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Online View Planning for Inspecting Unexplored
Underwater Structures

Eduard Vidal1, Juan David Hernández1, Klemen Istenič1, and Marc Carreras1

Abstract—In this paper, we propose a method to automate the
exploration of unknown underwater structures for autonomous
underwater vehicles (AUVs). The proposed algorithm iteratively
incorporates exteroceptive sensor data and replans the next-best-
view (NBV) in order to fully map an underwater structure.
This approach does not require prior environment information.
However, a safe exploration depth and the exploration area
(defined by a bounding box, parameterized by its size, location
and resolution) must be provided by the user. The algorithm
operates online by iteratively conducting the following three
tasks: 1) Profiling sonar data is firstly incorporated into a 2-
dimensional (2D) grid map, where voxels are labeled according
to their state (a voxel can be labeled as empty, unseen, occluded,
occplane, occupied or viewed). 2) Useful viewpoints to continue
exploration are generated according to the map. 3) A safe path is
generated to guide the robot towards the next viewpoint location.
Two sensors are used in this approach: a scanning profiling sonar,
which is used to build an occupancy map of the surroundings,
and an optical camera, which acquires optical data of the scene.
Finally, in order to demonstrate the feasibility of our approach
we provide real-world results using the Sparus II AUV.

Index Terms—Motion and Path Planning, Autonomous Vehicle
Navigation, Marine Robotics.

I. INTRODUCTION

AUTONOMOUS underwater vehicles (AUVs) are capable
of conducting tasks where human intervention is limited

to monitoring and selection of the operations to perform.
Among all possible applications of these vehicles, inspection
of underwater structures is of special interest. Underwater
environments provide challenging scenarios, mainly due to
technological difficulties related to exploration (i.e., lack of re-
liable localization and communication, autonomy limitations),
but also due to water currents and complex underwater reliefs.
These are problems not easy to deal with, and that is the
reason why new technology to explore the ocean floor is under
continuous development nowadays.

Usually, AUVs are used for underwater mapping in places
where a simple 2-dimensional (2D) coverage path is sufficient
to gather required data (i.e., low profile shipwreck exploration,
[1] and [2]). In these cases, path planning techniques are
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not required. Instead, the mission is preplanned by the user,
typically by defining a sequence of waypoints which are
followed at a constant safe altitude.

However, there are other situations (i.e., ship hull inspec-
tions [3], explorations in confined underwater environments
such as caves [4], and seamount mapping [5]) in which
following a preplanned trajectory is unfeasible due to the
requirement of perfect localization and complete knowledge
about the environment. Most underwater mapping solutions for
complex scenarios still require some form of prior knowledge
about the area to be explored, such as an approximate map,
in order to plan inspection paths. Most of the times, however,
such prior knowledge is simply not at scientists’ disposal.

Fig. 1. Sparus II AUV, a torpedo-shaped underwater robot with partial
hovering capabilities used to validate our approach.

Aiming to reduce the amount of prior information required
for underwater mapping, this paper proposes a methodology
for underwater exploration of unknown structures, which
has been built upon view planning (VP) strategies. VP can
be defined as the process of determining a suitable set of
viewpoints and associated imaging parameters for a specified
object reconstruction or inspection task. In our contribution,
the robot is guided towards locations that provide new and
useful information in order to continue the exploration. This
is done by repeatedly selecting the next-best-view (NBV). The
ability to make such decisions online enable AUVs to be used
in complex scenarios with minimal human intervention. Our
view planning proposal is specially conceived for underwater
vehicles equipped with two different sensor technologies:
acoustic profilers for detecting the objects and optical cameras
for mapping them. Our methodology generates viewpoints
that guarantee the coverage of the area with both sensors.
Additionally to most VP algorithms, the proposed method does
not restrict viewpoint locations to be around a known object
position in a controlled environment, but generates viewpoints
in a full unknown 2D space in which objects are detected.
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Finally, the article shows extensive experimental evaluation of
the proposed algorithms using the Sparus II AUV in a real
underwater environment.

The remainder of this paper is organized as follows. Section
II introduces relevant related work. Section III describes
the proposed online VP method for autonomous inspection
of unexplored underwater structures. First, a description of
the world representation is provided. Then, the process of
incorporating sensor data to build the map is explained in
detail. Finally, generation of the viewpoints and the path to
achieve those viewpoints is addressed, providing insight into
the controller used to follow the generated path. In Section
IV results are brought out, showing the performance of the
algorithm under real conditions using the Sparus II AUV
(see Fig. 1). Finally, Section V presents conclusion remarks,
sums up our approach contributions and discusses different
alternatives for further work.

II. RELATED WORK

Some authors have proposed different techniques to map
underwater structures, based on prior knowledge about the
environment to various degrees. Some are related to VP while
others just use coverage path planning (CPP).

Vasquez-Gomez et al. presented an algorithm that selects
the NBV for a range camera to model 3-dimensional (3D)
arbitrary objects [6]. Their algorithm is strongly inspired by
the classic VP publication [7]. The algorithm uses a 3D
grid map with labels to represent the environment. Only
viewpoints located in a sphere established around the object
are considered, and the quality of the viewpoints is assessed
by using a quality function. The location and approximate size
of the object must be known in advance.

VP strategies have been applied to ship hull inspection in
[8] and [9]. For the sides of the hull, a preplanned trajectory
in hull-relative coordinates is followed, and perception-driven
navigation (PDN) is used to determine when a revisiting action
must be taken to reduce pose uncertainty using simultaneous
localization and mapping (SLAM). For the propellers and
rudders, a rough map obtained from an initial preplanned
mission is used to plan a second survey, from which a higher
quality mesh is obtained. The path is planned using variants
of the art gallery problem (AGP) and the traveling salesman
problem (TSP).

Williams et al. [10] presented an algorithm for AUVs
equipped with synthetic aperture sonar (SAS) sensors capable
of adapting the survey heading (preplanned coverage type
survey, without obstacle avoidance) based on the orientation
of water currents. They also propose a VP algorithm for
target reinspection which acquires multiple views of suspicious
objects until a pre-specified (maximum) number of total object
reinspections has been completed.

Galceran et al. [5] presented a 2.5-dimensional (2.5D) CPP
approach for inspecting complex structures on the ocean floor.
The algorithm plans a nominal coverage path using a map of
the environment, which needs to be known in advance, and
then the author proposes a method to take into consideration
the uncertainty of the robot pose and sensor acquisition by

adapting the path in real time to cope with the actual target
structure perceived in situ.

In [11] a different approach is presented for 3D site
modeling for an unmanned ground vehicle (UGV), which is
composed of two stages. First, using a 2D map, which has to
be known in advance, the algorithm finds a reduced number
of viewpoints from which an initial map is generated. Then,
a NBV approach is used to improve the final reconstruction.

Finally, Bircher et al. presented a VP approach for structural
inspection using an unmanned aerial vehicle (UAV) [12]. The
algorithm is similar to [9], but instead of trying to minimize
the number of viewpoints, it re-samples new viewpoints that
still satisfy the covering restrictions while improving the cost
of the overall path. The 3D structure to be inspected needs to
be known a priori, and is represented by a triangular mesh.

In comparison, our algorithm does not require a pre-existent
map of the scene, the environment is modeled by a labeled 2D
grid map and it relies upon VP techniques to determine the
NBV.

III. VIEW PLANNING FOR UNDERWATER
INSPECTION OF UNEXPLORED ENVIRONMENTS
The proposed algorithm is designed to enhance the capabil-

ities of AUVs, allowing autonomous inspection of unexplored
underwater scenes. The algorithm has been designed so that a
prior map of the scene is not required. In order to inspect the
area of interest, the vehicle is equipped with two sensors (see
Fig. 2):

• Scanning profiling sonar, which acquires range measure-
ments by mechanically scanning the surroundings in a
2D plane. It usually takes several seconds to complete a
full scan.

• Optical camera, which is used to obtain the images
of the observed scene. For planning purposes, only the
estimation of the field of view (FOV) of the camera is
used. Images are then later used as an input of an optical
3D reconstruction pipeline.

Profiler FOV

Camera FOV

Robot

Fig. 2. 3D representation of the camera FOV (black frame), which in this
case is pointing to the right of the vehicle, and the profiling sonar FOV (red
frame).

The algorithm can be classified as 2D and grid based.
Furthermore, it does not use sampling for the generation of
the viewpoints, and at every iteration the algorithm computes
the NBV to continue the exploration. Finally, the map gen-
eration algorithm is able to deal with outliers and erroneous
measurements.



VIDAL et al.: ONLINE VIEW PLANNING FOR INSPECTING UNEXPLORED UNDERWATER STRUCTURES 3

A. World Representation

We have chosen to use a 2D grid map to incrementally build
a model of the environment. Figure 3 presents all possible
labels and corresponding colors that can be assigned to each
voxel in the map. This way of representing the environment
is based on [6]. However, in this work a new label has been
added to characterize those regions that have been observed
by the optical camera.

Structure

Unseen space

Sonar FOV

Empty space

Robot

Previous path

Occplane

Occluded space

Occupied space

Camera FOV

Viewed voxels

Empty. A voxel in a seen area but with no sonar detections.

Unseen. A voxel that has not been observed yet by the sonar.

Occluded. A voxel in the sonar field of view but not.

seen because it is behind an occupied voxel.

Occplane. An occluded voxel that is adjacent to an empty voxel.

Occupied. Detected by the scanning profiling sonar.

Viewed. Detected by sonar and also viewed by the camera.

Fig. 3. Synthetic example of world representation and map generation:
mapping a corner under the water. All labels are present. Camera and sonar
FOVs are also represented. Robot is moving from the bottom to the top of
the image.

Figure 3 shows a synthetic example of a map generated
while the robot inspected an underwater structure. In this
case, the structure resembles a concrete block corner (brown,
translucent). The green path indicates the robot’s previous
trajectory. In this example, the robot is moving from the
bottom to the top of the scene. White voxels represent space
that has been perceived as empty (without collision) by the
sonar. The sonar FOV is represented in translucent red color.
Black voxels correspond to the space that has not yet been
covered by the sonar FOV. In this example, the camera points
to the left, and it is possible to see how all voxels that have
been within the camera FOV (orange, translucent) have been
labeled as viewed (orange). Occupied voxels in red denote
areas perceived as occupied (with collision) by the sonar, but
at the same time these areas have not been viewed by the
camera yet. Finally, those voxels that have been inside the
sonar FOV but, at the same time, have been also occluded by
occupied and viewed voxels are marked as occluded voxels
(gray). Of these, the ones neighboring at least one empty voxel
are classified as occplane (blue).

The voxel size must be small enough so that the required
map accuracy is achieved, but large enough so that sonar
measurements are sufficient to completely determine their state
without leaving gaps in the map. For our purposes, a voxel size
of 0.5 meters has proved to work fine.

B. Map Generation

In order to generate a map like the one described in the
previous section, basic filtering is first applied to the sonar
beam measurements to avoid noise and outliers:

• Measurements close to minimum and maximum range are
discarded, since they proved to be unreliable.

• Measurements close to the water surface are discarded to
avoid reflections.

• Roll and pitch are tracked and data is only considered
reliable when the robot is stable.

Then, given that our planning algorithm operates in 2D, 3D
sonar data is projected to the specified mission depth to build
the map. For each sonar measurement, it is required to update
all the voxels that fall within the beam. A well known ray
tracing algorithm has been used to traverse required voxels
(Amanatides et al. [13]).

In order to determine the final label of each voxel in
the map, the voxel logic shown in Fig. 4 is followed. It
differs from [14] and [6] in that it incorporates new labels
to represent additional information about what has been seen
by the camera.

For each voxel in the map, two counters store the number of
times that each voxel has been detected as empty or occupied
by the sonar, and one flag indicates whether the voxel has been
within the camera FOV or not.

First, empty counters are incremented for all voxels prior
to the detection (if the measurement reports no detection,
this happens for all voxels in the beam). After that, the
occupied counter for the detected voxel is increased. Finally,
the remaining voxels (voxels behind the detection) are marked
in the map as occluded if both empty and occupied counters
remain at zero. Periodically, camera readings are also taken
into account by computing the voxels that lay within its FOV.
The appropriate flag is updated for all voxels in this situation.
In Fig. 5 a black frame on the left side of the robot represents
an estimation of what the camera is observing.

Then, for each voxel in the ray its final map state is
computed. If the voxel has been detected as empty or occupied
at least once, it will be empty or occupied in the map. The
proportion τ between occupied detections and total detections
is computed as described in Eq. 1. If the proportion exceeds a
user defined threshold, the voxel is labeled as occupied (Eq. 2).
Otherwise, it is labeled as empty. A good experimental value
for the threshold is 0.1, which means that 10% of occupied
detections is enough to label a voxel as occupied. By taking
into account every measurement for each voxel, the algorithm
is able to cope with outliers and erroneous measurements.

τ =
#occupied detections

#occupied detections+#empty detections
(1)

label(τ) =
{
occupied if τ > threshold
empty otherwise (2)

If the proportion τ determines that a voxel is occupied, then
the camera information is used to determine if the voxel should
be further labeled as viewed.
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Finally, when a voxel changes from any state to empty or
vice versa, neighbors must be reconsidered (there could be
occplane voxels that might change their state).

Occupied or empty?

Proportion thresholding Is it occluded?

Viewed? Empty Next to empty? Unknown

Occupied Viewed Occplane Occluded

Yes No

Above Below Yes No

No Yes Yes No

Fig. 4. Map generation algorithm. After following the algorithm, a voxel is
classified and a label is obtained (leafs).

C. Viewpoint Generation

Once the sonar data has been incorporated into the map,
viewpoints can be computed in order to guide the robot
towards locations that can potentially provide new information.
Two different kind of viewpoints are generated:

• Range viewpoints, which are designed to move the robot
toward locations where sonar data could reveal new
information about the scene.

• Camera viewpoints, which are generated so that new
optical information about the scene can be obtained by
the camera.

Range viewpoints are generated by firstly detecting occplane
voxels adjacent to occupied voxels. Those voxels are important
because they represent the boundary between 3 regions: what
was perceived by the sonar, what could not yet be seen by
the sonar because it was occluded, and what can be explored
because it is next to empty space. Viewpoints are generated
at a configurable distance from occplane voxels, along the
perpendicular of the surface (see Section III-D for details).
This type of viewpoints are represented with a red arrow in
the visualizations (we use the RViz visualizer from the robot
operating system (ROS)).

Camera viewpoints, on the other hand, are generated by
firstly detecting occupied voxels adjacent to viewed voxels.
Those voxels are important because they represent the bound-
ary between the region that has been seen and the region that
has not yet been seen by the camera. When the vehicle tries to
map a new structure, which has been detected by the sonar but
it has not been inside the camera FOV, camera viewpoints are
generated for every occupied voxel, since we assume that it
does not matter from where optical exploration begins. Camera
viewpoints are also generated at a configurable distance along
the perpendicular of the surface. This type of viewpoints are
represented with an orange arrow in the visualizer.

Once the range and camera viewpoints have been calculated,
it is necessary to select the next best viewpoint. Initially, the
possibility of solving a RRT* planner query to determine the
distance between the robot and each viewpoint was evaluated,

Camera viewpoint

Range viewpoint

Fig. 5. Example of viewpoint generation. In this situation, the camera
viewpoint was selected (solid orange arrow), while range viewpoint was
discarded (light red arrow). The direction of the arrows corresponds to the
desired vehicle orientation. Voxels that generated final viewpoints have been
highlighted inside red circles. Previous vehicle positions and orientations are
represented using small green arrows (jagged green path).

but it was soon discarded because of its computational cost.
Instead, the distance between the robot and each viewpoint (for
both, range and camera viewpoints) is computed according to
Eq.3:

dist(p, θ, v, γ) =
√
(p− v) · (p− v)T + (3)

D ·
(∣∣∣∣atan2((p− v)[1], (p− v)[0])

π

∣∣∣∣+ ∣∣∣∣wrap(θ − γ)
π

∣∣∣∣)
Where p corresponds to the robot position, θ is the robot

orientation, v is the viewpoint position, γ is the viewpoint
orientation and D is a user-defined penalizing distance. The
function wrap() converts an angle to (−π,+π].

The Euclidean distance is used, but is also combined with
an additional heuristic to favor certain viewpoints according to
the vehicle orientation (e.g., viewpoints in front of the robot
and pointing forward are preferred). The best viewpoint is
considered to be the closest one according to this distance.

In the visualizer, the selected viewpoint is displayed as
a solid arrow, while the discarded viewpoint is displayed
with a certain amount of transparency (translucent arrow).
Figure 5 depicts an example of viewpoints generated during
the exploration.

Finally, once the robot has started mapping some structure,
the vehicle will not stop until it completes the exploration
of that structure. This is accomplished by keeping track of
structures in an object map (the same object label is assigned
to contiguous occupied and viewed voxels). When the robot
has completely mapped a structure, it continues by the closest
structure that still has voxels to be explored. To increase
robustness and avoid noise-related issues, elements with an
area below a configurable threshold are ignored. The robot
stops when no more viewpoints can be generated.

D. Computation of Surface Normal

In order to compute viewpoint locations it is necessary to
determine the surface normal direction at the selected target
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voxels. The approach used to compute the surface normal (see
Fig. 6) is an adaptation of a basic technique described in [15]:

• Given a target occupied voxel at the surface of the
structure, compute the center of gravity of the empty
voxels in their surroundings. This has been implemented
using a region growing strategy with limited depth of
exploration.

• The surface normal direction is computed as the direc-
tion of the segment that joins the target voxel and the
computed center of gravity.

This approach has proven to work well in our experiments
even for large voxel sizes (voxel sizes of up to 0.5 meters).

1

2 2 2

2

3 3 3 3

3

3

3

4 4 4 4 4 4

4

4

4

4

4

Perpendicular direction

Center of gravity

Empty voxels nearby

Structure surface

Target voxel

Fig. 6. Surface normal computation. Direction is given by the segment that
joins the center of the target voxel (blue dot) with the center of gravity of its
surrounding empty voxels (orange dot). Depth of exploration set to 4.

E. Path Generation

Once the next best viewpoint has been selected, the robot
has to safely navigate to reach that viewpoint. In order
to generate safe paths to guide the vehicle from its initial
position to a particular viewpoint, we use the open motion
planning library (OMPL), which is an adaptable path-planning
framework [16].

Our implementation uses the asymptotic optimal rapidly-
exploring random tree (RRT*) path planner, which is a
sampling-based planner with asymptotic optimality. Paths are
planned in a 2D space (state ∈ R2).

In OMPL, the desired behavior is achieved by selecting and
adapting core components related to the chosen path planning
algorithm. In order to tailor the behavior to our needs, the state
validity checker, the sampler and the cost function have been
implemented as follows:

• State validity checker. When the path planner wants to
check whether a state is valid or not (i.e., equivalent to
checking for collision) it uses the state validity checker. In
our case, we have implemented the state validity checker
so that a state is valid when all voxels inside the smallest
possible circle containing the robot are not occupied (the
state is valid in any given orientation).

• Sampler. Since RRT* is a sampling-based planner, we
have to define how states are sampled in our configuration
space (C-Space). The default sampler in OMPL randomly
samples the C-Space, which is a valid approach in most
cases. However, we have modified the sampler according
to a strategy which consists on reusing the last best known
solution (Hernández et al. [17]). This permits the sampler
to take the previous valid path as an argument. Sampling

the states of the previous best solution allows ensuring a
path that is at least as good as the previous one.

• Cost function. An integral objective cost function has
been used in order to compare how good a path is
with respect to another path. This means that the cost
of a path corresponds to the integral of a risk function
along the path. In our case, risk associated with a path
has been chosen to reflect how close to an obstacle a
sample is (similar to the approach using path length with
clearance in [17]). Therefore, the risk is high next to
occupied voxels and vanishes as distance increases. This
implies that we assume that water current disturbances
are handled by the vehicle controllers, and that there
are no small objects in the survey area that may be
hard to detect, such as an anchor line or a fishing line.
Instead of computing the risk of a sample each time
the planner needs it, a risk map is computed when the
map is updated (which happens fewer times per second,
leading to a faster implementation). Figure 7 shows a
visual representation of a risk map.

(a) (b)

Fig. 7. Risk map representation. Comparison between real map (a) and its
corresponding risk map representation (b). Risk is higher next to obstacles. In
the risk map representation, the highest risk is represented using white color
and the lowest risk using black color.

F. Trajectory Tracking Controller

Once the path has been generated, the robot must follow it,
minimizing the error between the path and the actual trajectory.
For this purpose, a line of sight (LOS) controller has been
implemented. The LOS strategy consists on guiding the robot
towards an intermediate goal that is located some meters ahead
in the path [18]. At each iteration:

• The robot position is projected into the path.
• An intermediate goal is computed some meters ahead of

the projection point.
• Control commands are computed so that the robot moves

towards this intermediate goal.
Finally, when the robot is close enough to the end of the

path, it stops and orients according to the viewpoint direction.

G. Automatic Sonar Beam Orientation

The sonar beam scans 120 degrees in a sweeping movement
along the vertical axis. However, instead of pointing always
to the front, the beam is dynamically reoriented towards the
region of the map that has to be scanned (a restriction is
imposed so that the sweeping movement always covers the
front of the robot to aid in obstacle avoidance, so the maxi-
mum allowed deviation is half of the sonar FOV). Automatic
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orientation of the sonar beam allows the robot to perform only
the control actions that are necessary to follow the trajectory,
avoiding turning maneuvers for exploration purposes only.
This is particularly useful when the scene contains tight
corners because there is no need for the robot to turn around
to inspect what is behind them.

IV. RESULTS

In order to validate the proposed algorithm, in this section
we present real-world results using the Sparus II AUV.

A. Experimental Setup

Sparus II (Figure 1) is an autonomous underwater vehicle
(AUV) developed recently at the Underwater Robotics Re-
search Center (CIRS) [19]. It is a versatile robot, compact, but
with enough space to be reconfigured with different sensors.
Sparus II AUV has been used as the experimental platform
throughout this paper.

B. Survey Areas

Two different survey areas have been used to validate our
approach. Both areas are located in the harbor of St. Feliu de
Guı́xols, Girona. Figure 8 shows a satellite view:

• The harbor area has been used to do initial tests and a
simple survey using the real robot.

• The blocks area is composed by a sequence of con-
crete blocks, which are used as breakwaters, and they
are designed to dissipate the force of incoming waves
by allowing water to flow around rather than against
them. For this reason, it is evident that they provide a
challenging scenario for underwater robotics because of
the waves and currents. Furthermore, this scenario has
also been used in prior relevant studies (such as [17] and
[20]) to test different path planning solutions.

Harbor area Blocks area

Fig. 8. St. Feliu harbor. Survey areas. Initial tests with the real robot have been
performed inside the harbor. Outside the harbor, breakwater blocks provide a
challenging scenario.

C. Real-world Experiments

All experiments have been performed at a constant depth
of exploration of 1.5 meters and at a maximum speed of 0.4
m/s.

1) Harbor Environment: In this survey the robot success-
fully mapped two walls of the harbor (Figure 9). Due to
the fact that it replans online the NBV taking into account
what the sensors are perceiving, the algorithm was able to
overcome the navigation drift. The estimation regarding the
quality of the generated views predicts that 86% of the
views would have been taken within 5 degrees of the surface
normal. This experiment was executed in 314 seconds, and the
robot traveled 90 meters. Because of the viewpoint generation
strategy, and also because of the risk cost map, the robot does
not navigate neither too close nor too far from the wall.

Robot path
Occupied voxel

Viewed voxel20 m

Fig. 9. Real survey in the harbor environment (see Fig. 8. Here the figure has
been rotated 90 degrees). Successful exploration of two walls of the harbor.
Navigation drift can be perceived but caused no problems. The robot trajectory
started on the right of the image.

2) Blocks Environment: Two experiments were run: in one
survey the camera was considered to be pointing to the left,
but no cameras were actually mounted on the vehicle, and, in
the other survey, the camera setup was pointing to the right.
Figure 10 shows a survey on the blocks environment with the
camera pointing to the left. The robot successfully mapped
four concrete blocks. The planning algorithm estimates that
about 80% of the camera images would have been taken within
less than 5 degrees from the perpendicular direction. This ex-
periment took 1364 seconds, and the total robot displacement
was 326 meters.

Robot path
Occupied voxel

Viewed voxel15 m

Fig. 10. Real survey in the blocks environment. Camera is pointing to the
left. Navigation drift becomes noticeable. First block to be inspected appears
on the right of the figure. Large arrows indicate interesting behaviors.

In the first experiment (see Fig. 10. This experiment is
included because it shows what happens when there is a lot
of navigation drift and noise in the sensors), the robot started
mapping the first concrete block (on the right of the figure)
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almost from the corridor, between first and second block.
Because of that, the robot finished mapping the first block
while still moving between the blocks and, in order to continue
mapping the second block, a complete 180 degrees turn was
performed inside the corridor (blue arrow in Fig. 10).

Since the robot started mapping the second block inside
the corridor, to fully map the second block the robot had
to go inside the same corridor coming from the other side.
Furthermore, because of the navigation drift, the map did not
perfectly match (also blue arrow in Fig. 10).

While mapping the third block, the robot went significantly
close to the wall. A gap in the map caused the planner to
plan a path that went against the wall. This was caused by
noisy detections in the scanning profiling sonar, and improved
filtering may have helped to avoid this situation. At the end,
sensor measurements closed the gap and the robot continued
(orange arrow in Fig. 10).

Figure 11 shows a survey on the blocks environment with
the camera setup pointing to the right. In this experiment
the robot mapped 8 blocks turning to the right, in a spiral
motion. Figure 12 shows the robot while performing the
autonomous mission. This experiment took 2930 seconds, and
the total robot displacement was 669 meters. About 84% of
the camera images were taken within less than 5 degrees
from the perpendicular direction. The fact that the robot
successfully mapped 8 consecutive blocks without colliding
or without deviating from the expected behavior demonstrates
the reliability of the proposed algorithm.

Robot path
Occupied voxel

Viewed voxel
25 m

Fig. 11. Real survey in the blocks environment. Camera is pointing to the
right. Navigation drift is also noticeable. First block to be inspected appears
on the right of the figure.

Fig. 12. Sparus II AUV performing an autonomous mission in the blocks
environment.

Fig. 13. Scene reconstruction using optical data. The image on the top
corresponds to the side view of the 8 blocks. The bending in the vertical
axis (depth) is caused by the reconstruction procedure.

In this experiment the robot was additionally equipped
with a set of three unsynchronized GoPro Hero 4 Black
edition cameras (GoPro, San Mateo, CA, United States). The
cameras were positioned at the front of the vehicle and ori-
ented right, right-down and forward-right-down to ensure the
highest possible coverage, while still maintaining the ability to
perform feature matching between images taken from different
perspectives.

In order to demonstrate that the planning algorithm ensured
the acquisition of optical data of the complete scene, acquired
images were subsequently used as an input of an optical 3D
reconstruction procedure, as described in [21] (the optical
reconstruction procedure is out of the scope of this work), to
obtain a final model of the observed environment (Figure 13).

V. CONCLUSIONS AND FURTHER WORK

In this paper, a new online view planning (VP) method
to inspect unexplored underwater structures has been devel-
oped. The proposed algorithm is designed to work in an
autonomous underwater vehicle (AUV), providing autonomous
capabilities for underwater inspection of unknown structures.
The algorithm does not require a prior map of the scene.
By generating the next-best-view (NBV) at each iteration,
the robot is guided towards locations that provide useful
information for continuing the exploration. Several simulations
and real-world experiments show the algorithm performing as
expected.

The algorithm has proven to work even when a limited
amount of navigation drift is present. However, for larger
scenarios, where the navigation drift might be larger, the gen-
erated map could present some inaccuracies, thus leading to a
longer than expected inspection survey. In those cases, using
simultaneous localization and mapping (SLAM) techniques is
suggested to reduce navigation drift to lower levels, enabling
again the use of the presented algorithm.
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Further work includes switching from 2-dimensional (2D) to
3-dimensional (3D) planning. The possibility to use an octree
data structure will be evaluated, and efficiency of map and
viewpoint generation will be improved.
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