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A B S T R A C T   

A submarine earthquake that generates a tsunami sends a family of acoustic signals that carry information on the 
fault dynamics and geometry. These signals travel at the speed of sound in water, much greater than the phase 
speed of the gravity waves, and thus can act as early warning of tsunamis. To utilise this property in real-time, a 
semi-analytical inverse approach is employed assuming the fault is slender and the water depth is constant, 
allowing the calculation of some fault parameters analytically. However, the remaining parameters require a 
numerical evaluation, which increases the calculation time substantially. In order to overcome this difficulty, a 
probabilistic inverse model is proposed. The model analyses data at the envelope of a pressure signal, which 
reduces numerical complexities. More specifically, it selects multiple measurement points, in order to produce 
several sets of solutions within given ranges of the properties. The model is applied to real hydrophone re-
cordings, where the fault geometry and dynamics are estimated near real-time on a standard PC. Some aspects of 
the model are general and can be used to estimate simplified geometry and dynamics of various signal sources 
from violent events in the ocean, such as impacting meteorites, submarine explosions, landslides and rogue 
waves.   

1. Introduction 

A tsunami is a series of surface water waves that are generated in the 
ocean, sea or lake as a response to a sudden vertical displacement of a 
large volume of water. It is often caused by a violent geophysical event 
such as a submarine earthquake, a landslide or a submarine explosion. 
The sudden vertical motion is associated with a slight compression of the 
water layer that affects the properties of the generated tsunami (Abdo-
lali et al., 2019; Nosov, 1999). In addition, it generates 
compression-type waves, known as acoustic-gravity waves (Yamamoto, 
1982), that travel at the speed of sound in water, c ≃ 1500 ms− 1, which 
far exceeds the maximum tsunami phase speed. For example, in a water 
layer of depth h = 2000 m, a tsunami would propagate at a speed that is 
more than 10 times slower than the phase speed of acoustic-gravity 
waves. Hence, acoustic-gravity waves can be used for early warning as 
originally noted by Yamamoto (1982). It is believed that 
acoustic-gravity waves can leave measurable bottom pressure signals far 
from the fault (Kadri and Stiassnie, 2012; Stiassnie, 2010), which allows 
them to be recorded by distant hydrophones (Okal, 2001) providing 
insight into frequency components of both the tsunami and the 

acoustic-gravity waves even at the low end of the spectrum (Okal et al., 
2007). 

Hendin and Stiassnie (2013) developed a standard inverse approach 
capable of retrieving some of the source characteristics from pressure 
recordings by employing a piston model with cylindrical geometry and a 
three-dimensional integral description of the pressure field. However, 
such model requires extensive computations and applying it in early 
warning systems is rather challenging. To overcome this difficulty, Mei 
and Kadri (2018) employed slender body theory to derive a closed form 
analytical solution of the 3D pressure field, which is essential for near 
real-time inverse calculations. The model implies several simplifica-
tions: (1) gravity effects were neglected since gravity and acoustic 
modes are virtually decoupled after a long propagation distance (see 
Mei and Kadri, 2018 and references within); (2) the fault is assumed to 
be slender with width 2b and length 2L (see Fig. 1), which is a reasonable 
assumption as illustrated in Table 1 of Ref. Mei and Kadri (2018); (3) the 
fault moves vertically upwards with a constant speed (W0) for a time 
duration (2T); (4) the water depth h is constant, which is a fine 
assumption as long as the characteristic lengthscales of the sea bed 
topography are several orders of magnitude smaller than the water 
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depth (i.e. in deep ocean far from deep tranches or shelf breaks) - this has 
been recently validated numerically by Williams et al. (2021); (5) the 
sea floor is rigid, which is a fine assumption as long as the water layer is 
deep enough for the analysed acoustic mode, otherwise the phase speed 
of the mode will change dramatically and the elasticity of the sea floor 
will need to be considered as illustrated in Fig. 2a of Ref. Eyov et al. 
(2013). 

In this study we develop a probabilistic inverse model based on the 
slender fault solution (Mei and Kadri, 2018). Since the model is based on 
an analytical solution comprising trigonometric functions, some prop-
erties may have multiple solutions that are out of the usual range. To 
avoid such solutions, we confine the range of the fault properties 
following the literature. As a range guideline, we consider the fault 
approximations by Bilek and Lay (1999); Krüger and Ohrnberger 
(2005), which can be correlated with the pressure signal (Cecioni and 
Bellotti, 2018), and the moment of magnitude of the event (Wells and 
Coppersmith, 1994). It is worth noting that, the slender fault geometry 
and the dynamics considered here are not a simplification of the 
earthquake dynamics itself, but rather represent an effective vertical 
motion caused by the much more complicated rupture dynamics. Thus, 
the horizontal component of the rupture is ignored, e.g. while a rupture 
can last, say, for tens of minutes, the effective uplift we consider here 
may only have a duration of a few seconds. Note that effective rupture 
properties for tsunami generation have been studied extensively, in 
particular major submarine earthquakes. For example, the rupture 
length in the case of the 26 December 2004 Sumatra earthquake is 900 
km long (Fujii and Satake, 2007); the effective surface vertical uplift of 
the 22 May 1960 Chile earthquake is 2 m (Moreno et al., 2009); and the 
effective vertical uplift of the Maule 27 February 2010 Chile earthquake 
is 3–5 m and its width is 20–50 km (Maksymowicz et al., 2017). 

A brief background on the slender fault analytical solution is given in 
Section 2 (further details can be found in Ref. Mei and Kadri, 2018). The 
inverse model is described step by step in Section 3 using both synthetic 
and real examples. A sensitivity analysis is carried out in Section 4, and 
analysis of synthetic and real data are then presented in Section 5. 
Finally, the discussion and conclusions are drawn in Section 6. 

2. Background 

2.1. Acoustic radiation from slender fault: analytical solution 

The propagation of acoustic-gravity waves in a slightly compressible 
fluid is governed by the three dimensional wave equation Stiassnie 
(2010) 

∂2ϕ
∂x2 +

∂2ϕ
∂y2 +

∂2ϕ
∂z2 =

1
c2

∂2ϕ
∂t2 , (1)  

where ϕ is the velocity potential, the velocity field is defined by u = ∇ϕ 
and c is the speed of sound in water (1500 m/s). Since gravity effects are 
neglected, at the free surface (z = h), the pressure is assumed to be 
uniform and zero 

ϕ = 0 at z = h, (2)  

and thus we can confine our analysis to pure acoustic signals, neglecting 
effects of gravity. On the seabed, located at z = 0, a piston model sim-
ulates the vertical displacement of the fault by 

∂ϕ
∂z

=

{
W0τ(t) |x| < b, |y| < L

0 elsewhere
, τ(t) =

{
1 − T < t < T

0 |t| > T
. (3) 

Multiple scale coordinates are introduced, x, z, X = ϵ2x, Y = ϵy,
where ϵ = b/L≪1 is the slenderness parameter. The solution of Eq. (1), 
with the boundary conditions (2) and (3) is derived by a double Fourier 
transform, followed by the corresponding double inverse Fourier 
transform which results in a countable infinity of acoustic modes. The 
first acoustic modes are progressive, followed by evanescent modes that 
decay exponentially with distance. For the sake of brevity, we consider 
the leading (first) progressive mode only, which contains most of the 
energy (Mei and Kadri, 2018). Moreover, we are interested in bottom 
pressure signatures that are recorded sufficiently far from the fault, at 
distances in the range of hundreds to a few thousands of kilometres, to 
avoid the contribution of both evanescent and surge modes (see Eq. (38) 
of Ref.Yamamoto (1982)). Note that the water density, ρ, is assumed to 
be constant so that the SOFAR (Sound Fixing and Ranging) channel is 
not considered here. Nevertheless, it is important to note that the 
leading mode frequency is extremely low, thus, the whole water depth 

Fig. 1. Generation of tsunami and acoustic waves by an uplifting slender fault, leaving measurable pressure signals at distant locations.  

Table 1 
Input ranges of source characteristics for the inverse model, 
based on Wells and Coppersmith (1994).  

Property Range 

Length [km] 1–100 
Width [km] 1–50 
Duration [s] 0–15 
Uplift speed [m/s] 0.005–0.500  

Fig. 2. Synthetic sound signal from an slender fault. Points that meet the 
condition sin(kb) = 1 are highlighted in red. 

B. Gomez and U. Kadri                                                                                                                                                                                                                        



Applied Ocean Research 109 (2021) 102557

3

serves as a wave-guide (Stiassnie, 2010), such that it cannot be trapped 
in the SOFAR channel even if water density variations were taken into 
account. Finally, applying a stationary phase approximation the bottom 
pressure is derived (see Ref. (Mei and Kadri, 2018)), 

p = ρW0|A|
25/2c3t1/2

hπ1/2ω3/2x0

[
1 − (x0/ct)2]1/4sin

(
ω
c

x0/ct
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − (x0/ct)2

√ b

)

×sin

(
ω

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − (x0/ct)2

√ T

)

cos
(

kx0 − Ωt −
π
4

)
,

(4)  

where (x0, y0) is the epicentre coordinates of the fault relative to the 
point where the pressure is computed (or measured), k is the wave-
number, Ω is the frequency of the pressure signal and ω is the frequency 
associated with the first mode, 

ω =
πc
2h

; (5)  

and A(K,X,Y) is the two dimensional envelope given by 

A =
1 − i

2

(

C

( ̅̅̅̅̅̅
K
πX

√

(ϵL + Y)

)

+ C

( ̅̅̅̅̅̅
K
πX

√

(ϵL − Y)

))

+
1 + i

2

(

S

( ̅̅̅̅̅̅
K
πX

√

(ϵL + Y)

)

+ S

( ̅̅̅̅̅̅
K
πX

√

(ϵL − Y)

))

,

(6)  

with Fresnel cosine and sine integrals denoted as C and S, with the 
frequency and wavenumber (Mei and Kadri, 2018), 

k(Ω) ≡ K =
x

c2t
Ω, Ω =

ω
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1 − (x/ct)2

√ . (7)  

Note that we are interested in signals measured briefly after the critical 
arrival time (tcr = x/c). This helps avoiding reverberations (that arrive 
at a later time) when analysing real signals. 

2.2. Inverse solution for acoustic radiation from a slender fault 

We consider an arbitrary slender fault eruption to create a numerical 
synthetic pressure signal of the leading acoustic mode using Eq. (4). The 
signal can be considered as a recorded pressure signal. The inverse 
model is then applied in order to retrieve the properties of the eruption, 
hence the slender fault geometry and dynamics. Initially, the fault 
location (x0, y0) and eruption time (t0) are calculated using Eqs. (8.2) 
and (8.3) of Ref. Mei and Kadri (2018), as summarised below: 

x0 =

(

t̂2 − t̂1

)

c
⎧
⎪⎪⎨

⎪⎪⎩

1 −

⎡

⎢
⎢
⎣

πc
2hΩ̂

t̂2

⎤

⎥
⎥
⎦

2

⎫
⎪⎪⎬

⎪⎪⎭

− 1/2 −

⎧
⎪⎪⎨

⎪⎪⎩

1 −

⎡

⎢
⎢
⎣

πc
2hΩ̂

t̂1

⎤

⎥
⎥
⎦

2

⎫
⎪⎪⎬

⎪⎪⎭

− 1/2

;

t0 = t̂ j −
x0

c

⎧
⎪⎪⎨

⎪⎪⎩

1 −

⎡

⎢
⎢
⎣

πc
2hΩ̂

t̂ j

⎤

⎥
⎥
⎦

2

⎫
⎪⎪⎬

⎪⎪⎭

− 1/2; y0 =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(t0c)2 − x2
0

√

,

(8)  

where Ω̂j is the frequency calculated from the given pressure signal at a 
given point j, and ̂t j is the corresponding time at the point. 

Similarly, the orientation of the fault can be calculated by Eq. (8.4) of 
Ref. Mei and Kadri (2018), i.e. θ = 90∘ − tan− 1(x0 /y0), which can be 
compared against tectonic plate boundaries and estimations made by 
seismic recordings analysis. Next, the dimensions of the fault, and the 
vertical uplift speed and duration are calculated as detailed below. 

2.2.1. Width 
The fault width (2b) modulates the pressure signal through sin(kb), as 

shown in Eq. (4). Hence, by selecting pressure points, that are in close 
proximity to the envelope, e.g. near pressure amplitude extrema from 
the signal wave packet, the width can be calculated from sin(kb) = 1, see 
Fig. 2. 

The wavenumber k is calculated using relation (7), which by sub-
stitution in sin(kb) = 1, yields 

bm =
π(m − 1/2)c2 t̂ j

Ω̂jx0
, m = 1, 2, 3…, (9)  

that corresponds to a countable infinity of possible solutions for b. The 
process described in this subsection is repeated, using different points j 
from the signal, resulting in a probability density function composed by 
potential solutions that correspond to the different possible modes, 
where m = [1 − 20] are considered. The solutions are analysed and 
averaged, leading to the most probable value b as illustrated in Fig. 3. 

2.2.2. Duration 
To find the duration of the event (2T), the ratio between two 

different pressure points i and j from the signal described by Eq. (4) is 
taken to reduce the number of unknowns: 

p̂i

p̂j
=

|Ai|/
̅̅̅̅
ki

√

|Aj|/
̅̅̅̅
kj

√
sin
(

kib
)

sin
(

kjb
)

sin
(

Ω̂iT
)

sin
(

Ω̂jT
). (10)  

Eq. (10) is independent of W0 and comprises two unknowns, T and L. 
The latter dictates the behaviour of the envelope A, which is nonlinear, 
as defined in Eq. (6). 

There are infinitely many possible combinations of L and T that 
satisfy Eq. (10). We choose the most probable value (T) that has the 
highest number of solutions within a given range, as illustrated in Fig. 4. 

2.2.3. Uplift speed and length 
Next, attention is focused on W0 and L. Rewriting Eq. (4), W0 can be 

expressed explicitly as 

W0 =
P̂j

ρ|Aj|
27/2c̅̅̅̅̅̅̅̅̅
π3x0kj

√ sin
(

kjb
)

sin
(

Ω̂jT
), (11)  

where |Aj| is the value of the envelope factor associated with the time ̂t j. 
Eq. (11) has two degrees of freedom, W0 and L. Although, there are 

Fig. 3. Convergence diagram of solutions for the calculation of b. The wave-
numbers kj are associated with 5 different points in time along the signal. The 
average value of the half width b is 70 km; the red vertical line represents the 
actual solution. 
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several potential W0 solutions for each possible L that satisfy Eq. (11), 
the solutions can be constrained within ranges defined by previous 
documented effective earthquake dimensions, e.g. see Wells and 
Coppersmith (1994). For each combination of L and W0, within the 
established ranges, a synthetic pressure envelope is generated by Eq. (4) 
and compared with the actual (recorded) pressure envelope of the 

signal. This procedure is done for two different inputs of kj and Ω̂j (j = 1,
2), leading to two three-dimensional surfaces, S1(L,W0, err1) and S2(L,
W0, err2), where err1 and err2 are the absolute errors between the pres-
sure generated by the potential combinations of W0 and L and the actual 
pressure in the studied signal. Both surfaces reside in a 
three-dimensional space so that they intersect on a curve, which we 
average in both W0 and L directions, producing a unique final solution 
for W0 and L. 

2.2.4. A note on the far-field solution 
Stationary phase approximation was applied by Mei and Kadri 

(2018) in order to reach an analytical solution for the acoustic-gravity 
bottom pressure, enabling a near real-time analysis of the signal. Note 
that the far-field is at x/h≫1, however, due to the fact that, b is typically 
much larger than h, a few tens of kilometres away would already fall in 
the far-field of the mathematical solution, yet they are relatively in the 
near field of the fault. Table 1 of Kadri et al. (2017) shows an error of 
10% at a distance of 50 km, which drops to 0.3% at a distance of 500 km. 

3. Inverse model 

We propose an inverse model that processes acoustic pressure signals 
and provides a probabilistic estimation of the fault geometry and dy-
namics in near real-time. The steps required to apply the model are 
described in this section in some detail for both synthetic and real hy-
drophone recordings. 

3.1. Inverse model application: synthetic signals 

A general flow chart of the inverse model process is presented in 

Fig. 4. Convergence diagram for the potential combinations of L and T that 
satisfy Eq. (10). The highest density of solutions is located around lines with the 
same value for T, therefore, the number of possible solutions for T is reduced to 
three in this case, where the final solution for half the duration is identified at T 
= 5 s, i.e. full duration 2T = 10 s. The red vertical line represents the 
actual solution. 

Fig. 5. Inverse model application flowchart - from acoustic pressure signal arrival to probabilistic calculation of source properties.  
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Fig. 5. 

3.1.1. Steps 1 & 2: frequency and wavenumber distribution 
The first step, prior to analysing the pressure signal, is to identify 

regions composed by points that are likely to lead to minimum errors in 
the solution, see Fig. 6. Subsequently, we calculate the frequency dis-
tribution; time differences between five consecutive peaks from the 
signal, j − 2, j − 1, j, j + 1 and j + 2, are obtained and the weighted 
average is computed, leading to the period associated to j, see Fig. 7. The 
weighted average is defined by 

T̂
t̂ j
=

c1 T̂ 1 + c2 T̂ 2 + c3 T̂ 3 + c4 T̂ 4

c1 + c2 + c3 + c4
, (12)  

where T̂
t̂ j 

is the period associated with a time point t̂ j, the remaining 

parameters in Eq. (12) are defined by: 

T̂ m = t̂ j+m− 3 − t̂ j+m− 2, cm =
T̂ m

T̂ 1 + T̂ 2 + T̂ 3 + T̂ 4
, m = 1, 2, 3, 4 (13)  

where T̂1 < T̂2 < T̂3 < T̂4 and c1, c2, c3, c4 are the weighting co-
efficients. 

In Fig. 6, Eqs. (12) and (13) are computed for every identified 
pressure peak in the signal and the associated frequency distribution is 
calculated by applying Ω̂

t̂ j
= 2π/T̂

t̂ j
. Errors retrieving the frequency 

distribution are minimised if points that fall near pressure amplitude 
extrema are selected, see Fig. 7. The highlighted regions in Fig. 6 
comprise points with associated small errors, 

err
Ω̂

t̂ j

=
|Ω̂

t̂ j
− Ω̂

t j
|

Ω̂
t j

100[%]. (14)  

3.1.2. Step 3: location and eruption time 
Eq. (8) is sensitive to errors in frequency measurement, in particular, 

when selecting two pressure points that lie in close proximity to each 
other. Consequently, the denominator of Eq. (8) tends to zero, which 
increases the instability of the solution and induces larger errors - see 
highlighted areas on Fig. 8. Therefore, these scenarios are avoided by the 
model. 

Although, differences in pressure between the peaks in the signal and 
the corresponding points that lie on the actual envelope can induce 
uncertainties in the results, errors in the frequency are found to be more 
significant, as demonstrated in Section 4. With these observations in 
hand, the frequency distribution, fault location, and eruption time are 
calculated and used to compute the wavenumber distribution by Eq. (9). 

3.1.3. Step 4: fault width 
The model selects regions in the signal associated to minimum un-

certainties, as previously described. The closer these regions to the en-
velope, the more accurate the approximation sin(kb) = 1 becomes, see 
Fig. 2. The wavenumber (k) is obtained by using the retrieved fre-
quencies in Eq. (7). Then, Eq. (9) is used for each selected pressure point 
and its associated wavenumber (k) with a predefined number (n) of 
solutions. This leads to several sets of n solutions that are constrained in 
ranges based on estimations of effective earthquake surface fault widths 
by Wells and Coppersmith (1994). The model analyses the local density 
of solutions by generating a grid with a fixed step, identifying the step 
containing the highest number of solutions and selecting it as the 
weighted average solution for the half width (b), see Fig. 3. 

3.1.4. Step 5: disturbance duration 
Eq. (10) has two unknowns, T and L. Thus, these can be solved 

numerically by selecting two sets of points, each comprising two pres-
sure points, p̂i and p̂j, two frequencies Ω̂i and Ω̂j, and two wavenumbers 
ki and kj. Each solution of, say L, leads to an infinite number of solutions 
for T. However, we limit the solution to realistic ranges associated with 
the specific region, e.g. L = [10,900] km (Wells and Coppersmith, 1994), 
and T = [3,20] s (Decker et al., 1992; Ekström et al., 2012). This leads to 
a two-dimensional matrix containing possible combinations of L and T,
that satisfy Eq. (10). 

The periodic nature of Eq. (10) leads to a periodic distribution of 

Fig. 6. Top: Synthetic pressure signal at the relative location x0 = 1500 km, y0 

= 500 km induced by a slender fault, where L = 700 km, b = 140 km, W0 =

0.1 m/s and T = 10 s, the average sea depth is h = 4 km. Middle: Distribution 
of sin(kjb) along the signal. Bottom: Errors in frequency calculation by Eq. (14). 
The highlighted regions correspond to areas related to low errors due to the 
pressure points being close to the envelope and meeting the condition sin(kb) =

1. 

Fig. 7. Above: Pressure time series induced by vertical slender fault motion. 
Below: Closer look to the region where consecutive peaks are used to calculate 
the period related to the central peak, T̂

t̂ j
. 

Fig. 8. Top: Synthetic pressure signal. Middle and Bottom: Eq. (8) is solved for 
a fixed t1 and every possible t2 along the signal. The error is calculated by 
comparing the calculated x0 with the actual solution. Two different scenarios 
for t1 from the same signal are shown. t1 lies in the coloured areas, demon-
strating that points in close proximity induce unnecessary errors in the solution. 
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solutions for T. A probability density function for the number of solu-
tions within a given range is established. Pairs of points i, j are consid-
ered as needed until convergence of the possible solution is reached, see 
Fig. 4. We consider all possible duration Tc that are associated with high 
convergence of solutions around them, such that Tc ≥ αTmax, where Tmax 
is duration with highest number of solutions, and α is an arbitrary 
fraction, e.g. α = 0.6 is found efficient in terms of computation time and 
number of solutions. Eq. (10) is computed for all the considered solu-
tions of T and all possible solutions for L. For each chosen T, the number 
of combinations with L that satisfy Eq. (10) are analysed and the dura-
tion with highest number of solutions is selected as the converged value 
for half the uplift duration. 

3.1.5. Step 6: length and uplift speed 
The last two unknown parameters to be retrieved are L and W0. To 

address this challenge, several combinations of W0 and L are chosen in 
regular intervals within realistic ranges. Pressure envelopes, with low 
sampling frequency (to reduce CPU time), are generated for each com-
bination of L and W0 using Eq. (10). The generated pressure envelopes 
and the corresponding pressure points from the signal are compared 
against each other, so the average difference in pressure is given by 

Ea =
1

Npeak

⎧
⎪⎨

⎪⎩

∑Npeak

n=1

|penv − p̂peakn
|

p̂peakn

⎫
⎪⎬

⎪⎭
(15)  

where Npeak is the number of chosen peaks used, penv is the pressure point 
on the envelope, p̂peakn 

is the measured pressure of each of the chosen 
peaks. By minimizing Ea, two combinations of W0 and L, that correspond 
to the minimum average pressure differences obtained using Eq. (15), 
are chosen and their arithmetic mean is calculated, and thus Lc is 
obtained. 

Considering that the solution for L has some degree of uncertainty, in 
order to calculate the last parameter W0 five different values for the 
length are considered and Eq. (11) is calculated for each one of them: L1 
= Lc − (0.1Lc); L2 = Lc − (0.05Lc); L3 = Lc; L4 = Lc + (0.1Lc); L5 = Lc +

(0.05Lc). This procedure leads to five solutions for W0, that can be 
arithmetically averaged, in order to achieve mean solution for the uplift 
speed. The choice of five L values about Lc is arbitrary, and more values 
can be considered, though the CPU time can increase substantially. 

3.2. Inverse model application: real hydrophone recordings 

Waves induced by the tectonic event are firstly detected by seis-
mometers (P-waves), which can shed light on the epicentre location and 
magnitude of the event, thus, the mentioned data can be used to reduce 
the uncertainties associated to the inverse model results. 

As demonstrated in detail in the Section 5, the inverse model can 
provide an estimation of the source characteristics when applied to 
hydrophone recordings. Here, we focus on the application to real sce-
narios side of the model, which requires additional steps due to the 
presence of noise and signal distortion of the real data. In particular, 
attention is focused on time-pressure series of acoustic signals recorded 
in the Cascadia Basin by a hydrophone of Ocean Networks Canada 
(Archive, 2020), after a 6.9 Mw earthquake in the southern East Pacific 
ridge on October 9th 2014, see Fig. 9. 

3.2.1. Step 1: potential location of the source 
Initially, the frequency distribution of the leading mode is calculated, 

which is a function of time (t, relative to the eruption time t0), depth (h), 
and orientation of fault (x0 and y0), see Eq. (7). The total distance be-
tween the hydrophone and the earthquake is approximately 9000 km, 
which can be given by various combinations of x0 and y0, i.e. different 
possible orientations. The potential coordinates are constructed as two 
vectors: the first comprises the possible solutions for x0, ranging from 
0 to 9000 km on regular intervals of 50 km; and the second has the 

solutions y0 corresponding to the possible x0 in the first vector. Eq. (7) is 
computed for each possible coordinate (x0, y0) that lead to frequency 
distributions with minimum value higher than the minimum frequency 
threshold. The lower limit of the signal frequencies in the power spec-
trum is identified, in this case at 3 Hz. This procedure leads to only five 
potential solutions for the location of the earthquake in the presented 
case, x0,1 = 8750 km and y0,1 = 2100 km, x0,2 = 8800 km and y0,2 =

1887 km, x0,3 = 8850 km and y0,3 = 1636 km, x0,4 = 8900 km and 
y0,4 = 1337 km, x0,5 = 8950 km and y0,5 = 947 km. A comparison 
between the spectrogram and the potential frequency distributions is 
made in Fig. 10. 

3.2.2. Step 2: Signal detection 
To identify the beginning of the relevant signal content, the short- 

time energy distribution is calculated using 
∑J

j=1

⃒
⃒
⃒pj

⃒
⃒
⃒
2
, where pj is the 

pressure amplitude of the jth sample and J is the sample size. Here we 
consider a sample size of J = 4000. The threshold for the identification 
of the signal disturbance is set at 1.2 times the average value of the short- 
time energy distribution for the first ten seconds in the recorded time 
series, see in Fig. 11. 

3.2.3. Step 3: envelope tracking 
In order to minimise the deviation between selected pressure points 

at the actual signal and the corresponding approximated points at the 
envelope, we seek points at the vicinity of the extrema. Thus, applying 
an iterative identification method of local maxima (or minima), the total 
difference between selected pressure points and the theoretical envelope 
is reduced. The method is repeatedly applied until the relation 2π/Tpeaks 
is verified to lie below the previously obtained theoretical frequency 
distributions for the first mode for all the identified peaks, where Tpeaks 

are the averaged times between consecutive peaks. This is a necessary 
condition in order to associate the computed ideal frequency distribu-
tions to the identified local maxima in the pressure signal. 

Each identified pressure point is associated to a frequency point of 
each of the potential first mode frequency distributions, see Fig. 12. 

3.2.4. Step 4: estimation of characteristics range 
Wells and Coppersmith (1994) established correlations between 

Fig. 9. Top: Calibrated pressure signal, induced by a 6.9 Mw earthquake 
recorded by a icListen LF 224. Bottom: Corresponding spectrogram. 

Fig. 10. Spectrogram associated to the studied pressure signal. The black lines 
represent the five possible synthetic ideal distributions of the first acous-
tic mode. 
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magnitude, surface rupture length, width and ground displacement. 
Using these correlations an earthquake, say of magnitude Mw=6.9, is 
associated with length 2L ≈ 35 km (Fig. 9 in Wells and Coppersmith, 
1994) and area A ≈ 620 km2 (figure 16 in Wells and Coppersmith, 
1994), thus the width (in case of a rectangle) is 2b ≈ 17.71 km. An 
estimation of the average vertical displacement is d ≈ 0.75 m (Fig. 11 in 
Wells and Coppersmith, 1994). It is worth mentioning that the used 
correlations are based on empirical values which include significant 
scatter (Wells and Coppersmith, 1994). Using these correlations (and 
scattering) we establish reasonable ranges for the earthquake charac-
teristics for the analysed earthquake, e.g. see ranges listed in Table 1. 

3.2.5. Step 5: calculation of the source characteristics 
Steps 4–6 of the inverse model applied to the theoretical scenarios 

(Section 3.1) are applied to each potential frequency distribution of the 
first acoustic mode and the associated pressure points from the signal. As 
a result, we obtain 30 sets of solutions for every frequency distribution, 
which leads to a total of 150 solutions for each fault characteristic. The 
distribution of the four fault characteristics are shown in the histograms 
in Fig. 13. 

4. Sensitivity analysis 

Since the proposed model requires approximating the selected 
pressure amplitudes, and the associated frequencies, it is important to 
evaluate the deviation that small errors in the approximations may lead 
to. In particular, the model is tested using synthetic data with different 
levels of noise and errors. For the sake of brevity, the results related to 
this analysis are graphically displayed in Appendix A. Two main sources 
of error are identified in the results: (1) frequency calculation; and (2) 
envelope tracking (assumption of sin(kb) = 1). Additionally, errors can 
be related to difference between the points in the pressure signal used as 
input to the model and the corresponding points on the theoretical en-
velope. Nevertheless, this type of uncertainties can be minimised by 
selecting pressure points associated to local maxima as mentioned 
above. 

To proceed with the analysis, a theoretical case scenario is generated, 
see Table 2. Initially, sensitivity to errors in frequency calculation of Eq. 
(8) is tested by introducing random errors up to a maximum level of 
100% of the calculated frequency distribution, see Figs. A.15 and A.16. 
In this case, the relative location of the slender fault shows high sensi-
tivity to errors, especially, the solution for y0, see Figs. A.15 and A.16. 
Practically, the location is not an issue as it normally obtained with high 
accuracy using seismometers. Thus, in practice, input data from seis-
mometers can be used to tune the parameters leading to y0. 

For the rest of the eruption characteristics, three configurations for 
the number of points used to compute each set of solutions are tested. 
The first configuration consists of the initially selected points (one set) 
only; the second configuration considers two additional sets of points 

Fig. 11. Above: Acoustic disturbance originated by the studied tectonic event. 
Below: Short-time energy distribution. 

Fig. 12. Above: Acoustic signal. The identified pressure maxima are high-
lighted. Below: Five potential first mode frequency distributions for the signal. 
The points related to the highlighted maxima are circled. 

Fig. 13. Histograms of calculated solutions for the half width, half duration, half length and uplift speed of the source. The average values are: b = 12.000 km, T =
6.396 s, L = 24.873 km and W0 = 0.049 m/s. The vertical red lines indicate the estimated characteristics by the relations found in Wells and Coppersmith (1994). 

Table 2 
Theoretical slender fault properties used for the sensitivity analysis.  

x0[km] y0[km] 2b[km] 2T[s] 2L[km] W0[m /s]

1000 500 160 10 1600 0.100  
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(three sets in total), where an extra point is located at each side of the 
point initially selected in the first configuration; the third configuration 
includes four additional sets of points (5 sets in total), considering two 
extra points at each side of points selected in the first configuration. 

The application of the model to each set of points results in a set of 
solutions, that are averaged, to finally give a probability density of the 
property. The number of chosen points used to compute each set of 
solutions is analysed. A range of two points, which is the minimum, up to 
eight points is considered. Note that, more points are not considered in 
the analysis as the computations become extensive. Errors in location 
calculations (x0, y0) are assumed to be under 5%, which is a reasonable 
assumption considering that data from seismometers are at hand. 
Random errors in frequency and pressure amplitude are introduced 
independently to evaluate their independent influence on the solutions. 
It is remarkable that choosing five points to calculate each set of char-
acteristics, and using three sets of points, provides a good balance be-
tween computational efficiency and accuracy, see Figs. A.17–A.21. 

Next, the number of points chosen to compute each set of solutions is 
fixed to five, and ten sets of solutions are obtained and averaged, leading 
to a final solution for each characteristic. Then, different levels of 
random errors in pressure and frequency measurements are introduced 
and the model is applied 30 times for each synthetic noise scenario. It 
appears that errors in frequency induce a higher variance in the solu-
tions obtained by the model, which results in higher uncertainties - see 
Figs. A.22 and A.23. 

The CPU times required by the model increase (almost) linearly with 
the number of solutions demanded by the user (Fig. 14). Moreover, the 
computational effort is related to the size of the ranges chosen to 
constrain the potential solutions used as input to the model. 

5. Results 

5.1. Analysis of synthetic data 

In theory, in order to estimate the slender fault geometry and dy-
namics only a few points are required from the signal. Nevertheless, the 
large amount of points (and combination of points) that can be applied, 
leads to a probability density of solutions. This allows applying the in-
verse model in scenarios with noise and distorted pressure signal. 

The model has been tested using synthetic signals generated by Eq. 
(10) under different input configurations in order to quantify its accu-
racy and computational efficiency along its response to induced 
Gaussian noise. Different model parameters have been considered, such 

as the amount of sets of points and the quantity of points used to 
compute each set of characteristics. The choice of five points with two 
additional sets of points to compute each set of solutions, as shown in 
Section 4, leads to an acceptable relation between model accuracy and 
computational effort. Thus, the set-up parameters can be configured to 
minimise the uncertainties associated to the solutions. 

Three synthetic cases, based on real earthquakes, are generated. Case 
A: 11 March 2011, 9.1 Mw Tohoku earthquake. Case B: 26 December 
2004, 9.1 Mw Sumatra earthquake. Case C: 22 May 1960, 9.5 Mw Chile 
earthquake. Note that even though the synthetic cases presented here 
are based on real earthquakes, the main target is to generate numerical 
scenarios to study the behaviour of the inverse model, hence some 
properties may deviate from real ones. The eruption duration in cases A 
and B is obtained from the Global CMT catalog (Decker et al., 1992; 
Ekström et al., 2012), the duration in case C is chosen to be in the same 
order of magnitude as cases A and B. The simplified geometric properties 
(length and width) of the effective slender faults are based on previous 
research related to the mentioned tectonic events. In case A, rupture 
length and width of 440 km and 180 km were reported (Yagi and 
Fukahata, 2011), respectively. The rupture length in case B was esti-
mated to be over 1000 km and the width between 120 and 140 km 
(Gahalaut et al., 2006). Case C has a 800 km rupture length and 200 km 
width (Kanamori and Cipar, 1974). The rest of the properties were 
estimated using scaling relations found in Wells and Coppersmith 
(1994), see Table 3. 

5.2. Analysis of real data 

We consider an earthquake on 9th October 2014, Mw = 6.9, which 
was detected on the southern East Pacific ridge. The magnitude, centroid 
time, depth of the hypocentre, half duration and location of the event are 
reported in the Global CMT catalog (Decker et al., 1992; Ekström et al., 
2012). The tectonic event occurred at 2:14:42.4 UTC at the coordinates 
32.34 S and 110.81 W, the depth of the hypocentre was 12 km and the 
half duration 7.3 s. The angles of the fault planes are 90∘ and 296∘ Strike; 
39∘ and 54∘ Dip; and 69∘ and 106∘ Slip, which suggests that, the earth-
quake had an effective vertical motion component. The earthquake 
triggered a tsunami that was recorded on Easter Island region with a 
maximum amplitude of 47 cm (NOAA, 2015). 

The hydrophone data was provided by Canada Ocean Network 
(Archive, 2020); the recording hydrophone is type icListen LF 224 
(sampling frequency 4 kHz), deployed in the Cascadia Basin (47.76 N 
and 127.75 W) at a depth of 2662 m. The distance between the epicentre 
of the earthquake and the hydrophone is approximately 9000 km, 
resulting in 100 min of travel time for the acoustic radiation, at a con-
stant speed of c = 1500 m/s. The hydrophone recordings, shown in 
Fig. 9, start at 03:48:2.3 UTC and the pressure disturbance, induced by 
the above described earthquake, is identified approximately at 03:55:0 
UTC, matching the expected travel time (100 min). 

The pressure signal, displayed in Figs. 9 and 11, is calibrated using 
the sensitivity file provided by Canada Ocean Network for the corre-
sponding hydrophone. (the provided signal was initially calibrated be-
tween 1 and 1600 Hz). 

The model delivered a unique solution for b, due to the fact that, 
ideal frequency distributions without noise are assumed, see Section 3.2. 
On the other hand, the solutions for T and L are distributed symmetri-
cally around the mean, see in Fig. 13, whereas the distribution of solu-
tions for W0 presents positive skewness. The calculated values of b, L,
and vertical displacement, are in the same order of magnitude as the 
values based on (Wells and Coppersmith, 1994), see Fig. 13. The 
calculated duration of the vertical uplift (2T = 13.9 s) is in agreement 
with the duration provided by the Global CMT (14.6 s, see Table 4). 

Fig. 14. CPU times for different amounts of points used to compute each set of 
solutions requesting five sets of solutions. The processor used is Intel(R) Core 
(TM) i5-4690 CPU, speed [3.5 GHz-3.5 GHz] and 8 GB RAM. 
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6. Discussion and conclusions 

Some simplifications were assumed by Mei and Kadri (2018) to 
derive an analytical solution for the generation and propagation of 
acoustic radiation by an uplifting slender fault. The assumption of a 
rectangular slender fault may correspond to many earthquakes, though 
we employ that as a mechanism for the generation of an effective water 
uplift rather than an actual description of the full complex dynamics of 
the rupture. Hence, one could argue that any earthquake that generates 
a tsunami can be associated with an effective vertical uplift of the water 
volume. Noting that the leading acoustic mode lengthscale is much 
longer than the water depth, the assumption of a flat rigid seabed is 
justified as long as the water depth is above some critical value (Wil-
liams et al., 2021); below it the interaction with the elastic bottom be-
comes relevant. In addition, the effect of sound speed variations is 
minor, as the relevant leading acoustic mode has an extremely low 
frequency (Jensen et al., 2011) and the whole ocean column acts as a 
guideline. The vertical uplift speed is assumed to be constant, which is 
unlikely to be the case in actual scenarios. However, the more realistic 
uplift with acceleration may modify the absolute amplitudes in the 
signal (acceleration will increase the amplitude, whereas deceleration 
will decrease it) but not the ratios which is what the inverse model 
applies. 

In the analysis carried out in this study, attention was focused on 
theoretical scenarios based on real earthquakes, and sensitivity of the 
calculated parameters to uncertainties in the signal, say due to ambient 
noise. The evaluation of data with noise may require implementing 
various techniques (such as cross-correlation between several hydro-
phones if applicable) to identify the relevant signal more accurately. 
Therefore, we anticipate an improvement of the performance of the 
proposed inverse model as further filtering techniques are employed. 

Including gravity effects may only slightly modify the dispersion 
properties of the leading (low frequency) acoustic modes. However, 
once gravity is included, retrieving the fault properties will directly 
result in the solution for the tsunami, hence minimising tsunami model 
calculation time. Another aspect that needs to be included in future 
studies is the elasticity of the sea floor, in particular near critical depths, 
where leading acoustic modes couple with the elastic floor boosting its 
propagation speed to near the speed of sound in the elastic layer, typi-
cally over 3000 m/s (Eyov et al., 2013; Nosov and Kolesov, 2007). This 
becomes important when analysing transects with large variations in 
water depths, or during shoaling and upon interaction with shelf-breaks. 

The proposed model is linear, therefore, complex earthquake ge-
ometries can be described by multi-fault scenarios, consisting on several 
single faults that can be triggered independently (Hamling et al., 2017), 
and in turn each fault can be divided into segments following the rupture 
propagation. Non-linear aspects may become important when analysing 
propagation over large distances and random topography. 
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