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Close stellar binaries are prone to undergo a phase of stable mass transfer in which a star loses mass to its
companion. Assuming that the donor star loses mass along the instantaneous interstellar axis, we derive the
orbit-averaged equations of motion describing the evolution of the donor rotational angular momentum
vector (spin) that accompanies the transfer of mass. We consider: (i) a model in which the mass transfer rate
is constant within each orbit and (ii) a phase-dependent rate in which all mass per orbit is lost at periapsis. In
both cases, we find that the ejection of ≳30 percent of the donor’s initial mass causes its spin to nearly flip
onto the orbital plane of the binary, independently of the initial spin-orbit alignment. Moreover, we show
that the spin flip due to mass transfer can easily dominate over tidal synchronization in any giant stars and
main-sequence stars with masses ∼1.5 to 5 M⊙. Finally, the general equations of motion, including tides,
are used to evolve a realistic population of massive binary stars, leading to the formation of binary black
holes. Assuming that the stellar core and envelope are fully coupled, the resulting tilt of the first-born black
hole reduces its spin projection onto the orbit normal by a factor ∼Oð0.1Þ. This result supports previous
studies in favor of an insignificant contribution to the effective spin projection, χeff , in binary black holes
formed from the evolution of field binaries.

DOI: 10.1103/PhysRevD.103.063007

I. INTRODUCTION

A large number of stars are found to be in close binary
systems. The fraction of main-sequence stars that are bound
to one or more companions ranges from ∼40 percent in the
case of solar-type stars up to ∼90 percent for massive
O-type stars [1–3]. A substantial fraction of binaries move
on close orbits with orbital periods less than ∼103 to
104 days. Compared to a life in isolation, their evolutionary
pathways are significantly altered as they can undergo a
phase of mass transfer in which they exchange a large
amount of mass and rotational angular momentum with
their close companions [4]. Mass transfer between binary
members is responsible for a set of astrophysical phenom-
ena such as X-ray binaries [5] and millisecond pulsars [6].
Moreover, the larger and more evolved but paradoxically
less massive members of Algol-type eclipsing binaries are
thought to become so during a phase of mass transfer to
their companions [7].
A number of binary stellar evolution codes exist that allow

one to simulate the life of binary stars, includingmass transfer
phases alongwith other binary effects such asmass accretion,
common-envelope evolution, supernova kicks, and angular
momentum losses (e.g., BSE [8], StarTrack [9], MESA [10],

binary_c [11]). Regarding the mass transfer, these codes
typicallybuild upon twoassumptions.Firstly, the effect of any
orbital eccentricity is neglected during the mass transfer
phase. For circular orbits, there exists the well-established
Roche lobe limit, which a star’s radius has to exceed so that it
loses mass to its companion [12]. In turn, modeling the mass
transfer rate on eccentric orbits in which the orbital separation
oscillates is extremely difficult since mass transfer might
occur partially within each orbit at a varying rate and does
backreact on the orbital elements, changing the eccentricity
and semimajor axis. Recently, several promising attempts
have been made to solve these difficulties [13–16]. Secondly,
the rotational angularmomentumvectors (spins) of the binary
stars are assumed to be aligned with the orbital axis. This
assumption has partly been made due to simplicity and partly
because tidal interactions between the binary members are
believed to diminish any spin-orbit misalignment [17].
However, there is observational evidence of close binaries
with highly inclined spin axes, suggesting that tides are not in
all cases able to align the spins with the orbital axis e.g.,
BANANA survey, [18].
In this paper, we question the second assumption of spin-

orbit alignment. Based on the work of Matese and
Whitmire [19], we will show that if a binary undergoes
a phase of mass transfer, the mass-donating star actually
loses rotational angular momentum in a way that causes its
spin vector to flip onto the orbital plane.
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We will apply this result to the evolutionary pathways of
massive stars in close binaries. Isolated in the galactic field,
these systems have been proposed as the progenitors of a
formation channel [20–23], leading to the binary black hole
(BBH) mergers observed by gravitational wave facilities
[24]. In this scenario, mass transfer between the two stars
precedes a common-envelope phase in which the orbital
separation quickly shrinks to values small enough for the
black hole remnants to merge in less than ∼10 Gyr.
The orientation and magnitude of the black hole spins

constitute an important observable to discriminate among
the different binary formation channels e.g., [25–28]. For
instance, the LIGO-Virgo detectors are sensitive to the
mass-weighted projection of the black hole spins onto the
orbital angular momentum,

χeff ¼
M1χ1 cos θ1 þM2χ2 cos θ2

M12

: ð1Þ

Here, M1;2 are the two black hole masses and M12 their
sum. The spins are usually expressed in terms of the
dimensionless spin parameters χ 1;2, while we will use the
canonical rotational angular momenta S1;2 to describe
those of their stellar progenitors. Both vectors are related
as S1;2 ¼ χ 1;2GM2

1;2=c, with G and c referring to the gra-
vitational constant and speed of light, respectively. The
angles θ1;2 ¼ cos−1 Ŝ1;2 · ĥ describe the tilts of the spins
with respect to the specific orbital angular momentum h.
A viable formation channel has to be compatible with the
χeff distribution of the BBH mergers measured by LIGO-
Virgo, which peaks around χeff ≃ 0, with a slight tendency
toward positive values [24,29]. This suggests that the final
black hole spins are either small, antialigned with each
other, or perpendicular to h.
By means of a population synthesis, we will apply the

spin dynamics that we derived to the first stable mass
transfer occurring in the isolated binary channel. There, we
will also take other binary effects such as tidal interactions
into account [30] in order to investigate whether flipping
spins are a prevalent phenomenon or not. Apart from that,
we emphasize that the dynamics can be important for any
other binary formation channel that might involve a phase
of mass transfer, e.g., the triple channel [31], as well as for
mass-exchanging stellar binaries in general.
This paper is organized as follows. In Sec. II, we will

outline our basic assumptions. In Sec. III, we will analyti-
cally derive the spin dynamics of the mass-losing star. In
Sec. IV, we will discuss the importance of torques emerging
from tidal interactions. In Sec. V, we will present the results
of our population synthesis study. Finally, we will sum-
marize our findings in Sec. VI.
If not stated differently, the magnitude, unit vector, and

time derivative of some vector V are written as V ¼ jVj,
V̂ ¼ V=V, and _V ¼ dV=dt, respectively.

II. BASIC ASSUMPTIONS

In this paper, we consider a stellar binary in which one
member star transfers mass to the other. We label all
quantities related to the mass-losing star (donor) and the
mass-gaining star (accretor) with the indices i ¼ 1, 2,
respectively. Thus, let Ri, Mi, ri, and d ¼ r2 − r1
denote the stars’ radii, masses, the distance between the
stellar centers of mass to the binary center of mass, and
orbital separation, respectively. Together, they carry a
specific orbital angular momentum per reduced mass
μ ¼ M1M2=M12, which is given by

hðtÞ ¼ d × _d: ð2Þ

In terms of the semimajor axis a, eccentricity e, and total
mass M12, its magnitude can be written as

h ¼ j
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GM12a

p
; ð3Þ

where j ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − e2

p
. Furthermore, we associate with each

star a rotational angular momentum vector (spin), given by

SiðtÞ ¼
X
k

ρi;k × ðmk _ρi;kÞ ¼
X
k

ρi;k × ðmkωi;k × ρi;kÞ: ð4Þ

The sums in Eq. (4) are taken over all particles with masses
mk, absolute positions si;k, relative positions ρi;k ¼ si;k − ri,
and angular velocities ωi;k that constitute the star i at some
time t. If we assume for simplicity that the stars retain
spherically symmetric shapes during the mass transfer and
uniformly rotate at some angular velocities ωi ¼ ωi;k, one
recovers the familiar form,

SiðtÞ ¼ Θi · ωi; ð5Þ

where Θi ¼ κMiR2
i 1 is the respective star’s total inertia

tensor, with 1 being the identity. Throughout this paper, we
set κ ¼ 0.08 for a n ∼ 3 polytrope [32].
In general, mass is transferred from the donor to the

accretor via their first Lagrangian point L1 once the former
fills its Roche lobe [4,33]. That is, the radius of the donor
has to expand to the limit approximately, given by [12]

RLðtÞ ¼ dFðqÞ; ð6Þ

where q ¼ M1=M2 is the stars’mass ratio, and the function
FðqÞ is defined as

FðqÞ ¼ 0.49q2=3

0.6q2=3 þ lnð1þ q1=3Þ : ð7Þ

Whenever the donor has grown to that size, R1 ¼ RL, we
assume that it loses mass at the point R1 ¼ R1d̂ at a rate
_M1 ¼ − _M, where _M > 0, which subsequently gets
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transferred to the accretor. For simplicity, we assume that
the mass transfer is conservative; i.e., no mass is lost from
the binary during this process.

III. DONOR SPIN EVOLUTION
DUE TO MASS TRANSFER

In this section, we study the spin evolution of the donor
based on the work of Matese and Whitmire [19] and
Sepinsky et al. [34]. For this reason and for better read-
ability, we will henceforth omit the donor’s index i ¼ 1
(S ¼ S1, ω ¼ ω1, R ¼ R1, etc.). Accordingly, consider a
general donor quantity G, which, at some time t, can be
written as GðtÞ ¼ P

k GkðtÞ, i.e., as a sum over all particles
labeled with k that constitute the donor at that time [e.g.,
Eq. (4)]. At a later time tþ Δt, G will be given by
Gðtþ ΔtÞ ¼ P

k0 Gk0 ðtþ ΔtÞ, whereX
k0

¼
X
k

−
X
l

ð8Þ

is the sum over all particles that constitute the respective
star at the later time tþ Δt. That is, the donor lost the
contribution of the particles labeled with l that left it within
the time interval Δt. Consequently, the time derivative of
GðtÞ can be written as [19]

_G ¼
X
k

_GkðtÞ − lim
Δt→0

1

Δt

X
l

Glðtþ ΔtÞ: ð9Þ

The first term on the rhs of Eq. (9) describes the change of
G if the mass were held constant, whereas the second term
reflects the change due to mass transfer. Insertion of Eq. (4)
into (9) yields _SðtÞ ¼ εðtÞ − ζðtÞ, where we defined

εðtÞ ¼
X
k

d
dt
fρkðtÞ × ½mk _ρkðtÞ�g; ð10Þ

ζðtÞ ¼ lim
Δt→0

1

Δt

X
l

ρlðtþ ΔtÞ × ½ml _ρlðtþ ΔtÞ�: ð11Þ

Physically, the first term εðtÞ comprises all external torques
applied to the donor spin if its total mass was held constant
[35]. These external torques can emerge, e.g., from the tidal
forces of the companion star and will be discussed in
Secs. IV and V. In order to study the effect of mass loss
alone, we set εðtÞ ¼ 0 in the remainder of this section. In
that case, Eqs. (5) and (11) yield for the time derivative of
the donor spin,

_SðtÞ ¼ − _MR × ðω × RÞ
¼ − _M½R2ω − ðR · ωÞR�

¼ −
1

κ

_M
M

S½Ŝ − ðd̂ · ŜÞd̂�; ð12Þ

since we approximated R ¼ Rd̂ to be the first Lagrangian
point where the donor loses its particles; i.e., R ¼ ρl.
Equation (12) is equivalent to the derivations of Matese
and Whitmire [19] and partly uses Eq. (23) in Sepinsky
et al. [34]. Here, we make two implicit key assumptions
that are commonly used in the literature. Firstly, we
assumed that the particles leave the donor through R at
the donor’s rotational velocity, i.e., at a velocity ω × R in
the frame corotating with the orbital motion [34]. Secondly,
by replacing the angular velocity vector by the spin
[cf. Eq. (5)] in the last step of Eq. (12), we assumed that
the stellar interior transport of angular momentum is
efficient enough to align the spins of all parts of the star
on a timescale shorter than that of mass loss. Otherwise, the
spin direction of some stellar parts, e.g., the core, could, in
principle, decouple from the spin direction of the other
parts, e.g., the envelope. We discuss the implications of
these assumptions in Sec. V.
The last part of Eq. (12) unveils a clear geometrical

interpretation. The first term in the rectangular brackets
causes the magnitude S of the donor spin to decrease.
Meanwhile, the second term alters the spin direction unless
d̂ · Ŝ ¼ 0. Thus, depending on the orbital phase and the
current spin direction, the second term causes the donor spin
vector to either move toward the orbital plane or away from
it. In what follows, we will orbit average the phase-
dependent time-evolution equation (12) in order to inves-
tigate which effect dominates over longer timescales. We
consider the two cases inwhich (i) _M is constant within each
orbit, and (ii) all mass per orbit is lost at the periapsis. We
note that on an eccentric orbit, _M=M may vary smoothly
along the orbit. For instance, it might be reasonable to
assume that _M has a local maximum and minimum at
periapsis and apoapsis, respectively [13]. Detailedmodeling
of mass transfer in eccentric orbits is the subject of ongoing
research that is beyond the scope of this paper. Instead, we
restrict ourselves to the two limiting cases (i) and (ii). We
may assume that the former case is a valid approximation for
circular and less eccentric systems, whereas the latter holds
for more eccentric orbits.
In case (i), _M=M and S only change on timescales that

are much longer than the orbital period, which is T ≲
Oð103Þ days for the systems we will be interested in (see
Sec. V). Hence, we can fix _M=M and S when averaging
Eq. (12) over one period. For that purpose, it is convenient
to introduce a rotating reference frame F by defining a
right-handed orthonormal triad ðê; v̂; ĥÞ. Here, ê is the unit
vector of the Laplace-Runge-Lenz vector e that has a
magnitude equal to the orbit’s eccentricity e and points
toward its periapsis. Meanwhile, the unit vector v̂ ¼ ĥ × ê
is along the latus rectum of the orbit. In this frame, d̂ and Ŝ
read in spherical coordinates,

d̂ ¼ cos νêþ sin νv̂; ð13Þ
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Ŝ ¼ cosϕ sin θêþ sinϕ sin θv̂þ cos θĥ; ð14Þ

where ϕ ∈ ½0; 2πÞ and θ ∈ ½0; π� are the azimuthal and
polar (tilt) angles of Ŝ, respectively. The angle ν ∈ ½0; 2πÞ is
the azimuthal angle of d̂, which is equivalent to the binary’s
orbital phase.
In general, the orbit-averaged change of some stellar

quantity G over an orbit with eccentricity 0 ≤ e < 1 is
given by [15]

h _GðtÞi ¼ ð1 − e2Þ3=2
2π

Z
2π

0

_G
ð1þ e cos νÞ2 dν: ð15Þ

For simplicity, we assume that also e does not change
significantly on orbital timescales so that we can set e ¼
const in the integral of Eq. (15). Thus, we find for the orbit-
averaged change of S,

h _SðtÞi ¼ −
1

κ

_M
M

Sf½1 − f1ðeÞ� cosϕ sin θê

þ ½1 − f2ðeÞ� sinϕ sin θv̂þ cos θĥg; ð16Þ
where we defined f1ð0Þ ¼ f2ð0Þ ¼ 1=2, whereas for
0 < e < 1, we have

f1ðeÞ ¼
e4 þ 2e2ðj − 1Þ − jþ 1

je2
; ð17Þ

f2ðeÞ ¼
ðe2 − 1Þðj − 1Þ

e2
; ð18Þ

whose difference is small and always negative,
0 > f2ðeÞ − f1ðeÞ > −1. In terms of the spherical coor-
dinates of S, Eq. (16) reads,

h_θi ¼ 1

κ

_M
M

sin θ cos θ½f1ðeÞ cos2 ϕþ f2ðeÞ sin2 ϕ�; ð19Þ

h _Si ¼ −
1

κ

_M
M

Sf1 − sin2 θ½f1ðeÞ cos2 ϕþ f2ðeÞ sin2 ϕ�g;
ð20Þ

h _ϕi ¼ f2ðeÞ − f1ðeÞ
κ

_M
M

sinϕ cosϕ: ð21Þ

For the special case of circular, stationary orbits
(e ¼ h_ei ¼ 0), the integration of Eqs. (19)–(21) is particu-
larly simple, yielding the analytical solutions,

θ ¼ tan−1
��

M
M0

�
−1=2κ

tan θ0

�
; ð22Þ

S ¼ S0

��
M
M0

�
2=κ

cos2θ0 þ
�
M
M0

�
1=κ

sin2θ0

�
1=2

; ð23Þ

ϕ ¼ const:; ð24Þ

where M0 ¼ Mðt0Þ, θ0 ¼ θðt0Þ, and S0 ¼ Sðt0Þ are the
donor’s mass, tilt angle, and spin magnitude at the onset of
mass transfer, respectively. Importantly, θ and S are only
functions of the initial tilt angle θ0 and fractional leftover
mass 0 ≤ M=M0 ≤ 1, i.e., the fraction between the donor’s
current and initial massesM andM0, respectively. They are
not explicit functions of time. Physically, this means that
the details of the functional form of _MðtÞ are irrelevant for
θðtÞ and SðtÞ as long as the integrated mass loss is the same.
In Fig. 1, we plot cos θ and S=S0 for e ¼ 0 as functions

of M=M0 and cos θ0, revealing two essential features.
Firstly, as the donor loses mass, any initial tilt angle θ0

FIG. 1. Donor spin evolution for a constant mass loss rate. We are considering circular orbits (e ¼ 0). The quantitiesM1 (M0), S (S0),
and θ (θ0) describe the current (initial) values of the donor’s mass, spin magnitude, and tilt angle, with respect to the specific orbital
angular momentum h, respectively. The left panel reveals that as the donor loses mass, i.e.,M1=M0 decreases, any initial donor spin with
cos θ0 ∈ ð−1.0; 1.0Þ gets flipped toward the orbital plane cos θ0 ¼ 0.0. Meanwhile, the right panel shows how, at the same time, the spin
magnitude efficiently gets damped down.
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gets flipped onto the orbital plane (cos θ ¼ 0; see left
panel). The only two exceptions are given by cos θ0 ¼ −1
and þ1, for which cos θ remains constant. However, the
latter values constitute unstable equilibria since for any
small deviation, we do observe a flip. Moreover, in a
realistic astrophysical setting, these points are irrelevant
because we will never start from perfect alignment of S and
�h. Most importantly, we see that the spin flip is very
efficient in the sense that even moderate mass losses, e.g.,
M=M0 ≃ 0.75, cause large changes of cos θ toward zero
unless cos θ0 is very close to −1 or þ1. Hence, the orbital
plane is a strong dynamical attractor for the evolution of S.
Secondly, the spin magnitude S of the donor gets

efficiently damped down (see right panel). This is even
true for cos θ0 ¼ −1 and þ1. In fact, the closer cos θ0 is to
these values, the stronger the spin-down. Unless the mass
loss is small, the spin can decrease by several orders of
magnitude.
Next, we investigate case (ii) in which all mass per orbit

is lost at periapsis. To this end, we introduce a mass loss
rate _M0 > 0, such that [15]

_MðνÞ ¼
_M0

2π
δðνÞ; ð25Þ

where δðνÞ is the Dirac-delta distribution. In this case,
Eq. (15) yields for the donor spin,

h _Si¼−
1

4π2κ

ð1−e2Þ3=2
ð1þeÞ2

_M0

M
Sðsinϕsinθv̂þcosθĥÞ: ð26Þ

In terms of the spherical coordinates, we thus get

h_θi ¼ 1

κ

h _Mi
M

cos2 ϕ sin θ cos θ; ð27Þ

h _Si ¼ −
1

κ

h _Mi
M

Sðsin2 ϕ sin2 θ þ cos2 θÞ; ð28Þ

h _ϕi ¼ −
1

κ

h _Mi
M

sinϕ cosϕ; ð29Þ

where we substituted the orbit average of Eq. (25),

h _Mi ¼
_M0

4π2
ð1 − e2Þ3=2
ð1þ eÞ2 : ð30Þ

Note that since we defined _M0 to be positive, the donor
loses mass at a rate −h _Mi. Analogously to Eqs. (19)–(24),
we find analytical solutions to Eqs. (27)–(29), which are
given by

θ¼ tan−1
���

M
M0

�
−2=κ

cos2ϕ0þ sin2ϕ0

�
1=2

tanθ0

�
; ð31Þ

S ¼ S0xαyβ; ð32Þ

ϕ ¼ tan−1
��

M
M0

�
1=κ

tanϕ0

�
; ð33Þ

where we defined

x ¼ cos2 ϕ0 sin2 θ0 þ
�
M
M0

�
2=κ

ðcos2 θ0 þ sin2 ϕ0 sin2 θ0Þ;

ð34Þ

y¼1

4

�
1−cosð2θ0Þþ2cosð2ϕ0Þsin2θ0

þ
�
M
M0

�
2=κ

ð3þcosð2θ0Þ−2cosð2ϕ0Þsin2θ0Þ
�
; ð35Þ

α ¼ 1

2þ 2 cot2 θ0 csc2 ϕ0

; ð36Þ

β ¼ 2 cos2 θ0
3þ cosð2θ0Þ − 2 cosð2ϕ0Þ sin2 θ0

: ð37Þ

In the following, we investigate the implications of
Eqs. (31)–(33). At first, note that these equations are not
explicit functions of the eccentricity. Hence, their scope is
only physically, but not mathematically, restricted to
eccentricities that must be large enough so that Eq. (25)
provides a valid approximation for the mass loss rate. Yet,
Eqs. (31)–(33) are more complicated to analyze than
Eqs. (22)–(24) due to their additional dependency on ϕ0.
The dependency of the tilt angle is shown in the left panel
of Fig. 2, where we fixedM=M0 ¼ 0.75. It reveals that the
flip is more efficient the closer the spin starts around the
periapsis or apoapsis, i.e., around ϕ0 ¼ 0 or π, respectively,
while it does not flip at all if ϕ0 ¼ π=2 or 3π=2. The
limiting behavior at these values becomes evident from
Eqs. (27) and (29). If ϕ0 is an integer or half-integer
multiple of π, ϕ becomes stationary (h _ϕi ¼ 0) since
sinϕ cosϕ ¼ 0 for these cases. Therefore, h_θi scales with
a constant factor cos2 ϕ0, which is zero or one if ϕ0 is a half-
integer or integer multiple of π, respectively. In the right
panel of Fig. 2, we plot cos θ for ϕ0 ¼ 0.49π, i.e., for an
initial azimuthal angle close to a half-integer minimum. We
see that it requires smaller values of M=M0 compared to
Fig. 1 in order to achieve a significant flip. The opposite
would be true if we were to plot the panel for ϕ0 around
0 or π.
In Fig. 3, we show the spin magnitude evolution. In the

left panel, we show its dependency on ϕ0 for M=M0 ¼
0.75. while we explained above that the spin flip is most
(least) efficient if ϕ0 is an integer (half-integer) multiple of
π, respectively, and the opposite is true for the spin-down.
In the right panel, we show for ϕ0 ¼ π=4 the spin-down as
a function of cos θ0. In comparison to the circular, constant
mass loss rate case (Fig. 1), the spin-down is weaker,
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leading to a typical fraction of about S1=S0 ∼Oð0.1Þ.
Furthermore, there is a mass loss scale of about
M=M0 ≃ 0.8, below which, the spin-down no longer
depends on M=M0. At this value, terms that are propor-
tional to ðM=M0Þ2=κ become negligible in Eqs. (34) and
(35) so that S=S0 solely depends on θ0 and ϕ0. In this
regime, the spin-down is the most (least) efficient if the spin
is oriented toward the poles (orbital plane).

IV. TIDES

In a close semidetached binary, tidal bulges can emerge
on the surface of a star because of the perturbing force of its
companion. Due to the viscosity of the star, these bulges
will not instantaneously align with the relative distance

vector d, but they either slightly lag behind or lead ahead,
depending on whether its rotational angular frequency ω is
smaller or greater than the orbital mean motion n ¼ 2π=T,
respectively [17,36,37]. Further bulges arise at the star’s
equator due to its rotation introducing at lowest order a
quadrupolar perturbation to the gravitational potential.
Applying both effects to the donor star, the equations of
motion for the evolution of the stellar spin and binary
angular momentum are described by a set of differential
equations for S, ê, v̂, ĥ, e, and h as follows:

dS
dt

¼ dS
dt

				
_M
þ dS

dt

				
Quad

þ dS
dt

				
Diss

; ð38Þ

FIG. 2. Donor spin evolution given that all mass is lost at the periapsis. The quantitiesM1,M0, θ, and θ0 are defined as in Fig. 1, while
ϕ0 is the initial azimuthal angle of S. For a fiducial fractional leftover mass of M1=M0 ¼ 0.75, the left panel shows the additional
dependency of the tilt angle evolution on the initial azimuthal angle ϕ0, revealing that a flip onto the orbital plane is most (least) efficient
if it is close to 0 or π (π=2 or 3π=2). For the latter case (ϕ0 ¼ 0.49π), the right panel shows that it requires smaller values of M1=M0

compared to Fig. 1 in order to achieve a significant flip. The opposite would be true if we were to plot the panel for ϕ0 around 0 or π.

FIG. 3. Donor spin-down if all mass is lost at the periapsis. All quantities are defined as in Figs. 1 and 2. ForM1=M0 ¼ 0.75, the left
panel shows the dependency on ϕ0. We can see that the damping of the magnitude is most (least) efficient for π=2 or 3π=2 (0 or π), while
the opposite was true for the spin flip (e.g., Fig. 2, left panel). For the fiducial angle ϕ0 ¼ π=4, the right panel shows that the spin
magnitude gets damped down but much less efficiently than for the circular, constant mass loss rate case (Figure 1).
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dû
dt

¼ dû
dt

				
Quad

þ dû
dt

				
Diss

; ð39Þ

de
dt

¼ de
dt

				
_M
þ de

dt

				
Diss

; ð40Þ

dh
dt

¼ dh
dt

				
_M
þ dh

dt

				
Diss

; ð41Þ

where û is used as a proxy for ê, v̂, and ĥ, respectively. For
simplicity, we ignore tides raised on the acceptor star,
which are much weaker than the tides raised on the donor.
Each term in Eqs. (38)–(41) either emerges from the mass
transfer (indicated by “ _M”), the quadrupolar distortion of
the donor (“Quad”), or the tidal dissipation (“Diss”). The
mass transfer term for S is either given by Eq. (16) [case (i)]
or (26) [case (ii)]. In addition, conservative mass transfer
causes the magnitude of the specific angular momentum to
change as [38]

dh
dt

				
_M
¼ _M

�
1

M1

−
1

M2

�
h: ð42Þ

Meanwhile, the mass transfer term for the eccentricity
depends on how the mass loss rate changes along the orbit.
If the rate is independent on the orbital phase as in case (i),
then [38]

de
dt

				
_M
¼ 0; ð43Þ

whereas for the delta-mass function case (ii), it can be
written as [15,16]

de
dt

				
_M
¼ −

_M
M1

R
a
jþ 2 _M

�
1

M1

−
1

M2

�
jð1 − eÞ; ð44Þ

where we treated the accretor as a point mass. In any case,
the orientation of the orbital frameF remains unaffected by
the mass transfer [38]. Hence, Eq. (39) involves no term in
this regard.
Together, the terms for the quadrupolar distortion and

tidal dissipation can be conveniently expressed by means of
five perturbing functions X, Y, Z, V, and W, which we
explicate in the Appendix [30,38],

dS
dt

				
Quad

þ dS
dt

				
Diss

¼ μhðWĥ − K × ĥÞ; ð45Þ

dû
dt

				
Quad

þ dû
dt

				
Diss

¼ K × û; ð46Þ

de
dt

				
Diss

¼ −Ve; ð47Þ

dh
dt

				
Diss

¼ −Wh; ð48Þ

where K ¼ Xêþ Yv̂þ Zĥ is the angular velocity of F. Of
the perturbing functions, V and W are due to tidal
dissipation, which cause the orbit to circularize and the
stellar rotation to synchronize. The functions X, Y, and Z
incorporate the quadrupolar distortion, which gives rise to
apsidal motion and spin precession around ĥ. However,
also X and Y do include small terms due to tidal dissipation,
which enforces the spin to align with the orbital angular
momentum. Hence, the effect of tidal dissipation counter-
acts the flip of the donor spin due to mass transfer, i.e., its
misalignment with ĥ. Therefore, any spin flip is suppressed
unless the mass transfer terms in Eq. (38) are able to
dominate the others. In the following, we address in which
circumstances this might happen.
In the equilibrium tide model, the tidal friction timescale

tF is defined as [39]

tF;e ¼
tV
9

�
a
R

�
8 M2

1

M2M12

1

ð1þ 2kAÞ2
; ð49Þ

where kA ¼ 0.014 is the apsidal motion constant that
quantifies the quadrupolar deformability of a star, and tV
is the viscous timescale given by

tV ¼ 3
ð1þ 2kAÞ2

kA

R3

GM1τ
: ð50Þ

Physically, τ describes the time by which the tidal bulges
lag behind or lead ahead with respect to the line connecting
both binary members. In the theory of equilibrium tides, τ is
a constant, which is an intrinsic property of the tidally
forced star in question [17].
We also consider an approximate prescription for

dynamical tides, which could become important for stars
with outer radiative envelopes [37]. Following Hurley et al.
[8], in this case, we still use the equations from Eggleton
and Kiseleva-Eggleton [30] but with the tidal dissipation
timescale now given by

tF;d ¼
�
a
R

�
9

ffiffiffiffiffiffiffiffiffiffi
a3

GM1

s
q
�
1þ 1

q

�
−11=6 1

E2

; ð51Þ

where E2 is a coefficient that is related to the structure of
the star and refers to the coupling between the tidal
potential and gravity mode oscillations. Unfortunately,
the value of E2 is difficult to calculate since it is very
sensitive to the structure of the star and therefore to the
exact treatment of stellar evolution e.g., [40–43].
We can approximately quantify the effect of tides

on the stellar spin by introducing a timescale for varia-
tions in the spin-orbit tilt angle due to tidal dissipation,
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tS;eðdÞ ∼ ðS=μhÞtF;eðdÞj13. Thus, for a star, which just fills its
Roche lobe, i.e., R ¼ FðqÞað1 − eÞ, and for the equilib-
rium tide model, we have

tS;e ¼ 1.6 × 10−2 yr
κ

0.08
0.014
kA

�
1 s
τ

��
1 day
P

�

×

�
M3=2

⊙

M2

ffiffiffiffiffiffiffiffi
M12

p
��

a
R⊙

�
9=2 qj12

½FðqÞð1 − eÞ�3 ; ð52Þ

where P ¼ 2π=ω. For the dynamical tide model, we find

tS;d ¼ 4.4 × 102 yr
κ

0.08

�
10−9

E2

��
1 day
P

�

×

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M1M12

p
M2

2

M⊙

��
a
R⊙

�
3

×
j12

½FðqÞð1 − eÞ�7
�
M2

M12

�
11=6

: ð53Þ

We then compare the above timescales to the timescale for
spin change due to mass loss, t _M ∼ κM1= _M. From the
condition t _M ¼ tS;eðdÞ, we have that the mass loss effect
dominates over tidal effects if, at the onset of mass transfer,
the binary semimajor axis is larger than

ae ¼ 11.9 R⊙

�
kA

0.014
τ

1 s
10−4 M⊙ yr−1

_M

P
1 day

�
2=9

×

�
M2

2

ffiffiffiffiffiffiffiffi
M12

p

M5=2
⊙

�
2=9 ½FðqÞð1 − eÞ�2=3

j8=3
ð54Þ

for equilibrium tides and larger than

ad ¼ 1.2 R⊙

�
E2

10−9
10−4 M⊙ yr−1

_M

P
1 day

M2
2M1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M1M12

p
M2

⊙

�
1=3

×
½FðqÞð1 − eÞ�7=3

j4

�
M12

M2

�
11=18

ð55Þ

for dynamical tides.
In Fig. 4, we plot ae and ad as a function of the donor

mass. In this calculation, we consider circular equal-mass
binaries. For the lag time constant, we use τ ¼ 10−1 s,
which is a value typically adopted for solar type stars e.g.,
[44,45], and set E2 ¼ 10−9ðM1=M⊙Þ2.8, which was
obtained by Zahn [37] for zero-age main-sequence stars.
Although ae and ad depend weekly on τ and E2, respec-
tively, it is important to note that plausible values for these
parameters can span orders of magnitude e.g., [37,46].
Moreover, we set _M ¼ 10−4 M⊙ yr−1, which is a realistic
value for Roche lobe overflow. According to Kippenhahn
et al. [47], a 9 M⊙ donor loses more than 5 M⊙ to a 5 M⊙
accretor in only 6 × 104 yr during the hydrogen burning
and almost 7 M⊙ in 4 × 104 yr when the mass transfer

starts after exhaustion of hydrogen in the core. Paczyński
[48] and van Rensbergen et al. [49] find similar mass
transfer rates for main-sequence donors. The mass loss rate
can be as large as 10−1 M⊙ yr−1 in the case of massive
binaries e.g., Fig. 1 of [21].
Figure 4 shows that ae varies between several tens to

∼100 R⊙, increasing weakly with the mass of the donor,
while ad varies between ad ≃ 2 R⊙ for a 2 M⊙ donor up to
ad ≃ 400 R⊙ for the most massive stars. We can now ask
whether, during a given evolutionary stage, a mass transfer
episode can occur at such, or smaller, orbital separations;
this requires that R=FðqÞð1 − eÞ > aeðdÞ. In Fig. 4, we
compute RMS=FðqÞ and RRG=FðqÞ, where RMS is the
maximum stellar radius during the main sequence, and
RGB is the radius at the start of He burning, as a function of
the mass of the star at that evolutionary stage. The stellar
radii were obtained with the fast binary stellar evolution
code BSE [8,50]. Hence, RMS=FðqÞ and RRG=FðqÞ re-
present the maximum value of the binary semimajor axis
that will still allow a mass transfer event to happen during
the main sequence or before He burning starts, respectively.
Comparing these to the red and black lines in the figure, we
see that the effect of mass loss can indeed be important for
both main-sequence and giant stars. If mass transfer starts
near the tip of the giant branch, then the mass loss effect
will dominate regardless of the exact treatment of tides.
Even for main-sequence stars, however, the mass loss effect
can become comparable to tides for a large range of masses
and dominates in some cases. For example, radiative
damping on the dynamical tide is expected to be the most
efficient dissipative mechanism in main-sequence stars

FIG. 4. Critical binary semimajor axis ae and ad for a spin
rotational period P ¼ 5 days (lower lines) and P ¼ 30 days
(upper lines). Tides are expected to suppress the flip of the
stellar spin due to mass loss if mass transfer starts at a < ae and
a < ad for equilibrium and dynamical tides, respectively. The
dashed blue lines give the maximum value of the binary semi-
major axis that will still allow a mass transfer event to occur on
the main sequence, RMS=FðqÞ, and before He burning starts,
RGB=FðqÞ. Here, we consider circular binaries with e ¼ 0,
q ¼ 1, and solar metallicity. Other parameters and details are
given in Sec. IV.
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with M1 ≳ 1.5 M⊙. For these stars and for masses up to
M1 ≈ 5 M⊙, RMS=FðqÞ ≫ ad so that mass loss effects will
dominate.
In conclusion, the results shown in this section demon-

strate that the assumption that tides will erase any spin-orbit
misalignment might not always be valid. In the following
section, we will consider how the spin dynamics we
described above can affect the spin-orbit alignment of
BBHs formed from the evolution of field binaries.

V. APPLICATION TO BLACK HOLE BINARY
FORMATION

In this section, we simulate a population of isolated
massive stellar binaries and use Eqs. (38)–(41) to inves-
tigate the implications of the spin dynamics described
above. The population is set up using the parameter
distributions that Sana et al. [2] inferred from the obser-
vation of 71 galactic binaries. That is, we draw the primary
masses, mass ratios, orbital periods, and eccentricities from
the distribution functions given in Table I. In the remainder
of this section, we will refer to the star (and its compact
remnant) that was initially the more massive one as the
primary and to its companion as the secondary.
We evolve this binary population in time by means of the

latest version of the binary stellar evolution code BSE
[8,50]. BSE simulates the stellar evolution, including
binary features such as mass transfer, mass accretion,
common-envelope evolution, supernova kicks, and angular
momentum losses. For the subset of systems that form
merging BBHs through the isolated binary channel, inter-
actions among the stellar binary members played a vital
role e.g., [21]. Briefly, starting with two massive stars in the
galactic field, the primary star transfers mass to the
secondary during a dynamically stable Roche lobe over-
flow phase. Soon after this process, the primary star forms a
(first-born) black hole, whereas the secondary expands as a
supergiant. A second mass transfer phase from the secon-
dary star to the black hole takes place once the former fills
its Roche lobe. This time, the process is dynamically
unstable, leading to a common-envelope phase in which
the expanding star engulfs its black hole companion. While
moving through the common envelope, drag forces cause

the black hole’s orbit quickly to shrink, and the common
envelope might be ejected. Eventually, a BBH forms once
the secondary star develops a black hole, too. On this
evolutionary pathway, it is the common-envelope phase
that is of crucial importance for the BBH to finally merge. It
can rapidly reduce the orbital separation to values small
enough for energy loss due to gravitational wave emission
to provoke a coalescence within the age of the Universe.
In total, Eqs. (38)–(41) constitute a set of 14 coupled

differential equations (vectorial quantities counting thrice)
that we numerically integrate once Roche lobe overflow
starts. At that time, we use the masses, orbital parameters,
and spin rates computed by BSE as the initial values for our
integration scheme. Furthermore, we draw the initial value
ϕ0 for the azimuthal angle of the donor from a uniform
distribution between zero and 2π. For the initial value of
cos θ0 of the tilt angle, we assume a uniform distribution in
the interval [0.9, 1.0). Thus, our approach is conservative in
the sense that we start with donor spins, which are fairly
aligned with the orbital angular momentum. During the
integration, we follow Hurley et al. [8] by using R ¼
að1 − eÞFðqÞ as the effective donor radius. For compari-
son, we also ran a simulation using R ¼ aFðqÞ without
noticing a substantial difference of the results. The mass
loss rate we adopted is also obtained from the BSE
calculation. This is, however, based on the assumption
that the binary moves on a circular orbit, which is not
always the case for our binaries. Nonetheless, for want of a
more detailed treatment, we assume that this mass loss rate
is still applicable to our eccentric systems. In particular, the
BSE mass loss rate is used for the orbit-average given by
Eq. (30) in case (ii).
Because the physics of stellar tides is much debated and

the efficiency of tides itself is uncertain e.g., [52,53], in the
simulations presented here, we opt for a simplified
approach in which we employ the equilibrium tide equa-
tions for all stars. Then, we use the constant time lag as a
free parameter in order to tune the efficiency of tides. We
set τ ¼ 100 s (efficient tides), τ ¼ 10−1 s (moderately
efficient tides), and τ ¼ 10−2 s (inefficient tides). For
M1 ¼ 50 M⊙, R ¼ 10 R⊙, and τ ¼ 100 s, Eq. (50) gives
a viscous time tV ≃ 360 yr.

TABLE I. Initial parameter distribution of the binary population. The primary mass is drawn from the Kroupa [51] initial mass
function, while the distributions for the mass ratio, eccentricity, and orbital period are adopted from Sana et al. [2]. Note that the
observational sample used by Sana et al. [2] only allowed for a statistical analysis of binaries with primary masses up to 60 M⊙. Here,
we explicitly assume that the distributions are valid up to primary masses of 100 M⊙. The exponents ϰ, η, and λ are assumed to follow
normal distributions; i.e., for each binary instance we draw new values from normal distributions with means and standard deviations as
given in the Table.

Parameter Distribution Exponent Domain

Primary mass M1 PM1
∝ Mς

1 ς ¼ −2.3 22–100 M⊙
Mass ratio M2=M1 PM2=M1

∝ ðM2=M1Þϰ ϰ ¼ −0.2� 0.6 0.1–1.0
Eccentricity e Pe ∝ eη η ¼ −0.4� 0.2 0.0–0.9
Orbital period T PlogT=days ∝ ðlogT=daysÞλ λ ¼ −0.4� 0.2 100.15–103.5 days
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Before presenting the results of our analysis, we com-
ment on some assumptions in our treatment that we briefly
introduced in Sec. II and that are also commonly adopted in
the literature. Firstly, because the extent to which the
rotation of the stellar core is coupled to that of the stellar
envelope is very uncertain, we simply assume maximal
coupling, i.e., that the entire star behaves as a rigid rotator
with a uniform angular velocity [34,54–56] but comment
here on the other extreme case of minimal coupling in
which core and envelope are fully decoupled. As long as a
star remains homogeneous, various processes (e.g., shear
instability) will tend to rapidly restore uniform rotation.
Thus, when the stars are on the main sequence, the
assumption of solid rotation might represent a good
approximation. But, once the star leaves the main sequence,
it will then develop a compact He rich core whose rotation
could fully decouple from that of the envelope before any
significant amount of mass has been lost by the donor. The
validity of our treatment for post main-sequence stars,
therefore, requires that the mass and angular momentum
transport within the star are efficient enough that the stellar
core remains strongly coupled to the outer envelope. The
angular momentum evolution of stellar interiors, along with
the resulting rotation rates of stellar remnants, remains
poorly understood. However, several studies have shown
that angular momentum transport within massive stars
might be efficient enough to carry a significant amount
of spin from the core to the envelope e.g., [43,57]. In this
case, a spin tilt predicted by our model will reflect onto the
spin of the core as well, although the latter might still rotate
at a somewhat different angular frequency and at a different
angle than the envelope. If the core and envelope are fully
decoupled, we would expect that the core will keep rotating
in the same direction as the entire star at the onset of mass
transfer. The relative orientation between the spins of the
binary stars and their orbital angular momentum then will
largely depend on whether tides were efficient enough to
realign any prior spin-orbit tilt and on the primordial spin-
orbit alignment.
Secondly, following Sepinsky et al. [16,34] and

Dosopoulou and Kalogera [14,15], we assume that any
orbital angular momentum carried by the loss particles is
immediately returned (only) to the orbit once they have
passed the first Lagrangian point. Generally, mass transfer
becomes nonconservative if not all mass lost from the
donor can be accreted by its companion [58]. In this case,
the systemic mass and angular momentum losses would
change the orbital elements differently compared to a
conservative mass transfer. Sepinsky et al. [59] showed,
for the case where all mass per orbit is lost at periapsis, that
the orbit would expand (contract) faster (slower). They
found the same tendency for the growth (damping) of the
eccentricity. Meanwhile, we showed in Sec. III that the
donor spin dynamics foremost depends on the donor’s
fractional mass loss rate. Thus, we expect our results to

change under the consideration of nonconservative mass
transfer only if the orbital elements are able to alter the
latter significantly compared to the conservative case.
In the following, we present the results of our analysis.

As a typical example, we show in Fig. 5 the spin flip during
the mass transfer phase of a binary at low metallicity
(Z ¼ 0.03 Z⊙), modeled with case (i) and a tidal lag time of
τ ¼ 10−1 s. This system started on the zero-age-main-
sequence (ZAMS, t ¼ 0) with stellar masses, eccentricity,
and orbital period set to M1 ¼ 55 M⊙, M2 ¼ 45 M⊙,
e ¼ 0.1, and T ¼ 102 days, respectively. The mass transfer
phase in question lasts from 4.37 to 4.48 Myr. In this period
of time, the donor transfers about 60 percent of its mass to
the accretor (first panel). The normalized components of
the donor spin in some inertial frame are shown in the
second panel. This inertial frame is chosen such that the
z axis initially points along ĥ. However, even at later time,

FIG. 5. Spin-evolution in one exemplary mass transferring
stellar binary. At t ¼ 0 (ZAMS), the stellar masses, eccentricity,
and orbital period were set to M1 ¼ 55 M⊙, M2 ¼ 45 M⊙,
e ¼ 0.1, and T ¼ 102 days, respectively. This binary undergoes
a mass transfer phase at about 4.37 to 4.48 Myr, which is
considered here. The tidal lag time was set to τ ¼ 10−1 s. From
top to bottom, the first panel shows the evolution of the stellar
masses, the second panel the donor spin components in some
inertial frame, the third panel the cosine of the tilt angle, and the
fourth panel its dimensionless spin magnitude χ ¼ cS=GM2

1. The
inertial frame is defined such that it coincides with F at the onset
of mass transfer (i.e., the z axis is pointing along ĥ).
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their directions will not deviate significantly from one
another since K stays almost parallel to ĥ during the
process. Thus, the reduction of Ŝz from about one to zero
indicates the flip onto the orbital plane, which can be also
directly seen by the evolution of the cosine of the tilt angle,
cos θ ¼ Ŝ · ĥ (third panel). The oscillations of the other two
components describe the spin precession around ĥ.
Meanwhile, in terms of the dimensionless parameter
χ ¼ cS=GM2

1, the fourth panel shows that the donor spin
magnitude decreases by approximately 2 orders of magni-
tude, ending up at a value χ ∼Oð0.1Þ. Evidently, the value
of χ at the onset and, hence, also at the end of the mass
transfer phase, depend on its initial value χðt ¼ 0Þ and any
torques, which affect the spin until onset. Here, the initial
spin is determined by a fit to the rotational velocities of
main-sequence star data [60] following Hurley et al. [55].
Starting with that value, BSE computes the subsequent spin
evolution taking angular momentum losses due the iso-
tropic stellar winds and tidal interactions with the
companion into account (cf. Sec. IV).
After a second mass transfer phase from M2 to M1

starting at 5.76 Myr, which leads to a common-envelope

evolution, this system evolves to a BBH at 6.12 Myr that
merges after ∼6 Gyr due to the emission of gravita-
tional waves.
In Fig. 6, we show the primary star tilt angles for the

whole binary population considering only those systems
that, according to BSE, eventually develop BBHs. For each
system, the value of the tilt angle is taken once the primaries
stop transferring mass to their secondaries. If there was no
mass transfer from the former to the latter, we drew a
random value from the initial value distribution of cos θ0
between 0.9 and 1.0 (see above). Each histogram drawn
with a solid line comprises 104 systems either at low
(Z ¼ 0.03 Z⊙) or high metallicity (Z ¼ Z⊙), whose lag
time τ is either set to 100, 10−1, or 10−2 s, and whose mass
transfer is either modeled with case (i) or case (ii). We
emphasize that the bin width of 0.1 is chosen such that the
rightmost bin (cos θ ¼ 0.9–1.0) covers the range of initial
angles. Thus, spins ending up in any other bin (cos θ < 0.9)
were dominated by the mass transfer terms. As a result, we
find that any distribution is strongly bimodal with most of
the primary spins either being flipped (cos θ ≲ 0.1) or
remaining aligned (cos θ ≳ 0.9). From longer to shorter lag
times, tides become weaker and allow the balance between

FIG. 6. Tilt angle distributions of the primaries once they stopped donating mass. Initially, the tilt angles were uniformly distributed in
the rightmost bins (cos θ ¼ 0.9–1.0). Each solid histograms includes 104 systems in which the primary fills its Roche lobe first and that
eventually end up as BBH systems. The dashed histograms constitute the subset of systems that merge within tcoal < 10 Gyr. Vertical
lines indicate the means of each distribution. From the top to the lowest panel row, the strength of the tides was decreased by lowering
the lag time τ. The different panel columns incorporate low and high metallicities and mass transfer modeled with case (i) and (ii) (e.g.,
Sec. III).
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the two peaks to pivot from the majority of systems being
aligned to flipped. Thus, the means of the distributions
indicated by the vertical solid lines shift from about cos θ ∼
0.7 to 0.8 (τ ¼ 100 s) to ∼0.5 to 0.6 (τ ¼ 10−1 s) and ∼0.4
to 0.5 (τ ¼ 10−2 s) for low metallicity. For high metallicity,
the spin flips are more effective ranging from cos θ ∼ 0.5 to
0.7 (τ ¼ 100 s) to ∼0.3 to 0.4 (τ ¼ 10−1 s) and ∼0.1 to 0.2
(τ ¼ 10−2 s). In reality, the relative number of flipped
spins, therefore, depends on the precise value of the lag
time. In turn, we do not see any major difference between
our two models (i) and (ii) of mass transfer. Even though we
pointed out that these models are arguably approximate
with the caveats given above, the latter fact indicates that
details about the orbital phase dependency of mass transfer
might not play an important role for the effect that we are
investigating.
In general, flipping spins are less numerous in the

subsets of binaries whose black hole remnants would
coalesce within 10 Gyr (near the peak of cosmic star-
formation rate, e.g., [61]) taken as a rough criterion for
observability by gravitational wave detectors. Yet, the
following results are not very sensitive to the precise
numerical value. The time to coalescence can be estimated
as [62,63]

tcoal ≃ 10 Myr

�
T

1 hr

�
8=3

�
M⊙

M12

�
2=3

�
M⊙

μ

�
j7; ð56Þ

which we evaluate once both black holes are formed. In
Fig. 6, these subsets are indicated by dashed lines. We also
display the means of the distributions by means of the
vertical dotted lines. For τ ¼ 100 s, the number of flipped
spins is insignificantly low, and the means are close to or
within the initial value range [0.9, 1.0). Hence, it can be
concluded that mass transfer would be irrelevant for the
spin dynamics in that case. Only if shorter lag times are
considered, the number of flipped spins can become
comparable to that of aligned spins. In terms of the means,
we achieve about 0.6 to 0.9 and 0.3 to 0.7 for τ ¼ 10−1 s
and τ ¼ 10−2 s, respectively. The fact that flips are less
prevalent in the merger subsets is due to the shorter binary
separation which increases the strength of tides (see
Sec. IV).
Once the primary stops transferring mass to the secon-

dary, there are four successive evolutionary stages in which
its spin direction relative to ĥ (or that of its black hole
remnant) could, in principle, change again (e.g., Fig. 1 of
Belczynski et al. [21]). Firstly, during the rest of its lifetime,
the primary star is still subject to tidal forces by its
companion. However, the tidal friction timescales of
systems whose primaries flipped during mass transfer is
typically much larger than the remaining lifetime which is
about Oð0.1Þ Myr. Hence, we do not expect a significant
change of the spin distributions in Fig. 6. Secondly, when
the primary forms a black hole in a supernova, the latter can

receive a kick due to asymmetric mass loss that tilts the
orbital angular momentum inducing a misalignment with
respect to the spin directions [26,64]. We investigate this
possibility below. Thirdly, if the secondary star fills its
Roche lobe, it transfers mass toward the first-born black
hole that has been formed out of the primary. The timescale
at which the black hole spin would align with the angular
momentum of an accretion disk has been derived by
Natarajan and Pringle [65] and is given by

talign ≃ 0.56 Myr χ11=16
�

α

0.03

�
13=8

�
L

0.1LE

�
−7=8

×

�
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108 M⊙

�
−1=16

�
ϵ

0.3

�
7=8

; ð57Þ

where α is the dimensionless viscosity parameter of the
accretion disk [5], L the energy accretion rate onto the black
hole,LE ¼ 1.4 × 1038M1 M−1

⊙ ergs s−1 the Eddington lumi-
nosity, and ϵ ¼ L= _M1c2 the efficiency of the accretion
process. As an order-of-magnitude estimate, we would get
talign ≃ 1.4 Myr for χ ¼ 1, α ¼ 0.03, L ¼ 0.1LE, M1 ¼
50 M⊙, and ϵ ¼ 0.3. Again, this is typically much longer
than the duration of the second mass transfer phase.
Fourthly, if this mass transfer is succeeded by a common-
envelope phase in which the expanding envelope of the
secondary engulfs the primary black hole, the latter is
subject to dynamical friction forces promoting a quick
inspiral. Recent hydrodynamic simulations show that while
inspiralling, the mass and dimensionless spin parameter of
the black hole do increase but not larger than 1 to 2 percent
and 0.05, respectively [66].
Based on this discussion, we have reason to believe that,

unless natal kicks are considered, the tilt angle of the
primary spin and the orbital angular momentum does not
significantly change between the end of the first mass
transfer phase and the formation of the black hole binary.
Figure 6 would hence reflect the spin distributions of the
first-born black hole in the BBH unless the effect of natal
kicks are considered.
In Fig. 7, we take the latter effect into account by

implementing the tilts of ĥ due to the natal kicks at the first
and second supernovae. That is, for each supernova, we
adopt the widely held assumption that the magnitude of the
natal kick velocity vkick of the black hole follows the one
observed for neutron stars scaled down by some fallback-
fraction ffb [50],

vkick ¼ vkick;NSð1 − ffbÞ; ð58Þ

where 0 ≤ ffb ≤ 1 and vkick;NS is drawn from a Maxwellian
distribution with a velocity dispersion σkick;NS ¼
265 km s−1 [67]. Assuming the supernova explosion occurs
instantaneously, Eq. (58) can be used to derive the angle ν
between the new and old angular momentum before and
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after the supernova, respectively see appendix of [8]. Thus,
the new tilt angle θnew of the primary’s spin can be
computed as

cos θnew ¼ cosϕ sin θold sin νþ cos θold cos ν; ð59Þ

where θold describes the tilt angle before the supernova, and
ϕ is an angle drawn from a uniform distribution between 0
and 2π, reflecting an isotropic kick distribution e.g.,
[26,27]. For producing Fig. 7, this method has been
successively applied for each supernova. For the merging
BBHs, the effect of kicks alone can be seen from the dot-
dashed histograms for which we skipped the spin dynamics
given by Eq. (38). Instead, we directly applied the kick
prescription to the initial tilt angles in the range [0.9, 1.0)
(see above). The resulting distributions have pronounced
peaks at cos θ ¼ 1 with an exponential tail ranging down to
cos θ ¼ −1. The effect of the tails is to broaden the
distributions with the whole spin dynamics included (solid
and dashed histograms) yielding a small fraction of donor
spins that have a cos θ below zero.
Furthermore, we investigated whether the distributions

presented in Figs. 6 and 7 are correlated with the chirp mass
Mchirp ¼ ðM1M2Þ3=5M−1=5

12 , which the LIGO-Virgo detec-
tors are most sensitive to. As a result, we find that cos θ
does not depend onMchirp. Finally, we also investigated the

possibility that at the onset of mass transfer, the spin
direction is isotropically distributed. That is, we drew
the initial value of cos θ0 from a uniform distribution in
the interval ð−1; 1Þ. As one would expect, we find that the
resulting distributions are shifted toward zero by up
to ∼0.2.
Finally, we study the contributions of the first-born black

holes to χeff [cf. Eq. (1)] at its formation. For this purpose,
we plot in Fig. 8 the distribution of the primary spin
projection χ cos θ at high (left) and low metallicity (right
panel) for 104 binaries that form merging BBHs. In both
cases, mass transfer and tides are modeled with case (i) and
a lag time τ ¼ 10−1 s. The effect of kicks is not taken into
account. The inner pies of the panels differentiate the
population between primaries whose contribution we con-
sider to be insignificant (χ cos θ < 0.1) and significant
(χ cos θ ≥ 0.1). We stress that this differentiation is some-
what arbitrary; also, we do not take the mass-weight into
account, but it nevertheless gives a rough estimate of the
primaries’ spin contribution. We see a clear difference
between the two metallicities. While at high metallicity,
χ cos θ of about 80 percent is insignificant, but this is true
for only 30 percent at low metallicity. This shows that one
must not neglect the spin of the first-born black hole if
formed at low metallicity. In particular, this result would
also hold for stronger tides, i.e., larger values for τ, because

FIG. 7. Same as Fig. 6, but natal kicks are included. Additionally, the dot-dashed histograms show the tilt angle distribution of the
merging systems (tcoal < 10 Gyr; dashed histograms) if the spin directions were only affected by the natal kicks and not by the spin
dynamics given by Eq. (38).
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in that case, cos θ would tend to increase toward 1, i.e.,
align with the orbital axis. For the systems with an
insignificant contribution, we can ask whether this is due
to a small magnitude χ or due to a flip, i.e., a small cos θ. At
both metallicities, the fraction with χ ≥ cos θ is non-
negligible. This is true for about 20 percent and even
one half at high and low metallicity, respectively. This
suggests that the spin orientation has to be taken into
account when studying the spin-contribution of the first-
born black hole to χeff at formation. In Sec. V, we have
shown that the spin magnitude and its subsequent evolution
depend on the spin value at t ¼ 0. Evidently, the spin
orientation becomes irrelevant if we had overestimated the
initial spin magnitude, i.e., if χ were actually smaller than
we have assumed. Lastly, we note that during inspiral, the
orbit average of χeff remains constant at 2PN order, whereas
the relative contributions of the primary and secondary
black hole change due to relativistic effects, which become
more important as the orbit gets tighter [68,69].

VI. SUMMARY

In this paper, we investigated the vectorial spin evolution
of a star that transfers mass to its binary companion. To this
end, we modeled the location where the star loses its mass
with the intersection point of its surface and the line of
separation between the two binary members. Thus, we
showed that the mass loss is accompanied with an aniso-
tropic spin loss that causes the spin magnitude to decrease
and its direction to flip onto the orbital plane, i.e., to form a
tilt angle of θ ¼ π=2 with respect to the orbital angular
momentum. Generally, this spin dynamics were described
by Eq. (12). Provided that all parts of the star are sufficiently
coupled by efficient angular momentum transport, it follows
that the solution to this equation also determines the spin
direction of all individual parts of the star.
We derived the orbit averaged equations of motion

describing the evolution of the donor spin, assuming either

a constant mass transfer rate per orbit, Eqs. (19)–(21), or a
delta-function mass transfer at periapsis, Eqs. (27)–(29).
While the former case holds for approximately circular
orbits, the latter may be a valid model for highly eccentric
systems. By considering these two extreme cases, we
expect that, in reality, the mass transfer rate on moderately
eccentric orbits lies somewhere in the intermediate range.
As a key result of both cases, we found that for total relative
mass losses of aboutOð0.1Þ, the spin flip is highly efficient
unless it starts perfectly or nearly (anti-)aligned with the
orbital angular momentum (see Sec. III and Figs. 1 and 2).
Meanwhile, the relative loss in spin magnitude is about
several orders of magnitude. As a corollary, we found that
both effects are independent of the actual duration of mass
transfer but only depend on the total mass that is lost.
We compared the timescale for spin misalignment due to

mass loss to the synchronization timescale due to tidal
torques. Whether the former effect is faster than tides
depends strongly on the stellar separation at the onset of
mass transfer, with smaller separations favoring tides. We
found, however, that the effect of mass loss can dominate in
both main-sequence and giant stars and for a wide range of
donor masses. Hence, the commonly adopted assumption
that tides will very rapidly erase any spin-orbit misalign-
ment in mass transferring binaries is not fully justified.
In reality, a donor might actually have expanded so much

that it loses mass through the outer Lagrangian point too,
i.e., through the second (L2) or third (L3), depending on
whether it is the less or more massive binary member,
respectively. By simulating the response of giant donors to
mass loss, Pavlovskii and Ivanova [70] showed that there
exists a critical mass ratio, below which, its mass is
transferred solely and stably through L1. For example,
they found that a 30 M⊙ donor undergoes L2=L3 overflow
only if it is about two to three times as massive as its
companion. If we replace R in Eq. (12) by some vector
pointing to L2=L3, i.e., along −d̂, we see that _S remains
invariant up to some positive factor accounting for the

FIG. 8. Spin projections onto the orbital axis of 104 binaries that form merging BBHs. The two panels differ from each other by their
metallicities. In both cases, mass transfer and tides are modeled with case (i) and a lag time τ ¼ 10−1 s.
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larger expansion of the star. Hence, we expect L2=L3

overflow to promote a spin flip as well. However, L2=L3

overflow of the donor is typically very short so that the
stream of matter is negligible compared to that through
L1 [70,71].
As a potential application, we investigated the spin

evolution of isolated stellar binaries, which form a BBH
(see Sec. V). A fraction of these BBHs lead to a merger
detectable by LIGO-Virgo through their emission of
gravitational waves. These binaries have to move on a
close orbit, making them prone to undergo a phase of stable
mass transfer in which the stellar progenitor of the first-
born black hole typically loses up to about half of its mass
to its companion. By means of a population synthesis, we
followed the spin evolution of the primary stars in a large
number of BBH forming binaries. To this end, we let our
spin dynamics [Eq. (12)] compete with external torques
emerging from the quadrupolar distortion of the donor and
the tidal interaction between the binary members whose
strength was parametrized by the constant lag times
τ ¼ 100, 10−1, and 10−2 s [Eq. (50)]. The stellar physics
was simulated at low (Z ¼ 0.03Z⊙) as well as high
metallicity (Z ¼ Z⊙). We found that the resulting tilt angle
distribution is strongly bimodal, with most spins ending up
either aligned with or perpendicular to the orbital angular
momentum. The ratio of aligned and flipped systems,
however, depends on the metallicity, the tidal lag time,
and whether the BBHs merge within 10 Gyr or not. For
instance, going from the long to the short lag time, we
found that for mergers with low (high) metallicity, the
cos θ-distributions’ means decrease from ∼0.9 (0.8 to 0.9)
to ∼0.5 to 0.7 (∼0.3 to 0.5), i.e., from fair alignment to a
mature flip. The values were even smaller by ∼0.1–0.2
when we considered all systems that form BBHs. Finally,
we have argued that natal kicks are the only effect that
could significantly change again the tilt angle between the
end of the mass transfer phase and the BBH formation.
While the bulk of primary spins remains largely unaffected,
natal kicks introduce an exponentially suppressed fraction
of primaries with tilt angles toward antialignment
(−1 < cos θ < 0). Overall, we found that at formation,
the first-born black hole’s contribution to χeff [see Eq. (1)]
of a BBH, which will merge through the channel consid-
ered, is typically negligible not only due to its depleted spin
magnitude but also due to its misalignment cos θ ∼Oð0.1Þ
with respect to the orbital axis.

The data underlying this article will be shared on
reasonable request to the authors.
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APPENDIX: TIDES AND ROTATION

The perturbations of the equations of motion (45)–(48)
can be expressed in terms of five functions X, Y, Z, V, and
W [30,39]:

X ¼ −
M2kAR5

μna5
ðω · ĥÞðω · êÞ

j4

−
ω · v̂
2ntF

1þ ð9=2Þe2 þ ð5=8Þe4
j10

; ðA1Þ

Y ¼ −
M2kAR5

μna5
ðω · ĥÞðω · v̂Þ

j4

þ ω · v̂
2ntF

1þ ð3=2Þe2 þ ð1=8Þe4
j10

; ðA2Þ

Z ¼ M2kAR5

μna5

�
2ðω · ĥÞ2 − ðω · êÞ2 − ðω · v̂Þ2

2j4
ðA3Þ

þ 15GM2

a3
1þ ð3=2Þe2 þ ð1=8Þe4

j10

�
; ðA4Þ

V ¼ 9

tF

�
1þ ð15=4Þe2 þ ð15=8Þe4 þ ð5=64Þe6

j13

−
11ω1 · ĥ
18n

1þ ð3=2Þe2 þ ð1=8Þe4
j10

�
; ðA5Þ

W ¼ 1

tF

�
1þ ð15=2Þe2 þ ð45=8Þe4 þ ð5=16Þe6

j13

−
ω1 · ĥ
n

1þ 3e2 þ ð3=8Þe4
j10

�
; ðA6Þ

where the tidal friction timescale tF depends
on the dissipative mechanism at work as described
in Sec. IV.
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