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Observation of gravitational waves (GWs) in two different frequency bands is referred to asmultibandGW
astronomy. With the planned Laser Interferometric Space Antenna (LISA) operating in the 10−4–0.1 Hz
range, and third-generation (3G) ground-based detectors such as the Cosmic Explorer (CE) and Einstein
Telescope (ET) operating in the 1–104 Hz range, multiband GWastronomy could be a reality in the coming
decades. In this paper, we present the potential of multiband observations of intermediate-mass binary black
holes (IMBBHs) of component masses∼102–103 M⊙ to test general relativity (GR).We show that mutiband
observations of IMBBHs would permit multiparameter tests of GR—tests where more than one post-
Newtonian (PN) coefficient is simultaneously measured—yielding more rigorous constraints on possible
modifications to GR. We also find that the improvement due to multibanding can often be much larger than
the best of the bounds from either of the two observatories. The origin of this result, as we shall demonstrate,
can be traced to the lifting of degeneracies among the various parameters when the information from LISA
and 3G is taken together. A binary of redshifted total mass of 200 M⊙ gives the best bounds. Such a system at
1 Gpc and mass ratiom1=m2 ¼ 2would bound the deviations on all the PN coefficients to below 10%when
they aremeasured individually, and additionally place simultaneous bounds on the first seven PN coefficients
to below 50%.
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I. INTRODUCTION

Einstein’s general relativity (GR) has been subjected to a
plethora of tests performed in the laboratory as well as those
using astrophysical observations [1]. The theory has so far
been consistent with each of these tests (see Refs. [2–6] for
an overview of various astrophysical tests of GR). The first
observation of gravitational waves (GWs) from the binary
black hole (BBH) merger GW150914 [7] and several others
[8–15] during the first, second, and the first half of the third
observing runs, have permitted tests of GR in a regime of
strong gravity and high curvaturewhich had previously been
elusive [16,17]. The binary neutron star merger GW170817
[18] further facilitated tests of strong-field gravity for

nonvacuum spacetimes [19]. The observation of electro-
magnetic emission associated with this event helped in
deriving stringent constraints on the speed of the GWs [20].
All these tests have placed tighter constraints on possible
deviations from GR [21] while ruling out modified theories
of gravity invoked to explain dark energy [22–26]. The
recent detection of a BBH merger, GW190521 [27], with
total mass ∼150 M⊙ has opened up new possibilities for
understanding the formation mechanisms of BBHs as well
as tests of GR.
Parametrized tests of GR [28–33] are among the pioneer-

ing tests of the theory performed with GW data. These tests
make the best use of the structure of the GW phase
evolution from the post-Newtonian (PN) approximation
to GR [34]. In the PN approximation, the phase evolution
of the GW signal can be expanded as a power series in v
and logv, where v denotes the velocity parameter describing
the orbital motion of the binary. The different PN orders
(corresponding to different powers of v) capture the diverse
physics and various nonlinear effects underlying the compact

*sdatta94@cmi.ac.in
†agupta1@olemiss.edu
‡shilpa.kastha@aei.mpg.de
§kgarun@cmi.ac.in∥bss25@psu.edu

PHYSICAL REVIEW D 103, 024036 (2021)

2470-0010=2021=103(2)=024036(15) 024036-1 © 2021 American Physical Society

https://orcid.org/0000-0001-9200-8867
https://orcid.org/0000-0003-0966-1748
https://orcid.org/0000-0003-3845-7586
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.103.024036&domain=pdf&date_stamp=2021-01-20
https://doi.org/10.1103/PhysRevD.103.024036
https://doi.org/10.1103/PhysRevD.103.024036
https://doi.org/10.1103/PhysRevD.103.024036
https://doi.org/10.1103/PhysRevD.103.024036


binary dynamics. Hence, looking for deviations in the PN
coefficients is equivalent to constraining the different
physics that go into them [35,36]. In this framework,
deviations from GR are parametrized via deformation
in the phasing formula at different PN orders [32,33],
whose values are put to test using the GW data. As these
deformation parameters take the value zero in GR, this
null test is devised to derive constraints on them at a fixed
credible level.
The parametrized tests of GR branch out into several

subclasses depending on the number of PN deformation
parameters that are simultaneously estimated from the data.
Ideally, one aims to constrain all or several of the PN
deformation parameters simultaneously using the GW data
[28]. Tests that do this will be referred to as multiparameter
tests in this paper. One may wish to further classify these
multiparameter tests into two classes, depending onwhether
the block of PN parameters that are tested starts from the
lowest PN order (in the ascending order) or from the highest
PN order (in the descending order). The former would make
sense in terms of verifying the predictions of GR at different
PN orders with increasing levels of complexity in the
nonlinear interactions. The latter perspective, starting from
the highest PN order and proceeding in decreasing order,
would be expected from modified theories such as an
effective field theory where modifications to GR would
start at a particular PN order and all orders above that
[37,38]. There could be other possible combinations of the
PN deformation parameters that may be tested simultane-
ously, but we consider only these two classes of the multi-
parameter tests in this paper, as they are the most general
ones. These classes of tests, though more rigorous, yield
weaker bounds compared to single-parameter tests, due to
the large correlations of the deformation parameters among
themselves as well as with the intrinsic parameters of the
binary, such as its masses and spins [28,39].
Hence, one considers a somewhat less rigorous set of

tests where only one of the many PN deformation param-
eters is chosen at a time as a test parameter [29,32,33]. This
is less rigorous in the sense that a modification to the
phasing formula from a non-GR theory is likely to occur at
more than one PN order. This aspect is not accounted for in
the formulation of the single-parameter tests. This draw-
back is partially compensated by performing a set of tests
while varying the PN deformation parameter systematically
from 0PN to 3.5PN one-by-one (see Ref. [30] for a detailed
discussion). Hence, one or more of these tests would
potentially detect a deviation if the underlying theory of
gravity were not GR, though a deviation seen at a particular
PN order in this test does not necessarily mean the
breakdown of GR occurs only at that particular order.
Given the sensitivity of the current generation of GW
detectors, this is the method presently being employed in
the analysis of the LIGO and Virgo data and will be referred
to as single-parameter tests in this paper. The current

constraints from the single-parameter tests, at a 90%
credible level, from the BBHs observed so far from
LIGO and Virgo detectors are reported in Refs. [16,17].
However, with the next-generation ground-based and
space-based detectors, the sensitivity would reach levels
where the multiparameter tests would be possible [40].
Several studies have quantified the projected bounds on

these PN parameters using third-generation (3G) ground-
based GWexperiments such as the Einstein Telescope (ET)
[41] and Cosmic Explorer (CE) [42], as well as the space-
based Laser Interferometer Space Antenna (LISA) [43]
(see, e.g., Refs. [28–30,44]). The ground-based 3G detec-
tors are sensitive to stellar-mass BBHs (up to ∼100 M⊙)
and intermediate-mass BBHs (IMBBHs) (∼102–103 M⊙)
in the frequency range∼1–104 Hz [45,46], while the space-
based LISAmission is most sensitive to supermassive black
hole mergers (∼105–7 M⊙) in the 10−4–0.1 Hz band [47].
While CE/ETwill have the advantage of around 10–40-fold
improvement in strain sensitivity compared to the present-
generation detectors such as advanced LIGO and advanced
Virgo, LISAwill open up the possibility of using the mHz
band for GWastronomy. But neither of them may be able to
set stringent enough bounds on the deformation parameters
to rule in or rule out viable modified theories of gravity
[40]. This is because the intrinsic degeneracies of the
deformation parameters with masses and spins prevent
making precise measurements of these parameters using
either ground-based or space-based experiments alone [30].
In the past few years, an alternative strategy to combine

these two classes of observations has been proposed as a
new tool to probe the strong-field dynamics [48–54] of
BBHs. This is often referred to as multiband GW
astronomy [55], where, using a class of sources visible
in both LISA and 3G, one combines the low-frequency
content (the early dynamics of compact binaries) in the
LISA band and the high-frequency content (carrying an
imprint of the late-time dynamics of compact binaries) in
the 3G band to obtain bounds on departures from GR.
Various studies on multiband parameter estimation mostly
used stellar-mass BBHs like GW150914, which will have a
signal-to-noise ratio (SNR) of order unity in the LISA band,
but a ratio of several hundreds to thousands in the 3G band.
Even then, in these studies, joint observation has been
argued to be able to provide bounds several orders of
magnitude better than those from individual observations
[50–54]. This huge improvement has been broadly attrib-
uted to the combination of the low-frequency sensitivity of
LISAwith the high-frequency response of the 3G detectors.
In Ref. [54], these generic features have been confirmed,
for the first time, with a treatment of the problem within the
Bayesian inference framework.

A. Multiband tests of GR using IMBBHs

In this work, we take this paradigm forward by carrying
out an extensive study of the effect of multiband
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observations of IMBBHs, as opposed to stellar-mass BBHs,
using LISA and CE/ET, with total source-frame masses
of the binaries varying between 100 M⊙ and 550 M⊙.

1

Astrophysically, IMBHs can have masses as high as
104 M⊙ [56] and would be excellent sources of GWs for
these detectors. Therefore, detecting and understanding the
formation of IMBBHs are among the top science priorities
of present and future astronomical telescopes [57,58]. The
multiband detectability of IMBBHs is discussed in detail in
Ref. [59]. Further, possible implications for the multiband-
ing of IMBBHs for parameter estimation and tests of GR are
highlighted in Ref. [60]. Among the LIGO/Virgo detections
so far [15], GW190521, at a redshift of 0.82þ0.28

−0.34 , is the most
massive BBH,with a total source-framemass of 150þ29

−17 M⊙
and a total median redshifted mass of ∼270 M⊙. Though
BBHs in thismass range are ideal formultibanding [61], due
to the relatively high redshift of the source, GW190521
would have an SNR of ∼2–5 in the LISA band, making its
detection unlikely. In this paper, we present a detailed study
of the implications of multiband observations of IMBBHs
by LISA and CE/ET detectors in terms of tests of GR.
Unlike the stellar-mass BBHs, the IMBBHs will have

SNRs of the order of tens in the LISA band (as opposed to an
order of unity for stellar-mass BBHs), while in the CE/ET
band they still have SNRs of the order of hundreds to
thousands. This significantly helps the process of multi-
banding, thereby providing us precise measurements of the
PN deformation parameters. Further, our detailed study
reveals that the dramatic improvements from multibanding
are due to large-scale cancellations of correlations among
different parameters in the problem, due to the mutual
complementarity of the two experiments or frequency bands.
We observe that at an intermediate-mass BBH with a total
redshiftedmass of200 M⊙ is a sweet spot formultiparameter
tests with multiband observations. Considering such a
system of mass ratio 2 and at 1 Gpc, we find that single-
parameter tests can constrain the first three PN deformation
parameters to an accuracy of ∼0.1% and the rest to below
10%. Multiparameter tests up to a seven-parameter case can
be performed with the above system, where the first two PN
deformation parameters are bounded to below 0.5% and the
rest to below 50% (with low spins).
The remainder of the paper is organized as follows: In

Sec. II, we discuss the basic concepts in combining the
information from the two frequency bands (LISA and 3G),
specific to the case of parametrized tests of GR. The results
for the single-parameter tests with explanations of the
trends seen are presented in Sec. III. Multiparameter tests
are discussed in Sec. IV. Lastly, some of the caveats of the
analysis are listed in Sec. V, and our conclusions are
provided in Sec. VI.

II. TESTS OF GR USING MULTIBAND
GW OBSERVATIONS

A. Parametrized tests of GR
using IMRPhenomD waveforms

The breakthrough in numerical relativity [62,63] has
enabled us to construct analytical or semianalytical wave-
formswhich account for the inspiral (the early phaseof binary
evolution), merger (the late stages of the binary evolution as
the two objects coalesce), and ringdown (the postmerger
phase of the remnant black hole) phases [64–70]. An
important subclass of them, referred to as inspiral-merger-
ringdown phenomenological waveforms or IMRPhenom, is
constructed starting with an ansatz about the structure of the
frequency-domain gravitational waveforms, which contain
several free parameters that are fixed by matching with
numerical relativity simulations for various mass ratios and
spins. Here we use the IMRPhenomD waveform model [66]
of the IMRPhenom family, which assumes the spins of the
binary constituents to be alignedor antialignedwith respect to
the orbital angular momentum vector, and hence the binary is
nonprecessing. The amplitude of IMRPhenomD accounts
for only the leading quadrupolar (l ¼ 2; jmj ¼ 2) mode.
Schematically, a frequency-domain waveform would read

h̃ðfÞ ¼ AðfÞeiΦðfÞ; ð2:1Þ

whereAðfÞ andΦðfÞ denote the amplitude and phase of the
gravitational waveform. The phase, in the inspiral regime,
admits an expansion of the form [34,71–76]

ΦðfÞ¼ 2πftc−ϕcþ
3

128ηv5

�XK
k¼0

ϕkvkþ
XK
kl¼0

ϕklvkl lnv
�
;

ð2:2Þ

where tc andϕc are kinematical parameters related to the time
and phase of the arrival of the signal at the detector, and
v≡ ðπMfÞ1=3 is the PN expansion parameter in terms of
which the amplitude and phase are expressed. Furthermore,
η≡m1m2=M2 is the symmetric mass ratio, where M≡
m1 þm2 is the total mass of the binary. Note that these
masses are the detector frame (or redshifted) masses after
accounting for the redshift of the source and related to the
source-frame masses Msource by M ¼ Msourceð1þ zÞ. The
PN coefficients in the phasing formula, deformations in
which we are interested, are denoted by ϕk and ϕkl.
For the present analysis, we use the amplitude AðfÞ and

phase ΦðfÞ of the IMRPhenomD waveforms, which by
construction agree with the predictions of PN theory in the
inspiral part of the waveform. The inspiral part of the GW
phasing is described by the PN phasing formula in
Eq. (2.2), correct to 3.5PN order [Oðv7Þ]. All of the PN
coefficients ϕk and ϕkl are functions of the various
combinations of the intrinsic parameters of the system,

1This choice of masses is made to ensure multiband visibility
of the GW inspiral from the sources and is not from any
astrophysical consideration.
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such as the total mass M, the symmetric mass ratio η, and
the dimensionless spins χ1;2 of the binary components. Any
modification to these PN coefficients would potentially
arise from modifications to GR, an assumption which
forms the basic premise for the parametrized tests. We
take the ansatz for PN expansion present in IMRPhenomD
and introduce free parameters at every PN order to model
non-GR modifications, rewriting the PN coefficients as

ϕk → ϕkð1þ δϕ̂kÞ; ð2:3Þ
ϕkl → ϕklð1þ δϕ̂klÞ; ð2:4Þ

where δϕ̂k (k ¼ 0; 2; 3; 4; 6; 7) and δϕ̂kl (kl ¼ 5l; 6l) are the
fractional non-GR deformation parameters to the respective
PN orders denoted by the indices k and kl. More specifi-
cally, 5l and 6l represent the deformations to the loga-
rithmic terms at 2.5PN and 3PN, respectively. The
nonlogarithmic part of the 2.5PN–order coefficient does
not have any frequency dependence and can be absorbed by
redefining ϕc. This is why we do not consider δϕ̂5 as a
separate parameter. Since the gravitational waveform is
intrinsically parametrized by M, η, and χ1;2 as discussed
above, our parameter space is 15-dimensional, consisting of
seven GR parameters (including the luminosity distanceDL
of the source) and eight non-GR deformation parameters,
fδϕ̂kg and fδϕ̂klg:
θa ¼ flnDL; tc;ϕc; lnMc; η; χ1; χ2; fδϕ̂kg; fδϕ̂klgg; ð2:5Þ
where we find it convenient to use the chirp mass Mc ≡
η3=5M instead of total mass M as one of the mass
parameters. We carry out parameter estimation of the
GW signal described by these parameters using the
projected sensitivities of LISA and 3G detectors, the details
of which are discussed in the next sections.

B. Detector configurations

1. Laser Interferometric Space Antenna

Following the huge success of the LISA-Pathfinder [77],
which has set a benchmark for a millihertz GWexperiment
in space, the European Space Agency has selected LISA for
its L3 mission [47]. The proposed mission, to be launched
in 2034, has an equilateral triangular constellation of three
spacecraft separated by 2.5 × 106 km, connected by six
laser links. The constellation would orbit the Sun, trailing
behind Earth’s orbit at an inclination of 20° with respect to
the ecliptic. The orbital motion of the spacecraft around the
Sun is important for source localization and luminosity
distance estimation [78].
For our purposes, we ignore the orbital motion of

LISA. This is justified, as our aim is to study the error
on the intrinsic parameters of the binary, including the
PN deformation parameters, which are more or less

uncorrelated to the extrinsic parameters (such as luminosity
distance, source position, and orientation) and hence have
minimal effect on our estimates [54,79,80]. The noise
power spectral density (PSD) for LISA consists of the
instrumental noise and the confusion noise due to Galactic
white dwarf binaries that limit LISA sensitivity in the
lower-frequency regime. The instrumental noise that we
employ can be found in Eq. (1) of Ref. [47], and the
Galactic confusion noise component, corresponding to
4 years of observation time, can be found in Ref. [81].
The LISA noise PSD given in Ref. [47] is averaged over the
sky and polarization angles and takes into consideration its
triangular shape [78–80,82]. We also divide the total noise
PSD by 2, taking into account the summation over two
independent low-frequency channels. However, to account
for averaging over the inclination angle which specifies the
orientation of the source with respect to the detector, it will
involve an additional prefactor of

ffiffiffiffiffiffiffiffi
4=5

p
multiplying the

amplitude of the IMRPhenomD waveform model [82].
The choice of the low-frequency cutoff for IMBBHs in

the LISA band will depend on the duration over which the
signal would last in the LISA band. If an IMBBH with
chirp massMc is observed for a duration Tobs by LISA, the
low-frequency cutoff may be chosen as

fLISAlower ¼ Max

�
10−4; 4.149 × 10−5

�
Mc

106 M⊙

�
−5=8

T−3=8
obs

�
:

ð2:6Þ

The Max argument above ensures that the low-frequency
cutoff is not lower than the nominal low-frequency cutoff of
the LISA instrument. In our analysis, we take Tobs to be
4 years. The upper frequency cutoff is chosen to be 0.1 Hz,
which is equal to the upper frequency cutoff of the LISA
instrument.

2. Cosmic Explorer and Einstein Telescope

We consider Cosmic Explorer and Einstein Telescope as
two prototypical detectors representing the sensitivities that
will be achieved by the third-generation ground-based
detectors. Cosmic Explorer is a third-generation ground-
based GW detector proposed in the United States [42]. It is
conceived to be a 40 km L-shaped detector whose science
goals are reviewed in Ref. [42]. We use a noise PSD for CE
given in Ref. [83]. A similar observing facility is also
envisaged in Europe, called the Einstein Telescope [84]. It
is a triangular-shaped detector with 10 km arms and is
effectively three V-shaped detectors with an opening angle
of 60°. Both CE and ET noise sensitivities are limited by
gravity gradient noise in the low-frequency regime. The
lower cutoff frequencies for the ETand CE are chosen to be
1 Hz and 5 Hz, respectively. The upper cutoff frequency is
chosen such that the characteristic amplitude (2

ffiffiffi
f

p jh̃ðfÞj)
of the GW signal is lower than that of CE/ET noise by
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10% at maximum. Though theoretically the upper fre-
quency limit is infinity, contributions from the high-
frequency part of the waveform that contribute negligibly
are ignored. This choice of the cutoff helps in significantly
improving the accuracy of the numerical analysis (the SNR
computation in the next subsection uses a different upper
cutoff for reasons explained there). Similar to the case of
LISA, we aim to study the parameter estimation problem
using the ET and CE from the standpoint of a test of GR.
As we use single-detector configurations, we multiply the
amplitude with a prefactor 2=5 to account for the averaging
over the antenna pattern functions [79,80,85].
Figure 1 shows the strain sensitivity (square root of the

noise PSD) of LISA, CE, and ET. It also shows the
frequency-domain characteristic amplitudes (which signi-
fies the strength of the GW signal) of an IMBBHwith a total
mass of500 M⊙ at 1Gpc and aGW150914-like stellar-mass
binary black hole system at 400Mpc for comparison. As the
binaries inspiral, the IMBBH spends about a few hours—
and the stellar-mass BBH a few days—before leaving the
LISA band at 0.1 Hz and entering the ET (CE) range at 3 Hz
(5 Hz). The strength of the GW signals at frequencies
corresponding to their respective last stable orbits is marked
in magenta. This shows that the inspiral phase of systems
with source-frame masses greater than 500 M⊙ at a lumi-
nosity distance of 1 Gpc will hardly be visible by CE/ET.
The following section discusses this in more detail.

C. Multiband visibility of IMBBH with LISA,
CE, and ET

Following Refs. [49,55], there were several works which
looked into the detection [86,87] and parameter estimation

[53,59] problems in the multiband context. In Ref. [59], the
authors showed that the ET and CE, which are likely to be
operating during the lifetime of the LISA mission, will lead
to multiband detections of IMBBHs up to a redshift of ∼5.
A typical IMBBH with total mass ∼500 M⊙ at a distance
of roughly 1 Gpc will be observable for years in the LISA
band when the inspiraling binary components are far apart
from each other. This leads to the accumulation of a
considerable amount of SNR during the period of obser-
vation. In Fig. 2, we show the SNR of IMBBHs as a
function of total mass for LISA, CE, ET, and for multiband
observations (LISAþ CE and LISAþ ET). Though we
use IMRPhenomD for the SNR computation, we integrate
the signal up to the frequency at the last stable orbit (LSO)
corresponding to the total mass M, given by

fLSO ¼ 1

63=2πM
: ð2:7Þ

This choice of the upper cutoff frequency helps in explain-
ing several features in the later sections with regard to the
parametrized tests of GR. Note that this choice applies only
to the computation of the SNR; for parameter estimation,
however, we use the upper cutoff for the full signal, as
mentioned in Sec. II B 2. At a frequency close to 0.1 Hz, the
IMBBH signal will leave the LISA band and after a few
hours, it enters the ET band at around 1 Hz and the CE
band at 5 Hz, as demonstrated in Fig. 1. By this time, the
compact binary will be inspiraling at fairly relativistic
speeds until it merges. The late inspiral and merger-ring-
down phase of the IMBBH evolution will accumulate
SNRs of the order 1000 in the CE and ET bands, leading
to a firm detection.

FIG. 1. The dashed lines denote the noise strain sensitivities of
LISA, CE, and ET. The solid lines denote the characteristic
amplitudes (2

ffiffiffi
f

p jh̃ðfÞj) of a GW150914-like system at 400 Mpc
and an IMBBH system of 500 M⊙ at 1 Gpc. The vertical markers
in magenta represent the strength of the GW signals from the two
sources at the frequency of the last stable orbit. The black markers
indicate the time remaining prior to their merger.

FIG. 2. SNR from IMBBH sources, accumulated in the LISA,
CE, and ET bands till fLSO. All the sources are kept at 1 Gpc with
q ¼ 2, χ1 ¼ 0.2, χ2 ¼ 0.1. As the total mass increases, the
visibility of the inspiral phase of the IMBBH signal increases
in the LISA band and diminishes in the CE and ET bands.
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The SNR in the CE (ρCE) and ET (ρET) bands initially
increases till 200 M⊙ and 450 M⊙, respectively, and then
starts to decrease as the inspiral phase of the system lasts for
a shorter and shorter period of time beyond these masses.
The SNR in the ET band is more than that of the CE from
around 350 M⊙ due to a better low-frequency sensitivity of
ET between 1 and 5 Hz. Further, the SNR in the LISA band
(ρLISA) steadily increases and matches with the SNR in
the CE band roughly at 550 M⊙. The multiband SNR is
defined as ρMB ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ρ2GB þ ρ2LISA
p

, where GB denotes a
ground-based detector, either CE or ET.
Before we discuss the technical aspects of multiband

parameter estimation in the next section, it is important to
point out how one would approach the problem of multi-
banding in practice. As shown in Fig. 2, IMBBHs would
have an SNR of the order of hundreds to thousands in 3G
detectors like CE and ET. This would allow estimation of
their mass parameters, especially chirp mass, to incredible
accuracies. Using the time of arrival of the signal in the CE
band, one would hence be able to search for the low-
frequency part of the corresponding signal in the LISA
band. Due to the prior detection in the ground-based
detectors, the threshold on SNR for a given false alarm
rate could be lowered, leading to the detection of sources
which have a SNR of ∼5 [40,88].
A confident detection of an IMBBH in both the LISA

and CE detectors forms the basis for multiband parameter
estimation. For several of the sources, the IMBBH would
have a sufficiently high SNR to be visible in the LISA data.
For a subset of the sources, an archival search in the LISA
band using the information from CE would be required. We
find that systems with masses greater than roughly 200 M⊙
will have sufficiently large SNRs as shown in Fig. 2, and
hence have the potential of being independently detected
by LISA without any requirement of having prior infor-
mation from CE/ET.
Indeed, more careful studies are required to quantify the

detectability of these IMBBHs in the LISA band (see, for
instance, Ref. [87]), but we do not go into the details of this
detection problem in the present work.

D. Multiband parameter estimation

In this section, we discuss various elements of the
multiband parameter estimation we employ in this work.

1. Parameter estimation using the Fisher
information matrix

The Fisher matrix is a well-known technique used to
forecast the statistical uncertainties on various parameters
in a parameter estimation problem when both the signal and
noise models are known. When the noise is stationary and
Gaussian, in the limit of high SNR, the square root of the
diagonal elements of the inverse of Fisher matrix yields
a 1σ lower bound on the errors on various parameters

[89–91]. In our case, we use this technique to compute the
1σ uncertainty in the estimation of PN deformation
parameters that characterize modifications to GR. These
errors also translate into upper limits on the values of the
deformation parameters for a given detector sensitivity, and
an increase in the sensitivity would lead to tighter upper
limits. As discussed in Sec. II A, our parameter space
is spanned by seven GR parameters and up to eight
PN deformation parameters, depending on how many
deformation parameters are simultaneously estimated in
the problem. The Fisher information matrix is defined as
the noise-weighted inner product of the derivatives of the
gravitational waveform h̃ðfÞ with respect to the parameters
θa that need to be estimated. More precisely,

Γmn ¼
�∂h̃ðfÞ

∂θm ;
∂h̃ðfÞ
∂θn

�
; ð2:8Þ

where the noise-weighted inner product is defined as

hajbi ¼ 2

Z
fhigh

flow

aðfÞbðfÞ� þ aðfÞ�bðfÞ
SnðfÞ

df; ð2:9Þ

where SnðfÞ is the noise PSD of the detector, and aðfÞ and
bðfÞ are arbitrary functions of frequency. The lower
and upper frequency cutoffs are denoted by flow and
fhigh and depend on the frequency sensitivity bandwidth
of the detectors, which we discussed in detail in Sec. II B.
The Fisher information matrix also allows the use of priors
about the parameters, provided they are in the form of
Gaussian functions [92,93]. If Γð0Þ is the Gaussian prior
matrix, the resultant Fisher matrix for any detector is the

sum of the prior matrix and the Fisher matrix (Γð0Þ
mn þ Γmn).

The details of prior choices made are discussed in Sec. III.

2. Fisher matrix with multibanding for an IMBBH

For an event jointly detected by a space-based detector
(LISA) and a ground-based detector (CE/ET), the multi-
band Fisher information matrix is simply the sum of the
two Fisher matrices,

Γmn ¼ ΓGB
mn þ ΓLISA

mn ; ð2:10Þ

where ΓGB
mn denotes the Fisher matrix corresponding to one

of the ground-based detectors, CE or ET. The variance-
covariance matrix is defined by the inverse of the multiband
Fisher matrix,

Cmn ¼ ðΓ−1Þmn;

where the diagonal components, Cmm, are the variances of
θm. The 1σ errors on the parameters θm is, therefore,
given as
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σm ¼
ffiffiffiffiffiffiffiffiffi
Cmm

p
: ð2:11Þ

For any IMBBH event observed both in LISA and CE/ET,
the errors on each of the binary parameters returned by the
multiband covariance matrix are already marginalized over
the rest of the parameters by the very definition of the
covariance matrix. However, when there is a need to study
the variance-covariance matrix of a subspace of the full
parameter space (such as the one spanned by the PN
deformation parameters that are estimated simultaneously),
one can obtain the marginalized matrix by the following
well-known prescription of constructing the Schur comple-
ment of the Fisher matrix. The Schur complement of a p-
dimensional Fisher matrix Γ̃p×p is given by [94]

Γ̃p×p ¼ Γp×p − Γp×qΓ−1
q×qðΓp×qÞT; ð2:12Þ

where Γp×p is the Fisher matrix block corresponding to θp
parameters that are of our interest and for which we want to
study the variance-covariance matrix. Γq×q is the Fisher
matrix for θq parameters that we want to marginalize over.
Γp×q is a matrix with cross terms between θp and θq
parameters. Before we conclude this section, we wish to
clarify a subtle issue. As the prior matrix is added to both
LISA and CE Fisher matrices, one may suspect over-
counting, as the prior matrix is featured twice in the
multiband Fisher matrix. But we would like to stress that
from the parameter estimation viewpoint, this simply
reflects our assumption that parameter estimation with

LISA and CE/ET are two independent experiments whose
outcomes are combined to gain greater insights about the
dynamics of IMBBHs. This is naturally the way parameter
estimation is performed within the framework of Bayesian
inference on the data from the two detectors, where the
posteriors from the parameter estimation of LISA and CE
would be combined instead of the likelihoods.

III. EFFECT OF MULTIBANDING ON
SINGLE-PARAMETER TESTS OF GR

In this section, we present the results of our analysis in
detail. The first set of results are for the single-parameter
tests of GR, where only one of the eight PN deformation
parameters is estimated along with the GR parameters.
These are the first estimates of the projected multiband
bounds from single-parameter tests of GR with IMBBHs,
and they complement the earlier works for stellar-mass
BBHs [51,52]. For the first time, we also provide a concrete
explanation, beyond the intuitive arguments, on why the
multibanding improves the tests of GR.

A. Variation of the bounds with the total mass
of the IMBBH: Single-parameter tests

Our results from single-parameter tests are presented in
Fig. 3, where besides the GR parameters, one of the eight
PN deformation parameters is estimated at a time. The
bounds on the various PN deformation parameters as a
function of the total mass of the IMBBH using only LISA,
only CE, only ET, and multiband (LISAþ CE and

FIG. 3. The top panels show bounds on deformation parameters at 0PN to 2PN, as a function of total mass in the source frame. The
bottom panels show the same, but for deformation parameters at 2.5PN to 3.5PN. All the systems have mass ratio q ¼ 2, dimensionless
component spins χ1 ¼ 0.2 and χ2 ¼ 0.1, and luminosity distance DL ¼ 1 Gpc.
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LISAþ ET) observations are shown in the figure. For
convenience, and to facilitate comparison between systems
of different masses, the luminosity distance is fixed at
1 Gpc, the mass ratio is 2, and the component spins are
χ1 ¼ 0.2, χ2 ¼ 0.1. In our analysis, we employ Gaussian
priors on the component spins (mean 0, variance 0.5) and
ϕc (mean 0, variance π). The priors on spins and ϕc are
meant to improve the conditioning of the Fisher matrices.
The maximum source-frame mass for IMBBHs is consid-
ered to be 550 M⊙, because beyond this mass, the signal in
the CE band has insufficient inspiral for the parametrized
tests to give meaningful results. This can also be observed
from Fig. 2, which shows a sharp drop in SNRs carried by
the inspiral in the CE band, with increasing total masses of
the IMBBHs.
First, let us examine the qualitative features. In Fig. 3, the

top panel shows bounds on deformations at the lower PN
orders (0PN, 1PN, 1.5PN, and 2PN), and the lower panel
depicts the bounds on the higher PN coefficients (2.5PN
log, 3PN, 3PN log, and 3.5PN). As expected, the lower-
PN-order coefficients are much better constrained than the
higher-order ones due to their dominant contribution to the
dynamics of the binary.
The bounds obtained from CE initially decrease with

increasing total mass but start to increase slowly after
∼200 M⊙, following an inverse of the SNR trend expected
from the Fisher matrix. The bounds obtained with ET stay
comparable throughout the mass range with the existence
of a weak minimum around the loudest system in the ET
band, which is ∼350 M⊙, as shown in Fig. 2. The errors
from LISA almost monotonically decrease with increasing
mass following the inverse of the SNR trend. Furthermore,
one also observes crossovers between the LISA, CE, and/or
ET curves for most of the deformation parameters, which is
simply an imprint of the similar crossovers seen in the SNR
curves in Fig. 2. The total masses at which these crossovers
happen are different for the SNR and the deformation
parameters, as the latter have more complicated noise
moments [93] (powers of frequency weighted by the noise
PSD) that constitute the Fisher matrix. The multiband
bounds with LISAþ ET are comparable to those of
LISAþ CE, especially for the lower PN deformation
parameters. Some improvements are observed in the multi-
band bounds on the two highest PN orders (3PN log and
3.5PN) when ET is used instead of CE.
We notice that bounds on ˆδϕ0, ˆδϕ2, and ˆδϕ3 improve the

most due to multiband observations for the entire IMBBH
total mass range considered. LISA alone helps in con-
straining lower PN orders more than the higher PN orders
as it collects more information in the low-frequency regime.
However, CE and ET have more information than LISA on
the high-frequency PN orders and can constrain all of them
to ≤ Oð1) accuracy. The bounds on δϕ0, δϕ2, and δϕ3

improve approximately by a factor of 20 to 70 (10 to 30) for
masses greater than 300 M⊙ upon combining Fisher

matrices for LISA and CE (ET). However, the multiband
bounds on higher PN deformation parameters, δϕ4, δϕ5l,
δϕ6, δϕ6l, and δϕ7 mostly follow CE/ET except at higher
masses, where multiband observations improve the bounds
by a factor of 5 to 10 due to the high SNR in the LISA band.
These substantial improvements in bounds, specifically at
the higher mass regimes, may come as a bit of surprise, as
the multiband bounds are a factor of tens better than the
best bounds obtained from either of the detectors. We
devote the next subsection to explaining this interesting
result.
We also find that we get the best multiband bounds on

PN deformation parameters for the equal-mass case, q ¼ 1,
and the bounds worsen with increasing mass asymmetry,
though not drastically. The multiband bounds also improve
with increasing dimensionless spin magnitudes, particu-
larly for higher PN orders.
We conclude this subsection with some quantitative

statements that can be read from Fig. 3. The best bounds
due to multibanding are obtained on 0PN and 1PN
phase deformation parameters that are roughly measured
to ≤ Oð10−3Þ accuracy. The rest of the parameters can be
estimated to roughly between Oð10−3Þ and Oð10−1Þ accu-
racy for IMBBHs of total mass ranging from 100 M⊙ to
550 M⊙ at 1 Gpc.

B. Explaining the improvement due to multibanding

As we next discuss the effect of multibanding, we
consider only CE as a representative of 3G ground-based
detectors. This is because the differences between ET and
CE are small enough that it would not make any difference
to our conclusions. Figure 3 shows that the multiband
observations can provide huge improvements in the bounds
of δϕ̂0, δϕ̂2, and δϕ̂3 in spite of the low SNRs in the LISA
band. For instance, the bounds on δϕ̂0 from LISA and CE at
500 M⊙ areOð10−2Þ, whereas the joint multiband bound is
Oð10−4Þ. This 2-order-of-magnitude improvement may
seem surprising at first. However, our investigations reveal
that this feature is due to the cancellation of several off-
diagonal terms (which correspond to degeneracies in the
parameter space) when we add the Fisher matrices of LISA
and CE to obtain the multiband Fisher. Due to this
cancellation, the inverse of this combined Fisher matrix
results in errors that are significantly smaller than the ones
from LISA or CE alone.
Owing to the difficulties in representing higher-

dimensional matrices pictorially, we focus on selected
two-dimensional subspaces, which are highly correlated,
and the corresponding ellipses to understand the effect of
multibanding. Consider an IMBBH system of total mass
500 M⊙ with spins χ1 ¼ 0.2, χ2 ¼ 0.1 at a distance of
1 Gpc. It is intuitive to relate the area of the two-
dimensional ellipses for a particular detector to its ability
to simultaneously measure the two parameters. The smaller
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the area, the better is the measurement. Likewise, the
orientation or the tilt of the ellipses tells us about the sign of
the correlation between the two parameters: positively
tilted ellipses (whose semimajor axis subtends an angle
less than 90 degrees) refer to a positive correlation between
the two parameters, and negatively tilted ellipses indicate a
negative correlation between the two parameters.
Let us consider δϕ̂2 and δϕ̂7 estimates for the demon-

stration, as multiband improvement is the highest for the
former and the lowest for the latter. Figure 4 shows the
1σ-confidence ellipses of δϕ̂2 (top panel) and δϕ̂7 (bottom
panel) with lnMc (left panel) and η (right panel). These
two-dimensional ellipses are obtained by marginalizing
over the remaining parameters, following the prescription
in Eq. (2.12). The error ellipsoid for CE in the lnMc − δϕ̂2

plane has an area much larger than that of LISA and a tilt
that is orthogonal to the one for LISA. This implies that
LISA can measure both the parameters better than CE, and
the correlation between these two parameters is negative for
LISA and positive for CE. The multiband two-dimensional
confidence ellipse is in black, whose zoomed-in version is
shown in the inset. The area of this ellipse is substantially
smaller than that of the LISA and CE. Table I provides the
areas of the two-dimensional ellipses for various parameter
combinations. This is a quantitative demonstration of
the complementarity of the two frequency bands very often

invoked in the literature to explain the improvements due to
multibanding [60]. From the confidence ellipses shown in
the η-δϕ̂2 plane, we can say that LISA seems to be able to
measure δϕ̂2 better than CE. On the other hand, CE’s ability
to measure η is better than LISA’s.
These intriguing features may have a more intuitive

explanation in terms of the structure of the phasing formula.
The low-frequency sensitivity of LISA helps to measure the
lower-order PN parameters. For instance, LISA measures
the chirp mass Mc to very high accuracy, because of which
the correlation between δϕ̂2 and Mc is weaker. Hence,
LISA can measure both Mc and δϕ̂2 with accuracies better
than CE. Combining information from both these detectors
facilitates further weaker correlations between Mc and δϕ̂2

and improves measurement on both of these parameters. As
mentioned earlier, this improvement is due to the cancel-
lation of off-diagonal terms of the Fisher matrix owing to
complementary signs of correlations. Since the marginali-
zation also involves cross terms in the covariances matrix,
the two-dimensional plots are sensitive to such cancella-
tions. Now, LISA is not very efficient in breaking the
degeneracy between δϕ̂2 and η. We know that η first
appears at 1PN order in the phasing formula and δϕ̂2

parametrizes deviation at the same order. In order to break
this degeneracy, sensitivity to higher-order PN phasing
coefficients is necessary, which LISA does not have. On the
other hand, CE does have this capability and is hence better
able to break this correlation. Hence, LISA estimates δϕ̂2

better than CE (δϕ̂2 being a low-frequency term), but it is
CE that estimates η better than LISA. Once again, this
complementarity of LISA and CE leads to an overall
improvement of bounds on δϕ̂2 and η on multibanding.
Similar two-dimensional ellipses are presented for

lnMc-δϕ̂7 and η-δϕ̂7 in the bottom panels of Fig. 4.
Here, as one may read off from Table I, the lnMc-δϕ̂7

ellipses have the smallest area for LISA, though the two
areas do not differ as much as they did for the lnMc-δϕ̂2

case. As δϕ̂7 is a deformation of a higher PN coefficient, it
is measured very poorly with LISA, whereas Mc is very
well measured, as we saw earlier. On the other hand, CE
measures both δϕ̂7 and Mc very well, though the Mc
measurement is not as good as LISA’s, as expected. Due to
the better sensitivity to higher PN orders, CE is also able to
break the correlation between δϕ̂7 and η better, so as to

FIG. 4. The top panels consist of two-dimensional contour plots
between lnMc-δϕ̂2 and η-δϕ̂2. The bottom panels show two-
dimensional contour plots between lnMc-δϕ̂7 and η-δϕ̂7. The red
and green contours correspond to LISA and CE, respectively. The
multiband contours that fall inside the intersection of LISA and
CE contours are all shown in the insets of their respective plots
in black.

TABLE I. Area of the 1σ-confidence ellipses shown in Fig. 4.

Parameters LISA CE LISAþ CE

lnMc-δϕ̂2 8.5 × 10−8 1.9 × 10−3 4.5 × 10−10

η-δϕ̂2 4.8 × 10−5 8.2 × 10−4 2.8 × 10−7

lnMc-δϕ̂7 3.3 × 10−4 0.01 4.4 × 10−7

η-δϕ̂7
0.33 6.7 × 10−3 2.7 × 10−4
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measure both the parameters to good accuracies. The joint
LISAþ CE bounds, again, immensely benefit from these
two individual measurements and help to get rid of
correlations, thereby leading to significantly improved joint
bounds.
To summarize, we have explicitly shown that the huge

improvements due to multibanding are a direct conse-
quence of the cancellation of various correlations between
parameters when we combine the information from LISA
and CE. As LISA is sensitive to the early inspiral phase of
the evolution of IMBBHs, it is most sensitive to the lower-
PN-order deformation parameters. Cosmic Explorer, on the
other hand, is sensitive to the late inspiral and merger-
ringdown phases, and hence sensitive to the higher-PN-
order deformation parameters. Both the low- and high-PN
coefficients are strongly correlated with the mass param-
eters. However, the signs of the correlations depend on the
frequency of observation and hence can be opposite for
LISA (which is sensitive to frequencies less than 1 Hz) and
CE (which is sensitive to frequencies above 1 Hz). The
addition of the Fisher information matrices from the two
independent measurements can hence cancel the off-diago-
nal elements due to their opposite signs, leading to a
resultant Fisher matrix, whose elements are much less
correlated compared to the individual ones. As this happens
with several of the cross terms of the Fisher matrix, with
varying degrees of efficiency, the resultant multiband
bounds are substantially improved. A simplistic example
for understanding this is given in the Appendix.

IV. MULTIPARAMETER TESTS
OF GR WITH IMBBH

So far, we have presented the bounds on the PN
deformation parameters when only one of them is estimated
at a time. There are eight PN coefficients up to 3.5PN order
which give us eight single-parameter tests of GR. As
argued earlier, the most general test of GR we can carry
out is the one where all of the PN deformation parameters
are simultaneously measured. Due to the inherent degen-
eracies between the deformation parameters and the GR
parameters, this test is not feasible using GW observations
in a single frequency band, as argued in Ref. [28].
We now study how a set of PN deformation parameters

may be measured simultaneously by combining observa-
tion of the same signal in LISA and CE bands. We consider
two different types of multiparameter tests of GR. In the
first type, we increase the number of parameters that occur
at different PN orders starting from the lowest (0PN) order.
The second type of tests measure the deviation in the PN
coefficients starting from the highest (3.5PN) order and
going to the lower PN orders. Hence, this set of tests would
quantify our ability to constrain possible deviations for
those theories which predict the last n coefficients to differ
from GR. For instance, n ¼ 3 would be a test where we
simultaneously measure the last three PN parameters in the

phasing formula. Below, we provide the projected bounds
on a prototypical IMBBH system with a total redshifted
mass of 200 M⊙ at a luminosity distance of 1 Gpc for these
two subclasses of multiparameter tests.
From Fig. 3, it is evident that in the case of single-

parameter tests, the total source-frame mass range in which
the joint bounds on most of the parameters are minimum is
around ∼150 M⊙–300 M⊙. This can be understood from
two features which have already been discussed: (i) the
trends in the SNR as a function of total mass, and (ii) higher
PN coefficients playing a dominant role in the late-time
dynamics, close to the merger, which falls in the CE band.
The effectiveness of a multiparameter test of GR, or for that
matter any test of GR, depends on the optimization of these
two effects, which leads to a sweet spot for these tests. In
our case, this happens to be at a total mass of ∼163 M⊙
(total redshifted mass of 200 M⊙ at 1 Gpc). The errors on
different deformation parameters in Fig. 3 show slightly
different minima; hence, there are other values around
200 M⊙ that are equally good for these tests. As this choice
would have a negligible impact on the conclusions we
draw, we stick to a total redshifted mass of 200 M⊙ with
two different choices of component spins to show the
projected bounds using multiparameter tests.

A. Bounds from the lower-order PN side

Figure 5 shows the bounds on deformation parameters
obtained from the various n-parameter tests starting from
0PN, for an IMBBH with a total redshifted mass of
200 M⊙ and a mass ratio of 2 with two different spin
configurations: χ1 ¼ 0.2, χ1 ¼ 0.1 (top panel) and
χ1 ¼ 0.8, χ2 ¼ 0.7 (bottom panel). As there are seven
GR parameters, for each test, we invert a Fisher matrix of
dimension 7þ n to obtain the corresponding errors. We
find that simultaneous measurement of only seven of the
eight PN deformation parameters is possible for this binary
configuration if we require the errors on all the PN
deformation parameters to be less than or equal to unity.
Comparing the top and the bottom panels, it is evident that
the increase in spin magnitudes have varied effects on the
estimation of PN coefficients, sometimes improving and
other times worsening the error bounds. The lower-order
PN coefficients are also largely unaffected by spin magni-
tudes. This is a reflection of the fact that spin effects are
higher-order effects (starting at 1.5PN order), and hence
spin dynamics plays a dominant role in the late-time
dynamics where, again, CE sensitivity has an important
role, leading to improved bounds of the higher-order PN
deformation parameters.
For high values of spin magnitudes, single-parameter

tests on the Newtonian and 1PN coefficients would yield
constraints of Oð10−4Þ, while all other parameters, except
the 2PN and 3PN logarithmic ones, will be bounded to
Oð10−3Þ. The worst bounds are for the 2PN and 3PN
logarithmic terms, which are of Oð10−2Þ. This precision is
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unprecedented compared to what LISA and CE would be
able to do for supermassive and stellar mass BBHs,
respectively, to which they are the most sensitive [40].
By increasing the number of parameters that are simulta-
neously measured, the bounds on all the lower-order PN
deformation parameters worsen due to the degeneracies
present in the waveforms. The addition of the δϕ̂5l, δϕ̂6, and
δϕ̂6l deformation parameters have negligible effects on the
bounds of the lower-order PN deformation parameters, as
the correlations of these lower-order parameters with the
higher-order ones are rather weak. However, adding the
3.5PN parameter significantly worsens the bounds on all
the deformation parameters above 2PN, making the errors
go above unity, and hence these are not shown. This trend is
a consequence of the superior ability of LISA to measure
the lower-order PN coefficients and CE to measure the
higher-order ones. As we keep adding higher-order PN
coefficients, the bounds on the lower-order ones, which
benefit mostly from LISA, are unaffected. However, when

we add more higher-order PN parameters, such as 3.5PN,
CE’s ability to simultaneously measure them diminishes,
leading to an overall worsening of higher-order PN
deformation parameters’ measurement. Despite this, it is
impressive to note that, with multibanding, a seven-param-
eter test of GR can yield bounds of ≤ Oð1Þ for all seven PN
deformation parameters.

B. Bounds from the higher-order PN side

Figure 6 shows the second set of results related to the
bounds on the highest n PN deformation parameters. For
instance, one can constrain any modified theory of gravity
which predicts deviations from GR starting at 2PN order
(five-parameter bounds denoted by pentagons) with a
precision of Oð10−1Þ.
Though CE is mostly sensitive to the higher-order PN

coefficients, it is not capable of breaking the degeneracy
between two consecutive PN coefficients which are strongly

FIG. 5. Bounds on PN deformation parameters from n-param-
eter tests starting from 0PN through 3.5PN with an IMBBH
system of a total redshifted mass of 200 M⊙ at 1 Gpc, with mass
ratio 2 and two different spin configurations, χ1 ¼ 0.2, χ2 ¼ 0.1
(upper panel) and χ1 ¼ 0.8, χ2 ¼ 0.7 (lower panel).

FIG. 6. Bounds on PN deformation parameters from n-param-
eter tests starting from 3.5PN through 0PN with an IMBBH
system of a total redshifted mass of 200 M⊙ at 1 Gpc, with mass
ratio 2 and two different spin configurations, χ1 ¼ 0.2, χ2 ¼ 0.1
(upper panel) and χ1 ¼ 0.8, χ2 ¼ 0.7 (lower panel).
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degenerate. In this case, LISA is also able to offer little help,
as its role is limited to estimating Mc and η very well and
breaking their degeneracies with higher PN coefficients.
As these correlations are rather weak, LISA does not help
much for this class of tests.

C. Implications of GW190521

As noted earlier, the large redshift of GW190521 makes
it unlikely for this event to be a multiband candidate.
Hence, we consider a system with the same source-frame
mass as GW190521, but at 1 Gpc, for a case study. This
would mean that the redshifted component masses have to
be ∼104 M⊙ and ∼80 M⊙. For such a binary, the SNRs in
LISA and CE are ∼12 and ∼1565, respectively. This
closely resembles the case that we considered in Sec. IV,
and the projected multiband multiparameter bounds are
similar.

V. CAVEATS

In this section, we discuss some of the caveats of our
analysis.
Neglect of modifications to certain PN-order terms in the

phasing formula: We have considered only the modifica-
tions of those phasing coefficients which are nonzero in
GR. For instance, there are certain theories of gravity which
predict modifications to (effective) negative PN orders (see
Table 1 of Ref. [44]), which are not considered here.
Further, considering them would significantly enlarge the
parameter space. In the same spirit, we have also not
considered any deviation at 0.5PN order in the phasing,
which again is absent in GR.
Uncertainties about the IMBBHpopulation: An important

caveat of the results presented here is the uncertainty in the
merger rates of IMBBHs. The discovery of GW190521 has
led to the rate of similar systems being 0.13þ0.3

−0.1 Gpc−3 yr−1.
This implies that in the LISA-3G era, there will be a few
events like GW190521 but nearer (say, at 1 Gpc). The upper
limits from the LIGO/Virgo searches for IMBBHs are
reported in Ref. [95]. Hence, an estimate about the masses
of IMBBHs for which this test would perform well will be
clearer only in the future with more detections of high-mass
BBHs and/or more stringent upper limits.
Use of Fisher-matrix-based parameter estimation: We

have relied on the ability of the Fisher information matrix
approach to predict the precision with which the PN
deformation parameters can be estimated using LISA
and CE/ET. The Fisher-matrix-based approach is expected
to be reliable in the limit of high SNR [92,96,97]. However,
the projected bounds on non-GR parameters from the
Fisher matrices for GW150914 and GW151226 have
shown good agreements with the results from Bayesian
inference [21], reinforcing the utility of the Fisher matrix to
obtain order-of-magnitude estimates of the errors. In our
case, the SNRs in the CE band are of the order of hundreds

to thousands, and hence are well within the domain of
applicability of the Fisher matrix. However, the LISA
SNRs are of order ≥ 10, which theoretically falls only
marginally within the domain of applicability of this
method. Hence, our LISA-only results are prone to have
uncertainties which need to be quantified using numerical
sampling techniques such as Markov chain Monte Carlo
[98] or nested sampling [99]. A recent work [54] has paved
the way for more work in this direction.
Neglect of precession, eccentricity, and subdominant

modes in the gravitational waveforms: The bounds reported
in this paper were obtained using the IMRPhenomD wave-
form model, which models a nonprecessing black hole
binary inspiraling in quasicircular orbits. This model does
not account for effects such as spin-induced orbital pre-
cession [100] or subdominant modes of the GW signal
[75,76,101,102]. The incorporation of precession [67] and
subdominantmodes [68] bring in characteristicmodulations
to the phase and amplitude of the waveform and hence are
believed to be more informative in improving the overall
parameter estimation (see, for instance, Refs. [30,103–
106]). Therefore, one would expect our bounds to improve
with the incorporation of these effects; however, this is
outside the scope of the paper. Moreover, IMRPhenomD
does not account for eccentricity either. This is a drawbackof
our analysis, as binaries during their early inspiral phase
when in the LISA band could be on eccentric orbits.
Neglect of LISA’s orbital motion: Our model for the

response function for LISA does not account for its orbital
motion. As these orbital modulations have negligible
impacts on the estimation of intrinsic parameters of the
binary [79,80], our estimates are unlikely to be affected
much by this assumption.

VI. CONCLUSIONS

Future ground-based and space-based detectors would
detect several intermediate-mass BBHs, and a subset of
them would be visible in both bands [57,59,60]. Such
multiband detections can have important implications for
tests of GR. We have discussed in detail the possibility of
the multiband observation of IMBBH systems using 3G
ground-based detectors and the space-based detector LISA.
It is shown that observations of IMBBHs would be an
excellent new class of sources for tests of the strong-field
dynamics. Besides the single-parameter tests of GR,
IMBBHs would facilitate multiparameter tests, which
simultaneously measure more than one PN deformation
parameter.
The addition of information from LISA, which is

sensitive to the lower PN orders, and CE/ET, which is
sensitive to higher PN orders, leads to significant improve-
ments in the bounds on deformation parameters. This is due
to the massive cancellations of the off-diagonal entries of
the Fisher matrix, which signify how multibanding helps to
break the degeneracies between various parameters in the
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gravitational waveform. We have discussed how the pro-
jected bounds would vary as a function of the total mass of
the system and find that an IMBBH with a total redshifted
mass of 200 M⊙ would be on the sweet spot for multiband
multiparameter tests. This system of mass ratio 2 at 1 Gpc
can measure all the PN coefficients for single-parameter
tests to below 10% and can simultaneously estimate the
first seven PN coefficients to below 50%.
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APPENDIX: A TOY MODEL FOR
UNDERSTANDING THE IMPROVEMENT

DUE TO MULTIBANDING

To demonstrate how multiparameter tests are facilitated
via the breaking of degeneracies between parameters due to
multibanding, consider two 2 × 2matrices, ΓLISA and ΓGB∶

ΓLISA ¼
�ΓL

xx ΓL
xy

ΓL
xy ΓL

yy

�
; ΓGB ¼

�ΓG
xx ΓG

xy

ΓG
xy ΓG

yy

�
: ðA1Þ

These can be thought as 2D Fisher matrices for two
parameters obtained with LISA and with one of the 3G
detectors, respectively. The multiband Fisher matrix, ΓMB,
can be obtained by adding the two:

ΓMB ¼ ΓLISA þ ΓGB: ðA2Þ

Inverting the multiband Fisher matrix ΓMB gives the
multiband variance-covariance matrix CMB ¼ Γ−1

MB. The
multiband bounds are the square roots of the diagonal
elements of CMB. Straightforward algebra gives the errors
on the two variables as

σMB
x ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðΓL
xx þ ΓG

xxÞ − ðΓL
xy þ ΓG

xyÞ2
s

; ðA3Þ

σMB
y ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

ðΓL
yy þ ΓG

yyÞ − ðΓL
xy þ ΓG

xyÞ2
s

: ðA4Þ

Equations (A3) and (A4) clearly show that opposite
signs of the cross terms ΓL

xy and ΓG
xy could make the joint

bounds much smaller than the bounds obtained from
individual detectors. Due to the differences in the signs
of many of the Fisher elements of LISA and GB, cancel-
lations of the cross terms lead to a dramatic improvement
in the measurement of non-GR parameters, as shown in
Sec. IV.
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