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Summary

We offer a natural and extensible measure-theoretic treatment of missingness at random.Within
the standard missing-data framework, we give a novel characterization of the observed data as
a stopping-set sigma algebra. We demonstrate that the usual missingness-at-random conditions
are equivalent to requiring particular stochastic processes to be adapted to a set-indexed fil-
tration. These measurability conditions ensure the usual factorization of likelihood ratios. We
illustrate how the theory can be extended easily to incorporate explanatory variables, to describe
longitudinal data in continuous time, and to admit more general coarsening of observations.

Some key words: Missingness at random; Sigma algebra; Stochastic process.

1. Introduction

Missing at random (Rubin, 1976) is a central concept in missing-data research. Nevertheless,
recent papers (Seaman et al., 2013; Mealli & Rubin, 2015; Doretti et al., 2017) have argued that
it remains poorly understood and often inaccurately articulated. The most common formulation
(Little & Rubin, 2002, p. 12) is superficially intuitive, but misleading in its detail; accurate
formulations exist (Robins & Gill, 1997; Lu & Copas, 2004), but typically hold little heuristic
appeal.

For models under which data are missing at random, the likelihood is a product of two terms,
a marginal likelihood and a conditional likelihood representing the missingness mechanism.
By appealing to the theory of incompletely observed stochastic processes and characterizing
these multiplicative components of the likelihood, we give a revealing proof of the likelihood
factorization that depends only on simple measurability conditions. These conditions lead to a
new, general definition of missingness at random that we find to be both rigorous and intuitive.

We represent data and all conditioning statements in terms of sigma algebras, principally to
avoid any confusion over what information is being conditioned upon. As a byproduct, we obtain
a single framework for discrete, continuous and more general random variables, whether partially
observed in discrete time, in continuous time or under general forms of coarsening.

We tread this path with some trepidation. Rubin described his own initial measure-theoretic
treatment of missing data as ‘window dressing’, and then-Biometrika-editor David Cox’s advice
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228 D. M. Farewell, R. M. Daniel AND S. R. Seaman

was to ‘eliminate all that measure theory noise’ (Lin et al., 2014). We hope our perspective avoids
these pitfalls and exposes a signal that could be overlooked following such noise reduction.

2. Notation

Our starting point is a measurable space (�, F) on which we define probability measures and
random variables. We take a pure likelihood perspective (Royall, 1997) and compare just two
candidate data-generating models. We aim to assess the evidence, as quantified by their likelihood
ratio, in favour of a measure P relative to another measure Q. Since likelihood functions are just
pairwise comparisons to an arbitrary reference measure, this simplification is not restrictive.

Following Pollard (2002, pp. 7–11), we adopt de Finetti notation: we allow the set A to also
denote the indicator random variable 1A, and reuse the symbol P to mean also its corresponding
expectation operator EP, so that in particular P(A) = P(1A) = EP(1A) = ∫

1A dP. One way of
understanding this broader use of the symbol P is that we are extending its domain from indicator
functions to more general random variables. In any event, the main consequence for this paper
is that whenever we want to refer to EP we can simply write P.

The sigma algebra F is a set of events that represents complete information about the entire
stochastic system. In the present context, F tells us the values of variables that may be observed
or missing, and whether they are in fact missing. We avoid the term complete data, because its
typical usage does not encompass indicators of missingness status, which in our view are certainly
data. All available information we simply call data and represent by the sigma algebra D. The
data sigma algebra D refers to as-yet-unrealized random variables, and contains all events whose
logical status is known once the data are revealed. Until § 3 we remain nebulous about the precise
definition of D but, given our missing-data setting, D will be a strict subset of F . We write σ(X )

to denote the sigma algebra generated by a random variable X ; X is measurable with respect to
the sigma algebra D if and only if σ(X ) ⊆ D.

We will assume whenever needed that probability measures are absolutely continuous with
respect to one another. Then the customary measure-theoretic definition of the likelihood ratio
comparing P and Q is the Radon–Nikodym derivative dP/dQ (Andersen et al., 1996, p. 97).
Though somewhat formal in appearance, this object is simply a random variable that describes
at each point in the sample space � the corresponding likelihood ratio of P relative to Q.

In general, the random variable dP/dQ will not be D-measurable. This is because P and Q
measure the size of each set in F and, since F ⊃ D, the likelihood comparison dP/dQ may
depend on events whose logical status cannot be determined solely from the data D. In contrast,
the likelihood ratio based on the data alone may be represented by its D-measurable restriction

dP

dQ

∣∣∣∣
D

= Q

(
dP

dQ

∣∣∣∣ D
)

. (1)

This equality provides some intuition about the meaning of the left-hand side: the conditional
expectation, given D and with respect to Q, of the likelihood ratio dP/dQ. Loosely, this yields
local averages of the random variable dP/dQ over each region of the sample space within which
the data are constant.As noted by Chang & Pollard (1997, p. 299), this notation is more economical
than standard representations such as

∫
f dymis because no ymis need be introduced. Since (1) is

data-measurable, it can be used for likelihood comparisons while satisfying standard chain rule
relationships between likelihood ratios.
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3. Monotone missing data

3.1. Data

Throughout this paper, we employ the machinery and methods of stochastic processes.
For general missing data, the theory of stochastic processes indexed by sets will be required
(Molchanov, 2006); however, we begin with the gentler case of monotone missingness, where
it suffices to use standard theory for stochastic processes in discrete time. Unlike some other
approaches, the stochastic process perspective permits ideas to be extended from the monotone
case to the general setting by making essentially trivial semantic modifications.

Following Rubin (1976), we let Y = (Y1, . . . , Yn) be random variables defined on (�, F),
the ranges of which may be any measurable spaces. It is helpful to think of Y as a stochastic
process Y = (Ym) indexed by discrete times m = 1, . . . , n. We observe Y1, . . . , YM , where the
integer-valued random variable M is also defined on (�, F) and satisfies 0 � M � n. We do not
observe YM+1, . . . , Yn: observation of the stochastic process Y ceases at the random time M .

A filtration is a nested family of sigma algebras that captures the idea of information increase
over time. When we say that a process (Ym) is adapted to a filtration (Ym), we mean that for each
m the random variable Ym is measurable with respect to the sigma algebra Ym; adaptedness is
just a sequence of measurability conditions. We define Ym = σ(Yl : l � m); the resulting (Ym)

is called the natural filtration generated by Y , and by construction Y is adapted to (Ym).
The random variable M records the time at which observation of Y ceases, and is said to

be a stopping time if at each point in time an observer knows whether observation of Y has
already ceased. More specifically, M is a stopping time with respect to a filtration (Mm) if the
event {M � m} belongs to Mm for all m. We can arrange for this to be the case by defining
Mm = σ({M � l} : l � m). For each m, the sigma algebra Mm encodes logical information
about whether the stopping event has occurred and, if so, at what point it occurred.

Until the stopping time M , we accrue information about both Y and M . We construct a larger
filtration (Fm) by setting Fm = Ym ∨ Mm; the notation Ym ∨ Mm defines Fm as the smallest
sigma algebra containing both Ym and Mm. Informally speaking, Fm tells us the values of
Y1, . . . , Ym and, through knowledge of the indicators {M � 1}, . . . , {M � m}, if and when we
have stopped recording measurements before time m. Recall that {M � m} denotes both the
subset {ω : M (ω) � m} ⊆ � and the indicator random variable 1{ω:M (ω)�m}.

Information increases until the random time M , at which point no further information is
recorded. Since M is also a stopping time with respect to (Fm), this idea of information increase
until a random time may be captured through the elegant definition of the stopping-time sigma
algebra FM = {A ∈ F : A ∩ {M � m} ∈ Fm for all m} (Pollard, 2002, pp. 142–43). This FM is
precisely what we mean by the data sigma algebra D; that is, we define D = FM . Despite being
decorated with the letter M , we stress that the sigma algebra FM is not itself a random object,
but consists of that immutable set of events whose logical statuses are always known when the
data are revealed, regardless of the particular realized values taken by Y or M .

For simplicity, we shall assume that F = Fn, so that there are no measurable events beyond
those described by Y and M . Similarly, we write Y = Yn or M = Mn to describe complete
information about Y or M , respectively. As a technical aside, we shall also assume that (�, F)

has a product structure that allows measures under which Y and M are independent; that is, for
all A ∈ F , there exist B ∈ Y and C ∈ M such that A = BC. In de Finetti notation, the product of
events BC connotes 1B1C = B ∩ C. Recall that two sigma algebras Y and M are independent
under P if and only if P(BC) = P(B)P(C) for all B ∈ Y and C ∈ M.

It may be valuable at this point to consider the simplest possible example: n = 1 with a binary
Y1 that could possibly be missing. In this case � is the four-point set {00, 01, 10, 11}, and F = 2�
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is the power set of �. For a generic element bc ∈ �, Y1(bc) = b and M (bc) = c. Then Y0 is
the trivial sigma algebra σ(�) = {∅, �}, while M0 = F0 = M1 = M = σ({00, 10}, {01, 11});
Y1 = Y = σ({00, 01}, {10, 11}), and by assumption F1 = F . Rather less obviously, D =
FM = σ({00, 10}, {01}, {11}). This makes intuitive sense, since when M = 0 we cannot hope to
distinguish between Y1 = 0 and Y1 = 1. We can check our intuition more formally by verifying
that the intersection of each of the atoms {00, 10}, {01} and {11} with {M � 0} = {00, 10} is
in F0. No finer partition is possible; for example, the singleton set {00}, when intersected with
{M � 0} = {00, 10}, is not in F0. Trivially, all intersections of the atoms {00, 10}, {01} and {11}
with {M � 1} = � belong to F1 = F . This simple example is revisited in the Appendix to give
concrete illustrations of some of the abstract measure-theoretic quantities deployed later in the
paper.

That it might be advantageous to represent incomplete information as a randomly stopped
stochastic process was hinted at by Gill et al. (1997), and we too find the simple partition of
the sample space provided by FM to be both instructive and illuminating as to the nature of the
missing-data problem. We stress again that FM is not a random object; D = FM is a fixed sub-
sigma algebra of F . The sigma algebra D is strictly smaller than F ; that is, there are events in F
that are not elements of D. In particular, {00, 01} �∈ D and so Y �⊆ D. Equivalent characterizations
of the data sigma algebra are possible, such as D = σ(M , Y1, . . . , YM ), but do not provide such
immediate and straightforward conditions for assessing data-measurability as are available once
we realize that D is a stopping-time sigma algebra.

3.2. Likelihood factorization

In this section, we describe sufficient conditions for factorization of a likelihood ratio. Gill
et al. (1997) and Lu & Copas (2004) investigated when related conditions are also necessary,
in the latter case within parametric families of measures. We continue with just the measures P
and Q, but, whether comparing many models or just two, it is only when frequentist properties
or procedures are of interest that we need concern ourselves with the actual data-generating
mechanism. In our pure likelihood context, P and Q may be any pair of measures defined on
(�, F), and neither is assumed to be the true data-generating measure (Seaman et al., 2013).
This said, the relevance of statistical calculations is clearly enhanced when posited models are
plausible reflections of reality, so we examine the evaluation of model assumptions in § 5.

The best available likelihood comparison of P and Q is (dP/dQ)|D. However, it is customary
to suppose that scientific interest in these measures focuses on their behaviour (dP/dQ)|Y on Y ,
and that their conditional likelihood ratio given Y , i.e., (dP/dQ)|F |Y = (dP/dQ)|F/(dP/dQ)|Y
(Hoffman-Jørgensen, 1994, p. 130), is secondary because it describes only the so-called miss-
ingness mechanism. Formally, we assume that scientific interest lies in a parameter θ : P → �,
where P is a set of probability measures on (�, F), and where Y is sufficient for θ in the sense
that (dP/dQ)|Y = 1 implies θ(P) = θ(Q) for any P, Q ∈ P .

Because scientific interest is restricted to θ and because fully specifying the conditional like-
lihood ratio (dP/dQ)|F |Y can be difficult or inconvenient, we may choose instead to focus
evidential comparisons on the marginal likelihood ratio (dP/dQ)|Y . Alas, this marginal likeli-
hood ratio is not data-measurable in general, basically for the same reasons that dP/dQ is not
data-measurable: because Y �⊆ D. But by analogy with (1), where we express the likelihood
ratio (dP/dQ)|D in terms of a conditional expectation of dP/dQ given the data, we could form
a marginal, data-measurable likelihood ratio

Q

(
dP

dQ

∣∣∣∣
Y

∣∣∣∣ D
)

. (2)
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A reasonable concern with such a procedure is that the value of (2) may somehow depend on the
particular choice of missingness mechanism under P or Q, meaning that (2) was not a marginal
likelihood ratio for θ after all. We show in Lemma 2 that within certain equivalence classes no
such dependence exists, and hence within these equivalence classes (2) may justifiably be called
a marginal likelihood ratio. This result is based on a foundational lemma strongly related to the
exchange of seeing and doing in causal inference (Pearl, 2009), which we state first.

Lemma 1. The likelihood ratio dP/dQ is D-measurable if and only if (dP/dQ)|F |D = 1.

The proof is direct: dP/dQ is D-measurable if and only if dP/dQ = (dP/dQ)|D, and hence if
and only if (dP/dQ)|F |D = 1. The implication is that when dP/dQ is D-measurable, expectations
conditional on D may be taken interchangeably with respect to P or Q; that is, P(A | D) =
Q(A | D) for all A ∈ F .

Lemma 2. Write P ∼ Q (mod Y) if and only if (dP/dQ)|F |Y is D-measurable. Let P, P′, Q and
Q′ be measures all belonging to the same ∼-equivalence class, and suppose that (dP′/dP)|Y =
(dQ′/dQ)|Y = 1. Then

Q

(
dP

dQ

∣∣∣∣
Y

∣∣∣∣ D
)

= Q′
(

dP′

dQ′

∣∣∣∣
Y

∣∣∣∣ D
)

= 1
/

P

(
dQ

dP

∣∣∣∣
Y

∣∣∣∣ D
)

.

To prove the first equality, we have only to exchange (dP/dQ)|Y for (dP′/dQ′)|Y ; then, because
(dQ′/dQ)|Y = 1, which is clearly D-measurable, and because (dQ′/dQ)|F |Y is D-measurable
since Q ∼ Q′ (mod Y), it follows that dQ′/dQ is itself D-measurable and that, by Lemma 1,
expectations conditional on D can be taken interchangeably with respect to Q or Q′. The proof of
the second equality depends critically on P ∼ Q (mod Y), but is otherwise unilluminating, so we
omit it. Nevertheless, this second equality describes an important symmetry property exhibited
by likelihood ratios, but not necessarily by modifications thereof like (2).

Within an equivalence class, Lemma 2 says that for any P and P′ that agree on Y , it does
not matter whether we use P or P′ in the numerator of the marginal likelihood ratio (2) and,
so long as Q and Q′ agree on Y , we may use either Q or Q′ in the denominator; the value of
(2) is unchanged. Consequently, within an equivalence class, calling (2) a marginal likelihood
ratio appears justifiable. Conversely, if P �∼ Q (mod Y), then (2) is not a marginal likelihood
ratio: even the basic symmetry property of Lemma 2 fails to hold. So the restriction of likelihood
comparisons to measures in the same equivalence class is important. Anticipating slightly, one
equivalence class will be the set of measures under which data are missing at random.

Another reason that (2) may justifiably be called a marginal likelihood ratio is that within an
equivalence class the usual likelihood ratio (dP/dQ)|D includes (2) as a multiplicative factor.
This fact is so important that we state it as a lemma.

Lemma 3. If P ∼ Q (mod Y), then

dP

dQ

∣∣∣∣
D

= Q

(
dP

dQ

∣∣∣∣
Y

∣∣∣∣ D
)

× dP

dQ

∣∣∣∣
F |Y

.

The result follows directly from the fact that P ∼ Q (mod Y) if and only if (dP/dQ)|F |Y is
D-measurable, and the latter can therefore be brought outside the conditional expectation.

Lemmas 2 and 3 show that, given a pair of measures defined only on the restricted space
(�, Y), the marginal likelihood ratio (2) is a multiplicative factor in the likelihood ratio formed
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by extending these measures to the whole of (�, F) and restricting to D. Moreover, the marginal
likelihood ratio (2) is invariant with respect to the particular way these extensions are constructed,
always provided that such extended measures belong to the same ∼-equivalence class. The
downside to this attractive invariance is that we must choose an equivalence class within which to
work. Moreover, because the equivalence classes are defined by a data-measurability condition,
there can be no evidence in the data to support one choice over another (see Molenberghs et al.,
2008). This choice must be made based on convenience, on meta-data considerations or, most
usually, on a combination of both. We discuss convenience first, before moving on to meta-data
considerations later in the paper.

It is fairly clear that computing the marginal likelihood ratio (2) would be reasonably straight-
forward if in fact Y and M were independent under P and Q, and this may be one reason to prefer
equivalence classes in which such measures appear. In fact, the next lemma shows that all inde-
pendence measures belong to the same equivalence class, within which the marginal likelihood
ratio for θ has a very simple form.

Lemma 4. Suppose that Y and M are independent under P and Q. Then P ∼ Q (mod Y) and

Q

(
dP

dQ

∣∣∣∣
Y

∣∣∣∣ D
)

= dP

dQ

∣∣∣∣
D|M

.

To prove this, we use the fact that independence of Y and M under P and Q means that
dP/dQ = (dP/dQ)|Y × (dP/dQ)|M, and hence that (dP/dQ)|F |Y = (dP/dQ)|M, which
is certainly D-measurable. Conversely, (dP/dQ)|Y = (dP/dQ)|F |M under independence, so
Q{(dP/dQ)|Y | D} = Q{(dP/dQ)|F | D}/(dP/dQ)|M, as required.

The equivalence class in which the independence measures lie is precisely the class of measures
satisfying the condition Rubin (1976) calls missingness at random. Lemma 2 tells us that within
this class, the marginal likelihood ratio depends only on the behaviour of P and Q on Y , so
using measures under which Y and M are independent may be a convenient way to compute
it. Lemma 3 shows that the marginal likelihood ratio for θ is a factor in the full likelihood, and
Lemma 4 gives us the form of the marginal likelihood ratio directly. We put all these pieces
together in the following central result.

Theorem 1. Let P, P′, Q and Q′ be measures such that (dP/dP′)|Y = (dQ/dQ′)|Y = 1.
Suppose that Y and M are independent under P′ and Q′, and further assume that both
P ∼ P′ (mod Y) and Q ∼ Q′ (mod Y). Then

dP

dQ

∣∣∣∣
D

= dP′

dQ′

∣∣∣∣
D|M

× dP

dQ

∣∣∣∣
F |Y

.

Independence measures P′ and Q′ exist because of the product structure on (�, F). The
proof depends on Lemma 4, from which we deduce that P′ ∼ Q′ (mod Y), and therefore also
P ∼ Q (mod Y) by transitivity. Since P ∼ Q (mod Y), Lemma 3 provides a factorization of the
full likelihood ratio, and Lemma 4 gives us the simpler form of the first term, as required.

Reducing likelihood factorizations to questions of data-measurability is a very general idea,
and in particular none of the current section depends in any way on monotonicity of missing
data. Indeed, our general approach applies equally well in any setting where the structure of the
observed data is not fixed in advance. Unobserved quantities need not be thought of as data, but
could simply be latent variables, for example random effects. This is the perspective taken by
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Farewell et al. (2017). An appealing advantage of the theory developed in the present paper is
that it can more easily be extended to cases where the range of M is uncountable (Commenges
& Gegout-Petit, 2015, p. 14), and we explore some of these possibilities in § 5. Gill et al. (1997)
provided an exactly analogous likelihood decomposition in the setting of coarsened data, and
they too highlighted the simplification arising from the working assumption of independence,
which Jacobsen & Keiding (1995) call a reference model.

So far we have shown that a working independence conditional likelihood ratio is the unique
marginal likelihood ratio for the parameter of interest θ within a particular equivalence class, and
that this in turn is a multiplicative factor in the full likelihood ratio. It remains to demonstrate that
missingness at random fully characterizes this equivalence class, and to explore the suitability of
this class for use in substantive problems of statistical inference.

3.3. Measurability

The factorization of Theorem 1 holds whenever the conditional likelihood ratios (dP/dP′)|F |Y
and (dQ/dQ′)|F |Y are D-measurable; we now discuss how to determine whether they are. We
assume throughout this section that P, P′, Q and Q′ satisfy the conditions of Theorem 1; that is,
P and P′ agree on Y , Q and Q′ agree on Y , and Y and M are independent under P′ and Q′. We
focus on the relationship between P and P′, with analogous considerations needed for Q and Q′.
It seems likely that the conditional likelihood ratio (dP/dP′)|F |Y should be expressible in terms
of conditional densities of M given Y under P and P′, and this we now assert to be the case. The
proof of Lemma 5 is not especially illuminating, so we defer it to the Appendix.

Lemma 5. Let P and P′ be measures on (�, F). Define the stochastic processes (pm) and (p′
m)

by pm = P(M = m | Y) and p′
m = P′(M = m | Y). Then (dP/dP′)|F |Y = pM /p′

M , the ratio of
these stochastic processes evaluated at the random stopping time M.

We deduce that P ∼ P′ (mod Y) if both pM and p′
M are D-measurable. We see immediately that

the latter is always D-measurable: because Y and M are independent under P′, p′
m = P′(M =

m | Y) = P′(M = m), and hence the process (p′
m) is in fact a deterministic sequence. The value

of p′
M then depends only on M , which is certainly D-measurable.

Data-measurability of pM is more subtle and not guaranteed. Our next result introduces our
definition of missingness at random, and proves that this condition on a measure P establishes
that the corresponding pM is data-measurable.

Lemma 6. Suppose that P(M = m | Y) = P(M = m | Ym) for every m. Then (pm) is adapted
to (Fm), and pM is FM -measurable.

The proof is not difficult. For all m, the condition P(M = m | Y) = P(M = m | Ym)

ensures that P(M = m | Y) is Ym-measurable, i.e., (pm) is adapted to (Ym). Since Ym ⊆ Fm,
the stochastic process (pm) must also be adapted to (Fm). Because M is an (Fm)-stopping time,
standard stochastic process results allow us to conclude that pM is FM -measurable, as required.

We make several comments. First, the condition of Lemma 6 is equivalent to the rigorous,
everywhere version of missingness at random (Seaman et al., 2013), but is simpler to state: by
conditioning on sigma algebras Ym, we equate random variables, not a large set of conditional
probabilities. Second, it applies equally well to a random variable Y taking values in uncount-
able spaces; neither discretization (Seaman et al., 2013) nor conditioning on a set of measure
zero is required. Third, there is a striking visual similarity of the condition P(M = m | Y) =
P(M = m | Ym) for all m to the ubiquitous, informal missing-at-random definition P(M | Y ) =
P(M | Yobs) (Little & Rubin, 2002, p. 12). Interpreted literally, though, the two definitions have
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234 D. M. Farewell, R. M. Daniel AND S. R. Seaman

rather different meanings: our definition of missing at random refers to a sequence of fixed values
m, and not to the random variables M and Yobs. The measure-theoretic perspective encourages
us to distinguish sharply between the random variable M and a generic realized value m, while
the Yobs notation blurs this distinction. In our view, this blurring, and the apparent collapse of
multiple conditions into one that results from it, leads to much of the confusion surrounding
the Yobs and Ymis notation (Seaman et al., 2013). This is another reason we think it is helpful to
instead understand missingness at random as an adaptedness condition.

We have shown that if P(M = m | Y) = P(M = m | Ym) for every m, then pM and
(dP/dP′)|F |Y areD-measurable, and hence P belongs to the same∼-equivalence class as the inde-
pendence measures. If the same is true for the measure Q, then the conditions ofTheorem 1 are met,
and the likelihood factorization follows. We now proceed to extend this result to nonmonotone
missing data and, ultimately, to more general forms of missingness.

4. Nonmonotone missing data

We turn now to the general case, where there need be no natural ordering of the components
of Y ; the observations may be obtained simultaneously or in an arbitrary order, and any possible
subset of the variables may be observed. Despite this generality, remarkably few notational
changes are needed from the ordered, monotone case; we simply reinterpret what we have written
to this point in terms of stochastic processes indexed by sets (Molchanov, 2006, p. 334). Our
subscript m becomes a set, so that if m = {1, 3, 4} then Ym = (Y1, Y3, Y4). The most important
change from the monotone case is that we now understand M as a random subset of {1, . . . , n},
representing the subset of variables that are observed. There is no total ordering of the subsets of
{1, . . . , n}, but we exploit the partial ordering given by set inclusion and interpret l � m as l ⊆ m,
which describes a lattice of subsets on which stochastic processes may be defined. Once again,
we stop observing Y at the random set M on this lattice, but now there are potentially multiple
routes by which we may arrive at a given point. Just as before, however, we observe the values
of all random variables Ym for which m � M , i.e., for which m ⊆ M .

We define Ym = σ(Yl : l � m), Mm = σ({M � l} : l � m) and Fm = Ym ∨ Mm
just as in the monotone case, where now (Fm) is a set-indexed filtration. As before, D = FM ,
now a stopping-set sigma algebra. The definitions of the probability measures P, P′, Q and Q′
are unaltered, and likelihood factorization again boils down to FM -measurability of pM , where
pm = P(M = m | Y), with similar considerations needed for Q. The missing-at-random condition
is unaltered and forms the premise of our central theorem, which we now state formally.

Theorem 2. Let P, P′, Q and Q′ be measures such that (dP/dP′)|Y = (dQ/dQ′)|Y = 1.
Suppose that Y and M are independent under P′ and Q′. Further, assume that P(M = m | Y) =
P(M = m | Ym) and Q(M = m | Y) = Q(M = m | Ym) for all m. Then P ∼ P′ ∼ Q′ ∼
Q (mod Y), and

dP

dQ

∣∣∣∣
D

= dP′

dQ′

∣∣∣∣
D|M

× dP

dQ

∣∣∣∣
F |Y

.

The proof is identical to that in the monotone case: adaptedness of the processes P(M = m | Y)

and Q(M = m | Y) to the set-indexed filtration (Fm), and the fact that M is an (Fm)-stopping set
ensures that P ∼ P′ (mod Y) and Q ∼ Q′ (mod Y). Even in this unordered setting, the stochastic
process techniques provide us with a direct proof of data-measurability of the likelihood ratios
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(dP/dP′)|F |Y and (dQ/dQ′)|F |Y . The final likelihood factorization follows from Theorem 1,
which was already of sufficient generality to accommodate the set-indexed case.

The likelihood factorization depends on the adaptedness of stochastic processes, so it is worth
considering our ability to assess this collection of conditions. The lattice structure implicit in this
formulation is reminiscent of the randomized monotone missingness mechanisms of Robins &
Gill (1997), wherein future observation can depend on previous measurements within the history
of a particular branch. But, as noted by Robins & Gill (1997), more complicated dependence
structures are also possible. It may sometimes be appropriate to adopt the missingness-at-random
assumption openly, but uncritically, and to use its simple ∼-equivalence class to compare likeli-
hoods or conduct inference under this working assumption. Alternatively, perhaps with improved
intuition about what it means for a process to be adapted to a set-indexed filtration, the plausi-
bility of the missingness-at-random assumption may be directly and critically assessed even in
cases of nonmonotone missing data. Failing this, a fastidious analyst must abandon the appealing
generality of missing at random, and assess instead conditions that are stronger and more easily
assessed, such as randomized monotone missingness (Robins & Gill, 1997) or stability (Farewell
et al., 2017). In § 5 we give specific examples of such stronger conditions.

5. Extensions

5.1. Modified notation

We now offer three extensions to the classical setting of Rubin (1976), showing how stochastic
process theory adapts naturally to situations where traditional approaches can be cumbersome.

In this more general setting, we align our notation with standard choices made in the study
of stochastic processes. Let Y = (Yt : t ∈ T ) be a stochastic process indexed by a set T , where
the latter may be uncountable, but is equipped with a partial or total ordering. We observe Yt
for all t � τ , where the observed random variable τ takes values in T ; we do not observe any
Yt for t �� τ . The process Y is adapted to its natural filtration (Yt), and again τ is a stopping
time or more general stopping object with respect to the filtration (Tt) generated by the process
({τ � t}). We assume that F = Y ∨ T , where Y = ∨

t Yt and similarly T = ∨
t Tt . We define

another filtration (Ft) by Ft = Yt ∨ Tt . The observed data are then given by the generalized
stopping-time sigma algebra D = Fτ = {A ∈ F : A ∩ {τ � t} ∈ Ft for all t}.

In this more general setting, it may well be the case that P(τ = t | Y) = 0 for all possible
values of t, for example because τ might be a continuous random variable. Consequently, a
slightly modified version of the missing-at-random condition will be required. As in the proof of
Lemma 5, we could still define the conditional law μ of τ satisfying μ(D, ·) = P{τ−1(D) | Y}
and conditional densities like pt = (dμ/dν)(t, ·) with respect to some dominating measure ν, but
to avoid these abstractions we work instead with more familiar objects Pt = P(τ � t | Y) that
are analogous to conditional cumulative distribution functions. Like (pt : t ∈ T ), the collection
(Pt : t ∈ T ) is a stochastic process on the partially ordered set T . Since (pt) is adapted if and
only if (Pt) is adapted, it then suffices to define missingness at random in general as follows.

Lemma 7. If P(τ � t | Y) = P(τ � t | Yt) for every t, then (Pt) is adapted to (Ft), and
P ∼ P′ (mod Y) for any measure P′ under which Y and M are independent.

5.2. Explanatory variables

We suppose there is now some fully observed covariate information X ⊆ D available and
that our interest is in the conditional likelihood ratio (dP/dQ)|D|X , as might be the case in a
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regression modelling context. An immediate advantage of the use of sigma algebras is that we
can simply absorb this covariate information into the two existing filtrations (Yt) and (Tt), and
assume that for all t we have X ⊆ Yt and X ⊆ Tt . If P = {Pαβγ } is a family of models wherein
α, β and γ respectively characterize behaviour on X , regression coefficients and distributions of
residuals, with θ(Pαβγ ) = β, then (Y | X ) is sufficient for θ in the sense that for any P, Q ∈ P ,
(dP/dQ)|Y|X = 1 implies θ(P) = θ(Q).

Lemma 4 will now hold under the weaker condition that Y and T are conditionally independent
given X . By incorporating X into the two existing filtrations, we arrange for the missing-at-
random condition to remain notationally unchanged: P(τ � t | Y) = P(τ � t | Yt) for all t,
recalling that now X ⊆ Yt for all t. Like the condition employed by Sweeting et al. (2010), this
allows dependence of the missingness mechanism on covariates and, to the extent permitted by
data-measurabililty, on Y . This could be called covariate-dependent missingness at random, but,
as noted by Hedeker & Gibbons (1997), versions such as this should be carefully distinguished
from similarly named alternatives, where missingness depends only on covariates and not on
observed responses (Little, 1995). The relevant likelihood factorization is

dP

dQ

∣∣∣∣
D|X

= dP′

dQ′

∣∣∣∣
D|T

× dP

dQ

∣∣∣∣
F |Y

,

where Q{(dP/dQ)|Y|X | D} = (dP′/dQ′)|D|T is the marginal likelihood particular to this equiv-
alence class, integrating over the missing data. Since X ⊆ T , this likelihood is also conditional on
X . Our insistence that X ⊆ Y pays dividends not only in notational brevity, but also in ensuring
that intuitively important terms such as (dP/dQ)|Y|X remain well-defined.

The ability to include such covariate information X is hugely important in missing-data con-
siderations and, more broadly, in matters of causal inference. While hardly ever a trivial exercise,
building a set of always-available data X such that the required adaptedness condition may plau-
sibly be assumed to hold is sometimes more straightforward than exerting external control of the
processes that lead to aspects of Y going unobserved.

5.3. Longitudinal data

Consider the case where Y = (Yu)u�0 is a continuous-time stochastic process and τ ⊆
[0, ∞) describes the finite set on which Y is observed. Such a construction describes unbalanced
longitudinal data (Diggle et al., 2002, p. 282), where each subject gives rise to a random number
of observations and these may be recorded at arbitrary points in time. For example, an individual
observed at u = 0.2, u = 0.5 and u = 0.8 would have τ = {0.2, 0.5, 0.8}. The corresponding
filtration (Yt : t ∈ T ) is indexed by the power set T = 2[0,∞) and therefore not totally ordered;
instead, we again have a partial ordering s � t of the sets s and t if and only if s ⊆ t, and thus
Ys ⊆ Yt . The set T of all possible subsets of [0, ∞) is uncountable, so our modified version of
the missing-at-random condition will be required: P(τ � t | Y) = P(τ � t | Yt) for all t ∈ T .
An example set t ∈ T for which such probabilities might be nonzero is t = [0, 0.3] ∪ [0.4, 0.9],
in which case τ = {0.2, 0.5, 0.8} � t.

To our knowledge, characterizations of missingness at random for general longitudinal data
are rare, and it is worth considering again our ability to assess this condition. Especially in
longitudinal settings, the causal processes that lead to τ taking on any particular value rarely
operate by first obtaining all possible information Y about Y and then deciding what subset of
this information to reveal. Nevertheless, our formulation of missingness at random implicitly
invites us to evaluate directly whether each P(τ � t | Y) in fact depends only on Yt .
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We suggest taking a dynamic approach, in which the stopping set τ is itself thought of as
arising from a set-valued stochastic process (τu)u�0, with the set τu = τ ∩ [0, u] defined to be
the observed subset of τ up to and including time u. At each time u we observe a set-valued
increment dτu in this process, where dτu = τu \ τu− and τu− = τ ∩ [0, u). When no observation
is made at time u, the increment dτu is the empty set; when we make an observation at time u,
the increment is the singleton set {u}.

With this more dynamic perspective, we are in a better position to assess the plausibility of
missingness at random. Consider, for example, a patient under a so-called doctor’s care regime,
which Grüger et al. (1991) define to mean that future examination times are determined entirely
on the basis of earlier observations. Under such a regime, for an arbitrary set t ∈ T we can
decompose P(τ � t | Y) using the product integral∏

u∈[0,∞)

P(dτu � t | τu− � t, Y),

wherein dτu, t and τu− are all sets. Whenever u ∈ t, the integrand is unity; elsewhere it specifies
the instantaneous probability that no observation is made at time u, given Y , and given the fact
that all observation times to date lie in the set t. But we have asserted that under the doctor’s
care scenario, future observation times are determined only with reference to past observations
Yτu− , which must be a subset of Yt since we are conditioning on the event τu− � t. Hence
P(dτu � t | τu− � t, Y) = P(dτu � t | τu− � t, Yt), and our decomposition of P(τ � t | Y)

multiplies back up to give P(τ � t | Yt), as required to establish that missingness at random holds.
Here P(dτu � t | τu− � t, Y) is a kind of intensity process, and our doctor’s care assumption is
very like independent censoring (Andersen et al., 1996, p. 139).

In situations where factors outside the doctor’s control may influence the number and timing of
observations, such considerations become more delicate. For instance, if imperfectly measured
subject-specific quantities such as a participant’s overall health may influence both Y and τ , the
missing-at-random condition will not in general be satisfied. Farewell et al. (2017) make use
of causal directed acyclic graphs to help determine if the likelihood contribution of the random
observation times τ may safely be ignored.

5.4. Coarsened observations

For general coarsening of observations (Heitjan & Rubin, 1991), we shall assume as usual that
Y represents complete information about some random variable Y . As in the longitudinal data
setting, Y need not be scalar or even finite-dimensional; however, we now make the associated
stochastic process implicit and instead begin with a specific filtration (Yt : t ∈ T ) of Y that, as t
ranges over T , visits some or all of the possible sub-sigma algebras of Y . This filtration supplies
a partial ordering on T through the definition s � t if and only if Ys ⊆ Yt , and specifies the
various possible levels of coarsening with which we may gain information about Y .

Heitjan & Rubin (1991, § 4.4) describes an example of coarsening, where children’s ages are
recorded to an unknown degree of precision. Ages may be rounded to the next lowest month,
half year or full year, so that a child with a recorded age of 6 months may in fact be up to 11
months old. Let Y record the age of the child in months, rounded to the next lowest month.
There are three possible sub-sigma algebras of Y = σ(Y ), namely Y12 = σ({Y < 12}, {12 �
Y < 24}, {24 � Y < 36}, . . .), Y6 = σ({Y < 6}, {6 � Y < 12}, {12 � Y < 18}, . . .) and
Y1 = Y = σ({Y = 1}, {Y = 2}, {Y = 3}, . . .), with Y12 ⊆ Y6 ⊆ Y1. Here T = {12, 6, 1},
so a child with a recorded age of 18 months has an associated τ = 6; while the age Y of the
child could equal 18 exactly, all we know is that it lies in the set {18, . . . , 23}. Suppose, for
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argument’s sake, that ages are in fact recorded to the next lowest month until one year of age,
the next lowest half year until two years of age, and the next lowest full year thereafter. This
constitutes a coarsening-at-random mechanism, because P(τ = t | Y) = P(τ = t | Y12) for
all t. Formulating coarsening in terms of sigma algebras neatly captures the spirit of set-valued
variables introduced by Heitjan & Rubin (1991).

6. Discussion

Initially, our aim in this work was to provide a rigorous reinterpretation of the usual
missingness-at-random formulation P(M | Y ) = P(M | Yobs) for those who, like ourselves,
worry about such things. We hope that the version in Lemma 6 fits this bill. Seaman et al. (2013)
point out that, interpreted literally, the symbol Yobs might even tell us the value of M , but in fact
no logical information about M is contained in any Ym, nor indeed in Y itself: for each nonempty
set A ∈ Y , the image M (A) of A under M is simply the set M (�) of all possible values of M .

We believe that our work may have pedagogical value. Although we have attempted to convey
our enthusiasm for the formalism of sigma algebras, an exactly equivalent version P(M =
m | Y ) = P(M = m | Ym) for all sets m does not rely on this concept. Those encountering this
definition for the first time should see that there are many constituent subconditions, one for each
possible subset m ⊆ {1, . . . , n}, and that the conditioning object Ym varies with m.

Our adaptedness requirement will seem natural to those familiar with stochastic processes,
and provides further links between censoring and missing data (Aalen, 2007, 2012). The implied
change of measure to a working independence setting also has a causal flavour: in causal inference,
data-measurability is the key to identifiability of causal estimands, and employing stochastic bases
{�, F , (Ft)} with causal interpretations seems to us a promising approach.
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Appendix

Examples of measure-theoretic quantities

Consider the simple setting introduced in § 3.1, in which a single binary Y1 goes unobserved if M = 0,
but is observed if M = 1. Recall that we defined � to be the four-point set {00, 01, 10, 11} and that F = 2�

was the power set of �. For a generic element bc ∈ �, we let Y1(bc) = b and M (bc) = c.
In the case of finite sample spaces, we find it helpful to think of sigma algebras as partitioning the sample

space into disjoint atoms, and have written the relevant sigma algebras to suggest this interpretation:

Y0 = σ({00, 10, 01, 11}),
M0 = F0 = M1 = M = σ({00, 10}, {01, 11}),

Y1 = Y = σ({00, 01}, {10, 11}),
D = FM = σ({00, 10}, {01}, {11}),
F1 = F = σ({00}, {01}, {10}, {11}).
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For any such sigma algebra G ⊆ F , we may uniquely associate one of its corresponding atoms with each
point in the sample space, so that AG(ω) ∈ G is the atom containing ω. For example, AY(00) = {00, 01}
and AD(00) = {00, 10}. Strictly speaking, these are only atoms under measures that assign them positive
probability; we shall implicitly assume this to be the case for the measures that we go on to describe. For
any such measures P and Q, we claim that

dP

dQ

∣∣∣∣
G
(ω) = P{AG(ω)}

Q{AG(ω)}
for all ω, as might reasonably be expected of a quantity we describe as a likelihood ratio. This can be
verified by applying the measure-theoretic definition of the conditional expectation Q(dP/dQ | G) to the
constituent atoms AG of each set A ∈ G.

Let us now be more specific about the probability measures in question. We let P(Y1 = 1) = p and
P(M = 1 | Y1 = y) = py, say, with similar notation for Q, so that

P({bc}) = pb(1 − p)1−bpc
b(1 − pb)

1−c, Q({bc}) = qb(1 − q)1−bqc
b(1 − qb)

1−c

for a generic element bc ∈ �. This notation allows us to emphasize that it is really the relative success of
p and q in explaining the distribution of Y1 that is assumed to be of principal scientific interest. We have
recycled some notation here; pb and qb are deterministic and distinct from the stochastic processes (pm)

and (qm) used in the main body of the paper. It is now straightforward to write down dP/dQ:

dP

dQ
(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − p)(1 − p0)/(1 − q)(1 − q0), ω = 00,

(1 − p)p0/(1 − q)q0, ω = 01,

p(1 − p1)/q(1 − q1), ω = 10,

pp1/qq1, ω = 11.

To evaluate its restriction to D, we take each of the three atoms AD of D in turn and get

dP

dQ

∣∣∣∣
D
(ω) =

⎧⎪⎨
⎪⎩

{(1 − p)(1 − p0) + p(1 − p1)}/{(1 − q)(1 − q0) + q(1 − q1)}, ω ∈ {00, 10},
(1 − p)p0/(1 − q)q0, ω = 01,

pp1/qq1, ω = 11.

Even more simply,

dP

dQ

∣∣∣∣
Y
(ω) =

{
(1 − p)/(1 − q), ω ∈ {00, 01},
p/q, ω ∈ {10, 11},

and

dP

dQ

∣∣∣∣
M

(ω) =
{

{(1 − p)(1 − p0) + p(1 − p1)}/{(1 − q)(1 − q0) + q(1 − q1)}, ω ∈ {00, 10},
{(1 − p)p0 + pp1}/{(1 − q)q0 + qq1}, ω ∈ {01, 11}.

For a generic element bc ∈ �, the measures P′ and Q′ of § 3.2 have corresponding probabilities

P′({bc}) = pb(1 − p)1−b

(
1

2

)c(
1 − 1

2

)1−c

, Q′({bc}) = qb(1 − q)1−b

(
1

2

)c(
1 − 1

2

)1−c

so that (dP/dP′)|Y = (dQ/dQ′)|Y = 1 as required, but now Y and M are independent under P′ and
Q′; the latter represent our working independence assumption. Replacing pb and qb by 1/2 is an arbitrary
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choice; any two constant, positive probabilities will do. By inspecting the values taken by (dP/dQ)|D|M
on its three atoms, or alternatively by applying Lemma 4, we see that

dP′

dQ′

∣∣∣∣
D|M

(ω) = Q′
(

dP′

dQ′

∣∣∣∣
Y

)
(ω) =

⎧⎪⎨
⎪⎩

1, ω ∈ {00, 10},
(1 − p)/(1 − q), ω = 01,

p/q, ω = 11

is our working independence conditional likelihood ratio, while

dP

dQ

∣∣∣∣
F |Y

(ω) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(1 − p0)/(1 − q0), ω = 00,

p0/q0, ω = 01,

(1 − p1)/(1 − q1), ω = 10,

p1/q1, ω = 11

specifies the conditional likelihood ratio associated with the so-called missingness mechanism.
For the factorization of Theorem 1 to hold, we see that we require {(1 − p)(1 − p0) + p(1 − p1)}/

{(1 − q)(1 − q0) + q(1 − q1)} simultaneously to equal both (1 − p0)/(1 − q0) and (1 − p1)/(1 − q1),
because (dP/dQ)|D is constant on {00, 10} while (dP/dQ)|F |Y need not be. There are two cases in which
both equalities hold: either p0 = p1 and q0 = q1, or p = q and (1 − p0)(1 − q1) = (1 − p1)(1 − q0). In the
former case, Y and M are independent, and hence the missing-at-random assumption is trivially satisfied.
The latter case is uninteresting since we presumably set out to compare distinct p and q; nevertheless, it
shows that missingness at random is not a necessary condition for the factorization to hold.

Proof of Lemma 5

Formally, M induces the conditional measure μ defined by μ(D, ω) = P(M −1(D) | Y)(ω) for any
D ⊆ {1, . . . , n} and ω ∈ �, with a similar definition for μ′ in terms of P′. We label the conditional densities
of μ and μ′, taken with respect to counting measure ν, as pm = (dμ/dν)(m, ·) = P(M = m | Y) and p′

m,
defined equivalently. From their definitions, pm and p′

m are random variables, and consequently both (pm)

and (p′
m) may be viewed as stochastic processes indexed by m. We now prove that pM /p′

M , the ratio of these
density processes evaluated at the random stopping time M , is indeed the desired conditional likelihood
ratio (dP/dP′)|F |Y . We do so by showing that for any set A ∈ F , pM /p′

M converts the conditional probability
of A under P′, given Y , to the corresponding conditional probability under P.

Let A ∈ F , and recall that any such A equals BC for some B ∈ Y and C ∈ M, so that P′(A × pM /p′
M |

Y) = B × P′(C × pM /p′
M | Y). But by definition of M we may write C = M −1(D) = DM , say, for some

D ⊆ {1, . . . , n}. A change of variables then allows us to write P′(DM × pM /p′
M | Y) = μ′(D × p/p′, ·).

Now dμ/dμ′ = p/p′, whence we have P′(A × pM /p′
M | Y) = B × μ(D, ·) = B × P(C | Y) = P(A | Y)

as required.
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