 2000, a standard process model for data mining was proposed which 

name is Cross Industry Standard Process for Data Mining (CRISP-DM). There are six 

stages in CRISP-DM which are Business Understanding, Data Understanding, Data 

Preparation, Modelling, Evaluation, and Deployment phase. The entire process is 

iterative and adaptive (Wirth and Hipp, 2000). In order to better deploy data mining in 

the industry, the steps of Domain understand, Feedback& valuable information, and 

Knowledge obtaining & storage (Choudhary et al., 2008). In connection with 

automobile PdM, the whole process is described below: 



130 Advanced Data Analytics Technologies 

 

• Domain Understanding: The general process of automobile lifecycle and 

maintenance need to be understood. Meanwhile, the method to collect the data 

needs to be identified.  

• Data Collection: Collecting the data relevant to automobile lifecycle.  

• Data Cleaning & Transformation: The data is collected from the real world, 

which means it may contain some impurities. Furthermore, the data may need to 

be transformed before it is used for modelling.  

• Modelling & Testing: The TBF predicting model is built based on the cleaned 

dataset by using deep learning or other machine learning algorithms. Then the 

model is evaluating using different metrics. 

• Operating: After the model is built and evaluated, it can be deployed in the actual 

fleet management. 

• Feedback& Valuable Information: During the deployment, the pros and cons 

of the model can be surfaced, which can be used as feedback. 

• Knowledge Obtaining & Storage: By analysing the information obtained from 

the last stage, the knowledge can be extracted and used to adjust the previous 

stages. 

A2 Machine learning 

Big data analytics is a hot topic in both academia and industry, and it has been widely 

used in various industries such as business and engineering. Due to the high 

complexity, dimensions, and variability of the big data, how to implement data mining 

to extract the knowledge from big data needs to be guided by machine learning 

techniques. A new challenge for those conventional machine learning algorithms is 

how to deal with big data. In recent years, prevailing machine learning algorithms such 

as deep learning has become a useful tool to implement big data analytics. Two 
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benchmarking algorithms which are DCNN and SVM have not been detailed.  In this 

subsection, the algorithm details of both algorithms are introduced. 

• DCNN (Li et al., 2018) is a novel deep learning algorithm. An input signal is 

denoted as 𝑋𝑖 = [𝑥1, 𝑥2, … , 𝑥𝑁].  Firstly, multiple 1D signals are concatenated to 

a 2D array, which can be expressed by: 

𝑋𝑖:𝑖+𝑘 = 𝑿𝒊 ⊕ 𝑋𝑖+1 ⊕ … ⊕ 𝑿𝒊+𝑘                              (A1) 

where k is the number of the signal and ⊕ is the symbol of concatenate. The 

convolutional operation is defined as: 

𝑍𝑖 = 𝑓(𝑊𝑇𝑋𝑖:𝑖+𝑘 + 𝑏)                                  (A2) 

where ∗𝑇 denotes the transpose of a matrix and b represent the bias term a. f() 

and W represent the activation function and filter kernel. By sliding the filter 

window from the beginning to the end in the sample data, the feature map of the 

jth filter can be obtained, which is denoted as: 

𝑍𝑗 = [𝑧𝑗
1, 𝑧𝑗

2, … , 𝑧𝑗
𝑚]                                   (A3) 

where j is the jth filter kernel. 

The four convolutional layers deployed in DCNN is used to extract and abstract 

the features within the data. Then two FC layers are deployed for RUL prediction. 

The structure of a DCNN is shown in figure A1. 
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Figure A. 1 The structure of DCNN 

 

• SVM (Cortes and Vapnik, 1995) is a supervised learning algorithm which can 

be used for classification and regression mission. In order to model the TBF, 

support vector regressor was adopted in this thesis. Assuming the prediction with 

bias less than 𝜀 is deemed as correct prediction, the incorrect prediction results in 

a high penalty to the algorithm. One of the main components within SVM is kernel 

function, which is used for pattern analysis. 𝑥𝑖 and 𝑥𝑗 are two vectors. There are 

four types of prevailing kernel functions which are widely used in SVM: 

Linear kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑥𝑖
𝑇𝑥𝑗                              (A4) 

            Polynomial kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = (𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑏)𝑑                    (A5) 

  RBF kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑒𝑥𝑝(−𝛾‖𝑥𝑖 − 𝑥𝑗‖
2

)                     (A6) 

          Sigmoid Kernel: 𝐾(𝑥𝑖 , 𝑥𝑗) = 𝑡𝑎𝑛ℎ(𝛾𝑥𝑖
𝑇𝑥𝑗 + 𝑏)                    (A7) 

where 𝛾, b, d are parameters that need to be set 

.
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Appendix B. Datasets used in this thesis 

B1 Weather dataset (Selected region) 

year month tmax tmin af rain sun 

2005 1 8.6 3.5 5 36.2 75.4 

2005 2 6.5 2.1 3 57.8 54.6 

2005 3 9.7 4.2 0 35.9 68.5 

2005 4 12.9 5.9 0 35.4 156.1 

2005 5 15.4 8.4 0 60.1 225.8 

2005 6 19 11.5 0 38.2 191.7 

2005 7 19.9 13.7 0 79.6 132.7 

2005 8 20 12.5 0 27.7 181.4 

2005 9 19.7 13 0 75.1 151.4 

2005 10 17 12.1 5 66.3 115.6 

2005 11 10.3 4.1 5 48.3 80.3 

2005 12 7 2.1 4 63.8 49.7 

2006 1 6.5 2.9 4 9.9 49.6 

2006 2 6.3 2.2 12 69.7 58.1 

2006 3 7.9 2 1 33.2 112.2 

2006 4 12.6 5 0 30.4 163.7 

2006 5 15.9 9 0 73.4 154.8 

2006 6 18.5 11.4 0 16.7 246 

2006 7 23.7 16 0 23.2 290.7 

2006 8 20 12.5 0 27.7 181.4 

2006 9 19.7 13 0 75.1 151.4 

2006 10 16.9 11.8 0 74.9 113.7 

2006 11 12.1 6 0 57.3 101.4 

2006 12 9.2 4.3 0 46 37.7 

2007 1 10 4.8 7 57.8 60.1 

2007 2 8.8 3.9 3 79.9 58.1 

2007 3 11.2 4.6 6 56.2 171 



134 Datasets used in this thesis 

 

(Continued) 

2007 4 15.2 7.3 1 0.2 225.7 

2007 5 16.2 9.4 0 150 156.1 

2007 6 18.7 12.3 0 102.7 130 

2007 7 20.8 12.9 0 70.9 190 

2007 8 21.4 14.1 0 72.4 153 

2007 9 18.5 11.2 0 34.1 152 

2007 10 14.7 8.4 0 48.7 95.2 

2007 11 10.4 4.5 2 54.6 67.4 

2007 12 8.1 3.4 4 44.5 38.8 

2008 1 9.5 4.4 0 80.2 56.35 

2008 2 9.55 2.25 7 22 136.1 

2008 3 9.35 3.65 2.5 89.2 103.75 

2008 4 12.4 4.9 2.5 52.25 178.55 

 

B2 Traffic dataset (Selected region) 

year link_length_km link_length_miles cars_and_taxis all_motor_vehicles 

2008 6975.02 4334.08 2.77E+09 3.66E+09 

2009 6958.6 4323.87 2.74E+09 3.58E+09 

2010 6966.4 4328.72 2.74E+09 3.6E+09 

2011 6970.7 4331.39 2.75E+09 3.6E+09 

2012 6975.892 4334.62 2.76E+09 3.6E+09 

2013 6981.044 4337.82 2.78E+09 3.63E+09 

2014 6979.19 4336.67 2.85E+09 3.74E+09 

2015 7024.6 4364.88 2.92E+09 3.87E+09 

2016 7044.63 4377.33 3.05E+09 4.04E+09 

2017 7039.56 4374.18 3.16E+09 4.21E+09 
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B3 Terrain dataset 

LATITUDE LONGITUDE 
Minimum 

Elevation 

Mean 

Elevation 

Maximum 

Elevation 

Maximum 

Slope 
Mean Aspect 

Standard 

Deviation 

elevation 

Average slope 
Standard 

Deviation slope 

53.92738 -1.49768 10 162.848879 556 34.98472 266.828243 117.839922 1.33824 1.308976 

56.09272 -3.1981 -1 85.180126 281 23.87554 105.601905 44.463102 0.994441 0.660883 

50.88191 -3.36686 -27 88.073675 255 20.90952 151.929833 48.399748 0.560512 0.411216 

51.4138 -0.54744 -4 164.799476 716 47.77212 111.983092 134.054638 2.018861 2.028791 

51.60353 0.169115 10 162.848879 556 34.98472 266.828243 117.839922 1.33824 1.308976 

53.37617 -3.9853 14 112.805937 419 38.39471 126.276316 47.874533 1.188044 0.939421 

52.21439 1.239178 4 71.297489 285 21.12251 44.532626 43.860767 0.743768 0.700304 

51.64711 -2.50283 10 162.848879 556 34.98472 266.828243 117.839922 1.33824 1.308976 

51.64006 -0.4684 -4 80.477258 249 30.12485 242.434443 39.842607 0.877658 0.493944 

51.81204 -0.06294 -1 85.180126 281 23.87554 105.601905 44.463102 0.994441 0.660883 

51.03549 0.535454 -4 164.799476 716 47.77212 111.983092 134.054638 2.018861 2.028791 

53.64141 -2.87032 61 167.537891 507 32.18109 204.826791 77.543299 1.023938 0.764644 

51.8758 0.436507 14 112.805937 419 38.39471 126.276316 47.874533 1.188044 0.939421 

53.3522 -2.8278 14 112.805937 419 38.39471 126.276316 47.874533 1.188044 0.939421 

54.8381 -5.80529 -30 157.56912 511 33.93518 84.910715 92.311651 1.295866 0.97198 

57.29001 -2.0112 4 71.297489 285 21.12251 44.532626 43.860767 0.743768 0.700304 

52.64879 -1.86357 -7 65.309057 489 36.33088 44.084447 66.43052 0.734891 0.696947 

52.22644 -2.63851 25 89.433561 235 21.36498 50.576892 43.617429 0.75664 0.543808 
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51.95541 -4.8397 -13 97.116069 318 23.05055 71.748543 63.18256 1.003636 0.799793 

52.01298 -2.17364 -1 85.180126 281 23.87554 105.601905 44.463102 0.994441 0.660883 

51.97507 -0.80328 4 71.297489 285 21.12251 44.532626 43.860767 0.743768 0.700304 

53.39452 -0.49603 38 121.638969 521 42.29375 67.035419 72.258605 0.89393 0.948026 

51.68053 -3.13403 10 162.848879 556 34.98472 266.828243 117.839922 1.33824 1.308976 

51.70434 0.150828 2 90.974725 407 32.02382 179.048589 77.372908 1.001826 1.026038 

50.9901 -0.18257 -30 157.56912 511 33.93518 84.910715 92.311651 1.295866 0.97198 

55.64773 -4.46546 4 71.297489 285 21.12251 44.532626 43.860767 0.743768 0.700304 

52.80394 -1.11025 10 162.848879 556 34.98472 266.828243 117.839922 1.33824 1.308976 

56.05612 -4.12153 -1 85.180126 281 23.87554 105.601905 44.463102 0.994441 0.660883 

55.06354 -2.86111 63 105.796532 252 29.54619 141.438916 49.251535 0.645147 0.578769 

53.13766 -0.02924 10 162.848879 556 34.98472 266.828243 117.839922 1.33824 1.308976 

57.66015 -4.08767 20 90.103698 179 16.69722 155.666465 39.94855 0.557367 0.496341 

51.52195 -0.28562 14 112.805937 419 38.39471 126.276316 47.874533 1.188044 0.939421 

52.05341 0.886179 14 112.805937 419 38.39471 126.276316 47.874533 1.188044 0.939421 

53.90387 -2.41362 -16 47.953734 191 40.66471 119.591047 34.463993 0.782938 0.521384 

52.05358 -0.43561 -20 25.473349 79 20.4001 73.997967 16.316471 0.289462 0.199926 

51.67207 -0.28094 -1 85.180126 281 23.87554 105.601905 44.463102 0.994441 0.660883 

 


