
 ORCA – Online Research @ Cardiff

This is a n Op e n Acces s doc u m e n t dow nloa d e d fro m ORCA, Ca r diff U nive r si ty 's

ins ti t u tion al r e posi to ry:h t t p s://o rc a.c a r diff.ac.uk/id/ep rin t/13 7 9 9 5/

This is t h e a u t ho r’s ve r sion of a wo rk t h a t w as s u b mi t t e d to / a c c e p t e d for

p u blica tion.

Cit a tion for final p u blish e d ve r sion:

Zh a n g, Juyong, Yao, Yuxin a n d De n g, Bailin 2 0 2 2. Fas t a n d rob u s t it e r a tive clos e s t

poin t . IEEE Tra ns a c tions on Pa t t e r n Analysis a n d M a c hin e In t ellige nc e 4 4 (7) , p p.

3 4 5 0-3 4 6 6. 1 0.11 0 9/TPAMI.20 2 1.30 5 4 6 1 9

P u blish e r s p a g e: h t t p://dx.doi.o rg/10.11 0 9/TPAMI.202 1.30 5 4 6 1 9

Ple a s e no t e:

Ch a n g e s m a d e a s a r e s ul t of p u blishing p roc e s s e s s uc h a s copy-e di ting, for m a t ting

a n d p a g e n u m b e r s m ay no t b e r eflec t e d in t his ve r sion. For t h e d efini tive ve r sion of

t his p u blica tion, ple a s e r efe r to t h e p u blish e d sou rc e . You a r e a dvis e d to cons ul t t h e

p u blish e r’s ve r sion if you wis h to ci t e t his p a p er.

This ve r sion is b eing m a d e av ailabl e in a cco r d a nc e wi th p u blish e r policies. S e e

h t t p://o rc a .cf.ac.uk/policies.h t ml for u s a g e policies. Copyrigh t a n d m o r al r i gh t s for

p u blica tions m a d e av ailabl e in ORCA a r e r e t ain e d by t h e copyrigh t hold e r s .

1

Fast and Robust Iterative Closest Point

Juyong Zhang, Member, IEEE, Yuxin Yao, Bailin Deng†, Member, IEEE

Abstract—The Iterative Closest Point (ICP) algorithm and its variants are a fundamental technique for rigid registration between two point

sets, with wide applications in different areas from robotics to 3D reconstruction. The main drawbacks for ICP are its slow convergence as

well as its sensitivity to outliers, missing data, and partial overlaps. Recent work such as Sparse ICP achieves robustness via sparsity

optimization at the cost of computational speed. In this paper, we propose a new method for robust registration with fast convergence.

First, we show that the classical point-to-point ICP can be treated as a majorization-minimization (MM) algorithm, and propose an

Anderson acceleration approach to speed up its convergence. In addition, we introduce a robust error metric based on the Welsch’s

function, which is minimized efficiently using the MM algorithm with Anderson acceleration. On challenging datasets with noises and

partial overlaps, we achieve similar or better accuracy than Sparse ICP while being at least an order of magnitude faster. Finally, we

extend the robust formulation to point-to-plane ICP, and solve the resulting problem using a similar Anderson-accelerated MM strategy.

Our robust ICP methods improve the registration accuracy on benchmark datasets while being competitive in computational time.

Index Terms—Rigid Registration, Robust Estimator, Fixed-point iterations, Majorlazer Minimization method, Anderson Acceleration.

✦

1 INTRODUCTION

R IGID registration, which finds an optimal rigid transfor-
mation to align a source point set with a target point

set, is a fundamental problem in computer vision and many
other areas. The iterative Closest Point (ICP) algorithm [1] is
a classical method for rigid registration. It alternates between
closest point query in the target set and minimization of
distance between corresponding points, and is guaranteed to
converge to a locally optimal alignment. However, classical
ICP can suffer from slow convergence due to its linear
convergence rate [2]. Other registration methods have been
developed with faster convergence. For example, in [3] the
alignment is performed by minimizing a point-to-plane
distance, whereas in [4] a locally quadratic approximant of
the squared distance function is minimized. Both approaches
are shown to have faster convergence rate than classical
ICP [2]. Another issue with ICP is that the alignment accuracy
can be affected by imperfections of the point sets such as
noises, outliers and partial overlaps, which often occur in real-
world acquisition processes. Various techniques have been
developed to address this problem. One popular approach is
to disregard erroneous correspondence between points, using
heuristics based on their distance or the angle between their
normals [5]. Recently, an ℓp-norm minimization approach is
proposed in [6] to induce sparsity of the distance between
corresponding point pairs, which aligns the points in true
correspondence while allowing large distance due to outliers
and incomplete data.

In this paper, we propose a novel and simple approach to
address these two issues. Our key observation is that classical
ICP is a majorization-minimization (MM) algorithm [7] for
minimizing ℓ2 distance between the two point sets, which
iteratively constructs and minimizes a surrogate function
and ensures monotonic decrease of the target energy. By

• J. Zhang and Y. Yao are with School of Mathematical Sciences, University
of Science and Technology of China.

• B. Deng is with School of Computer Science and Informatics, Cardiff
University.

†Corresponding author. Email: DengB3@cardiff.ac.uk.

treating this process as a fixed-point iteration, we speed
up its convergence using Anderson acceleration (AA) [8], an
established numerical technique that proves effective for a
variety of optimization problems in computer graphics [9].
In each iteration, Anderson acceleration computes an accel-
erated iterate based on the history of m previous iterates.
Compared with existing approaches such as [3], [4], our
method does not require higher-order information such as
normal or curvature which may not be available from the
point cloud data and need to be estimated carefully in the
presence of noise [10]. Moreover, different from previous
attempt on Anderson acceleration of ICP [11] that uses Euler
angles to represent rotation, we adopt a parameterization
of rigid transformation that does not suffer from singularity
of Euler angles. Using the same MM framework, we can
replace the squared distance metric used in classical ICP
with a robust metric that is insensitive to noises, outliers,
and partial overlaps. In particular, we adopt a robust metric
based on the Welsch’s function [12], which allows for a simple
quadratic surrogate function and can be minimized efficiently.
Compared to the sparse ICP algorithm [6], our approach does
not require introducing auxiliary variables for the solver,
which leads to lower memory footprint and significantly
faster convergence. We conduct a variety of experiments on
both synthetic and real data, where our method improves
the speed and robustness for alignment. Our approach can
also be extended to other ICP formulations. In particular, we
apply it to the point-to-plane ICP from [3], and achieve better
registration accuracy than the original method on benchmark
datasets. This illustrates the effectiveness of our method in
improving robustness of ICP-type registration algorithms.

To summarize, our main contributions include:

• We propose a new formulation for Anderson-accelerated
point-to-point ICP method. We parameterize rigid trans-
formations via Lie algebra instead of Euler angles as
in [11], and use a more simple stabilization strategy
than [11] that is easier to implement while guaranteeing
monotonic decrease of the target energy.

2

Ground truth

log10
-1

-7

Input

#S: 244501, #T: 190167

Sparse ICP

r = 2.97e-6, t = 208.7s, iter = 30r = 0.044, t = 2.53s, iter = 38

ICP Ours (Fast ICP)

r = 0.044, t = 1.22s, iter = 15

AA-ICP

r = 0.044, t = 1.67s, iter = 23

ICP-l

r = 0.040, t = 1.54s, iter = 23

GMM-Reg

r = 0.016, t = 2.92s, iter = 89

Ours (Robust ICP)

r = 1.95e-7, t = 8.87s, iter = 124

CPD

r = 0.028, t = 407.37s, iter = 58

DCP

Sparse ICP-l

r = 1.4e-4, t = 38.98s, iter = 6

r = 0.094, t = 0.02s

Ours (Robust ICP-l)

DGR

r = 0.77, t = 1.10s

r = 6.0e-7, t = 5.60s, iter = 70

Symmetric ICP

Teaser ++

r = 0.43, t = 0.88s, iter = 16

r = 1.4e-3, t = 1.24s, iter = 500

Fig. 1. Comparison between different registration methods (see Section 6) on a pair of partially overlapping point clouds constructed using the
monkey model from the EPFL statue dataset [13]. #S and #T denote the number of points in the source and the target point clouds, respectively.
Below each result we show the RMSE according to Eq. (12), the computational time, and the number of iterations. The log-scale color-coding
illustrates the deviation between the transformed source point clouds using the computed alignment and the ground-truth alignment. Our robust
point-to-point and point-to-plane ICP methods result in the lowest RMSE values, while being an order of magnitude faster than Sparse ICP.

• We propose a robust metric for point-to-point alignment
based on the Welsch’s function, which is less sensitive to
outliers and partial overlaps and can be solved efficiently
using the MM framework with Anderson acceleration.
Our method achieves similar or better registration
accuracy than sparse ICP, while being significantly faster.

• We extend the formulation to point-to-plane ICP, using
the Welsch’s function to define a robust error metric that
is minimized with an Anderson-accelerated MM solver.
Our formulation improves the robustness of point-to-
plane ICP without the need for point pair rejection.

2 RELATED WORK

Registration is a classical research topic in computer vision
and robotics due to its numerous applications such as 3D
scene reconstruction and localization. For a comprehensive
review of rigid and nonrigd registration, the reader is referred
to [14], [15]. Here, we focus on ICP for rigid registration. ICP
and its variants [1], [3], [5], [16], [17] start from an initial
alignment, and alternate between correspondence update
using closest-points lookup and alignment update based
on the correspondence. Using this framework, an accurate
registration relies on a good initial alignment as well as a
robust way to update the alignment.

For the initial alignment, Gelfand et al. [18] computed
shape descriptors on the point clouds, and used the de-
scriptors to match feature points and determine a coarse
alignment. Rusu et al. [19] performed similar matching using
the Point Feature Histograms defined at each point. Aiger
et al. [20] aligned two point clouds by matching a pair of
co-planar 4-point sets from them that are approximately
congruent. Later, Mellado et al. [21] proposed a more efficient
approach for such alignment with linear time complexity.

To update the alignment, ICP minimizes the ℓ2 distance
from the source points to their corresponding points [1]
or to the tangent planes at the corresponding points [3].

Mitra et al. [22] proposed a framework that determines
the alignment by minimizing a squared distance function
between the two point clouds, as well as a local quadratic
approximant for efficient update of the alignment. A similar
approach was taken in [4] for aligning a point cloud to a
surface. It was later shown in [2] that such a local quadratic
approximant can lead to quadratic convergence. Recently,
Rusinkiewicz [17] proposed a symmetrized objective function
for ICP that yields faster convergence than point-to-point
and point-to-plane ICP. Besides the convergence rate, another
consideration for registration algorithms is their robustness
to noises, outliers, and partial overlaps. A popular approach
is to discard some point pairs from the alignment problem
based on heuristics regarding their distance [5], [23], [24].
Other methods take a statistical approach and align two
point sets via their Gaussian mixture representations [25],
[26]. Another approach is to optimize a robust objective
that reduces the influence from point pairs that are far
apart [6], [27], [28], [29], [30]. In [6], the objective is defined
using the ℓp-norm (p < 1) to induce sparsity of the point-
wise distances. Our robust metric is defined using Welsch’s
function instead, which also induces sparsity while allowing
for a more efficient solver that guarantees convergence.

Besides ICP, other methods formulate registration as a
global optimization problem [31], [32], [33], which produces
globally optimal results at the expense of higher computa-
tional costs. In [34], a truncated least squares optimization
is proposed to make the registration insensitive to outliers.
Recently, deep learning has also been applied to registration
problems [35], [36].

Anderson acceleration was originally proposed in [37]
for iterative solution of nonlinear integral equations, and has
proved effective for accelerating fixed-point iterations [8],
[38], [39], [40], [41], [42], [43], [44], [45]. In computer graphics,
Anderson acceleration has been applied recently to acceler-
ate local-global solvers [9] and ADMM solvers [46], [47].

3

Classical Anderson acceleration can become unstable or
stagnate [8], [48]. Peng et al. [9] proposed an stabilization
strategy on optimization solvers based on the decrease of
the target function. Recently, Anderson acceleration has
been used in [11] to speed up the convergence of ICP.
We also apply Anderson acceleration to ICP, but using a
different representation of the transformation together with
the stabilization strategy from [9].

3 CLASSICAL ICP REVISITED

Given two sets of points P = {p1, . . . ,pM} and Q =
{q1, . . . ,qN} in R

d, we optimize a rigid transformation on
P (represented using a rotation matrix R ∈ R

d×d and a
translation vector t ∈ R

d) to align P with Q:

min
R,t

M∑

i=1

(
Di(R, t)

)2
+ ISO(d)(R), (1)

where Di(R, t) = minq∈Q ‖Rpi + t − q‖ is the distance
from the transformed point Rpi + t to the target set Q, and
ISO(d)(·) is an indicator function for the special orthogonal
group SO(d), which requires R to be a rotation matrix:

ISO(d)(R) =

{
0, if RTR = I and det(R) = 1,
+∞, otherwise.

(2)

The ICP algorithm [1] solves this problem using an iterative
approach that alternates between the following two steps:

• Correspondence step: find the closest point q̂
(k)
i in Q for

each point pi ∈ P based on transformation (R(k), t(k)):

q̂
(k)
i = argmin

q∈Q

∥∥∥R(k)pi + t(k) − q
∥∥∥ . (3)

• Alignment step: update the transformation by minimizing
the ℓ2 distance between the corresponding points:

(R(k+1), t(k+1))

= argmin
R,t

M∑

i=1

∥∥∥Rpi + t− q̂
(k)
i

∥∥∥
2
+ ISO(d)(R). (4)

The alignment step can be solved in closed form via
SVD [49]. This approach can be considered as a majorization-
minimization (MM) algorithm [50] for the problem (1). To
minimize a target function f(x), each iteration of the MM
algorithm constructs from the current iterate x(k) a surrogate
function g(x | x(k)) that bounds f(x) from above, such that:

f(x(k)) = g(x(k) | x(k)), and f(x) ≤ g(x | x(k)) ∀ x 6= x(k).
(5)

The surrogate function is minimized to obtain the next iterate

x(k+1) = argmin
x

g(x | x(k)). (6)

Equations (5) and (6) imply that

f(x(k+1)) ≤ g(x(k+1) | x(k)) ≤ g(x(k) | x(k)) = f(x(k)).

Therefore, the MM algorithm decreases the target function
monotonically until it converges to a local minimum. To see
that ICP is indeed an MM algorithm, note that the target
function for the alignment step is a surrogate function for the
target function in problem (1) and satisfies the conditions (5).

Specifically, since the closest point q̂
(k)
i is determined from

R(k), t(k), we denote each distance value in (4) as

di(R, t | R(k), t(k)) =
∥∥∥Rpi + t− q̂

(k)
i

∥∥∥ .

Then from Eq. (3) and the definition of Di, we have

di(R
(k), t(k) | R(k), t(k)) = Di(R

(k), t(k)).

Moreover, from the definition of Di, for any R, t:

Di(Rpi + t) = min
q∈Q

‖Rpi + t− q‖2

≤
∥∥∥Rpi + t− q̂

(k)
i

∥∥∥ = di(R, t | R(k), t(k)).

Thus each squared distance term in Eq. (4) is a surrogate

function for the corresponding term
(
Di(R, t)

)2
in Eq. (1),

and the target function in Eq. (4) is a surrogate function for
the overall target function in Eq. (1) constructed from R(k)

and t(k). Therefore, ICP is an MM algorithm that decreases
the target function of (1) monotonically until convergence.

4 FAST AND ROBUST ICP

Despite its simplicity, classical ICP can be slow to converge
to a local minimum due to its linear convergence rate [2].
In this section, we interpret ICP as a fixed-point iteration,
and propose a method to improve its convergence rate using
Anderson acceleration [8], [37], an established technique for
accelerating fixed-point iterations. In addition, classical ICP
can lead to erroneous alignment in the presence of outliers
and partial overlaps, due to the use of ℓ2 distance as the
error metric in the alignment step. We adopt a robust error
metric based on Welsch’s function instead, and derive an MM
solver for the resulting optimization problem, with Anderson
acceleration to speed up its convergence. In the following,
we first review the basics of Anderson acceleration.

4.1 Preliminary: Anderson Acceleration

Given a fixed-point iteration x(k+1) = G(x(k)), we define
its residual function as F (x) = G(x) − x, and denote
F (k) = G(x(k)). By definition, a fixed-point x∗ of the
mapping G(·) satisfies F (x∗) = 0. Anderson acceleration
utilizes the latest iterate x(k) as well as its preceding m
iterates x(k−m), x(k−m+1), . . . , x(k−1) to derive a new iterate

x
(k+1)
AA that convergences faster to a fixed point [8]:

x
(k+1)
AA = G(x(k))−

m∑

j=1

θ∗j
(
G(x(k−j+1))−G(x(k−j))

)
, (7)

where (θ∗1 , . . . , θ
∗
m) is the solution to the following linear

least-squares problem:

(θ∗1 , . . . , θ
∗
m) = argmin

∥∥∥F (k)−
m∑

j=1

θj
(
F (k−j+1)−F (k−j)

)∥∥∥
2

,

It has been shown that Anderson acceleration is a quasi-
Newton method for finding a root of the residual func-
tion [39], and it can improve the convergence rate for fixed-
point iterations that converge linearly [51].

4

4.2 Applying Anderson Acceleration to ICP

The classical ICP explained in Section 3 can be written as a
fixed-point iteration of the transformation variables R and t:

(R(k+1), t(k+1)) = GICP(R
(k), t(k)), (8)

where

GICP(R
(k), t(k))

= argmin
R,t

M∑

i=1

∥∥∥Rpi + t−ΠQ(R
(k)pi + t(k))

∥∥∥
2
+ ISO(d)(R),

and ΠQ(·) denotes the closest projection onto the point set Q.
However, we cannot directly apply Anderson acceleration
to the mapping GICP. This is because Anderson acceleration
will compute the new value of R as an affine combination of
rotation matrices, which is in general not a rotation matrix
itself. To address this issue, we can parameterize a rigid
transformation using another set of variables X, such that
any value of X corresponds to a valid rigid transformation,
and the ICP iteration can be re-written in the form of

X(k+1) = GICP(X
(k)). (9)

Then we can apply Anderson acceleration to the variable X

by performing the following steps in each iteration:

1) From the current variable X(k), recover the rotation
matrix R(k) and translation vector t(k).

2) Perform the ICP update (R′, t′) = GICP(R
(k), t(k)).

3) Compute the parameterization of (R′, t′) to obtain
GICP(X

(k)).
4) Compute the accelerated value XAA with Eq. (7) using

X(k−m), . . . ,X(k) and GICP(X
(k−m)), . . . , GICP(X

(k)).

One possible parameterization of rigid transformations is
to concatenate the translation vector and the Euler angles
of the rotation [52], [53]. This is the approach taken by the
AA-ICP method [11] for applying Anderson acceleration to
ICP in R

3. However, it is well known that the Euler angle
representation has singularities called the gimbal lock [52].
This can affect the performance of AA-ICP when the optimal
rotation is close to a gimbal lock (see Fig. 2 for an example).
An alternative representation of rotation in R

3 without such
singularities is the unit quaternions, which are identified with
unit vectors in R4 [52]. This representation is not suitable
either, as an affine combination of unit vectors does not result
in a unit vector in general. Rather than the using the above
representations, we note that all rigid transformations in
R
d form the special Euclidean group SE(d), which is a Lie

group and gives rise to a Lie algebra se(d) that is a vector
space [54]. From a differential geometry perspective, SE(d)
is a smooth manifold and se(d) is its tangent space at the
identity transformation. We can then parameterize rigid
transformations using their corresponding elements in se(d).

Specifically, if we represent each point p ∈ R
d using

its homogeneous coordinates p̃ = [pT , 1]T , then a rigid
transformation in R

d with rotation R ∈ R
d×d and translation

t ∈ R
d can be represented as a transformation matrix

T =

[
R t

0 1

]
∈ R

(d+1)×(d+1)

0 0.02 0.04 0.06

Time(sec)

14

16

18

20

22

24

AA-ICP

Ours: Euler Angles

Ours: se(3)

0 0.02 0.04 0.06

Time(sec)

0.025

0.03

0.035

0.04

0.045

0.05

0 5 10 15 20 25

#Iterations

0.025

0.03

0.035

0.04

0.045

0.05

R
M

S
E

0 5 10 15 20 25

#Iterations

14

16

18

20

22

24

E
n
er

g
y

Fig. 2. Target energy and RMSE plots for Anderson-accelerated ICP
methods on a pair of point clouds, using different transformation rep-
resentations and stabilization strategies. Our formulation outperforms
AA-ICP [11] as well as a Euler angle-based method using our stabilization
strategy. For Euler angle-based methods, we use solid triangle symbols
to highlight the iterates that are close to the gimbal lock.

for the homogeneous coordinates. All such matrices form the
special Euclidean group SE(d). Its Lie algebra se(d) contains
matrices of the following form

Ť =

[
S u

0 0

]
∈ R

(d+1)×(d+1), (10)

Each matrix Ť ∈ se(d) corresponds to a matrix T ∈ SE(d)
via the matrix exponential:

T = exp
(
Ť
)
=

∞∑

i=0

1

i!
Ťi. (11)

The matrix exponential can be computed numerically using
a generalization of Rodrigues’ method [55]. On the other
hand, given a matrix T ∈ SE(d), there may be more than
one matrix Ť ∈ se(d) that satisfies Eq. (11). In Appendix A,
we present a method to determine a unique value of Ť. We
call it the logarithm of T, and denote it by Ť = log(T). We
then perform Anderson acceleration on the logarithms of the
transformations. Since se(d) is a vector space, the accelerated
value ŤAA—which is computed as an affine combination of
elements in se(d)—also belongs to se(d) and represents a
rigid transformation TAA = exp

(
ŤAA

)
∈ SE(d).

Simply applying Anderson acceleration as explained in
Section 4.1 is often not sufficient for fast convergence. It is
known that Anderson acceleration can suffer from instability
and stagnation even for linear problems [48], thus safeguard-
ing steps are often necessary to improve its performance [9],
[46], [56]. To this end, we follow the stabilization strategy
proposed in [9]: we accept the accelerated value as the new
iterate only if it decreases the target function (1) compared
with the previous iterate; otherwise, we revert to the un-
accelerated ICP iterate as the new iterate. This approach
is more simple than the combination of heuristics in [11],
while ensuring monotonic decrease of the target energy.
Following [9], we set the number of previous iterates for
Anderson acceleration to m = 5 in all experiments.

Compared to AA-ICP [11] that also applies Anderson
acceleration to ICP, our approach differs in two aspects. First,

5

1

0
0 5-5

Fig. 3. The graphs of function
ψν(x) with different param-
eters. As ν decreases, the
function ψν approaches the
ℓ0 norm.

we apply Anderson acceleration via the Lie algebra se(d)
instead of the Euler angles, which is free from the singu-
larities of gimbal locks. Second, our stabilization strategy
is more simple to implement than the multiple heuristics
in [11] while ensuring monotonic decrease of the target
function. Fig. 2 compares our method with AA-ICP, as
well as an alternative Anderson acceleration approach using
Euler angle representation and our stabilization strategy. The
comparison is done on a synthetic model from [30] for which
the ground-truth alignment is known, and the point sets
are pre-aligned using Super4PCS [21]. We plot the value
of target function (1) with respect to the iteration count
and computational time, as well as the following root mean
square error (RMSE) between the computed alignment (R, t)
from the ground-truth alignment (R∗, t∗):

r =

√
1

M

∑M

i=1
‖R∗pi + t∗ −Rpi − t‖22. (12)

Fig. 2 shows that our method using the Lie algebra leads
to faster convergence. In the energy-iteration plots, for
each Euler angle-based approach we use solid triangles to
highlight the iterations that are close to the gimbal lock (with
the pitch angle less than 0.01π away from ±π/2).

4.3 Robust ICP via Welsch’s Function

Classical ICP measures the alignment error using ℓ2 distance,
which penalizes large deviation from any point in the source
set P to the target set Q. This enables a closed-form solution
in the alignment step, but may lead to erroneous alignment
in the presence of outliers and partial overlaps: in such
cases some points in P may not correspond to any point
in Q, and the ground-truth alignment can induce a large
error that would be prohibited by the ℓ2 minimization.
The issue can be resolved by adopting error metrics that
promote sparsity of the point-wise distance from P to Q.
Such metrics penalize the distance between points in true
correspondence, while allowing for large deviation induced
by outliers and partial overlaps. One example is the ℓp-
norm of point-wise distance with p ∈ (0, 1), resulting in the

error metric
∑M

i=1

(
Di(R, t)

)p
that is used in the sparse ICP

algorithm [6]. Like classical ICP, the sparse ICP algorithm
alternates between closest point query and alignment update.
The alignment problem is similar to Eq. (4) but is based on ℓp
distance instead. The problem is solved using the alternating
direction method of multipliers (ADMM) since there is no
closed-form solution. Although sparse ICP produces more
accurate results, the use of ADMM incurs a much higher
computational cost. Moreover, the ADMM solver requires
d ·M auxiliary variables and d ·M dual variables, which can
significantly increase the memory footprint.

In this paper, we adopt a different robust error metric that
does not incur high computational overhead. Specifically, we
formulate the registration problem as

min
R,t

∑M

i=1
ψν

(
Di(R, t)

)
+ ISO(d)(R), (13)

where ψν is the Welsch’s function [12]:

ψν(x) = 1− exp
(
− x2

2ν2

)
, (14)

and ν > 0 is a user-specified parameter. Fig. 3 shows the
graphs of ψν with different values of ν. Since ψν(x) is mono-
tonically increasing on [0,+∞), our formulation penalizes
deviation between the point sets. At the same time, ψν is
upper bounded by 1, so our metric is not sensitive to large
deviations caused by outliers and partial overlaps. Moreover,

when ν approaches zero,
∑M

i=1 ψν

(
Di(R, t)

)
approaches the

ℓ0-norm of the vector [D1(R, t), . . . , DM (R, t)]. Thus our
formulation promotes sparsity of the point-wise distance
between the point sets. Recently, error metrics based on
Welsch’s function have been applied for robust filtering in
image processing [57] and geometry processing [58].

Although our formulation (13) is non-linear and non-
convex, the problem can be solved using the same MM
framework as classical ICP, by alternating between a corre-
spondence step and an alignment step. The correspondence
step is the same as classical ICP. In the alignment step, we
utilize the closest points to construct the following surrogate
for the target function (13) at the current transformation
(R(k), t(k)) (see Appendix B for a proof):

∑M

i=1
χν

(
‖Rpi + t− q̂

(k)
i ‖

∣∣∣ Di(R
(k), t(k))

)
+ ISO(d)(R),

(15)
where χν(x | y) is a quadratic surrogate function for the
Welsch’s function at y with the following form [57]:

χν(x | y) = ψν(y) +
x2 − y2

2ν2
exp

(
− y2

2ν2

)
. (16)

We minimize the surrogate function (15) to update the
transformation, resulting in the following problem:

(R(k+1), t(k+1))

= argmin
R,t

∑M

i=1
ωi

∥∥∥Rpi + t− q̂
(k)
i

∥∥∥
2
+ ISO(d)(R),

(17)

where ωi = exp
(
−‖R(k)pi + t(k) − q̂

(k)
i ‖2/(2ν2)

)
. The

alignment step (17) minimizes a weighted sum of squared

distance between the points {pi} and {q̂(k)
i }. It can be solved

in closed form via SVD [49]. Similar to classical ICP, our
MM solver decreases the target energy in each iteration and
converges to a local minimum. Using the same approach as
in Section 4.2, we improve its convergence rate by applying
Anderson acceleration to the parameterization of rigid trans-
formations in se(d), using the same stabilization strategy that
checks the target function value for the accelerated value.

Our approach has a similar structure as the iteratively
reweighted least squares (IRLS) method that minimizes the
ℓp-norm (p < 1) for compressive sensing [59]. Similar to
IRLS, we solve a weighted least squares problem, with the
weights ωi for a point pi updated in each iteration according
to its current distance to the corresponding point. Since the

6

0

0.04

0 0.035 0 0.035 0 0.035

r = 0.022, 0.17s r = 0.014, 0.34s r = 0.011, 0.39s#S: 17102, #T: 15458

Input

Fig. 4. Registration results via optimization (13) with different values of
parameter ν, on a pair of point clouds with partial overlap. The color-
coding shows the deviation between the transformed positions of each
source point using the computed alignment and ground-truth alignment,
with the histograms showing the distribution of the deviation among the
source points. For this model, a smaller value of ν leads to a more
accurate result.

weight is a Gaussian function with variance ν, a point pi

with larger distance from the target point set receives a lower
weight. Moreover, according to the well-know three-sigma
rule, when the distance is larger than 3ν, the weight ωi is
small enough such that the term for pi has little influence
to the target function and pi is effectively excluded from
the current alignment problem. In this way, the optimization
allows some source points to be far away from the target
point set, and is robust to outliers and partial overlaps.

Some ICP variants improve robustness by excluding
from the alignment step the point pairs with large deviation
between their positions or normals [5]. It was observed in [6]
that such methods can be difficult to tune or increase the
number of local minima. Our method also excludes point
pairs with large positional difference, but using a Gaussian
weight that gradually decreases as the point pair becomes
further apart. It can be considered as a soft thresholding
approach that weakly penalizes outliers, which can lead to
more stable results [6]. Indeed, we observe in experiments
that our robust methods and sparse ICP tend to produce
more accurate results than the symmetric ICP method [17]
which is based on outlier rejection; see Section 6 for details.

Compared to ℓp-norm minimization (0 < p < 1), our
formulation and solver also offer benefits in stability and
convergence guarantee. For our weighted least-squares prob-
lem (17), all the Gaussian weights {ωi} have values within
the range (0, 1]. In contrast, an IRLS solver for ℓp-norm mini-

mization would assign a weight ‖R(k)pi + t(k) − q̂
(k)
i ‖p−2

to the point pi, which could go to infinity and cause
instability when the alignment error for pi approaches
zero [6]. According to [6], sparse ICP performs ℓp-norm
minimization using ADMM instead of IRLS because of
concern about such instability. In addition, the convergence
of IRLS and ADMM for non-convex ℓp-norm minimization
requires strong assumptions about the problem such as the
Kurdyka-Łojasiewicz property [60], [61], whereas our MM
solver is guaranteed to converge.

For our algorithm, the parameter ν plays an important
role in achieving good performance. A smaller ν helps to
attenuate the influence from outliers and partial overlaps
(e.g., see Fig. 4). On the other hand, a larger ν in the initial
stage helps to include more point pairs in the alignment step

Algorithm 1: Robust point-to-point ICP using Welsch’s
function and Anderson acceleration.

Input: T(0): initial transformation for P ;
m: the number of previous iterates used for Anderson

acceleration;
correspondence(T): computation of all closest points

according via Eq. (3) using transformation T;
alignment(Q̂,T, ν): new transformation via Eq. (17)

using current transformation T and closest points Q̂;
Eν(Q̂,T): target energy for transformation T and

closest points Q̂: Eν(Q̂,T) =
∑M

i=1 ψν(‖Rpi + t− q̂i‖);
Iν , ǫν : maximum number of iterations and the

convergence threshold of T for a given parameter ν.

1 k = 1; ν = νmax; Q̂(0) = correspondence(T(0));
2 while TRUE do
3 kstart = k − 1; Eprev = +∞;

4 T′ = alignment(Q̂(k−1),T(k−1), ν);

5 T(k) = T′; Q̂(k) = correspondence(T(k));
6 G(k−1) = log(T′); F (k−1) = G(k−1) − log(T(k−1));
7 while k − kstart ≤ Iν do

// Ensure T(k) decreases the energy

8 if Eν(Q̂
(k),T(k)) ≥ Eprev then

9 T(k) = T′; Q̂(k) = correspondence(T(k));
10 end

11 Eprev = Eν(Q̂
(k),T(k));

// Check convergence

12 T′ = alignment(Q̂(k),T(k), ν);
13 if ‖T−T′‖F < ǫν then break ;

// Anderson acceleration

14 G(k) = log(T′); F (k) = G(k) − log(T(k));
15 mk = min(k − kstart,m);
16 (θ∗1 , . . . , θ

∗
mk

) =

argmin ‖F (k) −
∑mk

j=1 θj(F
(k−j+1) − F (k−j))‖2F ;

17 T(k+1) =

exp
(
G(k) −

∑m

j=1 θ
∗
j (G

(k−j+1) −G(k−j))
)
;

18 Q̂(k+1) = correspondence(T(k+1));
19 k = k + 1;
20 end

21 if ν == νmin then return T(k) ;
22 ν = max(ν/2, νmin); k = k + 1;
23 end

and avoid undesirable local minima. Therefore, we gradually
decrease ν during the iterations, so that the algorithm first
performs more global alignment with a larger number of
pairs, and then reduces the influence from the pairs with
large deviation to achieve robust alignment. Specifically, we
choose two values νmax and νmin as the upper and lower
bounds of ν. We start by setting ν = νmax and running
our MM algorithm until the change in the transformation
matrix T is smaller than a threshold (10−5 by default) or
the iteration count exceeds an upper limit (1000 by default).
Then we decrease the value of ν by half, and run the MM
algorithm again until the same termination criterion is met.
The process is repeated until the lower bound νmin is reached.
Algorithm 1 summarizes our method with a decreasing ν.

To choose νmax, we compute the median D
(0)

among
all initial point-wise distance {Di(R

(0), t(0))}, and set

νmax = 3 ·D(0)
. In our experiments, this setting makes νmax

large enough to include most point pairs into the alignment

7

Input

#S: 9981, #T: 8837

0 20 40 60 80

#Iterations

0

0.01

0.02

0.03

0.04

R
M

S
E

Fig. 5. RMSE plots for optimization (13) with different settings of ν, on
a pair of point clouds in the ‘Apartment’ sequence from the ETH laser
registration dataset [62]. Gradually reducing ν from νmax to νmin results
in the lowest RMSE.

process except for outliers with significant deviation. For
νmin, we note that the two point sets may sample the same
surface at different locations, and νmin should be large
enough to accommodate the deviation due to sampling.
Therefore, we first compute the median distance from each
point qi ∈ Q to its six nearest points on Q, and take
the median EQ of all such median values. Then we set
νmin = EQ/3

√
3 (see Appendix C for the rationale).

Fig. 5 illustrates the effectiveness of our ν-update strategy,
by comparing its RMSE plot with those resulting from a fixed
parameter ν = νmax and ν = νmin, respectively. Here a fixed
ν = νmin results in a large RMSE, because such a small ν
will lead to a small weight for most point pairs, effectively
excluding them from the alignment step and producing an
erroneous result. Fixing ν = νmax can reduce the final RMSE
as it includes more points into the alignment; however, it
fails to exclude some outliers so the RMSE is still large. A
decreasing ν gradually removes outliers from the alignment
process, resulting in a much smaller RMSE.

5 EXTENSION TO POINT-TO-PLANE ICP

The classical ICP algorithm discussed in Section 4 is often
called the “point-to-point” ICP, since its alignment step
minimizes the distance from the source points to their
corresponding target points. Another popular ICP variant
in R

3, often called the “point-to-plane” ICP, minimizes the
distance from the source points to the tangent planes at the
target points instead in the alignment step [3]:

(R(k+1), t(k+1))

= argmin
R,t

M∑

i=1

(
(Rpi + t− q̂

(k)
i) · n̂(k)

i

)2
+ ISO(3)(R),

(18)

where n̂
(k)
i is the normal at q̂

(k)
i for the underlying surface

of the target point set. Point-to-plane ICP can be considered
as solving an optimization problem

min
R,t

∑M

i=1
(Hi(R, t))

2
+ ISO(3)(R), (19)

where Hi(R, t) is the signed distance from the point Rpi +
t to the tangent plane at its closest point in Q. Since the
tangent plane provides a local linear approximation of the
underlying surface, point-to-plane ICP can achieve faster
convergence [2]. On the other hand, it suffers from the same
issue of robustness to outliers and partial overlaps. Similar

to Section 4, we can improve its robustness by adopting a
robust metric based on Welsch’s function ψν :

min
R,t

∑M

i=1
ψν (Hi(R, t)) + ISO(3)(R). (20)

This is solved by alternating between a correspondence step
the same as point-to-point ICP, and an assignment step that
solves the following problem:

min
R,t

∑M

i=1
ψν

(
(Rpi + t− q̂

(k)
i) · n̂(k)

i

)
+ ISO(3)(R). (21)

Similar to Section 4, we replace the target function above
with a surrogate function to derive a proxy problem:

min
R,t

∑M

i=1
γi
(
(Rpi + t− q̂

(k)
i) · n̂(k)

i

)2
+ISO(3)(R), (22)

where γi = exp
(
−((R(k)pi + t(k) − q̂

(k)
i) · n̂(k)

i)2/(2ν2)
)

.

There is no closed-form solution to this problem. So we
rewrite it as an optimization for the se(3) parameterization:

min
T̃

∑M

i=1
γi
(
B

(k)
i (T̃)

)2
. (23)

Here T̃ ∈ R
6 denotes the actual variables for the se(3)

element Ť in Eq. (10) (three variables for each of the

submatrices S and u, respectively), andB
(k)
i (T̃) is the signed

distance from Rpi + t to the tangent plane at q̂
(k)
i . We then

linearize B
(k)
i using its first-order Taylor expansion

B
(k)
i (T̃) ≈ B

(k)
i (T̃(k)) + (J

(k)
i)T (T̃− T̃(k)), (24)

where T̃(k) is the se(3) variable for (R(k), t(k)), and J
(k)
i

is the gradient of B
(k)
i at T̃(k) (see Appendix D for its

calculation). Substituting the linearization into Eq. (23), we
obtain a quadratic problem that reduces to a linear system

(∑M

i=1
γiJ

(k)
i (J

(k)
i)T

)
T̃

=
∑M

i=1
γiJ

(k)
i

(
B

(k)
i (T̃(k))− (J

(k)
i)T T̃(k)

)
.

(25)

The solution T̃
(k)
∗ to this system will be taken as a candidate

for the updated transformation. Due to the linearization,

T̃
(k)
∗ may increase the target function (20). Therefore, we

perform line search along the direction T̃
(k)
∗ − T̃(k) to find

a new transformation that decreases the target function. If
such a transformation cannot be found after the maximum
number of line-search steps is reached, then the step size
with the lowest target function value will be used.

Similar to Section 4, we apply Anderson acceleration to
speed up the convergence. We note that the mapping from

the current variable T̃(k) to the candidate update T̃
(k)
∗ , which

amounts to finding the closest points {q̂(k)
i } according to

T̃(k) and solving the linear system (25), can be written as

T̃(k)
∗ = Gppl(T̃

(k)). (26)

Then for a local minimum (R∗, t∗) of the target function (20),

the corresponding se(3) variable T̃∗ should be a fixed
point of Gppl. Therefore, we apply Anderson acceleration

to T̃(k−m), . . . , T̃(k) and Gppl(T̃
(k−m)), . . . , Gppl(T̃

(k)) to

obtain an accelerated value T̃AA. If T̃AA decreases the target

function (20), then we accept it as the new iterate T̃(k+1).

8

Algorithm 2: Robust point-to-plane ICP using Welsch’s
function and Anderson acceleration.

Input: T̃(0): initial transformation parameters;
m: the number of previous iterates used for Anderson

acceleration;
Gppl(·): the mapping defined in Eq. (26);

Ẽν(T̃): target energy of problem (20) for parameters T̃;
lmax: maximum number of inner line search steps;
Iν , ǫν : maximum number of iterations and the

convergence threshold for a given parameter ν.
1 k = 1; ν = νmax;
2 while TRUE do

3 kstart = k − 1; Eprev = +∞; T̃
(k)
∗ = Gppl(T̃

(k−1)) ;

4 G(k−1) = T̃(k) = T̃
(k)
∗ ; F (k−1) = G(k−1) − T̃(k−1);

5 while k − kstart ≤ Iν do
// Check energy decrease

6 E = Ẽν(T̃
(k));

7 if E ≥ Eprev then
// Perform line search

8 τ = 1; l = 1;
9 while l ≤ lmax do

10 T̃trial = T̃(k−1) + τ(T̃
(k)
∗ − T̃(k−1));

11 Etrial = Ẽν(T̃trial);
12 if Etrial < E then

13 E = Etrial; T̃(k) = T̃trial;
14 end
15 if Etrial < Eprev then break ;
16 end
17 end
18 Eprev = E;

// Check convergence

19 T̃
(k+1)
∗ = Gppl(T̃

(k)) ;

20 if ‖T̃
(k+1)
∗ − T̃(k)‖ < ǫν then break; ;

// Anderson acceleration

21 G(k) = T̃
(k+1)
∗ ; F (k) = G(k) − T̃(k);

22 mk = min(k − kstart,m);
23 (θ∗1 , . . . , θ

∗
mk

) =

argmin ‖F (k) −
∑mk

j=1 θj(F
(k−j+1) − F (k−j))‖2;

24 T̃(k+1) =

exp
(
G(k) −

∑m

j=1 θ
∗
j (G

(k−j+1) −G(k−j))
)
;

25 k = k + 1;
26 end

27 if ν == νmin then return T̃(k) ;
28 ν = max(ν/2, νmin); k = k + 1;
29 end

Otherwise, we perform line search as described previously.
Algorithm 2 summarizes our robust point-to-plane ICP solver.
Similarly to Algorithm 1, we start with ν = νmax and
gradually decreases it until the lower bound νmin is reached.
For each given ν value, the solver is run until the change
in the transformation matrix is smaller than a threshold
(10−5 by default) or the iteration count reaches a limit (6 for
νmax, then incremented by 1 each time ν is changed, but no
larger than 10). We set νmax to be three times the median
distance from the source points to the tangent planes at their
corresponding points in the initial iteration. To determine
νmin, we first compute for each point q ∈ Q the median
distance from its six nearest neighbors in Q to its tangent
plane; then we take the median HQ of all such values and
set νmin = HQ/6 (see Appendix C for the rationale).

6 RESULTS

In this section, we compare the performance of our methods
with existing ICP-based methods including AA-ICP [11],
sparse ICP [6], and symmetric ICP [17]. Our comparison
includes both point-to-point and point-to-plane ICP methods
and their variants. In the following, we will denote the point-
to-point ICP and its variants as “ICP”, whereas point-to-
plane ICP and its variants will be denoted as “ICP-l”. For
sparse ICP and symmetric ICP, we use the source codes
released by the authors1 2. For symmetric ICP, we use
the formulation that does not rotate the normals (Esymm

as defined in the paper). Besides ICP-based methods, we
also compare with other methods including CPD [25] and
GMM-Reg [26] based on statistical frameworks, Teaser++ [34]
which uses truncated least squares optimization, as well as
DCP [35] and DGR [36] based on deep learning, using their
open-source implementations 3 4 5 6 7. We implement our
methods in C++, using the EIGEN library [63] for linear
algebra operations. For each test problem, we normalize the
input data by aligning the centroids of the point clouds and
uniformly scaling them such that their bounding box has
diagonal length 1. Unless stated otherwise, the point clouds
are pre-aligned using Super4PCS [21] before the alignment
is refined using different methods. We test the methods
on both synthetic and real-world datasets. For problems
where the ground-truth alignment is known, we evaluate
the registration accuracy using the RMSE value in Eq. (12).
Some methods (point-to-plane ICP and its variants, as well as
symmetric ICP) require normals at the points. For synthetic
data where the underlying surface is known, we use the
surface normals as the normals at the points. Otherwise, we
use the Point Cloud Library8 to estimate the normals using
30 nearest neighbors. The source codes for our methods are
available at https://github.com/yaoyx689/Fast-Robust-ICP.
The two deep learning-based methods are run on a PC with a
20-core CPU at 3.3GHz, an NVIDIA RTX 2080 Ti and 128GB
of RAM, whereas all other methods are run on a PC with a
6-core CPU at 3.6GHz and 16GB of RAM. Detailed settings
for each method are provided in Appendix E.

6.1 Synthetic Data

In Fig. 1, we perform registration on two point sets with a
small overlap, constructed using the monkey model from
the EPFL statue dataset [13]. From the full model, we take
the first 60% of the points to create the source set, and the
last 47% with a random rigid transformation to construct
the target set. Our robust point-to-point and point-to-plane
ICP methods achieve the lowest RMSE values among all
methods, while being significantly faster than point-to-point
ICP, the method that achieves the next lowest RMSE. In
addition, our fast ICP achieves the same RMSE as classical

1. https://github.com/OpenGP/sparseicp
2. https://gfx.cs.princeton.edu/pubs/Rusinkiewicz 2019 ASO/

icptests-1.0.zip
3. https://github.com/gadomski/cpd
4. https://github.com/bing-jian/gmmreg
5. https://github.com/MIT-SPARK/TEASER-plusplus
6. https://github.com/WangYueFt/dcp
7. https://github.com/chrischoy/DeepGlobalRegistration
8. https://pointclouds.org/

9

10
0

10
1

10
2

Ratio of added outliers (%)

10
-4

10
-2

10
0

R
M

S
E

1% added outliers

50% added outliers

Input

#S: 751996, #T: 350932

Ground truth ICP

r = 0.42, 74.32s

ICP-l

r = 0.43, 42.90s

Sparse ICP

r = 0.42, 2438.41s

Ours (Robust ICP)

r = 0.42, 412.90s

Symmetric ICP

r = 0.41, 3.90s

Sparse ICP-l

r = 0.42, 2501.12s

Ours (Robust ICP-l)

r = 0.42, 82.73s

CPD

r = 0.47, 651.395s

GMM-Reg

r = 0.42, 6.17s

Teaser ++

r = 0.42, 0.80s

DCP

r = 0.13, 0.02s

DGR

r = 0.40, 30.14s

ICP

Sparse ICP

Ours (Robust ICP)

ICP-l

Sparse ICP-l

Symmetric ICP

Ours (Robust ICP-l)

GMM-Reg

CPD

Teaser++

DCP

DGR

ICP-l

r = 0.020, 6.29s

Sparse ICP-l

r = 4.2e-4, 252.41s

CPD

r = 0.16, 649.184s

GMM-Reg

r = 0.093, 5.30s

Teaser ++

r = 0.40, 0.77s

Input

#S: 551464, #T: 350932

Ground truth ICP

r = 7.8e-3, 16.13s

Sparse ICP

r = 0.029, 1649.21s

Ours (Robust ICP)

r = 1.9e-3, 57.46s

Symmetric ICP

r = 1.3e-3, 2.81s

Ours (Robust ICP-l)

r = 2.7e-4, 26.00s

DCP

r = 0.13, 0.02s

DGR

r = 0.41, 13.69s

ICP-l

r = 5.3e-3, 2.08s

Sparse ICP-l

r = 4.5e-4, 200.97s

CPD

r = 0.046, 375.10s

GMM-Reg

r = 0.025, 7.72s

Teaser ++

r = 0.41, 0.79s

Ground truthInput

#S: 506344, #T: 350932

ICP

r = 9.5e-3, 6.09s

Sparse ICP

r = 4.9e-3, 1405.71s

Ours (Robust ICP)

r = 1.9e-3, 15.68s

Symmetric ICP

r = 9.5e-4, 2.59s

Ours (Robust ICP-l)

r = 2.6e-4, 6.72s

DCP

r = 0.13, 0.02s

DGR

r = 0.19,8.30s

10% added outliers

log10
-1

 -3

log10
-1

 -3

log10
-1

 -3

Fig. 6. Comparison between different registration methods on partially overlapping point clouds with added noises and outliers, constructed using the
Aquarius model from the EPFL statue dataset [13]. The plot on the top-right shows the resulting RMSE values with different ratios (1%, 3%, 5%, 20%
and 50%) of outliers added to the source point cloud.

ICP and AA-ICP with less computational time. Symmetric
ICP also achieves better accuracy than point-to-point and
point-to-plane ICP and their accelerated versions; it is faster
than sparse ICP and our robust methods but with worse
accuracy. The saving in computational time from symmetric
ICP is partly because its implementation only samples 200
pairs of valid corresponding points for the alignment step,
which reduces the computational cost for large point clouds.

In Fig. 6, we test the methods on point sets that contain
noises and outliers, which are constructed using the Aquarius

model from the EPFL statue dataset. Starting from the clean
point cloud of the full model, we take the last 42% of the
points as the target point cloud, add Gaussian noises along
their normal directions with the standard deviation being
the average value of all points’ median distance to their
six nearest neighbors, and apply a random transformation.
For the source point cloud, we take the first 60% of the
points from the full model, and add Gaussian noises in the
same way as the target point could. To emulate outliers, we
add µ ·M random points to the source point cloud using a

10

-1.5

-3.9

log10

-1.7

-4.8

log10

-1.7

-4.1

log10log10
-1.1

-3.8

-2.3

-4.6

log10

0.012, 0.02s

#S:14806, #T:15446

2.19e-4, 20.16s

0.029, 0.10s 0.029, 0.09s

1.29e-4, 0.11s

0.029, 0.04s

1.92e-4, 0.28s 1.84e-4, 0.14s

5.04e-4, 7.34s

5.86e-3, 0.03s

#S:14501, #T:15120

2.21e-4, 12.97s

6.66e-3, 0.05s 6.47e-3, 0.08s

3.32e-4, 0.11s

6.59e-3, 0.04s

1.52e-4, 0.19s 1.59e-4, 0.10s

2.33e-4, 3.13s

ICP-l

Input

Sparse ICP-l

ICP AA-ICP

Symmetric ICP

Ours (Fast ICP)

Ours (Robust ICP) Ours (Robust ICP-l)

Sparse ICP

0.021, 0.03s

#S:14949, #T:12864

5.92e-4, 11.28s

0.086, 0.20s 0.086, 0.08s

6.81e-4, 0.11s

0.086, 0.09s

6.65e-4, 0.40s 5.99e-4, 0.12s

9.55e-4, 64.03s

0.012, 0.06s

#S:16523, #T:16041

6.32e-4, 19.38s

0.031, 0.15s 0.031, 0.30s

1.08e-3, 0.12s

0.031, 0.11s

5.82e-4, 0.30s 5.57e-4, 0.12s

3.32e-4, 11.81s

0.058, 0.08s#S:18867, #T:13177 5.20e-4, 1.48s0.043, 0.15s 0.043, 0.08s 6.63e-4, 0.14s0.043, 0.11s 5.71e-4, 0.53s 5.41e-4, 0.23s5.46e-4, 6.71s

0.067, 1.91s 0.20, 4.27s 0.24, 0.02s0.075, 1631.08s 0.043, 1.16s

GMM-Reg Teaser ++ DCPCPD DGR

Input ICP AA-ICP Ours (Fast ICP) Sparse ICP

Input ICP AA-ICP Ours (Fast ICP) Sparse ICP Input ICP AA-ICP Ours (Fast ICP) Sparse ICP

Input ICP AA-ICP Ours (Fast ICP) Sparse ICP

ICP-l Sparse ICP-l Symmetric ICPOurs (Robust ICP) Ours (Robust ICP-l)

ICP-l Sparse ICP-l Symmetric ICPOurs (Robust ICP) Ours (Robust ICP-l) ICP-l Sparse ICP-l Symmetric ICPOurs (Robust ICP) Ours (Robust ICP-l)

ICP-l Sparse ICP-l Symmetric ICPOurs (Robust ICP) Ours (Robust ICP-l)

GMM-Reg Teaser ++ DCPCPD DGR

GMM-Reg Teaser ++ DCPCPD DGR GMM-Reg Teaser ++ DCPCPD DGR

GMM-Reg Teaser ++ DCPCPD DGR

0.16, 1.60s 0.28, 4.43s 0.28, 0.02s0.032, 1789.30s 0.17, 1.08s 0.10, 1.76s 0.048, 2.43s 0.29, 0.02s8.90e-3, 1109.40s 9.3e-3, 1.23s

0.053, 1.54s 0.32, 3.05s 0.29, 0.02s0.030, 1134.14s 0.015, 1.40s

0.12, 2.46s 0.45, 2.67s 0.24, 0.02s0.039, 1782.43s 0.01, 1.37s

Fig. 7. Examples of registration results using different methods on partially overlapping point clouds, with RMSE and computational time shown below
each result. The log-scale color-coding visualizes the deviation between the computed alignment and the ground-truth alignment.

uniform distribution within its bounding box, whereM is the
number of source points before the addition, and µ is chosen
to be 1%, 3%, 5%, 20% and 50%, respectively. For problems
with up to µ = 20% added outliers, our robust point-to-point
and point-to-plane methods outperform other point-to-point
and point-to-plane ICP variants respectively in accuracy, with
our robust point-to-plane method achieving the best accuracy
among all methods. For 50% added outliers, all methods
result in similar RMSE values that indicate large registration
error. For ICP-based methods, this is partly due to poor
initial alignment produced by Super4PCS in the presence
of outliers. With better initialization, our methods can still
produce reasonable registration results (see Section 6.3 for

details). It is also worth noting that Teaser++, which is
aimed at problems with a large amount of outliers, performs
poorly in this example. This is potentially because Teaser++
assumes a generative model where the deviation between
corresponding points is due to a bounded noise, which is not
obeyed by the randomly generated outliers here.

We further test the methods on 25 pairs of partially over-
lapping point clouds constructed from five models in [30],
with five pairs for each model. Fig. 7 compares the results
on some problem instances, showing their computational
time and RMSE, and using color-coding to visualize the
deviation from the ground-truth alignment. Tab. 1 shows the
average computational time and average/median RMSE on

11

TABLE 1
Average computational time (in seconds) and average/median RMSE (×10−3) for different registration methods on partially overlapping point cloud

pairs constructed from five models, with five pairs for each model (see Fig. 7). Best performance numbers are highlighted in bold fonts.

Dataset
Bimba Children Dragon Angle Bunny

Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE
ICP 0.33 68/60 0.12 9.8/6.7 0.18 21/19 0.12 13/5.6 0.11 26/28

AA-ICP 0.13 68/60 0.10 9.8/6.5 0.16 21/19 0.08 13/5.6 0.10 26/28
Ours (Fast ICP) 0.12 68/60 0.07 9.8/6.6 0.12 21/19 0.11 13/5.6 0.06 26/28

Sparse ICP 37.90 67/27 8.59 0.96/0.81 24.42 0.92/0.95 15.45 0.83/0.97 24.06 0.94/0.71
Ours (Robust ICP) 0.96 0.87/0.67 0.26 0.89/0.62 0.27 0.93/0.92 0.27 0.83/0.98 0.34 0.85/0.69

ICP-l 0.74 78/20 0.07 16/5.9 1.06 14/11 0.07 13/2.5 0.06 13/12
Sparse ICP-l 20.97 3.4/0.59 20.69 0.92/0.67 14.25 0.96/0.94 6.23 0.82/0.98 10.68 0.81/0.56

Symmetric ICP 0.25 34/0.6 0.19 0.88/0.64 0.20 0.92/0.93 0.20 0.82/0.98 0.18 0.79/0.56
Ours (Robust ICP-l) 0.36 57/0.6 0.20 0.88/0.64 0.21 0.92/0.93 0.18 0.82/0.98 0.17 0.79/0.56

GMM 4.37 130/120 3.52 29/30 5.66 63/49 4.02 19/12 5.73 110/120
CPD 2053.87 59/75 1115.53 17/9.9 2646.56 18/13 2056.87 13/8.8 1729.61 34/32

Teaser++ 3.07 180/180 2.80 38/20 2.83 230/90 2.75 230/320 2.99 250/260
DCP 0.02 220/210 0.02 320/360 0.02 300/270 0.02 330/350 0.02 220/220
DGR 1.10 26/28 1.12 6.5/5.7 1.29 9.8/9.8 0.94 6.5/5.2 1.25 11/8.9

each model for each method. Overall, our robust methods
and sparse ICP lead to more accurate results. Our methods
achieve best average/median RMSE measures in more
instances, while being significantly faster than sparse ICP.

In Fig. 8, we evaluate how partial overlaps and initial-
ization affect the registration accuracy of different methods.
For the Stanford bunny model, we use the method from [64]
to simulate four point clouds captured using Kinect from
different locations on the same horizontal plane as the model.
We take one of the point clouds as the source, and each of
the remaining three as the target for registration. For each
pair of point clouds, we first place them according to their
ground-truth alignment and perform PCA on the points,
then rotate the target point cloud around the PCA axis with
the smallest variance by an angle β as initial alignment. As
β increases, the initialization deviates more from the ground-
truth alignment. We test the methods with β = 10◦, 20◦,
50◦, 60◦, 80◦ and 100◦, respectively. Fig. 8 plots the resulting
RMSE values on each pair of point clouds with different
values of β, together with the overlapping ratio with respect
to the source point cloud. For all methods, the registration
accuracy deteriorates as the overlap ratio decreases and the
rotation angle increases. For an overlap ratio of 59%, our
robust methods and symmetric ICP can achieve small RMSE
values at the scale of 1 × 10−3 with a rotation angle up to
60%. For an overlap ratio of 19%, our robust point-to-point
ICP can still achieve an RMSE at the scale of 1× 10−2 with
a rotation angle up to 60%, while other methods perform
notably worse. With 1% overlap, all methods result in large
RMSE values regardless of the rotation angle.

6.2 Real-World Data

To evaluate their performance on real-world problems, we
test the methods on the RGB-D SLAM dataset [65], the ETH
laser registration dataset [62], and the 3DMatch dataset [66].
For the RGB-D SLAM dataset, We use eight point cloud
sequences captured with two cameras (“xyz”, “360”,“teddy”,
“desk” and “plant” for camera 1; ‘dishes”, “coke” and
“flowerbouquet” for camera 2). For each sequence, we register
pairs of point clouds that are a fixed number of frames
apart (five frames for camera 1, and 20 frames for camera 2,

Symmetric ICP

r = 0.40, 0.20s

Our (Robust ICP-l)

r = 0.16, 0.82s

ICP-l

r = 0.48, 6.70s

Sparse ICP-l

r = 0.42, 76.64s

Sparse ICP

r = 0.13, 67.49s

DCP

r = 0.35, 0.02s

Our (Robust ICP)

r = 0.013, 2.20s

DGR

r = 0.39, 5.15s

ICP

r = 0.16, 0.42s

Teaser ++

r = 0.39, 8.10s

Ground truth

GMM-Reg

r = 0.22, 19.57s

Input

#S: 23441, #T:17044

CPD

r = 0.14, 464.98s

0 20 40 60 80 100
10

-3

10
-2

10
-1

10
0

R
M

S
E

0 20 40 60 80 100

10
-2

10
-1

10
0

0 20 40 60 80 100

0.25

0.3

0.35

0.4

0.45

Rotation angle (degrees) Rotation angle (degrees) Rotation angle (degrees)

Overlap ratio: 56% Overlap ratio: 19% Overlap ratio: 1%

Overlap ratio: 19% , rotation angle: 60 degrees

ICP Sparse ICP Ours (Robust ICP) ICP-l Sparse ICP-l Ours (Robust ICP-l)

Symmetric ICP GMM-Reg CPD Teaser++ DCP DGR

0.05

0

Fig. 8. Registration results on simulated Kinect point clouds from the
Stanfard bunny model, with different overlap ratios, and different amounts
of rotation between the initial alignment to the ground truth.

taking into consideration the different velocities of the two
cameras). As the two point clouds are already close to each
other, we directly apply the registration methods without
pre-alignment. For the ETH laser registration dataset, we
test all of its eight point cloud sequences each containing
between 31 and 45 point clouds, and we align each pair of
adjacent point clouds from each sequence. For the 3DMatch
dataset, we use the point cloud pairs in their geometric
registration benchmark, and divide them into five categories
according to the overlapping ratio with respect to the source
point cloud: [0%, 20%), [20%, 40%), [40%, 60%), [60%, 80%),

12

TABLE 2
Average computational time (in seconds) and average/median RMSE (×10−2) using different registration methods for eight sequences from the

RGB-D SLAM dataset [65], with best performance numbers highlighted in bold fonts.

Dataset
xyz 360 teddy desk plant dishes coke flowerbouquet

Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE
ICP 0.23 2.1/0.89 0.76 5.1/4 0.68 2.1/1.4 0.26 2.3/1.2 0.51 1.6/1.1 0.80 3.7/2.8 0.93 3.1/2.5 0.91 2.7/2.2

AA-ICP 0.16 2.1/0.9 0.48 5.1/4 0.38 2.1/1.4 0.17 2.3/1.2 0.32 1.6/1.1 0.43 3.7/2.8 0.51 3.1/2.5 0.59 2.7/2.1
Ours (Fast ICP) 0.14 2.1/0.87 0.36 5.1/4 0.35 2.1/1.4 0.15 2.3/1.2 0.26 1.6/1.1 0.37 3.7/2.8 0.43 3.1/2.5 0.43 2.7/2.2

Sparse ICP 11.2 1.6/0.86 36.4 4.8/3.7 51.7 1.8/1.1 26.7 1.8/1.1 71.9 0.88/0.67 57.3 3.9/3.6 77.1 3.3/3 66.8 3.2/3
Ours (Robust ICP) 0.60 0.5/0.43 2.86 2.2/0.75 2.69 1/0.76 0.93 1.2/0.77 2.25 0.65/0.56 2.36 3.2/2.6 3.73 2.4/2.1 3.52 2.4/1.8

ICP-l 0.76 2.6/0.63 1.93 4.3/2.2 1.31 1.9/1.2 0.66 14/0.9 1.13 1.3/0.89 1.28 11/2.7 0.95 3.1/2.6 1.00 2.7/2.1
Sparse ICP-l 31.0 0.85/0.43 64.0 2.6/0.86 86.3 1.3/0.79 33.1 1.2/0.63 62.4 0.83/0.6 65.6 790/3.6 108 3.5/3 92.2 3.4/3.3

Symmetric ICP 0.18 1.2/0.44 0.36 1.8/0.73 0.47 1.1/0.82 0.19 1.7/0.7 0.42 0.7/0.59 0.39 3.8/3 0.54 3.4/2.9 0.53 3.3/3
Ours (Robust ICP-l) 0.43 1.1/0.43 1.25 2.6/0.84 1.34 1.3/0.82 0.56 1.5/0.64 1.16 0.71/0.57 1.11 3.8/3.4 1.50 3.3/3 1.46 3.2/3

GMM-Reg 1.88 4.4/3.7 2.31 6.3/4.6 1.63 3.2/2.6 1.95 5.7/4.6 1.72 2.7/2.1 1.65 3.7/2.7 1.73 3.1/2 1.63 2.4/1.8
CPD 427 4.6/3.6 423 5.3/3.3 442 2.2/1.5 348 2.1/1.8 442 1.4/1.1 434 3.4/2.7 433 2.6/1.8 430 2.3/1.8

Teaser++ 1.36 3.4/2 1.05 20/14 0.77 11/3.2 5.89 8/2.5 0.83 6.1/2.4 0.73 21/15 0.58 23/21 0.59 20/11
DCP 0.02 6.5/5.4 0.02 10/9.9 0.02 6.6/5.5 0.02 7/6 0.02 5.6/4.9 0.02 7.4/6 0.02 7.5/6 0.02 6.3/5.7
DGR 0.68 0.6/0.53 1.14 1.4/0.86 1.19 1/0.84 0.77 1.2/0.96 1.15 0.71/0.65 3.54 2.6/1.7 4.69 2.1/1.2 3.96 1.9/1.1

0 0.005 0.01 0.015

RMSE

 0%

 20%

 40%

 60%

 80%

100%

-r
ec

al
l

xyz

0 0.05 0.1 0.15

RMSE

 0%

 20%

 40%

 60%

 80%

100%
360

0 0.01 0.02 0.03 0.04

RMSE

 0%

 20%

 40%

 60%

 80%

100%
teddy

0 0.02 0.04 0.06

RMSE

 0%

 20%

 40%

 60%

 80%

100%
desk

0 0.005 0.01 0.015 0.02

RMSE

 0%

 20%

 40%

 60%

 80%

100%

-r
ec

al
l

plant

0 0.05 0.1

RMSE

 0%

 20%

 40%

 60%

 80%

100%
dishes

0 0.02 0.04 0.06 0.08

RMSE

 0%

 20%

 40%

 60%

 80%

100%

-r
ec

al
l

coke

0 0.02 0.04 0.06

RMSE

 0%

 20%

 40%

 60%

 80%

100%
flowerbouquet ICP

Sparse ICP

Ours (Robust ICP)

ICP-l

Sparse ICP-l

Symmetric ICP

Ours (Robust ICP-l)

GMM-Reg

CPD

Teaser++

DCP

DGR

0.05

0

Input Ground truth CPD

#S: 110225, #T: 103841 r = 0.026, 2.31sr = 0.041, 438.92s

GMM-Reg

r = 0.48, 0.69s r = 0.087, 0.02s r = 7.1e-3, 1.37s

Teaser ++ DCP DGR

ICP Ours (Robust ICP)

r = 0.034, 1.07s r = 0.031, 59.65s

Sparse ICP

r = 6.1e-3, 3.62s

ICP-l Sparse ICP-l Symmetric ICP Ours (Robust ICP-l)

r = 0.030, 0.74s r = 7.6e-3, 166.53s r = 7.8e-3, 0.62s r = 6.2e-3, 1.54s

Fig. 9. Examples of registration results using different methods on eight sequences from the RGB-D SLAM dataset [65], with color-coding to visualize
the deviation from the ground-truth alignment. The plots on the right show the α-recall rates of different methods for each point cloud sequence from
the dataset.

and [80%, 100%]. Within each category we sample 50 pairs
to perform registration. All point clouds are pre-processed
using a box grid filter to make the density more uniform,
which is the same as the pre-processing operation in [67].

Tables 2, 3 and 4 show the average computational time
and average/median RMSE for each method on the datasets,
whereas Figures 9, 10 and 11 show examples of registration
results together with color-coding of their deviation from the
ground truth. To visualize the distribution of RMSE within
each dataset, we also compute the α-recall rate |Sα|/|S| for
each method, where |S| is the total number of test cases,
and |Sα| is the number of test cases where the RMSE is
less than α [30]. Intuitively, for a given α, a higher α-recall
rate indicates more test cases with RMSE values lower
than α. The plots of α-recall rates for each method are
included in Figures 9, 10 and 11. For the RGB-D SLAM

dataset and the ETH laser registration dataset, the majority
of the lowest average/median RMSE values are achieved
by our robust methods, sparse ICP and symmetric ICP. Like
previous examples, our methods achieve similar or better
accuracy than sparse ICP with much lower computational
cost. DGR has good performance on both datasets: on the
RGB-D SLAM dataset it achieves the lowest average and
median RMSE for all the camera-2 sequences, whereas on
the ETH laser registration dataset it achieves the lowest
average RMSE on many sequences. This is potentially due to
similar characteristics between its training data and the test
cases. For the 3DMatch dataset, ICP-based methods perform
better on problems with overlap ratios higher than 40%, with
our robust point-to-point ICP and symmetric ICP attaining
four out of the six lowest average/median RMSE values.
For lower overlap ratios, DGR achieves the best accuracy

13

TABLE 3
Average computational time (in seconds) and average/median RMSE (×10−3) for different registration methods on point cloud pairs in eight

sequences from the ETH laser registration dataset [62]. Best performance numbers are highlighted in bold fonts.

Method
Apartment

ETH
Hauptgebaude

Stairs Mountains
Gazebo

in summer
Gazebo

in winter
Wood

in summer
Wood

in winter
Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE

ICP 0.06 36/12 0.23 33/2.5 0.15 16/2.4 0.12 12/6.1 0.14 15/7.5 0.17 14/1.7 0.22 9.7/1.4 0.16 8.8/1.3
AA-ICP 0.08 45/12 0.24 35/2.6 0.14 16/2.4 0.12 12/6.2 0.15 15/7.5 0.21 14/1.7 0.18 9.7/1.4 0.25 8.8/1.3

Ours (Fast ICP) 0.05 36/12 0.17 33/2.6 0.08 17/2.6 0.08 12/6.2 0.14 15/7.5 0.14 14/1.7 0.23 9.7/1.4 0.15 8.8/1.3
Sparse ICP 1.23 13/2 13.6 39/10 2.33 6/1.2 4.22 4.7/0.62 7.18 11/0.75 12.8 17/0.51 13.6 11/0.44 13.4 7.2/0.46

Ours (Robust ICP) 0.24 13/1.9 0.83 15/0.55 0.25 5.6/1.2 0.22 3/0.6 0.40 0.77/0.72 0.63 10/0.35 0.72 8.3/0.42 0.48 0.4/0.36
ICP-l 0.74 41/7.1 0.10 33/1.4 0.36 8.3/1.2 0.08 6/3.1 0.28 12/6.5 0.53 18/1.5 0.34 14/1.5 0.64 9.1/1.5

Sparse ICP-l 11.0 12/0.83 14.1 35/0.41 14.0 4.8/0.27 13.0 1.7/0.59 10.3 0.63/0.58 11.6 12/0.29 17.7 11/0.44 18.5 7.2/0.47
Symmetric ICP 0.09 11/1.1 0.22 33/0.44 0.10 6/0.49 0.10 0.84/0.82 0.17 6.4/0.67 0.19 10/0.39 0.24 8.5/0.65 0.23 7.6/0.73

Ours (Robust ICP-l) 0.13 11/0.79 0.35 35/0.43 0.17 4.8/0.32 0.15 4.3/0.63 0.27 2.6/0.56 0.34 18/0.37 0.48 11/0.43 0.48 7.2/0.38
GMM-Reg 1.95 28/15 1.78 43/9.7 2.27 20/8.6 2.46 15/11 1.45 12/10 1.58 20/7.9 1.19 22/11 1.13 19/11

CPD 127 28/6.4 465 43/12 246 8.2/3.5 150 9.6/5.7 454 12/8.5 453 20/8 458 23/13 456 19/13
Teaser++ 0.53 260/310 0.46 190/180 0.48 150/130 0.45 190/190 0.45 230/250 0.45 140/160 0.47 180/180 0.45 200/190

DCP 0.02 100/100 0.02 20/15 0.02 44/39 0.02 40/34 0.02 58/50 0.02 32/27 0.02 28/19 0.02 45/32
DGR 5.85 15/1.7 27.28 7.4/8.6 0.61 3.5/1.8 0.78 15/6 0.87 1.7/1.1 1.05 0.6/0.55 1.37 1/0.94 1.30 2.5/0.81

0 0.05 0.1 0.15 0.2

RMSE

 0%

 20%

 40%

 60%

 80%

100%

-r
ec

al
l

Apartment

0 0.005 0.01 0.015

RMSE

 0%

 20%

 40%

 60%

 80%

100%
ETH Hauptgebaude

0 0.01 0.02 0.03

RMSE

 0%

 20%

 40%

 60%

 80%

100%
Stairs

0 0.001 0.002 0.003

RMSE

 0%

 20%

 40%

 60%

 80%

100%

-r
ec

al
l

Mountain plain

0 0.0005 0.001 0.0015

RMSE

 0%

 20%

 40%

 60%

 80%

100%

-r
ec

al
l

Gazebo in summer

0 0.0005 0.001

RMSE

 0%

 20%

 40%

 60%

 80%

100%
Gazebo in winter

0

RMSE

 0%

 20%

 40%

 60%

 80%

100%
Wood in summer

0.001 0.002 0.003

0

RMSE

 0%

 20%

 40%

 60%

 80%

100%
Wood in autumn

0.001 0.002 0.003

ICP

Sparse ICP

Ours (Robust ICP)

ICP-l

Sparse ICP-l

Symmetric ICP

Ours (Robust ICP-l)

GMM-Reg

CPD

Teaser++

DCP

DGR

Ground truth

Symmetric ICP

r = 1.1e-3, 0.09s

Our (Robust ICP)

r = 2.0e-3, 0.28s

Our (Robust ICP-l)

r = 8.6e-4e-4, 0.15s

Input

#S: 9931, #T:8837

ICP

r = 0.10, 0.11s

ICP-l

r = 0.12, 2.41s

Sparse ICP

r = 2.1e-2, 0.85s

Sparse ICP-l

r = 8.7e-4, 1.37s

DGR

r = 1.8e-3, 1.18s

DCP

r = 0.11, 0.02s

Teaser ++

r = 0.37, 0.50s

GMM-Reg

r = 0.026, 2.56s

CPD

r = 0.047, 161.48s

log10
-1

 -3

Fig. 10. Examples of registration results with different methods on the ETH laser registration dataset [62], with color-coding for the deviation from the
ground-truth alignment. The plots on the left show the α-recall rates of each method for the point cloud sequences in the dataset.

TABLE 4
Average computational time (in seconds) and average/median RMSE (×10−2) using different registration methods for the 3DMatch dataset [66], with

best performance numbers highlighted in bold fonts.

Overlap
0-20% 20%-40% 40%-60% 60%-80% 80%-100%

Time RMSE Time RMSE Time RMSE Time RMSE Time RMSE
ICP 0.30 43/42 0.28 26/23 0.21 16/11 0.16 6.4/4 0.06 1.8/1.1

AA-ICP 0.25 43/42 0.27 26/23 0.22 16/11 0.13 6.4/4 0.06 1.8/1.1
Ours (Fast ICP) 0.19 43/42 0.16 26/23 0.12 16/11 0.09 6.4/4 0.05 1.8/1.1

Sparse ICP 45.92 41/43 42.54 22/18 29.20 10/2.5 20.38 3.1/0.74 9.43 0.75/0.34
Ours (Robust ICP) 2.18 43/44 1.27 22/19 0.69 9.2/1 0.38 2.5/0.51 0.17 0.76/0.33

ICP-l 3.91 44/44 2.67 25/23 1.53 14/7.9 0.87 4.7/2 0.13 1.4/0.69
Sparse ICP-l 73.05 43/45 67.49 21/16 53.82 10/1.4 35.63 2.6/0.54 26.19 0.7/0.33

Symmetric ICP 0.17 40/45 0.15 16/2.6 0.12 9/0.91 0.11 2.7/0.59 0.09 0.36/0.34
Ours (Robust ICP-l) 0.59 42/43 0.40 20/15 0.29 9.8/1.3 0.22 2.5/0.56 0.15 0.71/0.35

GMM-Reg 2.08 52/50 2.33 33/32 2.25 20/12 2.01 11/7.2 1.74 8.2/6.9
CPD 308.72 43/45 390.49 30/27 361.42 20/16 291.68 9.4/6.2 181.80 6.1/4.6

Teaser++ 0.001 50/52 0.001 42/44 0.001 34/38 0.001 20/18 0.001 18/14
DCP 0.02 37/38 0.02 29/28 0.02 22/20 0.02 13/13 0.02 8.6/8.3
DGR 2.94 14/2.7 2.61 1.5/1.3 1.33 2.7/0.96 1.12 0.75/0.64 0.86 0.51/0.43

14

0 0.2 0.4

RMSE

 0%

 20%

 40%

 60%

 80%

100%
-r

ec
al

l
0-20%

0 0.1 0.2 0.3 0.4

RMSE

 0%

 20%

 40%

 60%

 80%

100%
20% - 40%

0 0.1 0.2 0.3 0.4

RMSE

 0%

 20%

 40%

 60%

 80%

100%
40% - 60%

0 0.1 0.2 0.3

RMSE

 0%

 20%

 40%

 60%

 80%

100%
60% - 80%

0 0.01 0.02 0.03

RMSE

 0%

 20%

 40%

 60%

 80%

100%
80% - 100% ICP

Sparse ICP

Ours (Robust ICP)

ICP-l

Sparse ICP-l

Symmetric ICP

Ours (Robust ICP-l)

GMM-Reg

CPD

Teaser++

DCP

DGR

Ground truth

Symmetric ICP

r = 6.0e-3, 0.08s

Our (Robust ICP)

r = 6.1e-3, 0.34s

Our (Robust ICP-l)

r = 4.1e-4, 0.17s

Input

#S: 7636, #T: 13511

ICP

r = 0.061, 0.094s

ICP-l

r = 0.11, 0.13s

Sparse ICP

r = 0.026, 17.36s

Sparse ICP-l

r = 4.6e-3, 22.38s

DGR

r = 0.011, 0.85s

DCP

r = 0.21, 0.02s

Teaser ++

r = 0.32, 0.001s

GMM-Reg

r = 0.13, 2.42s

CPD

r = 0.060, 200.92s

log10
0

 -2

Fig. 11. Examples of registration results for point clouds from the 3DMatch dataset [66], with color-coding to visualize the deviation from the
ground-truth alignment. The plots on the top show the α-recall rates of different methods on point cloud pairs in each range of overlapping ratio.

0 10 20 30 40 50

Rotation angles (degrees)

10
-4

10
-2

10
0

R
M

S
E

Our (Robust ICP)

r = 1.8e-3, 163.32s

Our (Robust ICP-l)

r = 2.2e-4, 57.10s

Ground truth

Input

#S: 751996, #T:350932

ICP

r = 0.028, 43.75s

ICP-l

r = 0.049, 22.40s

Symmetric ICP

r = 9.8e-4, 3.92s

Sparse ICP

r = 0.24, 1447.07s

Sparse ICP-l

r = 0.30, 2337.74s

DGR

r = 0.40, 70.67s

DCP

r = 0.27, 0.02s

GMM-Reg

r = 0.17, 1.57s

Teaser ++

r = 0.36, 0.67s

CPD

r = 0.16, 486.46s

log10
-1

 -3

ICP

Sparse ICP

Ours (Robust ICP)

ICP-l

Sparse ICP-l

Symmetric ICP

Ours (Robust ICP-l)

GMM-Reg

CPD

Teaser++

DCP

DGR

Fig. 12. Registration results for the failure case in Fig. 6 with 50% added outliers, using random initial alignments that rotates the source point cloud
from its ground-truth position by a fixed angle around a random axis. The plots on the right shows the average RMSE values for each rotation angle.

because it is trained using the training set of the 3DMatch
dataset and learns the characteristics of the test cases.

6.3 Limitations

Like other ICP-based methods, our robust methods rely
on good initial alignment. As shown in Fig. 6 and Tab. 4,
for some challenging problems, our methods may perform
poorly because the initial alignment from Super4PCS de-
viates significantly from the ground truth. In Fig. 12, we
conduct another experiment for the failure case in Fig. 6
with 50% added outliers, using random initial alignments
instead of Super4PCS. Specifically, we first rotate the source
point cloud from its ground-truth position by a fixed angle β
around a random axis, and then perform registration. We test
the methods with β = 5◦, 10◦, 20◦, 30◦ and 50◦, respectively.
For each value of β, we conduct the experiment 10 times
to construct 10 random initial alignments, and compute the

average RMSE for each method. Fig. 12 shows that our robust
methods can still produce good results for such a challenging
case if the initialization is not too far away from the ground
truth. In particular, our robust point-to-plane ICP produces
an average RMSE at the scale of 1×10−4 with a rotation angle
up to 30◦, whereas our robust point-to-point ICP produces
an average RMSE at the scale of 1 × 10−3 with a rotation
angle up to 50◦. It verifies that the poor performance of our
methods in Fig. 6 is due to initialization.

For point clouds with a very small overlap, our methods
may produce an incorrect result even with a good initial
alignment (e.g., see Fig. 8). This is partly due to our choice of
the parameter ν. Its initial value νmax is chosen based on the
median initial alignment error, which is affected by the 50%
of source points that are closest to the target point cloud. If
the proportion of source points in the overlapping region is
significantly less than 50%, then νmax may be much larger

15

than the true initial distance. This may include too many
source points into the initial iterations of the solver and lead
it towards an incorrect result.

7 CONCLUSION AND FUTURE WORK

We proposed methods to improve the convergence speed
and robustness of point-to-point and point-to-plane ICP
methods. We first propose an Anderson-accelerated point-
to-point ICP based on Lie algebra parameterization of rigid
transformations, together with a stabilization strategy that
ensures monotonic decrease of target energy. We also develop
a robustified point-to-point ICP formulation based on the
Welsch’s function, and solve it using an Anderson-accelerated
MM solver. Finally, we extend the robust formulation and
the accelerated numerical solver to point-to-plane ICP. The
resulting robust ICP schemes achieve similar or better
accuracy than sparse ICP, while being significantly faster.
The methods provide efficient and robust solutions to rigid
registration problems where the data may be noisy, contain
outliers, and overlap partially.

Our methods can be further improved in a few directions.
First, to obtain good initial alignment for challenging cases,
we can potentially adopt a machine learning-based method
for determining a coarse alignment; this is similar to the
practice in [35] that uses ICP to refine a DCP alignment.
Second, we need a more sophisticated way to control the ν
parameter and make our solver more robust on point clouds
with a very small overlap; a data-driven approach could be a
potential solution. Finally, symmetric ICP shows promising
performance in many of our comparisons; one interesting
future work is to extend our approach to the symmetric ICP
formulation, e.g. by replacing their ℓ2 target function with a
robust error metric.

ACKNOWLEDGMENTS

This work was supported by National Natural Science
Foundation of China (No. 61672481), and Youth Innovation
Promotion Association CAS (No. 2018495).

REFERENCES

[1] P. J. Besl and N. D. McKay, “A method for registration of 3-d
shapes,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 14, no. 2, pp.
239–256, 1992.

[2] H. Pottmann, Q. Huang, Y. Yang, and S. Hu, “Geometry and
convergence analysis of algorithms for registration of 3d shapes,”
International Journal of Computer Vision, vol. 67, no. 3, pp. 277–296,
2006.

[3] Y. Chen and G. Medioni, “Object modelling by registration of
multiple range images,” Image and Vision Computing, vol. 10, no. 3,
pp. 145–155, 1992.

[4] H. Pottmann, S. Leopoldseder, and M. Hofer, “Registration without
ICP,” Computer Vision and Image Understanding, vol. 95, no. 1, pp.
54–71, 2004.

[5] S. Rusinkiewicz and M. Levoy, “Efficient variants of the ICP
algorithm,” in 3rd International Conference on 3D Digital Imaging
and Modeling (3DIM 2001), 2001, pp. 145–152.

[6] S. Bouaziz, A. Tagliasacchi, and M. Pauly, “Sparse iterative closest
point,” Comput. Graph. Forum, vol. 32, no. 5, pp. 113–123, 2013.

[7] K. Lange, MM Optimization Algorithms. SIAM, 2016.
[8] H. F. Walker and P. Ni, “Anderson acceleration for fixed-point

iterations,” SIAM Journal on Numerical Analysis, vol. 49, no. 4, pp.
1715–1735, 2011.

[9] Y. Peng, B. Deng, J. Zhang, F. Geng, W. Qin, and L. Liu, “Anderson
acceleration for geometry optimization and physics simulation,”
ACM Trans. Graph., vol. 37, no. 4, pp. 42:1–42:14, 2018.

[10] N. J. Mitra and A. Nguyen, “Estimating surface normals in noisy
point cloud data,” in Proceedings of the Nineteenth Annual Symposium
on Computational Geometry, 2003, pp. 322–328.

[11] A. L. Pavlov, G. V. Ovchinnikov, D. Y. Derbyshev, D. Tsetserukou,
and I. V. Oseledets, “AA-ICP: iterative closest point with anderson
acceleration,” in 2018 IEEE International Conference on Robotics and
Automation (ICRA), 2018, pp. 1–6.

[12] P. W. Holland and R. E. Welsch, “Robust regression using iteratively
reweighted least-squares,” Communications in Statistics - Theory and
Methods, vol. 6, no. 9, pp. 813–827, 1977.

[13] EPFL Computer Graphics and Geometry Laboratory, “EPFL statue
model repository,” https://lgg.epfl.ch/statues dataset.php, 2012.

[14] G. K. L. Tam, Z. Cheng, Y. Lai, F. C. Langbein, Y. Liu, A. D. Marshall,
R. R. Martin, X. Sun, and P. L. Rosin, “Registration of 3d point
clouds and meshes: A survey from rigid to nonrigid,” IEEE Trans.
Vis. Comput. Graph., vol. 19, no. 7, pp. 1199–1217, 2013.

[15] S. Bouaziz, A. Tagliasacchi, H. Li, and M. Pauly, “Modern tech-
niques and applications for real-time non-rigid registration,” in
SIGGRAPH ASIA 2016 Courses, 2016.

[16] F. Pomerleau, F. Colas, R. Siegwart, and S. Magnenat, “Comparing
ICP variants on real-world data sets - open-source library and
experimental protocol,” Auton. Robots, vol. 34, no. 3, pp. 133–148,
2013.

[17] S. Rusinkiewicz, “A symmetric objective function for ICP,” ACM
Trans. Graph., vol. 38, no. 4, pp. 85:1–85:7, 2019.

[18] N. Gelfand, N. J. Mitra, L. J. Guibas, and H. Pottmann, “Robust
global registration,” in Proceedings of the Third Eurographics Sympo-
sium on Geometry Processing, 2005.

[19] R. B. Rusu, N. Blodow, and M. Beetz, “Fast point feature histograms
(FPFH) for 3d registration,” in 2009 IEEE International Conference on
Robotics and Automation, 2009, pp. 3212–3217.

[20] D. Aiger, N. J. Mitra, and D. Cohen-Or, “4-points congruent sets for
robust pairwise surface registration,” ACM Trans. Graph., vol. 27,
no. 3, pp. 85:1–85:10, 2008.

[21] N. Mellado, D. Aiger, and N. J. Mitra, “Super 4PCS fast global
pointcloud registration via smart indexing,” Computer Graphics
Forum, vol. 33, no. 5, pp. 205–215, 2014.

[22] N. J. Mitra, N. Gelfand, H. Pottmann, and L. Guibas, “Registration
of point cloud data from a geometric optimization perspective,” in
Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on
Geometry Processing, 2004, pp. 22–31.

[23] Z. Zhang, “Iterative point matching for registration of free-form
curves and surfaces,” International Journal of Computer Vision, vol. 13,
no. 2, pp. 119–152, 1994.

[24] D. Chetverikov, D. Stepanov, and P. Krsek, “Robust Euclidean
alignment of 3d point sets: the trimmed iterative closest point
algorithm,” Image and Vision Computing, vol. 23, no. 3, pp. 299–309,
2005.

[25] A. Myronenko and X. Song, “Point set registration: Coherent point
drift,” IEEE Transactions on Pattern Analysis and Machine Intelligence,
vol. 32, no. 12, pp. 2262–2275, 2010.

[26] B. Jian and B. C. Vemuri, “Robust point set registration using
gaussian mixture models,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 33, no. 8, pp. 1633–1645, 2011.

[27] T. Masuda and N. Yokoya, “A robust method for registration and
segmentation of multiple range images,” Computer Vision and Image
Understanding, vol. 61, no. 3, pp. 295–307, 1995.

[28] E. Trucco, A. Fusiello, and V. Roberto, “Robust motion and
correspondence of noisy 3-d point sets with missing data,” Pattern
Recognition Letters, vol. 20, no. 9, pp. 889–898, 1999.

[29] A. W. Fitzgibbon, “Robust registration of 2d and 3d point sets,”
Image Vision Comput., vol. 21, no. 13-14, pp. 1145–1153, 2003.

[30] Q. Zhou, J. Park, and V. Koltun, “Fast global registration,” in
Computer Vision – ECCV 2016, 2016, pp. 766–782.

[31] H. Li and R. Hartley, “The 3D-3D registration problem revisited,”
in 2007 IEEE 11th International Conference on Computer Vision, 2007,
pp. 1–8.

[32] C. Olsson, F. Kahl, and M. Oskarsson, “Branch-and-bound methods
for euclidean registration problems,” IEEE Transactions on Pattern
Analysis and Machine Intelligence, vol. 31, no. 5, pp. 783–794, 2009.

[33] J. Yang, H. Li, D. Campbell, and Y. Jia, “Go-ICP: A globally optimal
solution to 3d ICP point-set registration,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 38, no. 11, pp. 2241–2254, 2016.

16

[34] H. Yang, J. Shi, and L. Carlone, “TEASER: Fast and certifiable point
cloud registration,” IEEE Transactions on Robotics, 2020.

[35] Y. Wang and J. M. Solomon, “Deep closest point: Learning repre-
sentations for point cloud registration,” in The IEEE International
Conference on Computer Vision (ICCV), October 2019.

[36] C. Choy, W. Dong, and V. Koltun, “Deep global registration,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), June 2020.

[37] D. G. Anderson, “Iterative procedures for nonlinear integral
equations,” J. ACM, vol. 12, no. 4, pp. 547–560, 1965.

[38] V. Eyert, “A comparative study on methods for convergence
acceleration of iterative vector sequences,” Journal of Computational
Physics, vol. 124, no. 2, pp. 271–285, 1996.

[39] H.-r. Fang and Y. Saad, “Two classes of multisecant methods for
nonlinear acceleration,” Numerical Linear Algebra with Applications,
vol. 16, no. 3, pp. 197–221, 2009.

[40] A. Toth and C. T. Kelley, “Convergence analysis for anderson
acceleration,” SIAM Journal on Numerical Analysis, vol. 53, no. 2, pp.
805–819, 2015.

[41] H. D. Sterck, “A nonlinear gmres optimization algorithm for canon-
ical tensor decomposition,” SIAM Journal on Scientific Computing,
vol. 34, no. 3, pp. A1351–A1379, 2012.

[42] K. Lipnikov, D. Svyatskiy, and Y. Vassilevski, “Anderson acceler-
ation for nonlinear finite volume scheme for advection-diffusion
problems,” SIAM Journal on Scientific Computing, vol. 35, no. 2, pp.
A1120–A1136, 2013.

[43] P. P. Pratapa, P. Suryanarayana, and J. E. Pask, “Anderson accelera-
tion of the jacobi iterative method: An efficient alternative to Krylov
methods for large, sparse linear systems,” Journal of Computational
Physics, vol. 306, pp. 43–54, 2016.

[44] N. Ho, S. D. Olson, and H. F. Walker, “Accelerating the Uzawa
algorithm,” SIAM Journal on Scientific Computing, vol. 39, no. 5, pp.
S461–S476, 2017.

[45] P. Suryanarayana, P. P. Pratapa, and J. E. Pask, “Alternating
anderson-richardson method: An efficient alternative to precondi-
tioned krylov methods for large, sparse linear systems,” Computer
Physics Communications, vol. 234, pp. 278–285, 2019.

[46] J. Zhang, Y. Peng, W. Ouyang, and B. Deng, “Accelerating ADMM
for efficient simulation and optimization,” ACM Trans. Graph.,
vol. 38, no. 6, pp. 163:1–163:21, 2019.

[47] W. Ouyang, Y. Peng, Y. Yao, J. Zhang, and B. Deng, “Anderson
acceleration for nonconvex ADMM based on Douglas-Rachford
splitting,” Computer Graphics Forum, vol. 39, no. 5, pp. 221–239,
2020.

[48] F. A. Potra and H. Engler, “A characterization of the behavior of
the anderson acceleration on linear problems,” Linear Algebra and
its Applications, vol. 438, no. 3, pp. 1002–1011, 2013.

[49] O. Sorkine-Hornung and M. Rabinovich. (2017) Least-squares
rigid motion using svd. [Online]. Available: https://igl.ethz.ch/
projects/ARAP/svd rot.pdf

[50] K. Lange, Optimization. Springer New York, 2004, ch. The MM
Algorithm, pp. 119–136.

[51] C. Evans, S. Pollock, L. G. Rebholz, and M. Xiao, “A proof that
Anderson acceleration improves the convergence rate in linearly
converging fixed-point methods (but not in those converging
quadratically),” SIAM J. Numer. Anal., vol. 58, no. 1, pp. 788–810,
2020.

[52] J. Diebel, “Representing attitude: Euler angles, unit quaternions,
and rotation vectors,” 2006.

[53] D. K. Hoffman, R. C. Raffenetti, and K. Ruedenberg, “Generaliza-
tion of Euler angles to n-dimensional orthogonal matrices,” Journal
of Mathematical Physics, vol. 13, no. 4, pp. 528–533, 1972.

[54] V. S. Varadarajan, Lie groups, Lie algebras, and their representations,
ser. Graduate Texts in Mathematics. New York: Springer-Verlag,
1984, vol. 102.

[55] J. Gallier and D. Xu, “Computing exponentials of skew symmetric
matrices and logarithms of orthogonal matrices,” International
Journal of Robotics and Automation, vol. 18, no. 1, pp. 10–20, 2002.

[56] A. Fu, J. Zhang, and S. Boyd, “Anderson accelerated Douglas-
Rachford splitting,” arXiv preprint arXiv:1908.11482, 2019.

[57] B. Ham, M. Cho, and J. Ponce, “Robust guided image filtering
using nonconvex potentials,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 40, no. 1, pp. 192–207, 2018.

[58] J. Zhang, B. Deng, Y. Hong, Y. Peng, W. Qin, and L. Liu,
“Static/dynamic filtering for mesh geometry,” IEEE Transactions
on Visualization and Computer Graphics, vol. 25, no. 4, pp. 1774–1787,
2019.

[59] R. Chartrand and W. Yin, “Iteratively reweighted algorithms for
compressive sensing,” in 2008 IEEE International Conference on
Acoustics, Speech and Signal Processing, 2008, pp. 3869–3872.

[60] P. Ochs, A. Dosovitskiy, T. Brox, and T. Pock, “On iteratively
reweighted algorithms for nonsmooth nonconvex optimization
in computer vision,” SIAM Journal on Imaging Sciences, vol. 8, no. 1,
pp. 331–372, 2015.

[61] Y. Wang, W. Yin, and J. Zeng, “Global convergence of ADMM in
nonconvex nonsmooth optimization,” Journal of Scientific Computing,
vol. 78, no. 1, pp. 29–63, 2019.

[62] F. Pomerleau, M. Liu, F. Colas, and R. Siegwart, “Challenging
data sets for point cloud registration algorithms,” The International
Journal of Robotics Research, vol. 31, no. 14, pp. 1705–1711, 2012.

[63] G. Guennebaud, B. Jacob et al., “Eigen v3,”
http://eigen.tuxfamily.org, 2010.

[64] J. Bohg, J. Romero, A. Herzog, and S. Schaal, “Robot arm pose
estimation through pixel-wise part classification,” in 2014 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2014, pp. 3143–3150.

[65] J. Sturm, N. Engelhard, F. Endres, W. Burgard, and D. Cremers, “A
benchmark for the evaluation of RGB-D SLAM systems,” in 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems,
2012, pp. 573–580.

[66] A. Zeng, S. Song, M. Niessner, M. Fisher, J. Xiao, and T. Funkhouser,
“3dmatch: Learning local geometric descriptors from rgb-d recon-
structions,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), July 2017.

[67] J. Vongkulbhisal, B. I. Ugalde, F. D. la Torre, and J. P. Costeira,
“Inverse composition discriminative optimization for point cloud
registration,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 2993–3001.

[68] N. J. Higham, Functions of Matrices: Theory and Computation. Society
for Industrial and Applied Mathematics, 2008.

[69] G. H. Golub and C. F. V. Loan, Matrix computions. The Johns
Hopkins University Press, 1983.

[70] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge
university press, 2012.

[71] R. M.Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation. CRC Press, 1994.

[72] G. Guillermo and Y. Anthony, “A compact formula for the
derivative of a 3-d rotation in exponential coordinates,” Journal of
Mathematical Imaging and Vision, vol. 51, no. 3, pp. 378–384, 2015.

APPENDIX A

COMPUTING MATRIX LOGARITHMS

To compute matrix logarithms, Existing numerical methods
such as the inverse scaling and squaring method [68] requires
the matrix to have no negative eigenvalues, which may
not hold for the transformation matrices considered in this
paper. In the following, we derive a numerical method for
computing logarithms of transformation matrices without
such restrictions.

Given a transformation matrix

T =

[
R t

0 1

]
∈ R

(n+1)×(n+1)

where R is a rotation matrix, it can be shown that its real
Schur decomposition has the following form [69], [70]:

T = QUQT = Q

U11 U12 U13 . . . U1m

0 U22 U23 . . . U2m

...
...

...
. . .

...
0 0 0 . . . Umm

Q

T ,

where Q ∈ R
(n+1)×(n+1) is an orthogonal matrix, and each

diagonal block Uii is either a 1-by-1 matrix or a 2-by-2 matrix.
Due to the special form of T, we can permute the rows and
columns of U as well as the columns of Q to obtain the
following decomposition:

T = Q′U′Q′T (27)

17

where

Q′ =

[
Q1 0
0 1

]
, U′ =

[
D y

0 1

]
,

and D is a block diagonal matrix [70]:

D =

D1

. . .

Dp

In−2p

 .

Here Di is 2-by-2 rotation matrix and can be written as

Di =

[
cos θi − sin θi
sin θi cos θi

]
(28)

with θ ∈ [0, π]. Using the decomposition (27), the logarithm
of T can be computed as [69], [70]:

log (T) = log(Q′U′Q′T) = Q′ log(U′)Q′T .

To compute log(U′), we first note that the rotation angle θi
in (28) can be determined from the entries of Di. We can
then calculate the logarithm of Di as

Bi = log(Di) =

[
0 −θi
θi 0

]
, (29)

Then we compute log(U′) according to [55] as

log (U′) = log

[
D y

0 1

]
=

[
B Vy

0 0

]
, (30)

where

B = log (D) =

B1

. . .

Bp

0n−2p

 , (31)

and

V = In +

p∑

i=1

(
−θi

2
Bi + (1− θi sin θi

2(1− cos θi)
)B2

i

)
. (32)

Algorithm 3 provides the psuedo-code for computing log(T).

Algorithm 3: Logarithm for matrices in SE(d).

Input: Transform matrix T ∈ SE(d).
Output: T̂ = log(T).

1 Compute the real Schur decomposition (Q,U) of T;
2 Rearrange Q,U to obtain matrices Q′,U′ in Eq. (27);
3 Calculate log(U′) according to Eqs. (29)–(32);

4 T̂ = Q′ log(U′)Q′T ;

APPENDIX B

SURROGATE FUNCTION FOR EQ. (13)

In this section, we show that the function in Eq. (15) is
a surrogate function of the target function in Eq. (13) at
the current transformation R(k), t(k). To simplify notation,

we denote Di = Di(R, t) and D
(k)
i = Di(R

(k), t(k)). By

definition, since χν

(
Di | D(k)

i

)
is a surrogate function for

ψν(Di) at D
(k)
i , we have

ψν

(
D

(k)
i

)
= χν

(
D

(k)
i | D(k)

i

)
,

ψν(Di) ≤ χν

(
Di | D(k)

i

)
, ∀ Di 6= D

(k)
i .

(33)

Note that the function xi(R, t) = ‖Rpi + t− q̂
(k)
i ‖ satisfies

Di ≤ xi(R, t), D
(k)
i = xi(R

(k), t(k)). (34)

Moreover, χν(x | y) is a monotonically increasing function
on x ∈ [0,+∞), which together with Eqs. (33) and (34)
means that

ψν

(
D

(k)
i

)
= χν

(
D

(k)
i | D(k)

i

)
= χν

(
xi(R

(k), t(k)) | D(k)
i

)
,

ψν(Di) ≤ χν

(
Di | D(k)

i

)
≤ χν

(
xi(R, t) | D(k)

i

)
.

It shows that χν

(
xi(R, t) | D(k)

i

)
is a surrogate function

for ψν(Di) at D
(k)
i . Then substituting each term ψν(Di) in

Eq. (13) with χν

(
xi(R, t) | D(k)

i

)
, we can see that Eq. (15) is

a surrogate function at (R(k), t(k)).

APPENDIX C

CHOICES OF νmin

In this section, we explain the rationale for our choices of
νmin for our robust ICP methods.

For the point-to-point method, our intention is to set
νmin large enough such that point pairs with deviation
due to difference in sampling locations will be included
in the alignment step. For ease of discussion, we first assume
that the target set has uniform sampling density, and the
source set is sampled from a triangulated surface using the
target set as vertices. Then within the overlapping region the
distance from a point in p ∈ P to the set Q can be up to
E/

√
3 where E is the distance between neighboring points

within Q (e.g., when p lies at the center of an equilateral
triangle T with edge length E from the triangulation of
Q). In order to include p and its closest point into the
alignment step, νmin should be no smaller than 1/3 of the
distance between them due to the three-sigma rule, i.e.,
νmin ≥ E/(3

√
3). In practice, the sampling density of Q may

not be uniform. Therefore, we compute the representative
distance EQ between neighboring points in Q as explained
in Section 4.3, and set νmin = EQ/(3

√
3).

For the point-to-plane method, we first use the same
assumption as the point-to-point method: the target set has
uniform sampling density, and the source set is sampled
from a surface triangulated from the target set. For a source
point p ∈ P , suppose its closest point in Q is q. Then for

Such a point should be included into the alignment
process. Recall that a point pi ∈ P will be effectively
excluded from the alignment step if the distance between its
current transformed position and the point set Q is larger
than 3ν. Therefore, to ensure the points in the overlapping
region are included for alignment, νmin should be no smaller
than E

3
√
3

. In reality, the sampling density of the point sets

may not be uniform, thus we adapt the above heuristics as
follows. We first compute the median distance from each
point pi ∈ P to its six nearest neighbors in P , and take the
median EP of these median distance values across P . In the

18

same way, we compute a value EQ for the set Q. Let s ∈ Q
be the neighbor point of q that is the farthest away from
the tangent plane at q. Denote by Hq(·) the distance to the
tangent plane at q. Then we must have Hq(p) ≤ 1

2Hq(s),
otherwise q would not be the closest point to p in Q. Then
order to include the pair (p,q) into the alignment step, we
can set νmin ≥ 1

6Hq(s) ≥ 1
3Hq(p). To handle non-uniform

sampling of Q, we compute the representative distance
HQ to a neighboring point’s tangent plane in Q, and set
νmin = HQ/6.

APPENDIX D

CALCULATION OF GRADIENT J(k) IN EQ. (24)

In this section, we show how to calculate the gradient J(k)

at T(k) in Eq. (24). We denotes the actual variables T̃ =

[δT ,uT]T , where δ = [δ1, δ2, δ3], then the gradient of B
(k)
i

can be represented as

J
(k)
i =

[
∂B

(k)
i

∂δT
,
∂B

(k)
i

∂uT

]T
,

and

∂B
(k)
i

∂δj
=

(
∂B

(k)
i

∂R
◦ ∂R
∂δj

)

sum

+

(
∂B

(k)
i

∂t
◦ ∂t

∂δj

)

sum

,

∂B
(k)
i

∂uj

=

(
∂B

(k)
i

∂t
◦ ∂t

∂uj

)

sum

,

where 1 ≤ j ≤ 3, ◦ is element-wise multiplication of two
matrices, and (·)sum is to add up each element of the matrix.
According to Eq.(22), we can calculate

∂B
(k)
i

∂R
= n̂

(k)
i pT

i ,
∂B

(k)
i

∂t
= n̂

(k)
i .

Then we compute the derivative of (R, t) about δ and u.
According to [71], defining

a∧ =

0 −a3 a2
a3 0 −a1
−a2 a1 0

 ,

where a = (a1, a2, a3)
T . Let ‖δ‖ denates the ℓ2-norm of δ.

When ‖δ‖ 6= 0, according to [72], the derivatives of rotation
matrix R about δ is

∂R

∂δj
=
δjδ

∧ + (δ × (I−R)ej)
∧

‖δ‖2 R,

where ej is the j-th vector of the standard basis in R
3 and

I is the identity matrix in R
3×3. The translation in se(3) can

be represented as [71]

t =
(
(R− I)u∧

δ + δδ
Tu
)
/‖δ‖2.

We can compute the derivatives of t about δ is

∂t

∂δ
=

1

‖δ‖2
(
M+ δuT +D

)
− 2

‖δ‖4Mδ
T
δ

where

M = (R− I)u∧ + δ
TuI

and the j-th column of D is

Dj =
∂R

∂δj
u∧

δ

And the derivatives of t about u is

∂t

∂u
=

1

‖δ‖2
(
(I−R)δ∧ + δδ

T
)
.

When ‖δ‖ = 0,

∂R

∂δj
= e∧j , t = u,

∂t

∂δj
= 0,

∂t

∂u
= I.

APPENDIX E

SETTINGS OF EXPERIMENTS

We follow the default settings of the open-source implemen-
tations for each method, except for the following changes:

• ICP, ICP-l and AA-ICP: For a fair comparison, we use
the same termination criteria as in Algorithm 1 for a
fixed parameter ν: we terminate the solver if it reaches
the maximum number of iterations (1000), or ‖∆T‖2F <
10−5, where ∆T denotes the difference between the
transformation from two consecutive iterations.

• Sparse ICP and Sparse ICP-l: For Sparse ICP, we choose
p = 0.8 for the RGB-D SLAM dataset, and p = 0.4 for
other experiments. For Sparse ICP-l, we choose p = 0.4
for all experiments.

• CPD: Due to the high computational cost of CPD,
for any point cloud with more than 15000 points, we
downsample it to 15000 points using farthest point
sampling.

• GMM-Reg: The documentation of the implementation
recommends downsampling a point cloud to 5000 points
for better performance. Therefore, for any point cloud
with more than 5000 points, we downsample it to 5000
points using farthest point sampling.

• Teaser++: The implementation incurs high memory
consumption, and requires the source and target point
clouds to have the same number of points. Therefore,
we first use farthest point sampling to downsample 5000
points on any point cloud containing more than 5000
points. Afterwards, if the source and target point clouds
contain different numbers of points, we downsample
the point cloud with more points to the same number of
points as the other. For synthesized data with a known
noise level, we set the noise bound parameter according
to the noise level.

• DCP: We train the model using the 10000 pairs of point
clouds from the training set of the 3DMatch dataset.
For both the training and test data, we downsample
the point clouds to 1024 points using farthest point
sampling.

• DGR: We use the two pre-tained models (trained with
3DMatch and KITTI, respectively) released by the au-
thors to test our examples. For use the KITTI-based
model on five outdoor datasets (Mountains, Gazebo in
summer, Gazebo in winter, Wood in summer, Wood in
winter) and a mixed dataset (Stairs) in the ETH dataset.
For all other problems, we use the model trained with
3DMatch.

19

In Fig. 1, we count the number of iterations for each method
as follows. For CPD, we count the iterations of the EM
algorithm. For GMM-Reg method, we count the number of
times for constructing the objective function. For Teaser++,
we count the iterations for calculating the rotation matrix.
For others, we count the number of times for the updating
the corresponding points.

Juyong Zhang is an associate professor in the
School of Mathematical Sciences at University of
Science and Technology of China. He received
the BS degree from the University of Science
and Technology of China in 2006, and the PhD
degree from Nanyang Technological University,
Singapore. His research interests include com-
puter graphics, computer vision, and numerical
optimization. He is an associate editor of The
Visual Computer.

Yuxin Yao is currently working toward the mas-
ter’s degree in the School of Mathematical Sci-
ences, University of Science and Technology of
China. Her research interests include computer
graphics and 3D registration.

Bailin Deng is a lecturer in the School of Com-
puter Science and Informatics at Cardiff Univer-
sity. He received the BEng degree in computer
software (2005) and the MSc degree in computer
science (2008) from Tsinghua University (China),
and the PhD degree in technical mathematics
(2011) from Vienna University of Technology
(Austria). His research interests include geom-
etry processing, numerical optimization, compu-
tational design, and digital fabrication. He is a
member of the IEEE.

	Introduction
	Related Work
	Classical ICP Revisited
	Fast and Robust ICP
	Preliminary: Anderson Acceleration
	Applying Anderson Acceleration to ICP
	Robust ICP via Welsch's Function

	Extension to Point-to-Plane ICP
	Results
	Synthetic Data
	Real-World Data
	Limitations

	Conclusion and Future Work
	References
	Appendix A: Computing Matrix Logarithms
	Appendix B: Surrogate Function for Eq. (13)
	Appendix C: Choices of min
	Appendix D: Calculation of Gradient J(k) in Eq. (24)
	Appendix E: Settings of Experiments
	Biographies
	Juyong Zhang
	Yuxin Yao
	Bailin Deng

