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ABSTRACT10

A finite element microstructure model with permeability tensors that considers crystallographic11

texture and grain size based on magnetic domain theory has been developed for the evaluation12

of magnetic anisotropy in polycrystalline steels. The model has proved capable of capturing13

the crystallographic texture, the grain size and the vector induction effects on the effective14

permeability behaviours for typical textures in steels. The predicted magnetic properties as a15

function of the magnetic field direction enables a quantitative characterisation of the magnetic16

anisotropy. The predicted effective permeability maps can serve as a visual indication of the17

crystallographic texture from magnetic values. These features have been experimentally vali-18

dated against a commercial grain oriented electrical steel featuring strong texture and magnetic19

anisotropy.20
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1. Introduction23

Iron and steel crystal structures are magnetically anisotropic due to the alignment of mag-24

netic dipoles in a crystal cell [1]. It has also been experimentally confirmed that the cube25

edges (〈100〉) and the cube diagonals (〈111〉) are the easiest and the hardest directions of mag-26
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netising respectively in iron [2] and silicon-iron [3] single crystals. This fundamental magnetic27

anisotropy is inherited by each grain in polycrystalline steels. If grains are randomly orientated,28

the anisotropy effect averages out and, as a result, the steels exhibit isotropic behaviours. If29

there are preferred crystallographic orientations present, often referred to as crystallographic30

texture, the overall average properties have a certain anisotropy associated with the texture.31

This simple yet useful averaging approach has been applied to predict anisotropic mechanical32

properties of polycrystalline materials, e.g., elastic modulus, based on the corresponding single-33

crystal properties, with differences in specific approximations including Reuss [4], Voigt [5],34

Hill [6] and finite element (FE) [7] models. In a similar manner Daniel et al [8] estimated the35

scalar effective magnetic permeability of polycrystalline materials based on an empirical single36

crystal anisotropy and effective medium approximations. L. Kestens [9] took a more basic and37

simplified approach proposing an ‘A’ parameter, as opposed to a fundamental magnetic prop-38

erty, that averages the minimum angle between the magnetisation (implicitly assumed to be39

homogeneous) and the closest easy direction to characterise the so-called magnetic quality of a40

given texture for non-oriented electrical steels.41

Both Daniel’s and Kestens’ model overlooked some important aspects of the microstructure,42

in particular, the morphology of individual grains as well as the microstructure as a whole,43

which can also influence the magnetic flux behaviours and hence the effective permeability.44

The models work well for uniform equiaxed single phase material but cannot be extended to45

more complex microstructures. For example, alignment in the microstructure, especially second46

phase, often occurs during steel processing, e.g., rolling [10], and sometimes is present in the47

final product, e.g., in superduplex stainless steel (banded austenite and ferrite structures), dual48

phase steels (banded ferrite and martensite) or hot rolled C-Mn grades (banded ferrite and49

pearlite structures) and can also give rise to magnetic anisotropy. Zhou et al [11] predicted the50

effective permeability for dual-phase steel microstructures represented by digitised and processed51

(recognising different phases) real micrographs by FE modelling. Whilst the approach enables52

studying the separate effects of aligned microstructures, phase balance, and more recently grain53

size [12], their model does not consider the effect of crystallographic texture, which may give54

misleading prediction and interpretation if textures also play a significant role on magnetic55

properties in the measurement direction and on anisotropy.56

There is an important implicit assumption in the scalar permeability models that the mag-57

netic flux density B always parallels with the applied fieldH, which is only a valid approximation58

at low and uniform fields. Some tensor permeability models [13–16] have been reported to be59
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able to address this limitation, which also facilitates finite element modelling [17–19] to solve60

problems that involve rotational fields and complex geometry. Nevertheless, tensor models re-61

quire prior knowledge of the permeability for principal directions, along which B parallels with62

H, to formulate a permeability tensor. Note the principal directions are not readily known or63

necessarily exist in polycrystalline materials. Some models [13, 14] simply took two orthogonal64

directions with maximum and minimum permeability as the principal directions and their val-65

ues as the elements of a diagonal tensor [13]. This basic approach fails when the maximum and66

the minimum permeability occur in non-orthogonal directions, e.g., in grain oriented electrical67

steels (GOES). Others went the extra length to formulate a non-diagonal tensor and obtain68

the principal directions and the corresponding permeability values by finding the eigenvalues69

and eigenvectors of the tensor [15]. All these empirical permeability tensors can not predict the70

anisotropy for given crystallographic textures but only deal with rotational fields, which could71

be experimentally applied by a rotational single sheet tester [20, 21] or be present in electrical72

steel components in motors, in the presence of known magnetic anisotropy. Some vector hys-73

teresis models based on the Presiach model, e.g., [22], or the Jiles-Atherton model, e.g., [23, 24],74

have also been reported to model anisotropy hysteresis behaviours associated with rotational75

fields. Again, none of these hysteresis models can predict the magnetic anisotropy associated76

with crystallographic textures.77

There are no reports of a permeability tensor for a cubic single crystal that can fully de-78

scribe the observed anisotropy and symmetry. According to the Neumann’s principle, the tensor79

representing any physical property of a crystal should be invariant with regard to the symmetry80

operation of the crystal class. In the case of cubic crystals such as electrical steel, the perme-81

ability tensor that satisfies all the symmetries must reduce to a scalar [25]. It follows that the82

corresponding magnetic properties should be isotropic, which would be inconsistent with ex-83

periments [2, 3]. This paradox rendered the tensorial approach inapplicable as far as the cubic84

crystallographic texture is concerned and thereby make people resort to empirical approaches85

using scalar permeability e.g., [8]. The fundamental reason is that the magnetic structure of,86

say, α–iron does not have all the symmetries of the crystal structure. Magnetic domains exist87

in ferromagnetic materials; there are more than one direction of magnetic domains even in a88

single crystal. Their magnetic structure has a lower symmetry than the crystal structure itself89

does as illustrated in Fig. 1 due to the directionality of the magnetic spin. In this paper, we90

propose a solution to this paradox by formulating the fundamental permeability tensor at the91

magnetic domain level without violating the general Neumann’s principle and then extend it92
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to single crystals and then polycrystalline grains in turn. Thus, the aforementioned averaging93

approach based on single domain properties can be used to predict polycrystalline ones using94

the tensor approach.95

We have developed a new FE model based on the permeability tensors incorporating both96

microstructure and crystallographic texture and hence enabling a more accurate and robust pre-97

diction of the anisotropic behaviours of effective permeability. Moreover, our model considers98

the crystallographic orientation of each individual grain, as opposed to statistics, i.e., orienta-99

tion distribution function (ODF) as usually seen in the literature e.g., [8], and hence is capable100

of capturing any local anisotropy (the effects of grain boundary misorientation on the electro-101

magnetic interactions between adjacent grains and/or spatial distribution of the specific crystal102

orientations) as well as global anisotropy (the effects of texture on the effective permeability103

anisotropy for the microstructure as a whole).104

2. Model105

2.1. Formulation of permeability tensors106

Assume a cubic crystal is composed of a large number (N) and equal size of elementary magnetic107

domains that can only orientate along one of the magnetic easy directions, i.e., cubic edges or the108

〈100〉 directions. The magnetic structure of the elementary domains orientated along direction 1109

is illustrated in Fig. 1. When a magnetic field h is applied along the direction 1, the induction of110

a consequential elementary domain along the direction 1 will be B = µ0µchê1, where µ0 is the111

permeability of free space; µc is the scale constant defined as relative elementary permeability,112

by analogy to the continuum counterpart, the relative permeability, for the elementary domain113

along direction 1; ê1 is the unit vector for direction 1. When h is applied along the other114

orthogonal directions, i.e., the direction 3 and 5, the induction will be B = µ0hê3 and B =115

µ0hê5 respectively. In other words, the direction 1, 3 and 5 are three principal directions along116

which relative elementary permeability values are µc, 1 and 1 respectively. Therefore, the relative117

elementary permeability tensor for direction 1 can be represented by118

µ1 =


µc 0 0

0 1 0

0 0 1

 (1)
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The relative elementary permeability tensors for the other easy directions can be easily obtained119

by symmetry and orientation rotation:120

µ2 = µ1, µ3 = µ4 =


1 0 0

0 µc 0

0 0 1

 , µ5 = µ6 =


1 0 0

0 1 0

0 0 µc

 (2)

where the subscript denotes the six easy directions as shown in Fig. 1.121

The following assumptions, after Bozorth [26], are applied:122

(1) When the crystal as a whole is not magnetised, all the domains orientate along the six123

easy directions by equal probability.124

(2) When an external magnetic field is applied, the crystal is magnetised by re-distributing125

the numbers of the domains across the six directions represented by N = {N1, N2, . . . , N6},126

which will be referred to as the domain configuration, favouring those closest to the ex-127

ternal field direction.128

(3) The resulting magnetisation must have a component along the given field direction.129

Heisenberg originally made the first two assumptions in 1930s, which have since become widely130

accepted as part of domain theory. Mathematically, the most probable domain configuration for131

a single crystal has already been solved by Bozorth [26]:132

N1 = eα+βγx N3 = eα+βγy N5 = eα+βγz

N2 = eα−βγx N4 = eα−βγy N6 = eα−βγz
(3)

where α and β can be determined from the following equations133

γx sinh(γxβ) + γy sinh(γyβ) + γz sinh(γzβ)

cosh(γxβ) + cosh(γyβ) + cosh(γzβ)
=
Bh
Bs

(4)

2eα(cosh(γxβ) + cosh(γyβ) + cosh(γzβ)) = N (5)

N = N1 +N2 +N3 +N4 +N5 +N6 (6)
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where Bh is the component of the induction B along the applied field direction defined by the134

direction cosine (γx, γy, γz) with respect to crystal direction 1, 3 and 5; Bs denotes the saturation135

induction. The effective permeability tensor for a single crystal with the domain configuration N136

can be obtained by tensor addition as follows137

µsc =
1

N

6∑
i=1

Niµi (7)

We now have formulated permeability tensors for an ideal single crystal in its own crystal138

reference frame. The relative permeability tensor for an arbitrary orientation with respect to139

the specimen reference frame, which is conventionally chosen to consist of the rolling direction140

(RD), transverse direction (TD) and normal direction (ND) as three axes, can be given as141

µg = g−1µscg (8)

where g is the crystal orientation represented by an orientation matrix (refer to [27] for the142

defintion of g and more details on relevant crystallography). Now consider a grain in a poly-143

crystalline microstructure with orientation g and grain diameter d. The grain size effect needs144

considering. Assume the elementary domains on grain boundaries are not orientated along any145

easy directions, N will decrease proportionally with the volume fraction of the grain boundaries146

given by 6t/d, where t denotes the grain boundary thickness. One can correlate t with the mis-147

orientation of the grain boundaries to consider the local anisotropy. The domain configuration148

in the present model, as a statistical representation of domain directions, does not consider the149

locality and morphology of the domains within a grain. The closure domains that are expected150

to be present near grain boundaries can be considered as two groups of elementary domains:151

one that parallels with any of the easy directions and the other that does not. The effects of152

the former are already taken into account as presumably less favoured easy directions; those153

of the latter are considered not to contribute to the permeability tensor. For simplicity in the154

present paper we consider the overall effects of the loss of the unparallel elementary domains155

by modifying each element in the domain configuration per unit volume in the polycrystalline156

grain as follows157

N ′i = Ni(1−
cg
d

) (9)
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where cg is a material parameter that can be measured experimentally. Note N ′i reduces to158

Ni when d approaches infinity, which is equivalent to a stand-alone single crystal. Combining159

Equations (7), (8) and (9) one obtains the permeability tensor for the grains in polycrystalline160

microstructures as a function of the crystallographic orientation, grain size and the domain161

configuration:162

µ′
g = g−1

[
1

N

6∑
i=1

Ni(1−
cg
d

)µi

]
g (10)

2.2. Finite element microstructure model163

A FE microstructure model based on the above permeability tensors was developed in MATLAB.164

The model considers a magnetostatics problem that involves a uniform static field applied to165

the microstructure. Substituting the constitutive equation166

B = µ0µrH (11)

into the Maxwell’s equations for magnetostatics and choosing the Columb gauge condition,167

∇ ·A = 0, one obtains the governing partial differential equation168

−∇ · ( 1

µ0µr
∇A) = J (12)

where A is the vector potential, J the external current density, µr denotes the relative perme-169

ability for the materials, which would be 1 for air and µ′
g for the microstructure. To simulate170

uniform applied fields a Dirichlet boundary condition of uniform magnetic flux density, Bb, is171

applied to the model. The vector potential A can be broken down into two parts as172

A = Ar +Ab (13)

where Ar is the reduced vector potential and Ab denotes the vector potential that satisfies173

Bb = ∇×Ab (14)
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One solution of Ab can be given as174

Ab =


−0.5yBbz

0.5xBbz

yBbx − xBby

 (15)

where x and y are the coordinates; Bbx, Bby and Bbz are the three components of Bb. No175

external current density is applied, i.e., J = 0.176

The geometry of the model consists of the microstructure and a surrounding circular region of177

air as shown in Fig. 2. The diameter of the air region is set to five times the maximum dimension178

of the micrograph. The microstructure is composed of a number of entities representing the179

grains each drawn as a polygon rather than a single-entity micrograph or digital image. The180

model accepts either virtual microstructures together with simulated crystallographic texture181

data or measured Electron Backscatter Diffraction (EBSD) data. A boundary condition of182

n×A = n×Ab (16)

is applied to the outer edge of the air region, Γ, which is considered to be far away from the183

microstructure to simulate the external magnetic flux density, where n denotes the unit normal184

vector.185

It is important to note that µ′g is not a constant tensor but dependent on the induction B186

and hence the FE solution, A. It follows that the FE model is non-linear and hence tends to187

be complex and computationally costly to solve. For simplicity and computational efficiency,188

we recursively solve the average B across the whole microstructure, as opposed to at all nodes,189

at each iteration step, as illustrated in the flow chart, Figure 3. The Patternsearch algorithm190

in the MATLAB Global Optimization Toolbox, is used and the model usually converges to a191

very small residual (< 0.0001Bs), typically within 20 iterations. In each Patternsearch iteration,192

the permeability tensor for each grain, µ′g, is calculated for the current guess on the Bh value,193

referred to as Bhs. Now that µ′g is known the FE model is linear. The model is solved using194

MATLAB’s Partial Differential Equation (PDE) Toolbox. From the model solution the Bh195

value for the microstructure, Bhm, is then calculated. The cost function for the Patternsearch196

optimisation is F (Bhs) = |Bhm − Bhs|. Adjust Bhs according to the Patternsearch algorithm197

and repeat. The solution of the linear FE model at the end of the optimisation process is taken,198

at a first approximation, as the solution to the non-linear problem.199
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Figure 1. Schematic of magnetic structure of α–iron showing the magnetic moment directions of each atom in a crystal
cell in its crystal reference frame represented by [100], [010] and [001] directions. The six magnetic easy directions are

marked as numbers.

Figure 2. Geometry and meshing of finite element microstructure model for a 1 mm×1 mm virtual microstructure
consisting of 500 grains. The mesh is generated by MATLAB Partial Differential Equation Toolbox.

9



The weak form of the governing equation for the above linear FE model in a solvable form200

by the PDE Toolbox is201

−∇ · (c∇A) + aA = f (17)

where the coefficients c, a and f are specified as follows as per the rules set out in [28]. For the202

air domain, c = 1
µ0

, f = Ab and a is set to 1; for the whole microstructure a is set to 0 and f203

a 3× 1 zero vector; for each individual grain,204

c =



ν11 0 ν12 0 ν13 0

0 ν11 0 ν12 0 ν13

ν21 0 ν22 0 ν23 0

0 ν21 0 ν22 0 ν23

ν31 0 ν32 0 ν33 0

0 ν31 0 ν32 0 ν33


(18)

where ν is the inverse of µ′g for that grain and the subscripts denote the index of the element205

in ν.206

The effective permeability of the microstructure, µ̄ can be evaluated from the FE solution207

by208

µ̄
def
=
‖B‖
µ0‖H‖

(19)

where ‖B‖ and ‖H‖ are the magnitude of B and H for the microstructure. The angle between209

the B and H vectors, Θ, is calculated by210

Θ = arccos
B ·H
‖B‖‖H‖

(20)

2.3. Microstructure and texture data211

Virtual microstructures of targeted grain size and shape are simulated by the open-source212

software Neper [29]. To simulate texture data, ODFs were created given a mode of orientations213

and corresponding distribution kernel functions and half width for the spread, in the open-source214
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MTEX toolbox for MATLAB [30]. In this paper, the default values, i.e., the de la Valee Poussin215

function and 10◦ half width, were used; cubic crystal symmetry and orthorhombic specimen216

symmetry are also applied to all texture data. Crystal orientations were then generated from217

the ODFs and allocated randomly to each grain in the microstructure.218

A separate MATLAB code was developed to convert the raster EBSD data into polygons219

with continuous and smoothed grain boundaries, as opposed to discontinuous segments available220

in commercial EBSD software packages, representing each grain ready for the FE geometry. The221

average grain orientations for each grain were calculated using the Aztec software package.222

3. Modelling Results223

3.1. Effects of crystallographic textures224

To predict the separate effects of crystallographic texture on magnetic anisotropy, we allocated225

different textures to a virtual microstructure consisting of 500 grains whilst keeping the material226

parameters constant. µc is set to 1000, which, as a rule of thumb, will give predicted effective227

values of around 333 for random textures at a very small field (which has been measured228

experimentally for fully ferritic steel [31]). cg is set to 0 to exclude the grain size effect. Fig. 4229

shows the predicted effective permeability for some typical textures in steels including the fibre230

texture with 〈100〉 in parallel with ND, notated as 〈100〉 ‖ ND and also known as θ fibre,231

the γ fibre (〈111〉 ‖ ND), the η fibre (〈100〉 ‖ RD), the α fibre (〈110〉 ‖ RD) and the Goss232

texture ({011}〈100〉) along a series of directions swept from RD by 10◦ interval to 180◦. All233

the curves are symmetrical with respect to the 90◦ axis as expected of the cubic crystal and234

specimen symmetry. The highest µ̄ values occur at RD for the η fibre and Goss texture which235

are both 〈100〉 directions, i.e., the magnetic easy direction; and the lowest value occurs at236

approximately 54.7◦ from RD for the Goss texture, which parallels with the 〈111〉, i.e., the237

magnetic hard directions. The γ fibre and the θ fibre exhibit isotropic permeability within the238

microstructure plane, which would be consistent with their in-plane random orientations, as a239

ND fibre, averaging out.240

Fig. 5 shows the effective permeability maps for some selected textures and background field241

directions. The γ fibre (Fig. 5 (c)) and the Goss texture (Fig. 5 (i)) exhibit distinctive µ̄ maps242

despite very similar average µ̄ values (see Fig. 4). The former features more or less random µ̄243

values across the microstructure indicating random in-plane orientations whilst the latter shows244

much less variation corresponding to the single texture (note the simulated uni-mode ODF for245
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Figure 3. A flow chart illstrating the recursive approach for solving the non-linear FE model. ξ denotes the tolerance
for the Patternsearch algorithm.

Figure 4. Predicted effective permeability for some important textures using a same virtual microstructure as a function
of the directions of the applied field with respect to the RD.
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the single texture is not an ideal single crystal but has a 10◦ spread half width). Similarly, the246

ND fibres, e.g., the γ fibre (Fig. 5(b)), exhibits more variation than the RD fibre, e.g., the α247

fibre (Fig. 5(d)), for the RD field direction. By comparison, the θ fibre map has systematically248

higher values than the γ fibre one and similar randomness across the microstructure. The249

Goss texture map features predominately uniform colors for each selected directions but are250

distinctive between each other.251

The consistency in all these permeability behaviours demonstrates that the present model252

is capable of capturing the crystallographic texture effects on magnetic anisotropy. The pre-253

dicted permeability curves serve as a quantitative characterisation of the magnetic anisotropy254

associated with texture. In addition, the permeability maps serve as an enhanced visual and255

quantitative indication of the textures as a supplement to inverse pole figure (IPF) maps.256

Thanks to the tensorial permeability, as opposed to scalar ones, the model is also capable257

of predicting the angle between the B and the H vector, Θ. Fig. 6 shows the predicted average258

Θ values for the different textures. Similar to the effective permeability behaviours, the in-259

plane isotropy of the ND fibres including the γ and the θ fibres also manifests itself in the Θ260

behaviours. It is worth noting that Θ is without regard to the rotation axis direction. Thus, Θ261

values do not average out to be zero despite the in-plane isotropy as a whole. The Θ behaviours262

of the RD fibres and the Goss texture exhibit more undulated anisotropy than their effective263

permeability behaviours. The troughs appear to occur near the 〈100〉 direction, e.g. the RD for264

Goss and η fibre, the 〈110〉 direction, e.g., the RD for α fibre, as well as the 〈111〉 direction, e.g.,265

55◦ from RD for the Goss texture and the η fibre. This behaviour would be consistent with the266

literature [32, 33] reporting that these directions are the principal directions where B ‖H.267

3.2. Effects of uniform applied field strength268

The uniform applied field magnitude, ‖Bb‖, normalised against Bs, is set to 0.1 for all the269

above modelling and the average ‖B‖ values of the microstructure, B̄, eventually converge at270

0.3–0.31. Owing to the non-linearity of the present model the predictions are also dependent271

on B̄. Fig. 7 shows the µ̄ and Θ values as a function of B̄ for the α fibre and the Goss texture272

for the Bb directions along which the maximum and the minimum µ̄ values occur respectively.273

The predicted µ̄ values for all the conditions increase from approximately 333, i.e. one third of274

the µc value, at different rates, by power laws as illustrated by the fitting lines. Similarly, the275

predicted Θ values also increase with B̄ by power law. The order of both values for different276

conditions remain unaffected throughout the modelled range. The differences between the dif-277
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Figure 5. Predicted effective permeability maps for selected textures and field directions. The colors are mapped to the
permeability values using a same virtual microstructure. (a) θ fibre along TD, (b) γ fibre along RD and (c) TD, (d) α fibre

along RD, (e) η fibre along RD and (f) TD, and Goss texture along (g) RD, (h) 55◦ from RD and (i) TD.

Figure 6. The average angle between the B and H of the virtual microstructure for some typical textures in steels.
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Figure 7. The effective permeability µ̄ (a) and the angle between B and H (b) as a function of B̄ for the α–fibre texture

with the Bb along RD and 45° from RD and for the Goss texture with Bb along RD and 54.7° from RD with a virtual
microstructure consisting of 500 grains. The dashed lines are power law fitting.
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ferent Bb directions increase steadily indicating the anisotropy intensifies with the increase of278

the normalised ‖B‖ field up to 0.4.279

3.3. Effects of grain size280

Fig. 8 shows the predicted µ̄ as a function of the average equivalent grain diameter, d̄, for a281

series of virtual microstructures with different number of grains in a 1 mm×1 mm square and282

hence different d̄, with and without considering the grain size effects. Random grain orientations283

were allocated to all the microstructures. The predicted µ̄ values increase with d̄ fitting perfectly284

well with the power law by285

µ̄ = 362.2(1− 6.95

d̄
) (21)

for cg = 6.95 µm whilst remain constant at approximately 362.2 for cg = 0. Note the remarkable286

similarity of Eq. (21) to Eq. (9). This behaviour also agrees well with the literature reporting287

the magnetic permeability values increase with the ferrite grain size by a similar inverse or288

inverse square root relationship in extra-low carbon steels [31, 34] or in non-orientated electrical289

steels [35]. The results prove that the present model has captured the grain size effects by consid-290

ering the loss of elementary domains to the grain boundaries through introducing the parameter291

cg. It is interesting and perhaps slightly counterintuitive at first view that the interactions of292

magnetic flux with the grain boundaries in the FE model, as manifested in the transition region293

near grain boundaries in the permeability maps as shown in Fig. 9, does not capture the grain294

size effect. Note where there is a decrease in the µ̄ values on one side of the grain boundaries,295

as compared to the bulk of the grain, there is increase on the other side cancelling it out. As a296

result, the effective µ̄ for the microstructure as a whole remains unchanged.297

4. Measurements298

4.1. Experimental details299

A commercial grade GOES featuring strong texture was selected for experimental validation of300

the present model. EBSD data were collected across a large area of approximately 12× 11 mm2
301

at a step size of 10 µm. Fig. 10 shows the inverse pole figure maps exhibiting strong Goss texture302

and coarse grains as expected of this steel grade.303

A small (32×15×16 mm3) U-shaped electromagnetic (EM) sensor that can apply a relatively304
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Figure 8. Predicted effective permeability as a function of the average grain size for a series of virtual microstructures.

Figure 9. Predicted effective permeability maps for a series of virtual microstructure consisting of different number of

grains, ngs = (a) 100, (b) 200, (c) 500, (d) 1000, (e) 1500, (f) 2000.
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low magnetic field was used to measure an A4-sized thin (0.25 mm) GOES sheet at a series305

of angles (ϕ) with respect to the RD. The relative permeability values were then indirectly306

extracted by non-linear least square regression. More details about the measurement system307

and the finite element modelling approached can be found elsewhere [36].308

4.2. Identification of the model parameters309

The grain size parameter cg was set to 0 for simplicity considering the predominantly coarse310

grains and hence expectedly insignificant effects of cg on the permeability values. The unknown311

material parameter µc were identified by Patternsearch optimisation algorithm fitting the pre-312

dicted effective permeability values with the measured ones and at the same time recursively313

solving B̄. Fig. 11 shows the optimised predictions of the permeability values as a function of314

ϕ agreeing reasonably well with the measurements.315

The permeability behaviours are also generally consistent with the predictions using the316

generated Goss texture data and virtual microstructure described in Section 3.1. µc has been317

identified to be 1497 with B̄, for example, for ϕ = 54.7, having converged at approximately318

0.6 and the Θ at approximately 24.9°. Fig. 12 shows the predicted µ̄ maps for the identified319

model parameters and the background field along RD, TD, ND and 54.7° with respect to RD.320

These maps visualise the following main characteristics of the magnetic anisotropy associated321

with the Goss texture corresponding to the IPF maps shown in Fig. 10. First, the RD maps322

shows generally highest permeability values indicating the RD being close to 〈100〉 directions.323

Second, the TD and ND ones are similar indicating these directions are close to the same crystal324

direction. The map for 54.7° from RD shows predominantly low permeability value indicating325

it is close to 〈111〉 directions.326

It should be noted that the prediction of Θ values and the effects of B on the effective per-327

meability anisotropy cannot be fully validated using the present measurement technique, which328

only measure scalar permeability (hence B ‖ H) and is not capable of changing the applied329

field strength (which is determined by the sensor geometry). A sensor system that can measure330

multiple B and H components is needed and being developed. The present tensor permeability331

model is fully capable of modelling 3D microstructures and any direction in 3D space although332

only 2D microstructures have been modelled in this paper. The 2D microstructure in-plane333

directions are often of more interest and probably more accurate as far as the microstructural334

effects are concerned.335

The present model is anticipated to be used to provide the permeability anisotropy for336
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Figure 10. Inverse pole figure maps of the grain oriented electrical steel sample for the (a) rolling direction (RD) (b)
transverse direction (TD) and (c) normal direction (ND) pole.

Figure 11. Predicted permeability as a function of the field direction using the identified model parameters compared

with the measured ones for the grain oriented electrical steel.
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predicting sensor measurements for low field EM sensors used for monitoring steel quality during337

processing (e.g., [37]) and / or for the interpreting the EM sensor signals to infer the texture338

of the steel. The model could also be used to predict anisotropic effective permeability values339

that can be input into other macroscopic FE electromagnetic models as the material property,340

say, the permeability of electrical steel components of an electric motor, to consider the steel’s341

microstructure and texture. As a FE microstructural model the present model may potentially342

be coupled with other microstructural models, e.g., the microstructure-based crystal plasticity343

models, for multi-physics modelling.344

5. Conclusion345

A tensorial permeability finite element microstructure model that considers crystallographic346

textures based on magnetic domain theories has been developed for evaluation of magnetic347

anisotropy of polycrystalline steels. The model can predict consistent and logical effective per-348

meability behaviours and the angle between B and H for some selected typical textures that349

are important and common in steel manufacturing. The model has proved capable of capturing350

the crystallographic texture, the grain size and the background field effects on the magnetic351

anisotropy of steels based on the magnetic domain theory. The predicted effective permeability352

curves as a function of the magnetic field directions and the permeability maps can serve as a353

quantitative characterisation of the magnetic anisotropy as well as an enhanced visual indica-354

tion of the crystallographic texture from magnetic values. These capabilities have been initially355

validated against a commercial grain oriented electrical steels featuring strong Goss texture and356

magnetic anisotropy.357

Acknowledgements358

The authors would like to thank Dr Frenk van den Berg from Tata Steel Europe for the useful359

discussion about the work. This project has received funding from the Research Fund for Coal360

and Steel under grant agreement No. 847296.361

362

20



References363

[1] R.E. Newnham, Magnetic Phenomena, in Properties of Materials : Anisotropy, Symmetry, Structure,364

chap. 14, Oxford University Press, 2005, pp. 122–146.365

[2] K. Honda, S. Kaya, and Y. Masuyama, On the Magnetic Properties of Single Crystals of Iron,366

Nature 117 (1926), pp. 753–754.367

[3] H.J. Williams, Magnetic Properties of Single Crystals of Silicon Iron, Phys. Rev. 52 (1937), pp.368

747–751.369

[4] A. Reuss, Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für370
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Figure 12. Predicted permeability maps for the grain orientated electrical steel sample for different background field

directions. (a) RD, (b) TD, (c) ND, (d) 54.7° from RD.
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