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ABSTRACT
Supermassive black hole (SMBH) binaries represent the main target for missions such as the Laser Interferometer Space Antenna
and Pulsar Timing Arrays. The understanding of their dynamical evolution prior to coalescence is therefore crucial to improving
detection strategies and for the astrophysical interpretation of the gravitational wave data. In this paper, we use high-resolution
N-body simulations to model the merger of two equal-mass galaxies hosting a central SMBH. In our models, all binaries are
initially prograde with respect to the galaxy sense of rotation. But, binaries that form with a high eccentricity, e � 0.7, quickly
reverse their sense of rotation and become almost perfectly retrograde at the moment of binary formation. The evolution of
these binaries proceeds towards larger eccentricities, as expected for a binary hardening in a counter-rotating stellar distribution.
Binaries that form with lower eccentricities remain prograde and at comparatively low eccentricities. We study the origin of
the orbital flip by using an analytical model that describes the early stages of binary evolution. This model indicates that the
orbital plane flip is due to the torque from the triaxial background mass distribution that naturally arises from the galactic merger
process. Our results imply the existence of a population of SMBH binaries with a high eccentricity and could have significant
implications for the detection of the gravitational wave signal emitted by these systems.

Key words: black hole physics – gravitational waves – methods: numerical – galaxies: interactions – galaxies: kinematics and
dynamics – galaxies: nuclei.

1 IN T RO D U C T I O N

In the standard �CDM cosmological model, supermassive black
hole (SMBH) binaries are expected to form as a natural product
of galaxy mergers (e.g. Begelman, Blandford & Rees 1980). The
gravitational wave radiation emitted by such binaries during their
inspiral and coalescence is the main target for the future Laser
Interfermoter Space Antenna (LISA; Amaro-Seoane et al. 2017) and
for Pulsar Timing Array (PTA) searches (NANOGrav Collaboration
2015; Reardon et al. 2016).

Strategies for gravitational wave searches focus mostly on quasi-
circular motion, with the motivation that the orbit is expected to
circularize well before the binary enters the frequency band of the
gravitational wave detector (i.e. �10−4 Hz for LISA). When the
previous dynamical evolution of the binary is considered, however,
the residual eccentricity inherited from the previous environment-
dominated phase can be substantial, and can significantly affect both
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the gravitational wave signal and the merger time-scale of the binary
(e.g. Preto et al. 2011; Gualandris & Merritt 2012; Nasim et al.
2020b). Large binary eccentricities can also affect significantly the
power spectrum of the gravitational wave background radiation from
SMBH binaries (Enoki & Nagashima 2007). The understanding of
the formation and dynamical evolution of SMBH binaries in merging
galaxies is therefore a key to improving data analysis and detection
strategies, for the design of future gravitational wave observatories,
and to constrain the physics of SMBH evolution from gravitational
wave data.

The evolution of an SMBH binary towards coalescence can be
divided into three separate phases (e.g. Begelman et al. 1980; Merritt
2013). The first phase of evolution is via the process of dynamical
friction (e.g. Just et al. 2011; Antonini & Merritt 2012; Dosopoulou
& Antonini 2017). During this first phase, the SMBHs sink towards
the centre of the stellar system that resulted from the merger of the
two progenitor galaxies, leading to the formation of a gravitationally
bound pair. Further orbital decay through dynamical friction occurs
until the binary becomes ‘hard’ (see equation 4 below). At this
point, dynamical friction becomes less efficient and subsequent
evolution is driven by strong dynamical interactions of the binary
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Table 1. Initial parameters of the galaxy merger simulations. From left
to right: Simulation identifier; inner slope of the galaxy density profile γ ;
initial orbital eccentricity of the progenitor galaxies e; mass ratio between the
galaxies; SMBH to stellar mass ratio; initial distance between the centres of
the two galaxies R; total number of particles in the merger simulation N.

Simulation γ ei M1: M2 M•/M∗ R/r0 N

SC05 0.5 0.5 1:1 0.005 20 512k
SC07 0.5 0.7 1:1 0.005 20 512k
SC09 0.5 0.9 1:1 0.005 20 512k
MC05 1.0 0.5 1:1 0.005 20 512k
MC07 1.0 0.7 1:1 0.005 20 512k
MC09 1.0 0.9 1:1 0.005 20 512k

with surrounding stars (Hills 1983; Quinlan 1996; Sesana, Haardt &
Madau 2006). When the SMBH binary orbit reaches a separation of
roughly one milli-parsec, energy loss by gravitational wave radiation
starts to dominate, leading to a merger. Several studies have shown
that stellar dynamical interactions are able to drive the binary to
this final stage of evolution and therefore to a merge on a time-
scale �1 Gyr (Khan, Just & Merritt 2011; Preto et al. 2011; Vasiliev,
Antonini & Merritt 2015).

It is well known that the evolution of the binary eccentricity after its
formation is heavily dependent on the kinematical properties of the
surrounding distribution of stars (e.g. Merritt 2002). For example,
when most stars are counter-rotating with the SMBHs, the binary
eccentricity is expected to increase during the hardening phase,
while the binary eccentricity decreases in co-rotating distributions
(Iwasawa et al. 2011; Sesana, Gualandris & Dotti 2011; Holley-
Bockelmann & Khan 2015; Rasskazov & Merritt 2017). Recent
numerical simulations have also shown that an eccentric binary that is
initially retrograde will reverse its sense of rotation (i.e. flip its orbital
plane) roughly at the time of binary formation (Mirza et al. 2017;
Khan, Awais Mirza & Holley-Bockelmann 2019), from retrograde
to prograde. Two distinct processes described in the literature can
cause angular momentum flips: local 3-body interaction between the
binary SMBH and single stars at small separations which reorients the
orbital plane (e.g. Gualandris, Dotti & Sesana 2012), the cumulative
effect of dynamical friction due to the rotating environment at larger
scales (e.g. Dotti, Colpi & Haardt 2006; Dotti et al. 2007; Bonetti et al.
2020). It is important to note that these two distinct processes only
take place for initially retrograde binaries, forming prograde systems.
The binary becomes co-rotating with respect to the surrounding
stellar distribution and the following evolution drives its eccentricity
to smaller values. These previous results might therefore suggest that
SMBH binaries will have negligible eccentricities when they enter
the LISA gravitational wave frequency band.

In this paper, detailed N-body simulations are used to follow
the evolution of merging galaxies containing a central massive
object. We study the evolution of the SMBH binary eccentricity and
orbital plane in these models. We show that all binaries are initially
prograde with respect to the galaxy sense of rotation. But, the most
eccentric binaries (e � 0.7) rapidly flip their orbital plane reversing
their sense of rotation at the moment of binary formation. Thus,
contrary to previous work, we find that initially co-rotating binaries
become almost perfectly retrograde, with their following evolution
proceeding towards higher eccentricities. Our models therefore imply
the existence of an eccentric SMBH binary population in LISA.
Moreover, we investigate the origin of the orbital flip of the binary
using a simple analytical model to describe the early stages of binary
evolution. We find that the orbital plane flip is caused by the torque
from the surrounding triaxial stellar distribution that characterizes

the galactic merger remnant, while excluding that the flip is related
to the sense of rotation of stars in the galaxy.

In Section 2, we describe the numerical setup of our N-body
simulations and method. In Section 3, we discuss the results from
the models where a flip of the binary orbit is observed. In Section 4,
we present an analytical model which describes the evolution of a
bound binary in a triaxial merger remnant. In Section 5, we present a
population synthesis study investigating the flip mechanism and the
effect of the galaxy figure rotation. Finally, in Section 6, we present
our conclusions.

2 NUMERI CAL SETUP

We model mergers of two equal mass galaxies hosting a central
SMBH. Each galaxy is described by an isotropic, spherically sym-
metric (Dehnen 1993) density profile which is representative of a
nuclear bulge

ρ(r) = (3 − γ )M

4π

r0

rγ (r + r0)4−γ
(1)

with inner slope γ , scale radius r0, and total mass M. We choose
units such that G = Mtot = r0 = 1, where Mtot denotes the total stellar
mass of both progenitor galaxies. We consider two density profiles
γ = 0.5 and 1, which represent a shallow and mild cusp and are
denoted by SC and MC, respectively. The SMBH mass is fixed in
all simulations M• = 0.0025 yielding a star to SMBH mass ratio of
approximately 8 × 10−4. For all the merger simulations considered
the progenitor galaxies are placed at an initial distance R = 20r0

and on bound elliptical orbits having eccentricities e = 0.5, 0.7, 0.9.
All merger simulations were run at a fixed resolution of N = 512k
and lie in the x–y plane. We also use simulation data from Nasim
et al. (2020b). Specifically, we use the the Dehnen bulge models with
SMBHs, with γ = 0.5 and e = 0.9 (N = 512k and N = 2048k, see
Table 3). The simulation parameters are given in Table 1.

We evolve all merger simulation models with GRIFFIN (Dehnen
2014; Nasim et al. 2020b, a), which has recently been shown to
evolve SMBH binaries in galaxy merger simulations as accurately as
direct summation methods (Nasim et al. 2020b). GRIFFIN utilizes the
Fast Multiple Method (FMM) as a force solver for star–star gravity,
avoiding a tail of large force errors, with mean relative force error of
3 × 10−4 (default GRIFFIN setting). We adopt a softening length of
ε∗ = 2.3 × 10−2 for the stars and ε• = ε∗/100 = 2.3 × 10−4 for the
SMBHs and SMBH–star interactions (Nasim et al. 2020b).

3 N-BODY SI MULATI ON R ESULTS

3.1 Black hole binary evolution

In Fig. 1 we show the three characteristic evolutionary phases of the
binary evolution (e.g. Begelman et al. 1980; Merritt 2006; Khan et al.
2011) for the SC and MC models (see left-hand panels in Fig. 1).

In the first phase of the merger the orbit of the SMBHs shrinks
due to dynamical friction (Chandrasekhar 1943). This phase brings
the SMBHs to a separation at which they form a bound pair. Here we
adopt the convention that a binary is formed when its orbital energy
becomes negative. The orbital energy is defined as

E = −Mbin

r
+ v2

2
, (2)

with Mbin the binary mass and v the SMBHs relative velocity. Soon
after the binary becomes bound, three-body scatterings of stellar
particles start also to become important in exchanging energy and
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500 I. T. Nasim et al.

Figure 1. Binary evolution as a function of time for the SC (upper panels) and MC (lower panels) models. From left to right: distance between the SMBHs;
semimajor axis evolution and eccentricity evolution from the time of binary formation tbf . The relevant separations rinf, roughly corresponding to the influence
radius of the primary black hole, and the hard-binary separation ah, are marked in the left-hand panels.

angular momentum with the binary. These encounters result in stellar
ejections that lead to a decrease in the central density and the
formation of a central core.

As the binary orbit shrinks and becomes more tightly bound, the
efficacy of dynamical friction in driving the evolution of the binary
decreases and three-body interactions start to dominate the evolution.
This hardening process takes place rapidly for equal mass binaries,
resulting in a swift decrease in the separation until the SMBHs reach
the hard binary separation, ah. This is defined as the separation where
the binding energy per unit mass exceeds the kinetic energy per unit
mass of the stars and can be written as (Merritt 2013)

ah = Gμ

4σ 2
, (3)

where σ is the stellar velocity dispersion and μ is the reduced mass
of the binary (μ = M1M2/Mbin). A more convenient definition of the
hard binary separation, as σ is not constant, that we adopt below is
given by

ah ≡ μ

Mbin

rinf

4
= rinf

16
, (4)

where rinf is the influence radius of the primary SMBH, defined as
the separation at which the stellar mass within the orbit of the binary
M∗ is equal to twice the mass of the primary black hole M•, i.e.

M∗(< rinf ) = 2M•. (5)

In the left-hand panels of Fig. 1 we illustrate the evolution of the
binary separation and the values of the characteristic separations rinf

and ah for our models. We can see that the evolution of the SMBHs
is dependent on the density profile and the initial orbital eccentricity,
with the denser models (MC) with the larger eccentricities evolving
more rapidly. In the middle panels of Fig. 1 we plot the evolution
of the semimajor axis after the orbital energy of the binary becomes

positive which sets the time of binary formation. In the SC models the
binary forms with a semimajor axis a � 0.08, while in the MC models
it forms with a � 0.01. In the right-hand panels of Fig. 1, we observe a
significant variation in the binary eccentricity at the moment of binary
formation among both SC and MC models, with the binaries forming
with larger eccentricities in the more eccentric galaxy mergers. This
apparent correlation showing that more eccentric mergers generally
result in a larger binary eccentricity has been observed in previous
studies (e.g. Khan et al. 2011), though it is important to note that
at the resolution of these studies stochastic effects play a significant
role in the eccentricity variation (Nasim et al. 2020b). Somewhat
unsurprisingly, we find that the most eccentric mergers (ei = 0.9)
yield the most eccentric binaries for both the SC and MC models
reaching e � 0.95 and e � 0.90, respectively, by the end of the
numerical integration (see Table 2).

3.2 Binary orbital plane flip

We consider here the evolution of the angle, θ =
cos−1

(
L · Lgx/|L||Lgx|

)
, between the binary angular momentum

vector, L, and the galaxy total angular momentum vector, Lgx. We
compute the angular momentum of the binary using L = r × v,
where r and v are the relative position and velocity between the
SMBHs. We compute the angular momentum of the galaxy Lgx

relative to the centre of mass of the merging progenitors which
coincides with the centre of mass of the binary.

In all our models, the binary is initially co-rotating with the galaxy
and θ ∼ 0. The subsequent evolution of θ is shown in Fig. 2 for models
SC09 and MC09, together with the normalized angular momentum
components of the binary. We observe that in these models the binary
switches from co-rotating to counter-rotating. The flip occurs over a
time interval 
t < 1 approximately at the time of binary formation
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Table 2. Binary parameters in our merger models. From left to right:
Simulation identifier; final eccentricity of the binary at the end of the
numerical integration efinal; time at which we observe the flip of the orbital
plane of the binary tflip ; time of binary formation tbf defined as the time at
which the binary separation becomes less than rinf.

Models efinal tflip tbf

SC05 0.10 N/A 350
SC07 0.80 N/A 247
SC09 0.95 128 129
MC05 0.11 N/A 340
MC07 0.71 N/A 233
MC09 0.91 123 125

(see Table 2). At the same time, we see that there is a significant
change in the binary angular momentum component Lz, which
changes from positive to negative. These characteristics show that
the binary orbital plane itself is flipping along the z-axis at the time
the binary becomes counter-rotating. Importantly, we only observe
this behaviour in the most eccentric models (SC09 and MC09), with
the other models simply resulting in a co-rotating binary. We find
that flips occur for eccentric binaries where the binary eccentricity
is initially e � 0.7 the binary remains co-rotating until the end of
the simulation. On the other hand, in models where e � 0.7, the
binary reverses its sense of rotation and becomes almost perfectly
retrograde at the time of binary formation.

Table 3. Initial parameters of the galaxy merger simulations from Nasim
et al. (2020b). From left to right: Simulation suite identifier; inner slope
of the galaxy density profile γ ; initial orbital eccentricity of the progenitor
galaxies e; mass ratio between the galaxies; SMBH to stellar mass ratio;
initial distance between the centres of the two galaxies R; total number of
particles in the merger simulation N; number of random realizations Nr.

Suite γ ei M1: M2 M•/M∗ R/r0 N Nr

MR 0.5 0.9 1:1 0.005 20 512k 8
HR 0.5 0.9 1:1 0.005 20 2048k 4

To check that the behaviour we observe is not due to our specific
generation of initial conditions or to numerical resolution (i.e. not a
spurious result), we use the simulation data from Nasim et al. (2020b)
who considered eight realizations with the SC09 models parameters
at N = 512k and four realizations at N = 2048k. The parameters for
these numerical simulations are presented in Table 3. We plot the
evolution of θ for the different realizations in Fig. 3. For all of the
realizations, irrespective of resolution, we observe that the binaries
show the same behaviour, becoming counter-rotating at about the
same time. After the binaries flip we see that θ is slightly different
between realizations. This is expected due to the stochastic nature
of the interaction between the binary and the surrounding stellar
environment (e.g. Bonetti et al. 2016; Bortolas et al. 2018; Nasim
et al. 2020b). From Fig. 3 we observe a clear trend at later times:
after the binary flips the value of θ systematically decreases for all

Figure 2. Evolution of the angle between the binary and galaxy angular momenta vectors (θ ), and the normalized angular momentum components of the binary
(Lx, Ly, Lz) for the models where we observe the binary orbital plane flip (SC09 and MC09, upper and lower panels, respectively). The black horizontal dashed
line in the left-hand panels represent the boundary between co-rotating and counter-rotating binaries. The solid/dashed lines in the upper right-hand panel
represent the angular momentum components before/after binary orbital plane flip. We observe that the binary orbital plane itself flips, causing the transition
from co-rotating to a counter-rotating with respect to the galaxy angular momenta.
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502 I. T. Nasim et al.

Figure 3. Evolution of the angle between the binary and galaxy angular
momenta vectors (θ ) for the different realizations with SC09 parameters. The
top panels shows the results for the eight different realizations at N = 512k
and the bottom panels shows the four different realizations at N = 2048k. We
observe a binary orbital flip for all realization irrespective of the numerical
resolution.

realizations. This is due to the fact that misaligned binaries tend to
align their angular momentum vector with the angular momentum
vector of the surrounding stellar system on a characteristic time-
scale of a few hardening times (Gualandris et al. 2012). It was shown
that this process is linear with time and is independent on the mass
ratio between the stellar particles and the binary members. These
theoretical expectations are in agreement with our numerical results.

In Fig. 4, we plot the eccentricity evolution after the time of binary
formation for the different realizations of SC09. We observe that the
eccentricity increases in all binaries, enabling them to achieve large
eccentricities (e � 0.9) by the end of the integration. For the higher
resolution case (see Fig. 4, bottom panel), we observe that the more
eccentric binaries are characterized by a faster decrease in θ , with
the binary reaching an extremely large eccentricity by the end of the
evolution (e � 0.995).

A similar orbital plane flip has been observed in previous studies
(e.g Mirza et al. 2017; Khan et al. 2019). However, we note some
key differences. Mirza et al. (2017) and Khan et al. (2019) consider
the evolution of SMBH binaries in equilibrium axisymmetric galaxy
models; they introduce a net stream rotation by flipping the direction
of the velocity components of the N-body particles in their models.
They show that during the pairing phase, the eccentricity of the
binary dramatically increases for retrograde configurations and the
orbital plane flips so that the binary becomes prograde, which

Figure 4. Evolution of the eccentricity after the time of binary formation
(tbf ) for the different realizations of SC09. The top panels show the results
for the eight different realizations at N = 512k and the bottom panels show
the four different realizations at N = 2048k. For all realizations, we observe
an increase in the eccentricity after the time of binary formation, with the
majority of binaries reaching significantly large eccentricities (e � 0.9).

suppresses the further eccentricity growth. They find that in initially
prograde configurations, SMBH binaries form and remain prograde.
Instead, our models are formed by galaxy merger simulations and
are therefore triaxial systems (e.g. Bortolas et al. 2018) and we find
that the orbital plane flip takes place in an initially co-rotating stellar
distribution leading to a counter-rotating binary, which has not been
explicitly shown before. We believe, however, that the flip found
in earlier work and the behaviour described in this paper might be
related. We will come back to this point in Section 5.

There are at least three mechanisms that could lead to the
reorientation of a massive binary in a galactic nucleus: (i) repeated
close interactions with passing stars (e.g. Merritt 2002; Gualandris
et al. 2012; Rasskazov & Merritt 2017); (ii) the cumulative dynamical
friction due to the rotating environment at larger scales (Dotti et al.
2006; Bonetti et al. 2020); and (iii) the torque due to the non-
axisymmetric stellar potential around the binary, the mechanism
proposed in this paper.

In spherical and isotropic cusps, due to the lack of any preferential
direction in these systems, the orbital plane of the binary can only
undergo a random walk, resulting in small changes in the orbital
plane on long time-scales (e.g. Merritt 2002). However, in rotating
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Figure 5. Fraction of stars on retrograde (dashed line) and prograde (solid
line) orbits, with respect to the angular momentum vector of the binary prior
to flip, as a function of the normalized enclosed stellar mass. The coloured
lines are defined as: time unit before the binary flip (green line), first time
where we observe the flip (black line), subsequent time unit after the flip
has been observed (magenta line). Upper/lower panels show the results from
models SC09/MC09. We do not observe any significant evolution in the
prograde/retrograde stellar fraction before and after the flip indicating the flip
mechanism is an independent process.

stellar systems a significant reorientation is expected (Gualandris
et al. 2012; Rasskazov & Merritt 2017). Binaries whose angular
momentum is initially misaligned with respect to that of the stellar
cusp tend to realign their orbital planes with the angular momentum
of the cusp on a time-scale of a few hardening times. Since the
SMBH binaries in our models start with their angular momentum
aligned with that of the stellar cusp, this process is not expected
to significantly affect their orientation. Thus, we conclude that
mechanism (i) cannot be responsible for the flip observed in the
N-body models.

From our results, we also check whether there is a dynamical
effect related to the ejection of stars present in the galaxy. To do this,
we plot in Fig. 5 the fraction of prograde and retrograde stars with
respect to the angular momentum vector of the binary prior to flipping
and as a function of the enclosed mass at times before and after the
flip takes place. We observe no significant change in the fraction

of prograde versus retrograde orbits before and after the flip takes
place. This shows that the mechanism causing the flip is independent
of the sense of rotation of the stars in the galaxy, and supports our
previous statement that the binary flip is not caused by the angular
momentum exchange between stars and the SMBH binary during
close encounters, a mechanism discussed by Sesana et al. (2011) and
Gualandris et al. (2012). Such encounters with stars are responsible,
however, for the evolution of the binary at later times (t � 130 in
Fig. 2), which tend to reorient the system towards a co-rotating state.

The process proposed by Dotti et al. (2006) posits that dynamical
friction causes the angular momentum flip, whereby a massive
perturber is accelerated in the opposing direction to its instantaneous
motion relative to the local environment. As dynamical friction
always decelerates counter-rotating systems, their eccentricity pro-
ceeds to increase (without flipping the orbital plane) until the effect
over one orbit is sufficient enough to reverse the sense of rotation,
causing a gradual angular momentum flip. Recently, numerical tests
presented in Bonetti et al. (2020) confirmed that dynamical friction
was responsible for the flip observed in Dotti et al. (2006), and
dubbed the mechanism ‘drag toward circular corotation’. This model
also suggests that massive perturbers that are initially co-rotating
will circularize their orbit and remain prograde. We conclude that
mechanism (ii) also cannot be responsible for the flip we observe.

The behaviour resulting in the formation of counter-rotating
binaries suggests that there is a connection between the orbital plane
flip and the binary eccentricity, with very eccentric mergers yielding
an orbital flip. Interestingly, it has been shown that more eccentric
galactic mergers yield a larger level of triaxiality in the merger
remnant (e.g. Bortolas et al. 2018). To verify this, we determine
the triaxiality of the merger remnant for models in which a flip is
observed.

The shape of a cluster can be characterized by the best-fitting
ellipsoid to the stellar distribution at an arbitrary distance. If a > b
> c > 0 are the axes of symmetry of this ellipsoid, the triaxiality can
be defined as

T = a2 − b2

a2 − c2
, (6)

where if 0 ≤ T < 0.5 the spheroid is oblate, if T = 0.5 the system
is said to have maximum triaxiality, and if 0.5 < T ≤ 1 the spheroid
is prolate. To compute the model’s axes we use an iterative method
similar to that described in Katz (1991) (see also Antonini, Capuzzo-
Dolcetta & Merritt 2009; Bortolas et al. 2018). Briefly, we initially
consider all stars enclosed within a sphere of radius equal to the radius
of influence of the binary,1 and compute the inertia tensor; from this
we then compute the eigenvalues of the inertia tensor which serves
as a first-order approximation for the axes of symmetry, and the three
direction cosines giving the direction of the eigenvectors. To achieve a
greater level of accuracy we iterated the procedure by computing new
axes, but now only considering particles enclosed within the ellipsoid
with the previously computed axes. This procedure is continued until
the tolerance (10−5) is satisfied.

Computing the triaxiality parameter of models SC09 and MC09
at the point where the binary flips yields T = 0.53 and T = 0.56,
respectively, with axis ratios b/a, c/a of [0.85, 0.69] and [0.84, 0.69].
These levels of triaxiality are in agreement with the results found by
Bortolas et al. (2018). We verified that these values are independent of

1We find that we obtain the same triaxiality by considering distances equal
to two or three times the radius of influence of the binary. This confirms that
the computation of the triaxiality at different distances does not affect our
measure of triaxiality.
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the numerical resolution by computing the triaxiality for the different
realizations of model SC09, which resulted in similar values of T.
These levels of triaxiality are extremely large, corresponding almost
to maximum triaxiality. The less eccentric galactic mergers produce
a less triaxial merger remnant, with SC05 and SC07 having T = 0.71,
0.68, while models MC05 and MC07 have triaxiality T = 0.73, 0.69,
respectively. In the previous analysis, we classified a binary ‘flip’
with respect to the angular momentum of the galaxy. However, we
find that Lgx is aligned within 2 deg with the shortest axis of our
best-fitting ellipsoid; in our setup, this direction also coincides with
the z axis. In the examined scenario, the merger itself determines
the rotation/minor axis orientation, making small inclinations more
probable. Thus, one can alternatively state that the binary flip in our
models occurs with respect to the minor axis of the galaxy. As argued
below, this latter statement turns out to give, in fact, a more correct
representation of the binary evolution seen in the N-body models.

The large triaxiality of the models, especially in the most eccentric
models, and the high initial eccentricity of the binaries suggest that
the orbital flip observed in the N-body models is driven by the
long-range tidal torques arising from the surrounding galaxy. We
investigate this possibility in the following sections. We are not fully
certain on the reason why the flips take place approximately at the
time of binary formation.

4 SE M I - A NA LY T I C A L M O D E L

In this section, we use a simple analytical model to investigate the
possibility that the sudden reorientation of the binary orbital plane
observed in the N-body models is a consequence of the torque from
the triaxial background potential. We stress that the flip of the SMBH
binary orbital plane in our N-body models occurs in less than ∼1
N-body time units at the moment of binary formation. The semi-
analytical model presented here is therefore intended to describe the
evolution of the SMBH just after this time.

We consider a bound binary system of total mass Mbin with
semimajor axis a embedded within a merger remnant with a density
distribution ρ(r). We assume that the orbit of the binary is Keplerian
and model it using the vectorial formalism (e.g. Tremaine, Touma
& Namouni 2009; Tremaine & Yavetz 2014). Thus, we define the
vectors

e ≡ e ê j ≡
√

1 − e2 ĵ, (7)

where ĵ is parallel to the angular momentum vector, ê points towards
the pericentre of the binary, and e is the eccentricity. We define
Cartesian unit vectors n̂x , n̂y , and n̂z, which provide the reference
frame with respect to the centre of mass of the density distribution.
For simplicity, we assume that the centre of mass of the binary system
lies at the centre of the density distribution.

4.1 Basic equations

Following Petrovich & Antonini (2017), we model the triaxial
potential of the merger remnant per unit mass as

�(ri) = 4πG

(3 − γ )(2 − γ )
ρ̃r̃2

( ri

r̃

)2−γ

×
[

1 + εz

(n̂z · ri)2

r2
i

+ εy

(n̂y · ri)2

r2
i

]
, (8)

with 0 < εy � εz and ri represents the position of the BH i = 1, 2
relative to the remnant’s origin. Assuming that the BHs have equal
masses and their centre of mass is at the origin such that their relative

position is 
r = r1 − r2 = 2r1, we can express the total potential
for the binary pair as

�bin ≡ �(r1) + �(r2) = 2�[
r/2] = 2γ−1�(
r). (9)

This potential (�∝�bin) has the advantage that it allows for an ana-
lytical treatment of the equations of motion. The density distribution
associated with this triaxial potential can be obtained by solving the
Poisson equation and is given by (e.g. Merritt 2013)

ρ(r) = ρ̃
( r

r̃

)−γ
[

1 + ε̃ − ε̃z

(r · n̂z)2

r2
− ε̃y

(r · n̂y)2

r2

]
, (10)

where

ε̃i = εi

γ (5 − γ )

(2 − γ )(3 − γ )
, (11)

with i = y, z and

ε̃ = 2

(2 − γ )(3 − γ )
(εy + εz). (12)

For the models considered in this study, we choose γ = 1.0. In order
to compare to the N-body models, it is also useful to relate εi to the
galaxy axis ratios. For γ = 1 we have

b

a
= 1 + ε̃ − ε̃y

1 + ε̃
, and

c

a
= 1 + ε̃ − ε̃z

1 + ε̃
, (13)

where similar to our definition above, a, b, and c represent the
axis length scales of the mass distribution along n̂x , n̂y , and n̂z,
respectively. Since the isodensity contours are not ellipsoids, the
axis ratios are defined here in terms of the points of intersection of
an isodensity contours with the y-, z-, and x-axes.2

In the Appendix A, we averaged the equations of motion for �

with γ = 1 (equation 8), for which � = �bin (equation 9), resulting
in

〈�bin〉 = πGρ̃r̃a

⎧⎨
⎩3 − j 2 +

∑
i=y,z

εi

[
j 2 + 3 (n̂i · e)2 − (n̂i · j)2]

⎫⎬
⎭ .

(14)

Thus the orbit evolution of the binary is given by the following
equations of motion (equations [A7–A8]):

dj
dτ

=
∑
i=y,z

εi [3 (n̂i · e) (e × n̂i) − (n̂i · j) (j × n̂i)] (15)

de
dτ

=
∑
i=y,z

εi [3 (n̂i · e) (j × n̂i) − (n̂i · j) (e × n̂i)] , (16)

where we have introduced the dimensionless time τ = t/τ sec with

τsec =
√

Mbin

2πr̃ρ̃
√

Ga
. (17)

We note that the functional form of our equations of motion are
equivalent to that in Petrovich & Antonini (2017) which describes
the evolution of the outer orbit in their setup of an inner binary
orbiting an SMBH.

Given that the merger remnant is not fully spherically symmetric,
the binary angular momentum j will precess around both n̂z and n̂y

with characteristic time-scales given by

2This definition is different from that in Petrovich & Antonini (2017) that
uses approximate ellipsoidal isodensity contours, which are only valid for r
∼ r0.
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τsec,z = τsec

εz

=
√

Mbin

2πεzr̃ρ̃
√

Ga
, (18)

τsec,y = τsec

εy

=
√

Mbin

2πεy r̃ρ̃
√

Ga
. (19)

From equations (15) and (16), we see that the results of our
models only depend on the shape parameters of the galaxy εi, the
power-law index γ and on the final integration time. The results can
then be rescaled from the expression of the secular time, τsec, with
the required values of the parameters (r̃ , ρ̃, a, Mbin). For example,
in order to approximately compare the results of the integrations
presented below to the N-body models MC, we start by assuming
that the mass density profile is spherically symmetric so that
ρ(r) = ρ̃(r/r̃)−γ , which is consistent with the Dehnen profile for r
� r0. We then set r̃ = rinf so that for γ = 1 one finds ρ̃ = M•/(πr3

inf).
Using equation (17), this leads to τ sec/Pbin = (rinf/a)2/(2π ), where Pbin

is the binary orbital period. In the N-body models, Pbin � 0.09, rinf �
0.1, and a � 0.01 at the moment of binary formation (approximately).
Thus, we have τ sec/Pbin � 16, or τ sec � 1.4 in the time units of the
N-body simulations.

4.2 Limitations of the model

Although the equations of motion (15) and (16) allow for a simple and
insightful treatment of the general dynamics of a binary in a triaxial
field, they come at the expense of making a range of simplifying
approximations when compared to the N-body simulations. First, at
the moment of binary formation the galaxy mass distribution is still
significantly affected by the motion of the binary as it hardens by
scattering off surrounding stars. This effect is not included in the
analytical models, which assume a fixed density distribution of stars.

Secondly, when carrying out the orbit average (also known as
the secular approximation), the semimajor remains constant. This is
unlike the evolution depicted in Fig. 1 that includes the effect of the
binary hardening. However, as shown in our N-body simulations (see
Fig. 1) the semimajor axis evolves on longer time-scales compared to
the binary flip time-scale and thus a constant semimajor axis is a fair
approximation to make. We note here that hardening and dynamical
friction could be included in this secular formalism (e.g. Dosopoulou
& Antonini 2017), but it goes beyond the goal of our simplified model
that attempts to only capture the basic conditions for orbit flipping
driven by the torques from the host galaxy.

Finally, the orbit-averaged procedure assumes that changes in the
binary orbit occur on a time-scale much longer than the orbital
period of the binary. This is partially satisfied since in our N-body
simulations τ sec/Pbin � 16 at the moment the binary flip occurs. To
compare directly with our numerical simulations, we only consider
equal mass binaries.

5 C O N D I T I O N S F O R O R B I TA L F L I P

5.1 Flip fraction

In order to quantify the conditions for which the binary angular
momentum vector j flips with respect to the n̂z direction, we run
a population model. We consider three different potentials which
represent triaxial merger remnants with varying levels of flattening.
We classify the flattening of the potential into weak, intermediate, and
strong depending on the values of εy and εz. Thus, we consider three
triaxial systems with increasing level of flattening, where εy and εz

where set to [0.05,0.2], [0.2,0.8], and [0.6,0.8]. Using equation (13),

these parameters correspond, respectively, to axis ratios b/a and c/a
of [0.92, 0.68], [0.8, 0.2], and [0.5, 0.3].

We uniformly sample the eccentricity e ∼ U(0, 1) and the
inclination cos (i) ∼ U(− 1, 1). The longitude of the ascending node
and argument of pericentre are then sampled uniformly such that
, ω ∼ U(0, 2π ). For each population synthesis run we consider a
population of 10 000 binaries and evolve all binaries until a time t
= 50τ sec where τ sec is defined by equation (17). We classify a ‘flip’
when jz changes sign at any time during the integration, and a ‘no
flip’ otherwise. We note that this is equivalent to the definition of the
binary orbital flip presented in Section 3 where the binary orbit was
found to flip with respect to the shortest axis of the galaxy (i.e. n̂z).
The results of the population synthesis model is presented in Fig. 6,
which shows the initial eccentricity and inclination of the binaries.
The red and blue filled circles show the initial parameters causing
the binary to flip and not to flip, respectively.

For the case of intermediate and weak levels of flattening (middle
and right-hand panels in Fig. 6), we see that 50.46 per cent and
53.57 per cent of binaries flip their orbital plane, respectively. We
find that most binaries that are sufficiently inclined (70 deg ≤ i ≤
110 deg) reverse their sense of rotation, regardless of their initial
eccentricity. Likewise, we observe that most binaries that are suffi-
ciently eccentric (e > 0.8) flip, regardless of their initial inclination.
This parameter space that is prone to flipping the binary orbital plane
is somewhat expected, as inclined and eccentric binaries require a
small amount of torque in order to flip the z component of the angular
momentum. These characteristics are also observed in the binaries
integrated in the flatter potential (see the left-hand panel in Fig. 6).
The most noticeable difference is that the phase space region leading
to binary flips is significantly larger, where the majority of binaries
flip their orbital plane (80 per cent). We still observe that the region
of inclination phase space leading to flipping binaries increases with
increasing eccentricity, where almost all binaries flip for e > 0.6,
irrespective of their initial inclination. These results suggest that any
sufficiently eccentric and/or inclined binary embedded in a triaxial
potential is expected to flip if evolved for a sufficiently long time.
We also considered integrations in an axisymmetric potential with εy

= 0 and εz = 0.2. Unsurprisingly, in this latter case, we observe no
flip of the orbital plane irrespective of the initial conditions.

5.2 Flip time-scale

In the bottom panels of Fig. 6, we plot the flip time distribution of the
binaries integrated in the triaxial potentials introduced in the previous
section. We find that for larger values of εy and εz the flip time
distribution decreases and for the largest values (left-hand panel) the
median flip time is τ flip = 2.0τ sec. This flip time is extremely quick,
with a significant fraction of highly eccentric binaries flipping in
τ flip < 1.0τ sec. To clearly demonstrate this rapid flip of the binary,
we considered an eccentric binary e = 0.9 with i = 30 deg which
was integrated in a variety of triaxial potential strengths where we
record the fraction of binaries that flip in less than 1 and 10τ sec.
We performed 5000 independent integrations with the results are
illustrated in Fig. 7 with the red and blue filled circles denoting
the flipped and non-flipped binaries, respectively. Interestingly, we
observe that for sufficiently large εy � 0.7 all binaries flip their orbital
plane within a time 1τ sec, and for any εy/εz � 2 the binary can flip
in less than 10τ sec.

In conclusion, our semi-analytical models predict that a suffi-
ciently eccentric binary orbiting within a triaxial cusp can reverse
its sense of rotation over a time-scale τ flip ∼ τ sec. Using the scaling
introduced in Section 4.1, this approximately translates to a time
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506 I. T. Nasim et al.

Figure 6. The initial eccentricity and inclination of the 10 000 binaries run in the population synthesis model. All binaries were run for 50 secular times τ sec,
the blue filled circles represent the binaries that did not flip with respect to the n̂z and the red filled circles represent the binaries that flip. The upper left-hand
panel shows the flip fraction for different levels of flattening: strong (right-hand panel), intermediate (middle panel), and weak (right-hand panel). The values
for εy and εz are given at the top of each panel together with the flip fraction Nfrac. The bottom panels show the distribution of the flip times τflip, with the
median flip time given at the top of each panel. We clearly observe a significant fraction of binaries that flip, with the potentials with the larger values of εy and
εz leading to a larger flip fraction. We also observe that the flip times are rapid, decreasing for increasing levels of flattening.

∼1.0 in N-body units. The models presented here provide therefore
a simple explanation of why in the N-body simulations any initially
eccentric binary is observed to flip very rapidly at the time of binary
formation. Next, we derive a simple condition for the minimum
eccentricity required for a flip to occur.

5.3 Flip condition: analytical result for coplanar encounters

So far we have shown that a triaxial potential can cause the orbital
plane of the binary to flip on a relatively short time-scale. We also
have shown that the flip fraction depends on the inclination and
eccentricity of the binary prior to flipping, with a larger fraction of
flips occurring for highly eccentric and inclined binaries. However,
to better compare with our N-body simulations we would like to
derive a flip condition in the case of a co-planar binary. To do this
we follow an approach similar to Bub & Petrovich (2020), where we
derive a co-planar and Hamiltonian version Hcop of our potential in
equation (14). To do this we expand this potential for the limit of zero
inclination (i → 0), thus setting jx = jy = ez = 0. We further define
the eccentricity vector on the orbital plane as ex = ecos � and ey =
esin � , where � = ω + . Thus, in this coplanar limit, we write

Hcop = πGρ̃r̃a
{

3 − j 2 + εy

[
j 2 + 3e2 sin2 �

]}
. (20)

To derive the flip condition we now equate the co-planar Hamiltonian
at an initial (e0, � 0) and final condition, where the final condition

takes the form e → 1 (hence j → 0), � → 0. From this we obtain
the flip condition by equating the Hamiltonian states, which can be
written as

e0 ≥
√

1 − εy

1 − εy + 3εy sin2(�0)
. (21)

We observe that the flipping condition does not depend on εz.
This is unsurprising given the coplanarity assumption where the
torques from the z-component do not operate. We note that a similar
condition in the context of secular three-body dynamics was found
by Li et al. (2014), relating a minimum eccentricity to the level of
non-axisymmetry of the potential from the outer orbit parametrized
by εoct = (ain/aout)eout/(1 − e2

out) (e.g. Naoz 2016). Equivalently,
εy measures the level of non-axisymmetry of the remnant’s
potential.

In order to test our flip condition, we ran a population synthesis
using our averaged equations with εy = 0.2 and εz = 0.8 fixing i =
 = 0, but varying ω. In Fig. 8 we plot the flip fraction in e − ω

phase space (as  = 0, ω = � ) and show that our analytical co-
planar flip condition (solid magenta line) is in excellent agreement,
perfectly separating flip from non-flip systems. This simple model
again explains why only very eccentric binaries are able to reverse
their sense of rotation in the N-body models.
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Figure 7. Flip fraction for a single eccentric low inclination binary (e =
0.9, i = 30 deg) integrated in various triaxial potentials (0 < εy � εz). We
considered 5000 independent integrations and show the systems that flip in
a time less than t = 1τ sec (upper panel) and t = 10τ sec (bottom panel). The
binaries that flip are represented by the red filled circles. We observe that for
sufficient large values of εy � 0.7 the eccentric binary can flip in less than
1τ sec, while we need εy/εz � 1/2 for a flip to occur in less than 10τ sec.

5.4 Effect of figure rotation

So far we have considered the orbital plane flip of the binary due
to the triaxiality of the merger remnant. However, in the merging
of two galaxies the merger remnant is expected to have some
degree of rotation. Previous studies have implied that non-zero
streaming motion plays a part in the flipping of the orbital plane of a
binary (Holley-Bockelmann & Khan 2015; Mirza et al. 2017; Khan
et al. 2019), showing preferential flipping for binaries embedded in
systems with an excess of stars that counter-rotate with the binary. It
should be noted that the interpretation of this effect in previous studies
has been different, where we consider the rotation of the global
potential and not of the relative velocity between the binary SMBH
and surrounding matter to a larger level of eccentricity enabling it to
flip. However, the effect of figure rotation, where the entire figure of
the galaxy rotates around some axis, has never been investigated in
this context.

Figure 8. The flip fraction in e − ω phase space of the 10 000 binaries run in
the population synthesis model. Binaries were run for 50 secular times τ sec,
the blue filled circles represent the binaries that did not flip with respect to the
n̂z and the red filled circles represent the binaries that flip. The solid magenta
line is the flip condition derived from equation (21). The values for εy and
εz are displayed at the top of the figure with the flip fraction Nfrac. The red
and blue filled circles represent binaries that flip and binaries that do not flip,
respectively.

We find that the figure of the N-body galaxy merger remnants
rotates around the shortest axis of the galaxy (i.e. n̂z) at a angular
frequency ωrot that decreases with time. We compute ωrot by
calculating the angular change in the direction of the longest axis
of the best-fitting ellipsoid (computed as in Section 3.2) per time
interval. In Fig. 9 we show ωrotτ sec evaluated at the half-mass radius
of the galaxy as a function of time and after binary formation. We
see that the rotation at the time of binary formation is ωrotτ sec � 0.05
and decreases slightly as a function of time for both models where
we note the orbital plane flip (SC09 and MC09).

To consider the effect of rotation in our analytical treatment, we
add the rotational potential to that of the time-averaged potential
where (e.g. Tremaine & Yavetz 2014):

�rot = −ωrot(GMbina)1/2 j · n̂z. (22)

This modifies the equations of motion such that

dj
dτ

∣∣∣∣
rot

= dj
dτ

∣∣∣∣
non,rot

+ (j × n̂z) ωrotτsec (23)

de
dτ

∣∣∣∣
rot

= de
dτ

∣∣∣∣
non,rot

+ (e × n̂z) ωrotτsec, (24)

where dj
dτ

|non,rot and de
dτ

|non,rot are given by equations (15) and (16),
respectively.

We perform population synthesis models integrating binaries in the
rotating time-averaged potential. Here we assume that the rotation
is sufficiently slow that the orbit-averaged approximation remains
valid. We consider three degrees of rotation ωrotτ sec = 0.05, 0.1,
1.0, with stronger levels of rotation for increasing values of ωrotτ sec.
We set εy = 0.05 and εz = 0.2, the rest of the population synthesis
parameters remain the same as described in Section 5.1. We perform
population synthesis models for positive values of ωrotτ sec, so that
binaries with initially i > 90deg are counter-rotating and those
with i < 90deg are co-rotating with the galaxy. The results for the
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508 I. T. Nasim et al.

Figure 9. The rotation ωrotτ sec measured at the half mass radius for our
N-body models where we observe the binary flip. We observe the decrease in
rotation measure ωrotτ sec after the time of binary formation for both N-body
models.

population synthesis models are given in Fig. 10 which shows the
flip fraction in e − i phase space.

Fig. 10 shows that binaries embedded in a counter-rotating system
tend to flip more than binaries in a co-rotating potential. This char-
acteristic can be inferred by observing that counter-rotating binaries
(i > 90 deg) have a larger phase space where binaries flip their orbital
plane. This behaviour is most evident in the slow and intermediate
levels of rotation (Fig. 10, upper and intermediate panels) where
we observe a retrograde flip fraction Nflip, ret of 64.8 per cent and
63.2 per cent, respectively. While this characteristic is less evident
for the fast rotating case (ωrotτ sec = 1.0), we still observe a pref-
erential flip for retrograde binaries with Nflip,ret = 52.3 per cent. We
verified that these characteristics persist for different levels of rotation
by running further populations synthesis models with ωrotτ sec = 0.01,
0.25. These results indicate that even for slow rotators such as those
formed in the N-body simulations (ωrotτ sec � 0.05), figure rotation
should have a significant effect on whether the orbital plane flip of
the binary takes place.

From Fig. 10 we also observe that increasing the strength of
rotation (larger ωrotτ sec) leads to a smaller flip fraction where for
ωrotτ sec = 1.0 rotation suppresses the orbital flip. This result is
expected because a rapidly rotating triaxial potential would be
effectively seen as an axisymmetric potential by the binary.

The analysis presented in this section, interestingly shows that
both the strength of triaxiality and the degree of figure rotation
affect whether the orbital plane flip of the binary takes place. It
demonstrates that the phase space available for orbital plane flips in
counter-rotating potentials is significantly larger than in co-rotating
models, allowing less eccentric counter-rotating binaries to flip their
orbital plane. We note that while figure rotation should also affect the
binary evolution observed in the N-body simulations, it is difficult to
discern its effect given the small number of simulations at hand and
that the binaries in these models are all initially co-rotating. It could
however be important and push the minimum eccentricity required
for a flip to higher values than predicted by equation (21).

6 C O N C L U SIO N

In this study, we have performed N-body simulations of the merger
of equal-mass galaxies hosting a central SMBH. The binary that
forms during the merging process is initially co-rotating with the
surrounding galaxy. However, we show that sufficiently eccentric
binaries suddenly reverse their sense of rotation at the moment of the
bound binary formation, leading to a binary that is almost perfectly
retrograde with respect to its galactic host. This orbital plane flip
is found to occur independently of the density profile slope of the
progenitor galaxies.

The counter-rotating binary that forms after the merger is expected
to increase its eccentricity and evolve towards co-rotation as it
exchanges energy and angular momentum with surrounding stars
(e.g. Gualandris et al. 2012). From our N-body simulations, we
confirm this prediction, and observe that after the binaries become
counter-rotating they slowly re-align their sense of rotation with
that of the host galaxy, enabling them to achieve extremely large
eccentricities; some reach e ≈ 0.99 by the end of the numerical
integration. Such eccentric binaries form in eccentric galaxy mergers,
which naturally result in the formation of largely triaxial merger
remnants (see also Bortolas et al. 2018). Using several realizations

Figure 10. The initial eccentricity and inclination phase space (e − i) showing the flip fraction Nfrac where εy = 0.05 and εz = 0.2 for all of the population
synthesis models each integrating 10 000 binaries. We consider three different degrees of rotation of the remnant ωrotτ sec = 0.05 (similar to that found in the
N-body simulations, left-hand panel), ωrotτ sec = 0.1 (middle panel), and ωrotτ sec = 1.0 (right-hand panel). The red and blue filled circles represent the flipped
and non-flipped binaries, respectively. We observe that the binary orbital plane flip happens preferentially for counter-rotating binaries compared to co-rotating
binaries.
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of the same model, we find that the orbital plane flip behaviour is not
due to a specific choice of initial conditions or numerical resolution
– all binaries on very eccentric galactic orbits flip almost exactly at
the same time.

We suggest that the orbital flip of the binary is a result of the torque
from the triaxial merger remnant. To investigate this, we consider an
approximate analytical model for the evolution of a massive binary
in a triaxial potential, and perform population synthesis models to
explore the parameter space of initial conditions for binaries resulting
in an orbital plane flip. The results of our analytical model support
our hypothesis, showing that for sufficiently flattened potentials an
eccentric binary can flip over within a few tens of its orbital period.
In the case of co-planar systems, we derived an explicit orbital plane
flip condition which demonstrates that flips are only experienced by
co-planar SMBH binaries that have an initial eccentricity e � 0.75,
in agreement with the N-body models.

Finally, we find that figure rotation is present in the N-body merger
models and include the effect of rotation in our analytical treatment.
These new models show that binaries preferentially flip in counter-
rotating systems compared to co-rotating systems.

From our numerical simulations, we have shown that the process of
forming counter-rotating binaries due to the orbital plane flip is a key
ingredient in enabling the binaries to achieve very large eccentricities.
These large eccentricities have a significant implication on the merger
time-scale of SMBH binaries (e.g. Nasim et al. 2020b), leading to a
faster coalescence as well as the possibility of detecting a residual
eccentricity in the gravitational wave signal of such systems (Porter
& Sesana 2010; Ravi et al. 2014).

As noted in G18, the rapid realignment of the orbital plane of the
SMBH binary may also have significant observational implications.
It has been shown that the direction of the spin axis of the resultant
SMBH from the binary merger is affected by the orbital plane
orientation of the binary prior to coalescence (Merritt & Ekers 2002),
which, in turn, determines the orientation of the accretion disc around
the resultant SMBH via the Bardeen–Peterson effect (Bardeen &
Petterson 1975) and similarly the direction of the radio jet from
AGNs.

We conclude by briefly comparing to previous work. Mirza et al.
(2017) and Khan et al. (2019) considered rotating, axisymmetric
galaxy models and noted a similar SMBH binary orbital plane flip,
but only for initially counter-rotating systems, leading to co-rotating
binaries. They attributed this to the preferential ejection of prograde
stars by the binary (Gualandris et al. 2012). As noted above, this
cannot be the reason for the flip in our models because our binaries
are initially co-rotating with the galaxy. This characteristic combined
with the fact that we observe the rapid flip of the binary orbital
plane implies that the flip behaviour we observe cannot be due to
the mechanism proposed by Dotti et al. (2006). Although a direct
comparison with the models in Mirza et al. (2017) and Khan et al.
(2019) is required to draw firmer conclusions, we propose here that
the flip observed by them might also be caused by the torque from
the non-axisymmetric mass distribution surrounding the binary. The
idea that the two mechanisms might be the same is supported by
three similarities: (i) their SMBH binaries also flip suddenly at the
time of binary formation; (ii) only their most eccentric binaries flip;
and (iii) as noted in Holley-Bockelmann & Khan (2015), their galaxy
models exhibit a more triaxial shape inside the radius of influence
of the SMBHs. Thus, it may well be that this inner region in their
models was sufficiently triaxial to allow the orbital plane flip to
occur. In this picture, the fact that Mirza et al. (2017) and Khan et al.
(2019) did not observe a flip in their initially co-rotating binaries
could be explained by their smaller initial eccentricity, rather than

by their sense of rotation. However it is worth noting that the larger
scale studies (Dotti et al. 2006, 2007) show angular momentum flips
resulting in prograde systems, albeit via a fundamentally different
mechanism, which are associated with the local streaming velocities
in systems with negligible triaxiality.

AC K N OW L E D G E M E N T S

CP acknowledges support from the Bart J. Bok fellowship at Steward
Observatory. FD acknowledges support from PCTS and Lyman
Spitzer Jr fellowships. FA acknowledges support from a Ruther-
ford fellowship (ST/P00492X/1) from the Science and Technology
Facilities Council.

DATA AVAI LABI LI TY

The data underlying this article will be shared on a reasonable request
to the corresponding author.

REFERENCES

Amaro-Seoane P. et al., 2017, preprint (arXiv:1702.00786)
Antonini F., Merritt D., 2012, ApJ, 745, 83
Antonini F., Capuzzo-Dolcetta R., Merritt D., 2009, MNRAS, 399, 671
Bardeen J. M., Petterson J. A., 1975, ApJ, 195, L65
Begelman M. C., Blandford R. D., Rees M. J., 1980, Nature, 287, 307
Bonetti M., Haardt F., Sesana A., Barausse E., 2016, MNRAS, 461, 4419
Bonetti M., Bortolas E., Lupi A., Dotti M., Raimundo S. I., 2020, MNRAS,

494, 3053
Bortolas E., Gualandris A., Dotti M., Read J. I., 2018, MNRAS, 477, 2310
Bub M. W., Petrovich C., 2020, ApJ, 894, 15
Chandrasekhar S., 1943, ApJ, 97, 255
Dehnen W., 1993, MNRAS, 265, 250
Dehnen W., 2014, Comput. Astrophys. Cosmol., 1, 1
Dosopoulou F., Antonini F., 2017, ApJ, 840, 31
Dotti M., Colpi M., Haardt F., 2006, MNRAS, 367, 103
Dotti M., Colpi M., Haardt F., Mayer L., 2007, MNRAS, 379, 956
Enoki M., Nagashima M., 2007, Progr. Theoret. Phys., 117, 241
Gualandris A., Merritt D., 2012, ApJ, 744, 74
Gualandris A., Dotti M., Sesana A., 2012, MNRAS, 420, L38
Hills J. G., 1983, AJ, 88, 1269
Holley-Bockelmann K., Khan F. M., 2015, ApJ, 810, 139
Iwasawa M., An S., Matsubayashi T., Funato Y., Makino J., 2011, ApJ, 731,

L9
Just A., Khan F. M., Berczik P., Ernst A., Spurzem R., 2011, MNRAS, 411,

653
Katz N., 1991, ApJ, 368, 325
Khan F. M., Just A., Merritt D., 2011, ApJ, 732, 89
Khan F. M., Awais Mirza M., Holley-Bockelmann K., 2020, MNRAS, 492,

256
Li G., Naoz S., Kocsis B., Loeb A., 2014, ApJ, 785, 116
Merritt D., 2002, ApJ, 568, 998
Merritt D., 2006, ApJ, 648, 976
Merritt D., 2013, Dynamics and Evolution of Galactic Nuclei, Princeton

University Press, Princeton
Merritt D., Ekers R. D., 2002, Science, 297, 1310
Mirza M. A., Tahir A., Khan F. M., Holley-Bockelmann H., Baig A. M.,

Berczik P., Chishtie F., 2017, MNRAS, 470, 940
NANOGrav Collaboration, 2015, ApJ, 813, 65
Naoz S., 2016, ARA&A, 54, 441
Nasim I., Gualandris A., Read J. I., Antonini F., Dehnen W., Delorme M.,

2020a, MNRAS, preprint (arXiv:2011.04663)
Nasim I., , Gualandris A., Read J., Dehnen W., Delorme M., Antonini F.,

2020b, MNRAS, 497, 739
Petrovich C., Antonini F., 2017, ApJ, 846, 146
Porter E. K., Sesana A., 2010, preprint (arXiv:1005.5296)

MNRAS 503, 498–510 (2021)

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/503/1/498/6131841 by C
ardiff U

niversity user on 18 M
arch 2021

https://arxiv.org/abs/1702.00786
http://dx.doi.org/10.1088/0004-637X/745/1/83
http://dx.doi.org/10.1111/j.1365-2966.2009.15342.x
http://dx.doi.org/10.1086/181711
http://dx.doi.org/10.1038/287307a0
http://dx.doi.org/10.1093/mnras/stw1590
http://dx.doi.org/10.1093/mnras/staa964
http://dx.doi.org/10.1093/mnras/sty775
http://dx.doi.org/10.3847/1538-4357/ab8461
http://dx.doi.org/10.1086/144517
http://dx.doi.org/10.1093/mnras/265.1.250
http://dx.doi.org/10.1186/s40668-014-0001-7
http://dx.doi.org/10.3847/1538-4357/aa6b58
http://dx.doi.org/10.1111/j.1365-2966.2005.09956.x
http://dx.doi.org/10.1111/j.1365-2966.2007.12010.x
http://dx.doi.org/10.1143/PTP.117.241
http://dx.doi.org/10.1088/0004-637X/744/1/74
http://dx.doi.org/10.1111/j.1745-3933.2011.01188.x
http://dx.doi.org/10.1086/113418
http://dx.doi.org/10.1088/0004-637X/810/2/139
http://dx.doi.org/10.1088/2041-8205/731/1/L9
http://dx.doi.org/10.1111/j.1365-2966.2010.17711.x
http://dx.doi.org/10.1086/169696
http://dx.doi.org/10.1088/0004-637X/732/2/89
http://dx.doi.org/10.1093/mnras/stz3360
http://dx.doi.org/10.1088/0004-637X/785/2/116
http://dx.doi.org/10.1086/339035
http://dx.doi.org/10.1086/506139
http://dx.doi.org/10.1126/science.1074688
http://dx.doi.org/10.1093/mnras/stx1248
http://dx.doi.org/10.1088/0004-637X/813/1/65
http://dx.doi.org/10.1146/annurev-astro-081915-023315
https://arxiv.org/abs/2011.04663
http://dx.doi.org/10.1093/mnras/staa1896
http://dx.doi.org/10.3847/1538-4357/aa8628
https://arxiv.org/abs/1005.5296


510 I. T. Nasim et al.

Preto M., Berentzen I., Berczik P., Spurzem R., 2011, ApJ, 732, L26
Quinlan G. D., 1996, New Astron., 1, 35
Rasskazov A., Merritt D., 2017, ApJ, 837, 135
Ravi V., Wyithe J. S. B., Shannon R. M., Hobbs G., Manchester R. N., 2014,

MNRAS, 442, 56
Reardon D. J. et al., 2016, MNRAS, 455, 1751
Sesana A., Haardt F., Madau P., 2006, ApJ, 651, 392
Sesana A., Gualandris A., Dotti M., 2011, MNRAS, 415, L35
Tremaine S., Yavetz T. D., 2014, Am. J. Phys., 82, 769
Tremaine S., Touma J., Namouni F., 2009, AJ, 137, 3706
Vasiliev E., Antonini F., Merritt D., 2015, ApJ, 810, 49

A P P E N D I X A : EQUAT I O N S O F M OT I O N

To derive the orbit-averaged equations of motion we follow a similar
approach to (Petrovich & Antonini 2017) where the potential per unit
mass defined in equation (8) is

�(r) = 4πG

(3 − γ )(2 − γ )
ρ̃r̃2

( r

r̃

)2−γ

×
[

1 + εz

(n̂z · r)2

r2
+ εy

(n̂y · r)2

r2

]
. (A1)

First, we perform the averaging the terms that appear on the triaxial
potential. Assuming that r follows a Keplerian orbit, we can average
an arbitrary function f (r) over the orbit of the binary as

〈f (r)〉 = (1 − e2)3/2

2π

∫ 2π

0

dφ

(1 + e cos φ)2
f (r, φ). (A2)

For the case of non-spherical potential, the following results are
useful for averaging terms.

r−γ (n̂i · r)2 = r2−γ (n̂i · r̂)2 = r2−γ cos2 φ (n̂i · ê)2

+ 2r2−γ sin φ cos φ (n̂i · ê) (n̂i · q̂)

+ r2−γ sin2 φ (n̂i · q̂)2
, (A3a)

(n̂i · q̂)
(
n̂j · q̂

) = δij − (n̂i · ê)
(
n̂j · ê

) −
(

n̂i · ĵ
)(

n̂j · ĵ
)

. (A3b)

Using the fact that r = a(1 − e2)/(1 + ecos φ), we average over the
azimuthal angle φ which gives us the total averaged potential which
takes the form

〈�〉 = πGρ̃r̃a

⎧⎨
⎩3 − j 2 +

∑
i=y,z

εi

[
j 2 + 3 (n̂i · e)2 − (n̂i · j)2]

⎫⎬
⎭ .

(A4)

From the time-averaged potential we can derive the Milankovitch
equations of motion using the relation (e.g. Tremaine & Yavetz 2014)

dj
dt

= − 1√
GMbina

(j × ∇j〈�〉 + e × ∇e〈�〉) (A5)

de
dt

= − 1√
GMbina

(j × ∇e〈�〉 + e × ∇j〈�〉). (A6)

Applying the relations given in equation (A6), we obtain our
equations of motion

dj
dt

= −π
√

Gρ̃r̃
√

a√
Mbin

×
⎧⎨
⎩
∑
i=y,z

εi [−2 (n̂i · j) (j × n̂i) + 6 (n̂i · e) (e × n̂i)]

⎫⎬
⎭ . (A7)

de
dt

= −π
√

Gρ̃r̃
√

a√
Mbin

×
⎧⎨
⎩
∑
i=y,z

εi [−2 (n̂i · j) (e × n̂i) + 6 (n̂i · e) (j × n̂i)]

⎫⎬
⎭ . (A8)
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