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It is evident that the emergence of infectious diseases, which have the potential for
spillover from animal reservoirs, pose an ongoing threat to global health. Zoonotic
transmission events have increased in frequency in recent decades due to changes in
human behavior, including increased international travel, the wildlife trade, deforestation,
and the intensification of farming practices to meet demand for meat consumption.
Influenza A viruses (IAV) possess a number of features which make them a pandemic
threat and a major concern for human health. Their segmented genome and error-prone
process of replication can lead to the emergence of novel reassortant viruses, for which
the human population are immunologically naïve. In addition, the ability for IAVs to infect
aquatic birds and domestic animals, as well as humans, increases the likelihood for
reassortment and the subsequent emergence of novel viruses. Sporadic spillover events
in the past few decades have resulted in human infections with highly pathogenic avian
influenza (HPAI) viruses, with high mortality. The application of conventional vaccine
platforms used for the prevention of seasonal influenza viruses, such as inactivated
influenza vaccines (IIVs) or live-attenuated influenza vaccines (LAIVs), in the development
of vaccines for HPAI viruses is fraught with challenges. These issues are associated with
manufacturing under enhanced biosafety containment, and difficulties in propagating
HPAI viruses in embryonated eggs, due to their propensity for lethality in eggs.
Overcoming manufacturing hurdles through the use of safer backbones, such as low
pathogenicity avian influenza viruses (LPAI), can also be a challenge if incompatible with
master strain viruses. Non-replicating adenoviral (Ad) vectors offer a number of
advantages for the development of vaccines against HPAI viruses. Their genome is
stable and permits the insertion of HPAI virus antigens (Ag), which are expressed in vivo
following vaccination. Therefore, their manufacture does not require enhanced biosafety
facilities or procedures and is egg-independent. Importantly, Ad vaccines have an
exemplary safety and immunogenicity profile in numerous human clinical trials, and can
be thermostabilized for stockpiling and pandemic preparedness. This review will discuss
the status of Ad-based vaccines designed to protect against avian influenza viruses with
pandemic potential.
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INTRODUCTION

Influenza viruses belong to the family Orthomyxoviridae and
have a genome composed of eight single-stranded negative sense
RNA (-ssRNA) segments. The natural reservoirs for influenza A
viruses (IAV) are aquatic and migratory birds. However, these
zoonotic viruses can also infect domesticated animals such as
poultry and swine, as well as humans (Figure 1). The zoonotic
nature of IAVs, coupled with humans encroaching on animal
habitats (1, 2), has increased the likelihood for emerging avian
influenza viruses to jump the species barrier and infect humans.
As such, these viruses represent a major pandemic threat and
vaccine development and pandemic preparedness are a global
priority (2).

IAVs are phylogenetically sub-divided according to their
surface glycoproteins, the viral hemagglutinin (HA) and
neuraminidase (NA) (Figure 2). To date, 18 HA and 11 NA
subtypes have been identified, although this includes two bat
IAV-like HAs (H17, H18) and NAs (N10, N11) (3). Distinct
HA subtypes are classified into two groups, group 1 (G1):
comprised of H1, H2, H5, H6, H8, H9, H11, H12, H13, H16,
and the bat HAs, and group 2 (G2), which includes H3,
H4, H7, H10, H14, and H15 HAs (4). The HA protein is
Frontiers in Immunology | www.frontiersin.org 2
immunodominant and is therefore a major target for
neutralizing antibodies (NAbs). As a result, it is also the main
focus for seasonal influenza virus vaccines. However, IAV
viruses evolve and mutate using processes known as antigenic
drift and antigenic shift. Antigenic drift is the accumulation of
mutations in the HA (and other proteins) incurred by the error-
prone viral RNA-dependent RNA polymerase, often in
response to selective pressure from the host. This can result
in the evasion of pre-existing NAbs elicited by natural infection
or prior vaccination, leading to reduced vaccine effectiveness (5,
6). Alternatively, the segmented nature of the viral genome can
result in genome reassortment if more than one IAV
simultaneously infects the same cell, creating progeny viruses
with a hybrid combination of segments (7). This internal
shuffling of genome segments can result in the exchange or
incorporation of a novel HA or NA glycoprotein on the virion
surface, in a process known as antigenic shift (Figure 2). This
has the potential to result in a novel subtype, for which the
human population would be immunologically naïve. Unlike
influenza B and C viruses which mainly infect humans and
therefore limit this scenario, IAVs can infect many different
species including poultry, swine, and other mammals (8). The
majority of reassortments result in defective progeny viruses:
FIGURE 1 | Schematic Diagram Showing Zoonotic Cycle of Influenza Viruses. Influenza A viruses can infect multiple animal species, which increases the probability
of cross-species transmission events. Migratory and aquatic birds represent natural reservoirs for avian influenza viruses, and pigs act as a mixing vessel, allowing
the reassortment of diverse influenza viruses. The process of reassortment could lead to the emergence of novel influenza subtypes which are better adapted for
infection and transmission in humans. Several barriers to this process also exist, including, but not limited to receptor usage preferences. Direct infection of humans
with avian influenza viruses is an infrequent event. However, the potential for adaptation while maintaining high pathogenicity is a major concern and drives efforts to
develop improved vaccines against emerging avian influenza viruses. Figure created with ©BioRender - Biorender.com.
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due to incompatibility between reassorted segments and virus-
associated packaging constraints (9), or as a result of species-
specific host restrictions which can negatively impact on
multiple stages in the virus life cycle (10). For example, a
crucial human host protein ANP32A, can confer species-
specific restrictions on the avian influenza virus polymerase,
limiting the ability of avian viruses to replicate efficiently in
human cells (10, 11).
Frontiers in Immunology | www.frontiersin.org 3
Host receptor tropism determinants can also restrict the
occurrence of reassortment. IAV HA proteins bind to host cell
sialic acid (SA) receptors, predominantly using SAs attached to
galactose with a2,3 linkage (SA a2,3-Gal) or a2,6 linkage (SA
a2,6-Gal) (12). Human and classical swine IAVs preferentially
bind to a2,6 linked SAs, while avian IAVs preferentially bind to
a2,3 linked SAs. SA receptors are mostly found on epithelial
cells, with a2,3 linked SAs found in the intestines and respiratory
A

B

FIGURE 2 | Schematic Diagram of IAV Structure and Reassortment. (A) Figure shows a schematic cross-section of the influenza virus virion with main components
labeled. Surface glycoproteins, trimeric hemagglutinin (HA) and tetrameric neuraminidase (NA), play important role in viral entry and egress and are major targets for
immune responses following infection or immunization. In particular, the highly conserved stalk domain of HA is a target for universal influenza virus vaccines. Note:
HA stalk and NA stalk are not shown as trimeric or tetrameric structures. Internal, highly conserved antigens matrix protein-1 (M1) and nucleoprotein (NP) are targets
for cytotoxic T lymphocytes (CTLs). Note: icons for NP, which coats the viral RNA, and the viral ribonucleoproteins (vRNPs) which contain viral RNA, NP and
polymerase are not shown. (B) Influenza A viruses (IAVs) can evolve to generate viruses with pandemic potential by antigenic shift, using a process of genome
reassortment. Co-infection of susceptible cells with more than one distinct IAV can result in the selection of progeny with shuffled gene segments and potentially a
new HA or NA, against which humans have no prior immunity. Figure created with ©BioRender - Biorender.com.
January 2021 | Volume 11 | Article 607333
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tract of birds (and the lower respiratory tract of humans) (13),
while a2,6 linked SAs are mostly found in the respiratory tract of
humans and pigs (2, 12, 14–16). Intermediary hosts, such as pigs,
play a role in the adaptation of IAVs by acting as a “mixing
vessel” and facilitating reassortment, as expression of both a2,3
and a2,6 linked SAs enables them to be simultaneously infected
by both human and avian influenza viruses (17) (Figure 2). In
addition, swine ANP32A has been shown to support replication
with the avian virus polymerase (18), further supporting the role
for pigs as “mixing vessels” for the emergence of reassortant
viruses with pandemic potential (18). The process of antigenic
drift can also contribute to the adaptation of avian influenza
virus HAs, by facilitating a switch in preference for a2,3 linked
SAs to a2,6 linked SAs, or in the viral polymerase (mutation
PB2-E627K) (19, 20). If these modifications retained stability and
compatibility with other IAV proteins, there is concern that this
could facilitate sustained human-to-human spread of avian
influenza viruses (21, 22).
AVIAN INFLUENZA VIRUSES

Avian influenza viruses are divided into two main categories on
the basis of their pathogenicity in chickens. Highly pathogenic
avian influenza (HPAI) viruses cause high mortality in poultry
due to their capacity for disseminated, systemic infection (2).
This pathogenicity is attributed to the presence of a multi-basic
cleavage site within the IAV HA protein. The precursor HA
protein, HA0, is cleaved into the HA1 and HA2 subunit, the
latter of which is required for membrane fusion and viral entry.
HA0 cleavage is normally mediated by trypsin-like proteases for
HA0 from human IAVs and low-pathogenicity avian influenza
(LPAI) viruses. Trypsin-like proteases are anatomically
restricted to the respiratory tract in humans, and the
gastrointestinal tract in birds. As such, viral replication
following infection with human IAV and LPAI viruses is
largely localized to these organs (2). In contrast, the polybasic
cleavage site in HPAI viruses, restricted to H5 and H7 subtypes,
can be cleaved by proteases which are ubiquitously expressed,
facilitating disseminated, extra-pulmonary replication and
consequently, severe disease. Although infrequent, sporadic
instances of direct bird-to-human transmission of HPAI have
occurred. The first report of such a spillover event was recorded
in Hong Kong in 1997 following an outbreak of HPAI H5N1
(23, 24). Since 2003, H5N1 viruses have caused a total of 861
laboratory-confirmed cases and 454 deaths. The first report of
human infection with HPAI H7N7 was in 2003 in the
Netherlands, resulting in 89 confirmed infections and one
death (25, 26). In 2013, H7N9 emerged in China and to date
has resulted in 1568 laboratory-confirmed cases and 615
deaths (27).

Ducks are mostly migratory birds with a2,3 linked SAs on
their intestinal epithelium (12). Studies have shown that several
duck species can be infected with, and spread IAVs while
showing no clinical signs (28). However, strains of IAV that
ducks carry can be highly pathogenic to land fowl, including
Frontiers in Immunology | www.frontiersin.org 4
chickens. The migratory nature of certain water fowl, coupled
with the absence of symptoms while carrying IAVs, has been
implicated as a major, and unavoidable facilitator for the global
spread of IAVs (29). While human contact with wild birds is
uncommon, poultry are routinely farmed and present at live
animal markets in many countries, which provide an
opportunity for human and avian IAVs to co-infect and
reassort (Figure 2). When farmed poultry are infected by
HPAI, containment measures include mass culling, which can
have a substantial financial impact. For example, the 2014/2015
H5N2 outbreak in the USA resulted in the death or culling of
over 50 million poultry, and was estimated to have a negative
economic impact of over $3 billion (30). In low income
countries, financial implications can drive smallholder poultry
farmers to respond to poultry deaths by rapidly selling stocks,
often at markets, which does not help with containment of
emerging viruses (31). Despite the obvious benefits of
vaccinating poultry in terms of biosecurity, routine vaccination
of poultry has cost implications, which means that flock
depopulation is a more cost-effective control strategy in many
countries (32, 33). It is clear that pandemic preparedness
strategies including one-health vaccine development, global
surveillance, and data sharing will be crucial in limiting the
spread of emerging avian influenza viruses.
OVERVIEW OF ADAPTIVE HUMORAL
AND CELLULAR IMMUNE RESPONSES
AGAINST INFLUENZA VIRUS

Ideally, vaccines designed to protect humans against avian
influenza viruses should be rapidly customizable and scalable,
and should elicit broad, protective immune responses following a
single shot. An overview of the types of immune responses
which are important in protection from influenza virus
infection and disease, and how those responses are measured,
are provided below.
HUMORAL IMMUNITY

Several methods exist for measuring humoral immunity to
influenza virus Ags. ELISA assays are a straightforward and
quantitative assay to determine the breadth of, or concentration
of antibody (Ab) binding to a range of viral proteins. In
addition, they can be used for epitope mapping, which may
aid in the identification of new vaccine targets. Adapted ELISAs
which measure Ag-specific Ab isotypes or IgG subclasses can
also be informative in evaluating the phenotype of response
following immunization with different vaccine platforms:
including mucosal Abs, or Ab subclasses which have a
preference for engaging Fc-mediated effector functions.
However, ELISA assays only measure binding-specificity but
do not confirm whether Abs are functional and capable of
preventing infection.
January 2021 | Volume 11 | Article 607333
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Protective and/or NAbs which bind to HA can block viral
entry through a range of mechanisms (Figure 3). The HA
protein is composed of the globular head, and the stalk/stem
domain (Figure 2A). HA is responsible for entry, facilitated
by binding to SA on the cell surface followed by membrane
fusion: a process which is mediated following a drop in pH in
the endosome, triggering conformational changes in the HA
to expose a fusion peptide which fuses the viral envelope with
the endosomal membrane. The receptor binding site (RBS) is
Frontiers in Immunology | www.frontiersin.org 5
located in the HA head. Abs recognizing the HA head can
confer sterilizing protection by blocking viral entry and
thereby preventing infection. NAbs can also recognize the
HA stalk domain and can prevent viral entry or egress. In
recent years, an important role for stalk-specific, non-
neutralizing Abs which are broadly cross-reactive has been
identified. Many of the latter Abs are non-neutralizing in vitro
using classical microneutralization (MN) assays. However, it
is important to emphasize that this class of Abs are protective
FIGURE 3 | Schematic of Influenza Virus Life Cycle and Targets for Protective Antibodies. The life cycle of influenza viruses has several major steps in which
inhibition by neutralizing or protective antibodies can occur. (1) Viral entry in the respiratory tract is facilitated by the enzymatic activity of the viral neuraminidase (NA),
which cleaves mucins to allow access to respiratory cells. Anti-NA antibodies, or anti-hemagglutinin (HA) antibodies which block the enzymatic function of NA could
potentially inhibit this process. (2) Viral entry is mediated by binding of the head of HA to sialic acid receptors on the surface of cells, followed by endosomal escape
by fusion of the viral and endosomal membrane. Antibodies which bind to the HA head domain can block this interaction and can confer sterilizing protection from
infection. (3) Alternatively, neutralizing antibodies against HA can block the post-binding internalization of influenza virus, or (4) its’ ability to fuse and escape from the
endosome. (5) Viral ribonucleoproteins (vRNPs) are imported into the nucleus for viral transcription and replication. (6) mRNAs exported to the cytoplasm for
translation. (7) HA and NA are trafficked to the Golgi for post-translational modification and subsequent presentation on the cell surface. Selected proteins return to
the nucleus to participate in viral replication. Progeny vRNPs are exported out of the nucleus towards the plasma membrane for subsequent assembly and virion
formation. (8) Anti-HA stalk antibodies can recognize HA on the surface of infected cells and engage Fc-mediated effector functions such as antibody-dependent
cellular cytotoxicity, targeting the infected cell for degradation. (9) Viral packaging, assembly and egress takes place at the plasma membrane. This process can also
be a target for anti-HA or anti-NA antibodies, which block egress. Anti-NA antibodies can do this by preventing new virions from being released from the surface of
infected cells, or by the absence of NA activity causing new virions to aggregate. Figure is adapted from Krammer, 2019 (4). Note: icons are not to scale. HA stalk is
trimeric (not shown) and NA stalk is tetrameric (not shown). Figure created with ©BioRender - Biorender.com.
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in vivo and function by engaging Fc-mediated effector
functions in vivo, such as Ab-dependent cellular cytotoxicity
(ADCC) (34, 35) or Ab-dependent cellular phagocytosis
(ADCP) (36).

Hemagglutination Inhibition Assay
The interaction between the HA head and SA receptors is the
basis for the hemagglutinin assay (HA), or the hemagglutinin
inhibition assay (HAI), which measures Abs that block this
interaction. Influenza virus binding to red blood cells (RBCs)
causes them to agglutinate and form a lattice. In the HAI assay,
sera are first treated with receptor destroying enzyme (RDE) to
remove non-specific inhibitors and serial dilutions of sera are
pre-incubated with a known quantity of influenza virus, and
standard amounts of RBCs subsequently added to the wells.
Following an incubation period, the wells are read and the HAI
titer identified as the last serum dilution where agglutination was
inhibited, as observed by a dense pellet of RBCs in the well. A
serum HAI+ titer of 1:40 is considered to be a correlate of
protection in humans on the basis of a 50% reduction in risk
for influenza virus infection (37).

Microneutralization Assay
MN assays can be carried out as a multi-cycle replication assay (i.e.,
to measure inhibition of entry and/or egress following addition of Ab
prior to, or after viral infection), or as a single-cycle replication assay
(to measure inhibition of entry only). The multi-cycle MN assay is
performed using a serial dilution of RDE treated sera with TPCK-
trypsin, adding a set quantity of virus and pre-incubating before
addition of the suspension to cells. Cell supernatants are collected
and a HA assay is performed. Alternatively, the single-cycle MN
assay is performed in the absence of trypsin and can identify Abs
which prevent entry, using an immunostaining-based method as the
readout, detecting viral nucleoprotein or HA expression.

Abs With Fc-Mediated Effector Functions
Several in vitro assays exist to measure Fc-mediated effector
functions. Mononuclear leukocytes and polymorphonuclear
leukocytes can both participate in ADCC, and can be evaluated
via chromium-release, lactate dehydrogenase-release (38) and
esterase-release assays (39), flow cytometry based viability (40) and
perforin deposition assays (41). More recently, reporter assays have
been developed to measure specific Fcg-receptor (FcgR) activation.
To evaluate the Fc-effector potential of broadly cross-reactive stalk
Abs, cell lines expressing different HAs are used. Activation requires
a two-contact interaction involving engagement of the Fc portion of
the stalk-binding Ab with FcgR on the effector cell, in addition to
binding of the HA head to SA on the cell surface (42–45). The
ADCC reporter assay has been validated for both human serum and
monoclonal Abs (mAbs) against measurement of CD107a cytotoxic
degranulation marker on primary NK cells using a FACS-based
readout (46). ADCP is typically measured using a cell-based assay,
where Abs/serum are pre-mixed with virus to form immune
complexes, followed by addition of phagocytes and quantification
of internalized virus, which can be achieved via RT-PCR, or ELISA-
based and fluorescence-based methodologies (36, 47).
Frontiers in Immunology | www.frontiersin.org 6
CELLULAR IMMUNITY

Although T cells cannot confer sterilizing immunity, there is
evidence in animal models (48, 49) and humans that they can
contribute to limiting disease severity (50), reducing
symptomatic infection and viral shedding (51–53). T cells have
also been shown to correlate with the NAb response to influenza,
with CD4+ T cells potentially augmenting the NAb response
(54). Considering their capacity for heterosubtypic reactivity, T
cells may be the first line of defense and could have an impact at a
population level (55) in mitigating the severity of early waves in
an emerging avian influenza virus pandemic.

However, widespread implementation of T cell assays is
limited by the fact that assays are complicated, require more
extensive training, and expensive reagents and equipment.
Antigen-presenting cells (APCs) sample exogenous viral Ags
or debris from dead/dying cells, and can present epitopes to
CD4+ T helper cells via major histocompatibility complex
(MHC) class II. Such helper cells differentiate into different T
helper subsets depending on secondary signals (49). Ag-specific
CD8+ CTLs elicited by prior infection or immunization can
recognize influenza-infected cells following presentation of
viral peptides on the surface of cells via MHC class I (56).
Following recognition, these infected cells are subsequently
targeted for destruction, limiting viral replication and spread.
APCs can also cross-present exogenous influenza Ag to CD8+ T
cells (57, 58). Popular methods for quantifying Ag-specific T
cells are the Enzyme Linked ImmunoSpot (ELISpot) assay and
a range of flow cytometry techniques to enumerate and
phenotype the T cell response through fluorescently-tagged
Ab staining.

ELISpot Assay
PBMCs can be pulsed with Ag (overlapping influenza peptides,
protein or whole virus) to stimulate an existing T cell response to
that Ag. The ELISpot is a sandwich ELISA using a capture Ab
which binds molecules of interest (eg. cytokines) secreted from T
cells undergoing stimulation, followed by use of biotinylated
secondary Ab, enzyme-conjugated streptavidin and a
development substrate. The readout is based on the formation
of visible spots at the location of each responding Ag-specific T
cell. Unlike flow cytometry-based T cell assays, ELISpot does not
determine whether the responding T cell type is CD4+ or CD8+,
however assay sensitivity is substantially higher (59). ELISpot
assays can be modified to measure antigen-specific or total
immunoglobulin from B cells, or adapted to use a fluorescent
readout, termed a Fluorospot assay, which can detect multiple
secreted molecules (60).

Intracellular Cytokine Staining (ICS) Assay
PBMCs can be stimulated with Ag followed by surface and
intracellular staining, to enable the identification of CD4+ and
CD8+ T cells and the cytokines or effector molecules they express
(61, 62). Unlike the ELISpot assay that captures secreted effector
molecules (eg. IFN-g), this assay chemically inhibits protein
secretion from the Golgi complex, resulting in the intracellular
January 2021 | Volume 11 | Article 607333
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accumulation of upregulated molecules during stimulation.
Unlike ELISpot assays, flow cytometry uses a multi-parameter
staining readout on a cell-by-cell basis, permitting the analysis of
individual cell responses and polyfunctionality.

MHC Class I/II Multimer Staining
Ex vivo MHC multimer staining is a technique by which known
epitopes to CD4+ or CD8+ T cells are targeted through use of
specific peptides complexed with MHC (pMHC), and bound in
multimeric (ie. tetrameric, pentameric) formation to a
fluorescent tag. These multimeric complexes bind the
corresponding T cell receptor of cells that recognize the
influenza peptide in the pMHC, permitting identification of
Ag-specific CD8+ T cells using pMHC class I (63), or CD4+ T
cells using pMHC class II (64). This can be combined with
surface staining (e.g., memory markers, CD45RA and CCR7)
(65, 66) to provide more comprehensive phenotyping of the Ag-
specific cells, without the need to detect a response via direct
Ag stimulation.
BEYOND TRADITIONAL CORRELATES OF
PROTECTION

As innovative universal influenza vaccine platforms and
approaches are developed, the field needs to move beyond
traditional assays to measure correlates of protection. For
example, the HAI assay cannot quantify broadly-reactive Abs
recognizing the HA stalk. Unlike IIV-based vaccines, many
alternative vaccine platforms elicit robust cellular immune
responses (67–70). Substantial differences in how assays to
measure cellular immune responses are performed makes
direct comparisons between pre-clinical and clinical studies
challenging (71). This extends to differences in the specific
Ags being evaluated, as well as differences in the cell number,
stimulating peptide concentration used, all factors which can
affect the results. Furthermore, the identification of a
particular phenotype of cellular immune response does not
confirm a role in protection. Therefore, much information
remains to be learned from well-designed longitudinal cohort
studies of natural infection, and human challenge studies
(72). The licensure of new vaccine candidates will be
dependent on the implementation and standardization of a
broader range of assays to identify and measure correlates of
protection (72).
APPROACHES FOR AVIAN INFLUENZA
VIRUS VACCINES

HPAI viruses represent an ongoing pandemic threat, and
unfortunately, it is difficult to predict which subtype will
spillover and cause the next epidemic or pandemic. As a result,
there is significant interest in developing vaccines which provide
broad protection from a range of emerging IAVs. Conventional
vaccine platforms used to protect against influenza virus, such as
Frontiers in Immunology | www.frontiersin.org 7
IIV or LAIV, predominantly rely on production in embryonated
chicken eggs. However, many novel vaccine candidates are under
development which do not rely on egg-based production
(Figure 4).

IIV
Inactivated vaccines can comprise of several formulations
including whole inactivated virus vaccines (WIV), split-virion
or sub-unit vaccines, each with their advantages and
disadvantages. WIV vaccines are generally chemically
inactivated and are robustly immunogenic, thought to be due
to their crude preparation and subsequent stimulation of innate
immune signaling pathways by residual viral RNA (73).
Depending on the method of inactivation used, WIV vaccines
can retain the structural integrity or functional activity of the HA
and NA, the two major targets for NAbs (4). Furthermore, as
WIV vaccines retain internal Ags, these may also facilitate
boosting of cross-reactive T cell responses to conserved viral
proteins such as nucleoprotein (NP). However, WIV vaccines
have fallen out of use in recent years due to their increased
reactogenicity relative to more highly-purified formulations.
Split-virion or sub-unit vaccines represent WIV vaccines which
have undergone additional treatment with detergents to further
purify virions into membrane components bearing both HA and
NA (split-virion), or almost purely HA-based immunogens (sub-
unit) (4). As a result of manufacturing processes which enrich for
HA content, immune responses to the latter vaccines are almost
exclusively skewed towards HA (74). Unfortunately, the use of
IIV-based vaccines for avian influenza viruses with pandemic
potent ia l has been hampered by poor or variable
immunogenicity requiring high Ag doses (75), multiple
immunizations (75, 76) or the inclusion of adjuvants to
achieve levels of Abs which would be considered protective
(76–79).

LAIV
LAIV platforms are cold-adapted and are designed to be
administered to the upper respiratory tract (URT) via intranasal
(i.n.) immunization. Cold-adaptation allows the LAIV to undergo
limited replication in the cooler environment of the URT, but does
not facilitate dissemination to the lung. The aim of this vaccine is to
stimulate a multi-faceted response, with mucosal immunity in
addition to priming/boosting of cellular immunity (80–82). IIV
and LAIV vaccine formulations are similar in that they aim to
stimulate protective Abs directed towards HA, and to a lesser extent,
NA. Although there is added potential to elicit cross-reactive
immunity with LAIV as compared with IIV (82), there are safety
concerns regarding the use of LAIV vaccines with avian HAs, as it
could be argued that immunization might facilitate reassortment if
the recipient became simultaneously infected with a circulating
seasonal IAV (Figure 2). In addition, LAIV vaccines are not
suitable for use in all populations (i.e., pregnant women,
immunocompromised individuals).

However, sub-optimal immunogenicity and safety concerns
are not the only challenges: employing conventional IIV/LAIV
platforms in the development of avian influenza vaccines also
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presents several unique manufacturing hurdles. A major issue is
the long manufacturing time, which is not conducive to rapid
responsiveness in an emerging pandemic scenario. Strain
selection usually takes place 7–8 months prior to influenza
season (83), and production can be achieved within 5–6
months in the best-case scenario: when suitable seed stocks are
identified and recommended by WHO on time, and when these
viruses grow to sufficient titers. However, under unexpected
circumstances the process can become protracted, with
production ranging from 6–8 months (2, 84–86). Another
issue is the over-reliance on production in embryonated eggs
and the potential for significant reductions in supply should a
HPAI epidemic result in decimation of poultry, and subsequently
eggs needed for manufacturing. In parallel with this is the fact
that HPAI viruses and derived vaccine seed stocks can be
embryo-lethal, leading to challenges in propagating viruses in
eggs to make vaccine stocks. Additionally, handling HPAI
viruses intended for vaccine development in enhanced BSL-3
biocontainment facilities requires specialized staff and
procedures which increases costs. To overcome this, non-
pathogenic surrogate avian viruses can be used, or HPAI
viruses can be genetically modified using reverse genetics (2).
However, production would benefit from alternative platforms
which are safe, easily adaptable, elicit robust and broad protective
immunity and possess manufacturing characteristics which are
compatible with stockpiling and pandemic preparedness.
Frontiers in Immunology | www.frontiersin.org 8
Newer vaccines to the market, such as recombinant HA (rHA)
produced in insect cells (i.e., Flublok®) or IIV vaccines grown in
mammalian cells (i.e., Flucelvax®) could overcome the dependency
on egg-based manufacturing and the protracted manufacturing
process. Recombinant protein-based vaccines could certainly be
scaled up more rapidly in response to an emerging pandemic.
However, in the context of avian influenza vaccines, both rHA and
IIV-based platforms may still be affected by inherently poor
immunogenicity, in addition to the fact that these particular
vaccines are limited in their ability to stimulate robust cellular
immunity. Therefore, when designing vaccines to protect against
HPAI viruses, we should consider platforms which can elicit
immune responses with increased breadth, or which simulate both
arms of the adaptive immune response to several antigen targets
simultaneously, rather than over rely on HA as the sole target.
NOVEL VACCINATION STRATEGIES
TO INCREASE INFLUENZA VACCINE
BREADTH

The development of a universal influenza virus vaccine has become
a significant research priority in recent years. Several position
papers have outlined major gaps in our knowledge and have
highlighted the need to invest in innovative approaches to
FIGURE 4 | Approaches for Influenza Vaccine Development. Left panel: A schematic overview of conventional influenza virus vaccine platforms, including the live
attenuated vaccine (LAIV), the split virion inactivated influenza vaccine (IIV) or IIV sub-virion vaccine, which has HA>NA content. Right panel: Newer vaccines being
developed include recombinant HA protein, virus-like-particles or nucleic acid-based vaccines such as DNA or mRNA platforms. Center panel: Schematic overview
of how non-replicating adenoviral (Ad) vectored vaccines work. DNA sequence encoding an influenza virus antigen is inserted into the dsDNA genome of the Ad
vector under the control of a powerful promoter to drive expression. Once immunized, the DNA sequence coding for the influenza antigen is transcribed into mRNA
and translated into protein which is expressed inside the host cells at the site of injection and/or within draining lymph nodes. This results in a robust CD8+ T cell
response, as well as humoral immune responses directed towards the encoded transgene antigen. Note: the trimeric stalk of HA, or tetrameric stalk of NA are not
shown in the diagram and icons are not to scale. Figure created with ©BioRender - Biorender.com.
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achieve this (87–89). One strategy is to expand the repertoire of
vaccine platforms under investigation, which might help to
overcome the reliance on egg-based manufacturing, as well as
increase vaccine breadth and durability. Alternatively, as different
vaccine delivery vehicles elicit a differential phenotype of
immunity, distinct platforms could be used as tools to better
understand which components of the immune response are
desirable for broad efficacy, and could help to identify new
correlates of protection. Although beyond the scope of this
review, diverse vaccine platforms including conserved peptides
(90), bivalent peptide conjugate vaccines (i.e., NCT00851266),
DNA (91, 92), mRNA (70, 93), nanoparticle (94, 95), or virus-
like-particle (VLP) (96, 97) based vaccines are undergoing
evaluation as universal influenza virus vaccines, which could also
protect against emerging pandemic HPAIs. Many of these
alternative platforms are attractive because they can facilitate the
delivery of multiple conserved Ags/epitopes simultaneously, some
have inherent immunostimulatory or innate “adjuvanting”
qualities which could increase breadth, some platforms present
Ag in novel conformations such as repetitive particulate
formulations (i.e., nanoparticle or VLP), and others are amenable
to rapid customization and pandemic responsive scale-up. In
particular, viral vectored vaccines fulfil many of these criteria.
Their ability to enter cells and deliver their nucleic acid genome
allows them to trigger immunostimulatory pathways, which can
create an environment which enables increases in immunological
potency once the transgene is expressed (98).
NON-REPLICATING ADENOVIRAL
VECTORED VACCINES

Non-replicating Ad vectored vaccines are an attractive platform for
vaccine development (Figure 4). They have a stable dsDNA
genome, they can be rendered replication-incompetent (non-
replicating) by deletion of the E1 region which is essential for
viral replication, they can tolerate the insertion of large
heterologous transgene Ags and promoters driving their
expression (up to 7.5 kbp), and a number of vectors are available
for vectorization (98). More importantly, they have a strong track
record of use in human clinical trials (99, 100) and are well-
established to be safe and immunogenic when used as vaccines for
major infectious diseases in young infants (101–103), healthy
adults (67, 68, 104–107), older adults (67, 68) and even
immunocompromised individuals (108). In recent months, their
suitability for rapid, pandemic responsiveness has been exemplified
by the fact that several Ad vaccine platforms (i.e., Ad5 (109, 110),
Ad26 (110, 111), and ChAdOx1 (112, 113)) have advanced
through pre-clinical studies in mice (114), hamsters (115), pigs
(114), and non-human primates (NHP) (111, 112), and are now
leading the way in clinical trials for the newly emerged coronavirus,
SARS-CoV-2 (i.e., NCT04324606, NCT04313127, NCT04436276,
NCT04436471, and NCT04437875) (109, 110, 113).

Depending on the particular Ad serotype selected as a vaccine,
Ad vectors elicit potent cellular immunity (largely CD8+) (116), in
addition to humoral immunity directed towards the encoded
Frontiers in Immunology | www.frontiersin.org 9
transgene Ag. This is due in part to their ability to stimulate
multiple innate immune signaling pathways upon viral entry
(117–121), as well as their capacity for persistent transgene
expression in vivo (98, 122). Adenoviruses are classified into
species groups A–G, with Ad vectors derived from species groups
C, D, and E exhibiting the highest immunological potency when
used as vaccines (98, 116). The most commonly used “prototype”
Ad vector is human adenovirus type-5 (HAdV-C5, referred to as
Ad5 throughout this review), a potently immunogenic vaccine
which unfortunately has high seroprevalence in humans, possibly
limiting its potential for broad clinical applications (98). Issues
associated with pre-existing immunity in humans has driven
scientists to vectorize a range of alternative, rare serotype human
Ad vectors, or Ad vectors derived from NHPs, great apes and other
animal species. Novel Ad platforms which have been evaluated in
pre-clinical models as vaccines against avian influenza virus include
species C vectors HAdV-C5, HAdV-C6 (123), species D vectors
HAdV-D26 (124), HAdV-D28 (124) andHAdV-D48 (124), species
E human virus HAdV-E4 (125, 126), along with species E viruses
isolated from chimpanzees ChAdV-7 (ChAd7) (127), ChAdV-68
(AdC68) (128), and ChAdOx1 (129–131). Other novel vaccines
include the use of porcine vector PAdV-3 (132), or bovine Ad
vector BAdV-3 (133). Aside from the contribution of the specific
Ag selected for incorporation into an Ad vaccine to overall
immunogenicity or efficacy (discussed in more detail below), the
relative immunological potency of the chosen Ad vector platform
can vary significantly. It is considered that a combination of factors
contribute to the hierarchy of immunogenicity when comparatively
evaluating distinct Ad vaccines (98). These include the persistence
of transgene expression in vivo, and subsequently, the magnitude of
the ensuing immune response (122, 134, 135), as well as the
preferential induction of key innate immune signaling pathways
—combined with the avoidance of Type I IFN stimulation at early
time-points post-immunization (134, 135). Additional factors such
as the cellular tropism or receptor usage of the selected Ad vector,
the route of vaccine administration and dose, can also play a role in
modulating the inherent immunogenicity of different Ad vaccines
(98). These concepts are the subject of a comprehensive review
article recently published by our group (98).
ANTIGEN TARGETS FOR AVIAN
INFLUENZA VACCINE DEVELOPMENT

The high mutability of the HA, a result of antigenic drift, ensures
that conventional vaccine platforms (i.e., IIV) elicit largely strain-
specific humoral immunity. A vaccine based on this premise would
provide little or no protection against antigenically diverse avian
influenza viruses, particularly if we consider the unpredictable
nature of cross-species transmission events by these zoonotic
viruses. Therefore, it is difficult to rely on current licensed
vaccine platforms for pandemic preparedness against HPAI.
Ideally, we need novel vaccines which are capable of stimulating
broad, heterosubtypic immunity against a wide range of avian
influenza viruses, in addition to developing platforms which are
amenable to rapid production and scale-up, or suitable for
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stockpiling. One way to achieve increased breadth of protection
from a vaccine is to select viral Ags which are highly conserved as
targets. Such Ags usually play crucial functional or structural roles
in viral replication or assembly, making them unable to tolerate
significant mutations without compromising viral fitness. Several
key targets which are currently under investigation for universal
influenza virus vaccine design are discussed below.

HA
HA is the most abundant glycoprotein on the surface of the
influenza virion. Although HA is subject to antigenic variation
which can negatively impact on vaccine effectiveness, it
does possess a highly conserved domain which is an ideal
target for universal influenza virus vaccines. HA is composed
of two main structural domains, the antigenically variable and
immunodominant HA head domain, and the highly conserved,
but immunosubdominant HA stalk/stem domain (Figure 2A).
As previously stated, conventional vaccines elicit largely
Frontiers in Immunology | www.frontiersin.org 10
strain-specific humoral immune responses predominantly
focused on the antigenically variable HA head domain. The
immunosubdominance, or poor immunogenicity of the HA stalk
in this context is well documented (i.e., head > stalk) (136).
However, advances in innovative HA immunogen design in
recent years has enabled re-focusing of humoral immune
responses towards this immunosubdominant HA stalk domain.
A major step forward in facilitating the induction of robust stalk-
specific immune responses was the development of chimeric HA
(cHA) immunogens (137–141), in which the head domain of an
exotic IAV HA is grafted onto the stalk domain of a common
human HA, the use of mosaic HAs (mHAs), in which the major
antigenic sites in the HA head domain have been silenced (142,
143), or the design of structurally stabilized headless HA
immunogens (93, 94, 144–148) (Figure 5). Alternatively,
hyper-glycosylation of the HA head domain through the
introduction of N-linked glycosylation sites, can also re-focus
humoral immunity away from the head and towards the stalk
A

B C

FIGURE 5 | Strategies to Re-focus Humoral Immunity to the HA stalk. (A) Schematic diagram showing the substitution of the HA head domain to make chimeric HA
(cHA) immunogens. The concept behind this approach is to graft an exotic HA head, for which humans have no prior immunity, to the stalk of a HA subtype which is
common in humans (ie. H1 or H3). Sequential immunization with cHA immunogens in which the exotic head is swapped with each boost can re-focus humoral
immunity to the conserved HA stalk. Note: Structures are schematic and do not represent authentic junctions for substitution of the HA head region. (B) Mosaic HA
(mHA) design is conceptually similar to cHAs but only the major antigenic sites in the HA head domain are swapped for comparable regions in an exotic HA. This
can be used as an alternative approach to re-focus antibodies towards the HA stalk domain, with the added benefit of retaining possible conserved epitopes in the
HA head. mHA structures kindly provided by Dr. Felix Broecker and Prof. Peter Palese, ISMMS. (C) Structurally stabilized headless HAs have been engineered which
completely lack the immunodominant HA head domain, allowing boosting of immune responses towards the stalk only. HA structures in (C) are reproduced with
permission from Impagliazzo et al. (147). Reprinted with permission from AAAS (License 4907650635299). Figure created with ©BioRender - Biorender.com.
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(149, 150). Although disassociating the HA head from the HA
stalk domain, through the use of headless HA-based
immunogens, appears to improve the inherent immunogenicity
of the stalk (151), sequential immunization approaches are still
required to achieve broad protection. In addition, differences in
the immunogenicity of the HA stalk as an immunogen when
presented in different formulations exist. For example, use of
recombinant protein-based HA stalk in a single shot is poorly
immunogenic, although this can vary depending on the specific
stalk construct used, its associated stability and structural
integrity. The immunogenicity of the HA stalk can be
improved by use of adjuvants, or by modification of HA
stalk constructs through covalent coupling to immunogenic
carrier proteins (152) or nanoparticles (94). Although the
immunosubdominance of the HA stalk can likely be overcome
with the right immunogen and vaccination regimen, the
immunological factors which contribute to its subdominance
are intriguing. Poor accessibility of stalk epitopes or steric
hindrance imposed by the HA head (153), polyreactivity (154)
and potentially counterselection of HA stalk Abs with low
affinity for B cell receptors (155) and the paucity of MHC II
epitopes in the stalk relative to the head which could affect Tfh
responses (152), are all mechanisms which have been proposed
as underlying factors. Regardless, in support of its potential as a
universal vaccine target, numerous studies have demonstrated
that sequential immunization with stalk-focused immunogens
can confer heterosubtypic protection from lethal challenge in
animals (94, 139, 140, 145, 147, 156). For example, sequential
immunization with a headless or cHA immunogen with the H1
stalk, can confer protection against a distinct IAV subtype from
the same phylogenetic group (i.e., G1 avian influenza H5N1).
Importantly, cHA based vaccines have recently been evaluated in
clinical trials and have shown that they can effectively boost
stalk-reactive Abs capable of recognizing distinct G1 HAs
including H1, H2, H9 and H18 in humans (157). In addition,
headless HA vaccine candidates are also undergoing clinical
evaluation (i.e., NCT03814720).

A major advance in the field was the discovery that broadly
cross-reactive HA-stalk Abs can protect using a range of
mechanisms which are independent of HAI activity (Figure 3).
Anti-stalk Abs can be neutralizing, inhibiting the fusion activity
of HA by preventing its structural rearrangement and exposure
of the fusion peptide, thereby blocking viral entry. HA stalk Abs
can also interfere with the enzymatic activity of the viral NA by
steric hindrance, blocking viral egress (158). However, more
recently we have begun to understand the contribution of non-
neutralizing, but broadly cross-reactive stalk Abs in mediating
protection in vivo (72). As the latter class of protective Ab does
not always neutralize in vitro when using classical assays, such as
HAI or MN, their importance was long under-appreciated. We
now know that a large number of stalk-reactive Abs can protect
in vivo by engaging FcgRs (159), and triggering Fc-mediated
effector functions such as ADCC (34, 35) or ADCP (36). This is a
very important consideration in the evaluation of novel vaccines
designed to elicit heterosubtypic immunity, as the current
correlates of protection for the licensure of influenza virus
Frontiers in Immunology | www.frontiersin.org 11
vaccines are based on the HAI assay, and stalk-reactive Abs
with substantial breadth are HAI-. To date, vaccines designed to
elicit HA-stalk mediated protection have employed conventional
IIV, LAIV or recombinant protein-based platforms, with or
without adjuvants (138–140, 156). However, alternative
approaches have used nanoparticles or VLPs bearing headless
HA. Importantly, all of the innovative HA designs described
above (i.e., headless, cHA or mHA expression cassettes) are well-
suited for genetic incorporation into non-replicating Ad vaccines
(Figures 4, 5).

Some concerns regarding the use of HA stalk as a vaccine
target are based on selected studies which have implicated stalk
Ab responses in leading to vaccine-associated enhanced
respiratory disease (VAERD). A study by Khurana and
colleagues reported that pigs immunized with adjuvanted
whole-inactivated influenza (WIV) vaccine based on H1,
developed enhanced disease following viral challenge with an
antigenically mismatched H1N1 virus. The authors attributed
this to non-neutralizing stalk Abs which promoted virus
membrane fusion activity (160). However, subsequent studies
compared the adjuvant used in the latter study head-to-head
with WIV immunization using different adjuvants and did not
observe VAERD, suggesting that the immune-enhancement
effects in the Khurana study were associated with that
particular choice of adjuvant (161). Importantly, Braucher and
colleagues compared adjuvanted-WIV with an Ad5-based
vaccine encoding HA in pigs and showed that unlike WIV, the
Ad vector did not induce VAERD, and elicited superior
protection against heterologous challenge viruses (162).
Antibody-mediated immune enhancement upon challenge with
H3N2 viruses in mice has also previously been reported for
mAbs which bind to the HA head, or base of the HA head (163).
The mechanism was proposed to be destabilization of the HA
stalk, resulting in increased viral fusion kinetics. Although
experimental studies with epitope-specific mAbs are useful in
better understanding mechanisms of protection or disease
enhancement, information which will guide next-generation
vaccine design, the physiological response to immunization
results in a pool of Abs which recognize multiple epitopes,
and/or multiple viral antigens present in the vaccine
formulation. It is also important to note that stalk Abs are
prevalent in humans, boosting of stalk Abs can occur in
humans following immunization (164, 165) or natural
infection (166, 167), and stalk Abs have recently been
identified as a correlate of protection in a household cohort
study of natural influenza virus infection (167).

NA
In addition to HA, the other major surface glycoprotein is the
viral sialidase, NA. NA is responsible for cleaving SA from the
surface of host cells and plays a role in viral entry (by facilitating
movement through mucus in the respiratory tract) (168, 169), in
allowing the release of budding virions from the surface of
infected cells, as well as preventing the aggregation of released
viruses (169–171) (Figure 3). In recent years NA has gained
interest as a new universal vaccine target (171, 172). Although
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Abs to NA do not provide sterilizing immunity, they can limit
disease severity in animals (173–175), and have been shown to
reduce viral release/shedding and symptomatic infection in
human challenge studies (176–178). Unlike HA, breadth of
reactivity to NA is usually across a particular subtype (i.e., N1)
rather than between different NA subtypes (172). Unfortunately,
seasonal vaccines do not contain standardized amounts of NA,
its stability and abundance in these formulations is low relative to
HA. In addition, issues related to antigenic competition between
intravirionic HA (dominant) and NA (subdominant), when
presented together on the same vaccine platform (i.e., IIV), can
preclude the development of robust immunity to NA (179).
Therefore, vaccines such as non-replicating Ad vectors, which
are capable of driving high-level in vivo expression of NA under
the control of exogenous promoters, might enable improved
immune responses to NA (180). In addition, the in vivo
expression of NA following immunization using a viral
vectored vaccine could overcome issues related to the poor
shelf-life stability of NA in current vaccine formulations.

NP
Influenza virus nucleoprotein (NP) is a structural protein which
coats the viral RNA genome, forming the viral ribonucleoprotein
complex (vRNP). Although NP has been implicated in mediating
the switch from transcription to viral genome replication (181),
recent data suggests that NP does not regulate this process (182).
Nonetheless, NP is known to interact with other viral proteins,
including components of the polymerase complex and M1 (183).
With respect to its potential role in conferring heterosubtypic
immunity, the high sequence conservation of NP (> 90%) (184)
and its role in providing partial protection from influenza virus
infection in mice (185), suggests it should be included in next-
generation vaccines. In further support of this, NP-specific T
cells have been correlated with limiting symptomatic infection
and reducing shedding in humans during natural infection and
influenza virus challenge studies (51–53), and NP-specific CTLs
have been shown to cross-react with avian viruses (82, 186).
Moreover, clinical studies have already shown that NP-specific T
cell responses can be boosted in healthy adults and in the elderly
when using Ad-based vaccines expressing NP as the transgene
Ag (67, 68). Although CTL responses to NP cannot provide
sterilizing immunity, the inclusion of NP in vaccines designed to
protect against emerging avian viruses could help limit disease
severity, or virus shedding and replication, both important
considerations in mitigating the early impact of a pandemic.

In addition to eliciting T cell responses, Abs to NP have been
reported to display ADCC activity (187, 188). Despite NP being
an internal virus protein, it can be expressed on the surface of
infected cells (189), providing an explanation for its role in
triggering Fc-mediated effector functions. In addition, studies
have described that human Abs to NP, elicited in response to
seasonal influenza viruses, can cross-react with avian influenza
strains from both phylogenetic groups, H5N1 and H7N9, and
trigger ADCC (188). However, the contribution of NP Abs to
heterosubtypic protection from influenza virus challenge in
animals is not conclusive, with some reports of protection
(190–192), and others describing minimal protection,
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depending on the challenge virus tested (93). This may be due
in part to differences in the IgG subclass profile of the Ab
response elicited by different vaccine platforms or in response
to influenza virus infection. It is well-established that specific IgG
subclasses have differential affinities for activating FcgRs, and as a
result, this can have a different outcome on the induction of
ADCC (193, 194). Therefore, NP may not be ideal as the primary
Ag target but would be well-suited to vaccine platforms which
can encode or express more than one Ag simultaneously.

M1
Matrix protein-1 is an internal Ag which forms a stabilized shell
under the IAV envelope (Figure 2). M1 therefore plays an
important structural role, engaging in interactions with the
vRNP (195) and recruiting other viral components which
facilitate virion assembly. In addition, M1 has been reported to
interact with the cytoplasmic tails of both HA and NA (196, 197).
Similar to NP, M1 exhibits a high degree of amino acid sequence
identity (> 95%) amongst global IAV isolates (198), also making
it an attractive target to elicit heterosubtypic cellular immune
responses. Evidence in animal models suggests that M1
responses can confer a degree of protection (192). A dominant
HLA-restricted epitope does exist in M1, and individuals with
this high-population-frequency haplotype (HLA-A*02) have
detectable M1-specific CD8+ T cells (199, 200). Clinical trials
using a heterologous prime:boost immunization regimen with a
chimpanzee Ad vector and MVA expressing NP+M1 as a fusion
Ag, demonstrated that although NP T cell responses were
boosted significantly following vaccination, M1 boosting was
minimal (68). However, in a previous study, volunteers who were
HLA-A*02 (7/15) exhibited pronounced fold changes in T cell
responses to this M1 epitope (67). Interestingly, modified
vaccinia Ankara (MVA) vaccines expressing NP or M1
conferred protection from influenza virus challenge in HLA-
A2 transgenic mice (201). However, a role for immune responses
to M1 as a potential correlate of protection in humans is
currently unclear.

M2
The M2 protein is an ion channel which is displayed on the
virion surface in low abundance, although its density is increased
on the surface of infected cells (202). It is involved in virus
uncoating during entry, and in the formation of new virions and
budding. The ectodomain of M2 (M2e) is highly conserved
between all IAVs (203, 204), making it a good target for
vaccines (205). Studies in animals first demonstrated that a
monoclonal antibody against M2 could protect mice from
challenge with influenza virus (206). Subsequent experiments
using multimerized M2e fused to hepatitis B virus core (HBc)
demonstrated significant protection in mice, which was Ab-
mediated (204). In addition, other approaches have tested M2e
presented on VLPs (207), or have supplemented conventional
IIV-based vaccines with M2e presented on VLPs (208). It is
considered that M2e induces protection in a manner similar to
broadly reactive stalk-Abs, through engagement of Fc-mediated
effector functions, with a crucial role for alveolar macrophages
(36, 209). Some disadvantages of using M2e as a universal
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immunogen include its low abundance on the virus, its small size
and therefore restricted space for T cell epitopes, and the fact that
despite its high sequence conservation, several phylogenetic
lineages of M2e exist (203). Clinical trials based on M2e-fusion
proteins with HBc formulations, such as ACAM FLU-A have
been registered (NCT00819013 and NCT03789539) (204, 210).
Despite reported safety and seroconversion for ACAM FLU-A,
no further development of this vaccine has been reported. M2e-
based vaccines have also advanced to clinical trials where the
vaccine is formulated as a tandem immunogen linked to bacterial
flagellin, a TLR5 ligand (NCT00603811) (211). Early studies
using low doses of the latter immunogen (0.3 and 1.0 mg) were
well-tolerated, and immunogenic, particularly following a second
dose. However, higher doses (3.0 and 10.0 mg) of flagellin-M2e
were associated with adverse events and reactogenicity. Recently,
the use of a full length mutant M2 encoded within an mRNA-
based vaccine, displayed promising efficacy against a range of
influenza virus challenges, suggesting that alternative platforms
for delivery of M2 may be a worthy pursuit (93).

PB
The viral polymerase complex of IAVs is composed of three
subunits: PB1, PB2, and PA. Although not a major focus for
universal influenza virus vaccine development, components of
the polymerase, namely PB1, may be of interest for vaccine
development, particularly from the standpoint of eliciting
heterosubtypic CTLs. One study using non-replicating Ad
vectors determined that PB1 was not as immunogenic as NP,
but this could be overcome using a molecular adjuvanting
approach in which PB1 is fused to the murine invariant chain
(Ii), increasing its presentation (212). This genetic fusion strategy
was originally designed to exploit the canonical role of Ii in MHC
II presentation, with a view to augmenting Ag presentation to
CD4+ T cells, but unexpectedly led to increases in Ag-specific
CD8+ T cell responses (213, 214). However, despite improved T
cell responses, fusion of PB1 to Ii did not translate into robust
vaccine efficacy and protection from influenza virus challenge in
mice. This is in agreement with another study which determined
that PB1 was not effective as a sole Ag in providing protection
from challenge (192). What is interesting is the recent
implication that CD8+ T cell responses to PB1 in humans
exhibit unprecedented breadth (215). In particular, two
conserved epitopes in PB1 were identified which are restricted
by common HLA types, suggesting that the development of
novel vaccines which are capable of boosting these responses
could elicit broad cross-reactivity in a significant proportion of
the human population (215). CD8+ T cell responses to one of
these epitopes cross-reacted against IAV, influenza B virus (IBV)
and influenza C virus (ICV). Therefore, it may be that authentic
evaluation of the contribution of PB1 to protection is
complicated by differences between studies in mice and
humans. However, as stated previously, it is also important to
note that the presence of cross-reactive CTLs does not guarantee
that they will contribute to increased viral clearance or
protection. The phenotype, functional activity and protective
capacity of PB1-specific T cells in humans remains to be
investigated in more detail.
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ADENOVIRAL VECTORS IN
DEVELOPMENT AS VACCINES
FOR AVIAN INFLUENZA

The unexpected pandemic caused by the introduction of SARS-
CoV-2 in late 2019, highlighted the importance of accelerating
the development of vaccine platforms which have the capacity
for rapid scale-up, which already have a strong track-record for
use in clinical trials and ideally, which would elicit broad
protective immunity against antigenically distinct avian
influenza viruses. The suitability of Ad vaccines for many
aspects of this endeavor has ensured that they are now center-
stage in this global effort, with Ad5, Ad26 and ChAdOx1
vaccines for SARS-CoV-2 already in clinical trials in humans
( i e . NCT04324606 , NCT04313127 , NCT04436276 ,
NCT04436471 and NCT04437875) (109, 110, 113).

Adenoviruses are dsDNA viruses which have three main
structural proteins that play a role in their tropism and type-
specificity: these include the fiber, which is involved in binding to
receptors on the cell surface, the penton base which induces viral
internalization and the hexon, the most abundant viral protein in
the capsid (56, 98, 216). The flexibility of the Ad platform has
facilitated its combination with many innovations in Ag design:
such as the abil i ty to encode multiple transgenes,
computationally designed consensus Ags (125, 217) and the
insertion of antigenic epitopes into the capsid of the Ad vector
(218). We already outlined the main Ag targets for achieving
broad immunity against influenza viruses. We will now
summarize the status of Ad-based vaccines for avian influenza
viruses from pre-clinical models, and vaccines which have
already entered clinical trials in humans.
Pre-Clinical
Ad5 Vaccines
Several studies have reported the pre-clinical evaluation of
Ad5-based vaccines against avian influenza viruses in mouse
models (all studies described are in mice unless otherwise
stated). In 2006, Hoelscher et al., described the successful
construction of an Ad vaccine encoding H5 A/Hong Kong/
156/197) which provided protection against antigenically
distinct H5N1 influenza viruses (219). Hassan and colleagues
described the construction of vaccines encoding full length
sequences for H5 (H5N1: A/Vietnam/1203/2004), H7 (H7N7:
A/Netherlands/219/2003) or H9 (H9N2: A/chicken/Hong
Kong/G9/1997) (220). Interestingly, the authors also
constructed a multi-epitope based vaccine (Ad-ME) encoding
highly conserved domains, or regions from diverse viral
proteins from H5N1: M2e, the fusion peptide of the HA
stalk, an immunodominant T cell epitope in NP and the a-
helix domain of the HA stalk (another highly conserved target
on HA) (221). This vaccine elicited ELISA Ab responses to
M2e and the HA fusion domain, but not to the a-helix. In
addition, T cell responses to NP were detected by ELISpot.
Challenge experiments were set up to test heterologous H5N2
virus, a distinct G1 challenge virus H9N2 and a G2 virus,
H7N9. Although viral lung titers were reduced somewhat for
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the Ad-ME vector upon challenge, these were still significantly
higher than the matched HA control vaccines, suggesting that
protection was only partial and the inclusion of structurally
intact HA immunogens may be required to confer adequate
Ab-mediated protection.

With this in mind, many investigators have designed Ad
vaccines which express conformationally intact, full length
HAs. An advance on this is computationally designed,
centralized consensus HA sequences which have now also
been applied in the development of Ad-based vaccines, with
the aim of increasing the breadth of reactivity against diverse
HAs (217). The concept behind this approach is that a
computationally optimized broadly reactive antigen
(COBRA) (222) sequence would represent the central node
of a HA phylogenetic tree. In a study by Webby and Weaver,
the authors engineered Ad5- and rare species Ad4 vectors
encoding consensus H1 (H1-Con), H3 (H3-Con) and H5 (H5-
Con) transgenes and tested them in a heterologous prime:boost
regimen in mice (125). Vaccines encoding avian H5-Con
induced HAI+ Abs with titers ≥40 against two out of three
H5 viruses tested. This prime:boost regimen conferred
protection from mortality following challenge with divergent
H5 viruses, but protection from morbidity (weight loss) was
only observed following challenge with the H5N1 A/Vietnam/
1203/04 virus, not two other strains.

In an effort to re-focus humoral immunity away from the HA
head and towards the conserved HA stalk, Lin et al., designed Ad
vaccines encoding H5 (A/Thailand/1(KAN-1)/2004) in which
the immunodominant antigenic sites in the HA head were
shielded from immune recognition by hyperglycosylation, via
the introduction of specific glycosylation sites (223). Using a
heterologous Ad prime:recombinant protein boost (both with
hyperglycosylated H5), the authors demonstrated that these
“masked” HAs elicited Abs with greater cross-clade HAI+/NAb
and anti-RBS ELISA Abs against diverse H5 viruses, as well as
inducing Abs to the conserved HA stalk domain (223).

Another strategy to increase the breadth of protection is to
target more than one Ag, or use co-administration or prime:
boost vaccination regimens to elicit immunity towards multiple
targets. In a study by Kim et al., the authors encoded H5 (A/
Vietnam/1230/2004: H5N1), in addition to M2e as a potential
pandemic vaccine candidate (224). Similar to using a wildtype
PR8 infection, Ad5-H5/M2e protected mice from heterologous
challenge with H5N2 virus, A/Aquaticbird/Korea/W81/2005.
The vaccine elicited both HAI+ and NAb responses against the
H5N2 virus, but impressively, also induced high titer stalk Abs
(ELISA) which cross-reacted with the H1 stalk of cHA, cH9/1. In
addition, H1-stalk reactive Abs elicited following immunization
with Ad5-H5/M2e were sustained for 12 months. Vaccines that
elicit broadly reactive Abs which are also durable would be a
desirable outcome for a pandemic vaccine. In a separate
manuscript, the authors also demonstrated that this vaccine
was superior to Ad vaccines expressing either Ag alone when
administered i.n. (225). Again, the Ad5-H5/M2e vaccine elicited
robust stalk-specific Abs and was capable of protecting from
heterosubtypic H1N1 challenge following a single immunization.
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Alternatively, the use of bivalent Ad vaccines encoding more
than one avian HA, or combinations of Ads expressing different
HAs, has been investigated as a strategy to induce protective
immunity against multiple avian influenza viruses in mice (226).
Vemula and colleagues engineered Ad5 vaccines encoding two
H5 immunogens, or H7 and H9, and compared these head-to-
head with matched monovalent Ad vaccines which expressed
each HA individually, as well as NP derived from an avian H5
strain. The authors subsequently tested these vaccines in a
multivalent formulation, whereby combinations of bivalent
vaccines were evaluated (ie. Ad-H5+H5 with Ad-H7+H9). A
monovalent vaccine expressing NP was also combined with these
bivalent Ads on the basis that NP on its own can only confer
partial protection, but could increase heterosubtypic protection
from challenge with unrelated viruses. All vaccines elicited Ag-
specific cellular (IFN-g ELISpot and NP/HA pentamer detection
of Ag-specific CD8+ T cells) and humoral immune responses
(HAI+ NAb and ELISA binding Abs), with increased breadth of
protection from challenge with distinct viruses observed for the
bivalent or multivalent vaccine formulations. The authors also
noted the presence of stalk Abs following Ad immunization with
multi-subtype HAs (as measured by ELISA against stalk
peptides, not intact protein) (226). They concluded that these
Abs did not play a role in protection due to their inability to
reduce viral lung titers. However, it is now well-established that
stalk-reactive Abs can be non-neutralizing (36) and would
therefore not always reduce early viral infection and replication
the lung, but may contribute to viral clearance at later time-
points through engagement of Fc-mediated effector functions.

Many published studies have focused on evaluating HA, NP
or M2e as vaccine immunogens. However, PB1 has also been
selected as an Ag. Despite its recent implications in broadly
cross-reactive CD8+ T cells in humans, its ability to confer
protection in mouse models has been disappointing. Uddbäck
and colleagues constructed an Ad5-based vaccine encoding PB1
and compared it to a similar vaccine encoding NP (212). The
authors determined that PB1 was intrinsically less immunogenic
than NP, and attempted to increase immune recognition of PB1
by combining it with an innovative genetic adjuvanting approach
in which it was tethered to murine invariant chain (described in
previous sections), resulting in increased frequencies of PB1-
specific CD8+ T cells, as detected by ICS flow cytometry.
However, despite these high frequencies, the modified Ad-PB1
vaccine was less protective than Ad-NP in a H1N1 (A/Puerto
Rico/8/34) challenge, due to reduced killing capacity by PB1-
specific CD8+ T cells. These data cast doubt on its potential as a
broadly cross-protective immunogen, although future studies in
humans may enable a more comprehensive understanding of the
protective capacity of cross-reactive T cells which recognize PB1.

As outlined above, the concept of trying to increase the
immune recognition and/or breadth of vaccine Ags encoded by
Ad vectors by using molecular or genetic adjuvanting approaches
(213, 227–229), has been applied to avian influenza viruses (230).
Alternatively, vaccine administration using different routes of
administration can elicit distinct immunogenicity profiles, with
mucosal immunization being particularly attractive for strategies
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aimed at protecting against pathogens with a tropism for
mucosal sites (98). To overcome poor immunogenicity due to
limited Ag recognition following oral delivery of Ad vaccines,
Scallan and colleagues at Vaxart, Inc encoded H5 (A/Indo/05/
2005), in addition to a dsRNA hairpin, which acts as a TLR3
stimulant to induce Type I IFNs and thereby adjuvant the
immune response to H5 (vaccine known as ND1.1). They
demonstrated that this approach did indeed improve humoral
immune responses to H5 following oral immunization in mice,
but the adjuvant did not offer further improvements following
intramuscular ( i .m) vaccination, which was already
immunogenic (and far superior to oral administration of Ad-
HA without the TLR3 adjuvant component). Protection from
homologous challenge was confirmed in mice and in ferrets,
although only partial survival (6/8) was observed in ferrets
immunized with Ad-HA-dsRNA administered orally as
compared with i.m immunization, which had 100% survival. It
is well established that the route of vaccine administration can
have an impact on the magnitude and phenotype of immune
response. This is due to differences in the types of cells present at
the immunization site, and subsequently the in vivo tropism of
the Ad vector, along with numerous species-specific factors (98)
which could have affected efficacy in the aforementioned ferret
study. The ND1.1 vaccine candidate subsequently advanced into
Phase I clinical trials (NCT01335347), and was reported to elicit
some modest T cell responses to H5 (ELISpot), but no HAI active
Abs were detected (231).

Rare Serotype Human Ad Vaccines
Although Ad5 is currently under evaluation in several clinical
trials as a vaccine against SARS-CoV-2 (i.e., NCT04313127,
NCT04436471, and NCT04437875), its widespread use in
humans may be hampered by pre-existing immunity, which
could negatively impact the magnitude of immunity directed
towards the encoded transgene Ags. To overcome this issue,
several alternative Ad vectors which are known to have low
seroprevalence in humans have been evaluated pre-clinically.
One such vector is a species E Ad, HAdV-E4 (Ad4) which has
been used extensively by the US military in a replication-
competent oral formulation to protect against Ad4
respiratory i l lness , suggest ing that i t may also be
immunogenic when used as a vehicle to deliver avian
influenza virus HAs. With this in mind, Alexander and
colleagues tested a replication-competent Ad4 vector in mice
(human Ads do not replicate efficiently in mice due to host
species restrictions) encoding H5 from A/Vietnam/1194/2004
inserted into the E3 region of the Ad genome (126). When
administered i.n, this vaccine elicited H5-specific cellular and
humoral immune responses, even in the face of pre-existing
immunity to Ad4. In support of this, altering the route of
vaccine administration, or increasing the vector dose has
previously been shown to help overcome pre-existing anti-
vector immunity (232). Importantly, the vaccine was capable
of conferring 100% protection from homologous challenge,
with sterilizing protection in the lung at an Ad dose of 109

viral particles (vp).
Frontiers in Immunology | www.frontiersin.org 15
Non-Human Ad Vaccines
AdC7
Similar to the rationale for investigating rare species human Ad
vectors, many investigators have evaluated Ad vaccines derived
from NHP as avian influenza vaccines, on the basis that these
vectors have low seroprevalence in humans. Many promising
vectors which have been developed were isolated from
chimpanzees, which cluster phylogenetically with species E
human Ads. A chimpanzee Ad vector AdC7 (also known as
ChAd7, SAd24, Pan7) was engineered to encode NP from A/
Puerto Rico/8/34 on the basis that the high conservation of NP
could facilitate heterosubtypic protection from challenge with
H5N1 avian influenza strains (127). When compared with Ad5-
NP in mice, AdC7 elicited similar frequencies of IFN-g+ CD8+ T
cells, but the AdC7 vector appeared to elicit greater frequencies
of polyfunctional CD8+ T cells (i.e., double or triple positive
cytokine secretion). However, Ad5-NP still elicited superior,
albeit partial, protection from challenge with two distinct
H5N1 viruses, A/Vietnam1203/04 and A/Hong Kong/483/97.
Another study by Cheng and colleagues evaluated the AdC7
vaccine encoding full length H5 (A/Chicken/Henan/12/2004) as
the encoded transgene in a homologous prime:boost
immunization regimen in mice with a dose of 5x1010vp (233).
Ag-specific CD8+ T cell responses were detected following the
prime (HA tetramer staining, and ICS), but these were not
expanded upon boost, unlike HAI+ Abs which were not
detected following prime, but reached titers of >1:125
following boost immunization. This AdC7-H5 vaccine
conferred 100% protection from homologous lethal challenge,
with no morbidity (weight loss) and minimal lung pathology.
The authors also demonstrated that protection was Ab-mediated
by performing passive transfer with immune sera prior
to challenge.

AdC68
Xie and colleagues used consensus-based sequence selection and
prediction of CD8+ T cell epitopes from six conserved IAV
proteins, M1, M2, NP, PA, PB1, and PB2, to design a
heterologous transgene Ag for incorporation into chimpanzee
Ad vector, AdC68 (128) (also known as ChAdV-68, ChAd68,
SAd25, Pan9, ChAdOx2) (98). When tested in a heterologous
prime:boost regimen in mice with two DNA immunizations
delivered i.m, AdC68 elicited robust cellular immune responses
(IFN-g ELISpot and ICS) and conferred complete protection
from sub-lethal challenge with H7N9 A/Shanghai/4664T/2013.
Although the authors also evaluated vaccine efficacy following i.n
immunization with AdC68 and lethal H7N9 challenge, these
results are complicated by the fact that they also used an
additional vaccinia boost, making it difficult to evaluate the
contribution of the Ad vector to protection. In a separate
study, Zhou et al., inserted the conserved M2e epitope into
hypervariable regions (HVR) within the AdC68 major capsid
protein, the hexon (218). The hexon of Ads have a number of
flexible loops (i.e., HVRs), which are exposed on the surface of
the virion and have been shown previously to tolerate the
insertion of targeting ligands or vaccine Ags (216, 234, 235).
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Following a head-to-head comparison of different constructs,
including hexon-modified Ads encoding M2e and NP, the
authors determined that modification of HVR1 was optimal
for eliciting M2e-specific Abs. The HVR1-modified Ad vectors
with or without the transgene were superior to other constructs
in conferring protection following challenge with H1N1.
However, vaccine efficacy was not evaluated for avian
influenza challenge viruses. A subsequent study developed
AdC68 encoding H7 HA (A/Zhejiang/DTID-ZJU01/2013) and
tested its immunogenicity and efficacy in mice (236). The
authors demonstrated that a single-shot at a dose of 5x1010vp
was sufficient to elicit virus-specific NAb and T cell responses
(ICS), and provide 100% protection from challenge with a
heterologous H7N9 virus (A/Shanghai/4664T/2013).

ChAdOx1
A chimpanzee Ad (ChAd) platform, ChAdOx1, has also been
evaluated pre-clinically, and has advanced to clinical trials as a
vaccine for IAV and SARS-CoV-2 (67, 68, 113, 237). Using
ChAdOx1 encoding NP+M1 or H7 HA in a prime:boost, or co-
administration approach in mice, Tully and colleagues detected
Ag-specific immune responses (IFN-g and IgG ELISpot), as well
as NAbs against H7 (129). However, all challenge experiments
included an MVA boost immunization, so it is difficult to
ascertain the protective efficacy of the ChAdOx1 vaccine
platform from these studies. Subsequently, a collaborative
effort between investigators in the US and UK tested
ChAdOx1 vectors encoding cHA immunogens, in which the
HA stalk was derived from H3 but the HA head domain was
from an exotic HA strain, in addition to the NP+M1 fusion Ag
(131). Again, the ChAdOx1 vaccine was not evaluated as a
standalone vaccine, but in a prime:boost regimen with a
modified vaccinia Ankara (MVA) boost. Various regimens
were capable of conferring protection against challenge with
three different G2 viruses: H3N2, H10N8 and H7N9. However,
three sequential immunizations using viral vectors encoding
cHAs (ChAd-MVA-cHA protein+adjuvant) were required to
elicit strong G2 cross-reactive Ab responses. This would not be
ideal in a rapidly evolving pandemic situation, where a single-
shot vaccine which elicits robust and rapid cross-reactive
immunity would be preferable. However, a subsequent prime:
boost study in ferrets using the ChAdOx1 and MVA vaccines
encoding cHAs (i.e., cH14/e or cH15/3) as well as vectors
containing NP+M1, elicited Abs which cross-reacted with H3,
H7 and H10 HAs, including H3 stalk-reactive Abs. This
translated to reductions in viral titers in the respiratory tract of
ferrets including nasal turbinates, the olfactory bulb and trachea
(130). As ferrets are a very relevant animal model for the study of
influenza vaccine efficacy, these data suggest that cHA-based
immunization approaches, in combination with conserved Ags
such as NP+M1, may be a promising approach to elicit broad
immunity to IAVs in humans.

PAV-3
A promising platform based on a porcine Ad vector, PAV3-H5,
with low seroprevalence in humans has also been developed as a
vaccine for H5 avian influenza virus, encoding H5 from A/
Frontiers in Immunology | www.frontiersin.org 16
Hanoi/30408/2005 (132). When tested in mice, this vector
elicited equivalent, or in some cases superior, humoral immune
responses to H5 when compared with an Ad5-H5 control, and
HAI+ Abs were sustained to higher levels one-year post-
immunization. In addition, PAV3-H5 elicited more rapid
cellular immunity (IFN-g ELISpot and ICS) than Ad5-H5
prompting the investigators to assess virus challenge at early
time-points post-immunization (D8 and D10), where they
observed that survival following PAV3-H5 was superior to
Ad5-H5. Vaccine efficacy with PAV3-H5 was also improved
relative to Ad5-H5 when mice were challenged with homologous
virus 28-day, or 1-year post-immunization.

BAdV-3
Similarly, another rare serotype vector based on a bovine Ad has
been described by the Mittal laboratory (133). Again, the authors
performed a head-to-head comparison with Ad5, known to be a
potently immunogenic vector and as such represents a valuable
benchmark for comparing the potency of novel Ad vaccine
platforms (98). Ad5- and BAdV-3 vectors were engineered to
encode H5 from A/Hong Kong/156/97, and vectors were
evaluated in a dose de-escalation study in mice following i.n or
i.m administration. Ab responses following i.m vaccination with
BAdV-3 or Ad5 concluded that these platforms had similar
immunogenicity. However, when vaccine was administered i.n,
Ab responses to H5 were increased for the BAdV-3 vector, and
this was particularly notable at low vector doses. Importantly, in
addition to eliciting increased numbers of HA-specific CD8+ T
cells relative to Ad5 (IFN-g ELISpot), the novel BAdV-3 vector
also elicited higher levels of IgA in the lung and nasal washes, as
measured by ELISA. Impressively, this translated into sterilizing
protection from viral infection of the lung following
heterologous challenge with A/Vietnam/1203/2004, even at
vaccine doses as low as 106 plaque-forming-units (PFU). In
contrast, the lowest dose of Ad5-H5 which conferred
comparable protection in the lung was 3x107 PFU. These data
suggest that the BAdV-3 platform is a promising vaccine
candidate for mucosal delivery, which would be well-suited to
the development of vaccines for respiratory pathogens. In
addition, the capacity to elicit robust immunogenicity, superior
to that of Ad5, at low doses would make this platform very
attractive for pandemic preparedness, potentially allowing for
dose-sparing without loss of potency, as well as reducing the
cost-per-dose for manufacturing.

Clinical Trials
In addition to extensive evaluation in pre-clinical animal models,
Ad-based vaccines for avian influenza have advanced into
clinical trials in humans, using oral, i.n or i.m administration.
The justification for administration via oral or i.n vaccination, is
to stimulate mucosal immunity in the respiratory tract, the
natural site of influenza virus infection. The earliest studies
included a randomized Phase I trial (NCT01335347), in which
54 healthy subjects were administered orally with a non-
replicating Ad5 vaccine encoding H5 (A/Indo/05/2005) and a
dsRNA TLR3 ligand as a molecular adjuvant, formulated in a
hypromellose capsule (231). Vaccinees were assigned into 108,
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109, and 1010 infectious units (IU) groups, and compared with
the placebo group. Four weeks following the prime
immunization, 12 of 18 subjects in the intermediate group
were given 109 IU vaccine boost. Vaccines were well-tolerated
with no adverse events reported over grade 1 severity. However,
HAI+ Abs, an important current correlate of protection for
influenza vaccines, were not detected. In addition, although the
authors reported dose-dependent increases in cellular immunity
(IFN-g ELISpot) when compared to placebo group or pre-
vaccination levels, these were very low level, suggesting that
oral administration of non-replicating Ad5-based vectors, is not
optimal in inducing immunity against influenza virus HA.

Subsequent studies tested an alternative Ad vector species E,
HAdV-E4, using a similar oral capsule administration (100).
However, this study selected a replication-competent Ad4
vaccine, rather than non-replicating. The rationale for
choosing replication-competent Ad4 is based on its exemplary
safety profile and historical use in the US military as a vaccine
against Ad4 respiratory illness. To evaluate its potential as a
vaccine delivery platform for avian influenza virus, the authors
designed a randomized, multicenter, Phase I clinical trial to test
PaxVax Ad4-H5-VTN (encoding H5 from A/Vietnam/1194/
2004) in 166 subjects, aged 18–40. Vaccinees were assigned to
one of five cohorts, each receiving three immunizations of a set
dosage. Vaccine groups were administered doses ranging from
107 to 1011vp, compared to a placebo group. Although all
vaccines were well-tolerated, similar to findings with the oral
Ad5 vaccine, Ad4-H5-VTN HA seroconversion as determined
by HAI, MN, and GMT was low and was similar to placebo
group. The authors propose that the poor inherent
immunogenicity of avian influenza virus HAs, or cellular
tropism of the Ad4 vector (currently unknown) following oral
delivery may have contributed to the sub-optimal Ab responses,
as it is well established that the latter can impact on the potency
of Ad vaccines (98).

Upon completion of the 3-vaccine regimen, 105 subjects
elected to take part in a follow-up study. Sub-study subjects
were then boosted with 90mg of inactivated parenteral H5N1
vaccine. Interestingly, following boosting with the inactivated
H5N1 subvirion vaccine, seroconversion (as determined by a
four‐fold rise in baseline HAI+ titer) and seroprotection (as
measured by HAI titres ≥40) in vaccine groups were noticeably
increased when compared to placebo group. This was best seen
in the 1011vp cohort which exhibited 100% seroconversion and
89% seroprotection by HAI, compared with placebo group
displaying 33 and 14%, respectively. H5-specific cellular
responses in this study were similar to those seen in i.n LAIV.
From these findings, it is possible that using Ad vaccines as a
prime may enable improvements in Ab and cellular immunity
for Ags which are intrinsically poor in terms of immunogenicity.

Considering the poor humoral immunity following oral
vaccination with either Ad5- or Ad4-based vaccines, and
implications that the route of administration may have
negatively impacted on the induction of robust humoral
immunogenicity, Phase I clinical trials (NCT00755703 and
NCT01806909) were initiated to evaluate i.n administration of
Frontiers in Immunology | www.frontiersin.org 17
the aforementioned Ad5 and Ad4 vectors for influenza. These
studies collectively aimed to monitor safety and immunogenicity
in healthy adults from ages 18–49, but formal published findings
have not yet been reported. A more recent clinical study in
humans (NCT01443936) tested the replication-competent
PaxVax vaccine Ad4-H5-VTN (A/Vietnam/1194/2004) by
tonsillar, i .n , or oral route (238). This vaccine was
administered to 56 healthy individuals, aged 18–49, with doses
ranging from 103 and 108vp for the tonsillar or i.n route, and a
dose of 1010vp administered orally. Ad4 seroconversion was seen
in tonsillar and i.n groups at doses of >104vp. Although overall
serum neutralization by MN assay against H5 was modest, Abs
with broadly neutralizing activity and potency were detected in
peripheral memory B cell populations. Importantly, although not
reflected at the serum level, immunization with the replication-
competent Ad4-H5 vector induced prolonged increases in
somatic hypermutation (SHM), and subsequently increased Ab
potency against H5 for several months. In addition, numerous
novel mAbs were identified, including one stalk-reactive Ab
belonging to a new multidonor class of Abs. Ad vaccines are
well-established in animal models to facilitate sustained
transgene Ag expression (98, 122, 239, 240), which, although
not formally investigated in this study, may have contributed to
the prolonged evolution of Ag-specific B cell responses.
However, these data highlighted the importance of considering
sustained B cell evolution as a valuable parameter when
evaluating the success of various vaccine platforms. Better
understanding the kinetics and significance of this process may
enable the design of optimal vaccine platforms or immunization
regimens designed to elicit broad and durable protective
immunity. Although promising, some disadvantages in using
replication-competent Ads is the induction of anti-vector
immunity and its possible competition with transgene Ag. In
addition, the use of replication-competent vaccines, including
Ad4, are contraindicated for use in young children, pregnant
women, the elderly and immunocompromised individuals,
thereby limiting its widespread use as a pandemic vaccine to
protect vulnerable, at-risk groups.

In addition to human Ads, vectors derived from NHPs have
also been evaluated in humans. One candidate vaccine is a
species E chimpanzee Ad vector encoding conserved IAV Ags
NP and M1, with the aim of stimulating cross-reactive and
heterosubtypic cellular immunity. A first-in-human Phase I
dose-escalation trial to evaluate the immunogenicity of non-
replicating ChAdOx1-NP+M1 (Ag sequence from H3 A/
Panama/2007/99) following i.m immunization was carried out
with 15 subjects in a 3 + 3 study model (67). Overall, the vaccine
was well tolerated in volunteers, allowing the progression to the
highest dose of 5x1010vp. However, two of the three vaccinees in
this group experienced local and systemic reactions, concluding
that this dose was not ideal for a prophylactic vaccine. All groups
displayed increases in T cell responses, most peaking day 14
post-vaccination. In addition, a sub-set of participants in the
5x1010vp group received a heterologous boost with 1.5x108 PFU
of MVA-NP+M1, resulting in all three subjects displaying an
increase in Ag-specific T cells (IFN-g ELISpot); responses which
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were elevated for 8 weeks post-boost. This first-in-human clinical
trial was subsequently extended in a Phase I, randomized,
multicenter study trial to evaluate a heterologous two-dose
vaccination regimen using ChAdOx1-NP+M1 and MVA-NP+
M1 i.m in 49 healthy subjects, aged 18–46, and 24 subjects, age 50
and over. The vaccine regimen proved safe and immunogenic for
both younger and older adults. In young adults, the MVA/
ChAdOx1 regimen, regardless of the time interval between first
and second immunization, elicited T cell responses which
remained elevated compared to the ChAdOx1/MVA regimen.
In addition, a single vaccination with MVA displayed
significantly higher fold-increase and peak immune responses
compared to a single vaccination with ChAdOx1 vaccine in
young adults. However, all groups following first vaccination in
both younger and older adults, compared to baseline, displayed
significantly elevated T cell responses to NP and M1 for up to 18
months (ELISpot and ICS). The two-dose heterologous
vaccination regimens significantly increased the frequency of
cross-reactive T cell responses to NP and M1 (ICS). This study
confirmed the ability for viral vector vaccines to elicit sustained T
cell responses to conserved Ags which have the potential for
heterosubtypic cross-reactivity.
CHALLENGES FACING THE
ADVANCEMENT OF ADENOVIRAL
VACCINES

Pre-Existing Immunity
The development of vaccines based on Ad5 has waned in the last
two decades, largely due to the seroprevalence of anti-Ad5 Abs in
humans (which can differ geographically) and the potential for
anti-vector Abs to limit vaccine efficacy (241). This topic has
once again become the subject of debate, as a result of several Ad
vectors undergoing evaluation as vaccines for SARS-CoV-2.
Indeed, in clinical trials to evaluate an Ad5-based vaccine in
humans, high-level (>1:200) pre-existing Abs to Ad5 (as well as
increased age), compromised seroconversion to the encoded
Ad5-delivered SARS-CoV-2 spike (109, 242). Interestingly,
reactogenicity was reduced in older adults, and those with high
pre-existing anti-vector Abs, suggesting that booster
immunizations to overcome limited immunogenicity might be
tolerated in these groups. However, in our opinion, the use of an
alternative Ad serotype such as the Ad26 or ChAdOx1 vector, or
a completely different vaccine platform as a booster would be
preferable in eliciting an optimal immune response.
Alternatively, increasing the interval between re-administration
of the same Ad vector, or altering the route of administration
may help to overcome the effects of anti-vector immunity, as
demonstrated in mice (232, 243, 244).

Additionally, discouraging data from the Merck STEP vaccine
trial: a HIV vaccine trial using Ad5 encoding gag, pol and nef,
administered to men and women across the Americas, Caribbean
and Australia (245), also dampened enthusiasm for Ad5-based
vaccines. The STEP trial was halted after the first interim
analysis, as the pre-determined, non-efficacy boundaries were
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reached. Post-hoc analyses revealed a trend towards increased
HIV acquisition in vaccinated males (24/522 males), compared
to the placebo group (20/536 males) (246). This was associated
with an increased hazard ratio in men who were uncircumcised
and had high pre-existing Ad5 Abs, in addition to being linked to
specific sexual practices (245).

More recently, case-control study of two cohorts (n = 889
total) at elevated risk of HIV-1 infection showed no association
between Ad5 seropositivity and incidence of HIV-1 infection
(247). Furthermore, a larger case-control study (n = 1570)
showed no association between pre-existing Abs to seven Ad
serotypes (Ad1, -2, -6, -26, -35, and -48) and acquisition of HIV-
1 infection across three HIV-1 vaccine efficacy trials: the
VAX003 and VAX004 trials of non-adenoviral vectored
vaccines, and the Merck Ad5 STEP study (248). With pre-
existing Ad5 antibodies alone seemingly not a risk factor, it
could be argued that the trend towards increased HIV
acquisition in the STEP trial was a product of testing a non-
efficacious vaccine (which lacked an Env antigen), in extremely
specific cohorts with high HIV transmission. Indeed, as outlined
above, pre-clinical and clinical vaccine development using Ad
vectors has successfully continued. With this in mind, the
possibility for repeated administration of Ad-based vaccines is
supported by the large range of novel vectors to choose from,
many of which have been, or are currently being vectorized (98).
In addition, it is possible to make genetically chimeric Ad
vectors, in which the major targets for type-specific anti-vector
Abs (the fiber, or hexon) (249) are swapped for corresponding
regions from rare Ad viruses (249).

Manufacturing Capacity
One further challenge, not limited to Ad vectors, is matching
clinical grade vaccine production output with demand. Further
to this, there can be differences in the manufacturing
characteristics of distinct Ad serotypes (i.e., growth to high
titers, genetic stability). The SARS-CoV-2 pandemic and urgent
need for rapid production of a safe and effective vaccine has
highlighted the importance of investing in scalable vaccines
which are well-suited to stockpiling. As previously stated, Ad
vectors in general have a number of beneficial attributes in
terms of their potential for thermostabilization and cold-chain
free storage requirements (98). However, outside of SARS-
CoV-2 investment, traditional manufacturing processes for
Ad vectors have not previously been considered cost-effective
or commercially viable for global scale production (250).
Vellinga and colleagues have summarized these issues and
have highlighted strategies to improve this in an excellent
review from 2014 (250). In terms of pandemic preparedness
and the development of vaccines with immunological breadth
to protect against antigenically drifted, or shifted viruses such
as avian influenza virus, Ad vectors are ideal and are therefore a
worthy investment as a tool to combat emerging viral
infections (241).

Summary
Advances in innovative immunogen design will undoubtedly
enable the development of optimized vaccine platforms capable
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of eliciting breadth of reactivity, in addition to durability. For
example, the use of computationally designed immunogens such
as COBRA (251) or immunogens designed using Epigraph
algorithms (252) may help to increase breadth across multiple
Ags, against T cell epitopes and/or discontinuous B cell epitopes.
Pre-clinical validation of these immunogens could also help to
identify as-yet-undefined epitopes which play important roles in
heterosubtypic protection against novel influenza subtypes

Significant advances have been made in developing novel HA
immunogenswith the aimof boosting immune responses against the
highly conserved but immunosubdominant HA stalk. The HA head
is immunodominant and antigenically variable, and in general, Abs
elicited against this domain are strain-specific. This is a major factor
contributing to the requirement to reformulate conventional IIV-
based vaccines on an annual basis. However, highly conserved,
broadly neutralizing epitopes do also exist in the HA head domain
(253–255). Although Abs to these epitopes are rare and appear to be
poorly elicited by seasonal vaccines (256), head-specific mAbs
capable of neutralizing multiple IAV subtypes have been isolated
from animals (257, 258) and humans (256, 259). Many of the target
epitopes are located proximal to the RBS, and in some cases the
mAbs use molecular mimicry of the HA surface receptor SA (256).
However, anti-HA head mAbs with broad reactivity have also been
identifiedwhich recognize epitopes distinct from theRBS (260–262).
Therefore, conserved HA head epitopes could represent a novel
target for next-generation influenza virus vaccine design. The use of
structural biology techniques and alternative vaccine platforms may
provide additional insight, and enable the improved induction of
responses directed towards these unusual, or occluded epitopes, in a
manner superior to conventional vaccine platforms.

In recent years, the influenza vaccine field has invested a
significant amount of time in trying to better understand the
differences between immunity elicited through immunization with
different platforms, and natural infection. Evidence is growing that
the primary influenza virus exposure in early life, or “immunological
imprinting”, can have a major impact on subsequent responses and
susceptibility to infection with G1 or G2 IAVs in later life (263, 264).
This is an important consideration when developing broad, or
Frontiers in Immunology | www.frontiersin.org 19
universal influenza virus vaccines, as it is unclear if such a vaccine
should elicit equivalent immunity to G1 and G2 HAs
simultaneously, and if immunization should ideally be prior to
primary natural infection, in very early childhood. The foundations
to support these major questions are currently being addressed by
large cohort studies in humans, comparing populations with low
vaccine coverage versus those with annual seasonal influenza
vaccine programs (167, 265). Substantial funding investment to
support the development of a universal influenza virus vaccine in
recent years will undoubtedly have a positive impact on vaccines
which elicit protective immunity, extending to the design of
vaccines to protect against emerging avian influenza viruses.
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