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Hierarchical Reinforcement Learning with Universal Policies for
Multi-Step Robotic Manipulation

Xintong Yang1, Ze Ji1 Member, IEEE, Jing Wu2, Yu-Kun Lai2, Changyun Wei3, Guoliang Liu4, Rossitza Setchi1

Abstract—Multi-step tasks, such as block stacking or parts
(dis)assembly, are complex for autonomous robotic manipulation.
A robotic system for such tasks would need to hierarchically
combine motion control at a lower level and symbolic planning
at a higher level. Recently, reinforcement learning (RL) based
methods have been shown to handle robotic motion control with
better flexibility and generalisability. However, these methods
have limited capability to handle such complex tasks involving
planning and control with many intermediate steps over a long
time horizon.

Firstly, current RL systems cannot achieve varied outcomes by
planning over intermediate steps (e.g., stacking blocks in different
orders). Secondly, exploration efficiency of learning multi-step
tasks is low, especially when rewards are sparse.

To address these limitations, we develop a unified hierarchical
reinforcement learning framework, named Universal Option
Framework (UOF), to enable the agent to learn varied outcomes
in multi-step tasks. To improve learning efficiency, we train both
symbolic planning and kinematic control policies in parallel,
aided by two proposed techniques: 1) an auto-adjusting explo-
ration strategy (AAES) at the low level to stabilise the parallel
training, and 2) abstract demonstrations at the high level to
accelerate convergence.

To evaluate its performance, we performed experiments on
various multi-step block-stacking tasks with blocks of different
shapes and combinations and with different degrees of freedom
for robot control. The results demonstrate that our method can
accomplish multi-step manipulation tasks more efficiently and
stably, and with significantly less memory consumption.

Index Terms—Robotic manipulation, multi-step tasks, hierar-
chical reinforcement learning, universal policy, option frame-
work, planning and control.

I. INTRODUCTION

HUMANS solve complex manipulation tasks by dividing
them into multiple steps. Similarly, for a robot to ac-

complish a task such as assembly, it is required to decompose
the task into a sequence of intermediate steps, e.g., moving
the gripper to a place, grasping an object, placing the object,
etc. Such a decomposition enables different combinations and
ordering of steps to achieve various desired outcomes.

This work seeks to solve such multi-step planning and
control tasks with a reinforcement learning-based solution.
Fig. 1 shows an example, where a robot is trying to stack
three blocks together. Learning such a task is difficult in
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Figure 1: Interdependent steps of a block-stacking task inves-
tigated in this paper.

two ways. Firstly, the robot needs to learn various desired
outcomes: grasping and placing the blocks in different orders
to build different towers, e.g., green-blue-red or blue-green-
red (in the top-down order). Secondly, the robot also needs
to learn the step dependencies to achieve a desired outcome.
For example, it is impossible to place a block if the block
has not been successfully grasped. Previous studies either
deal with only one particular order of steps or ignore the
orders [1], [2]. This means that, to achieve multiple desired
outcomes, repetitively training multiple policies is required,
costing additional computations, memory and time.

For tasks involving multiple steps or outcomes, we hy-
pothesise that the learnt skills, knowledge or experience can
be shared and reused. For example, placing a block at two
locations depends on the same former step of grasping the
block. This motivates us to learn high-level planning and low-
level kinematic control with universal policies in the context
of multi-goal reinforcement learning [3], [4].

However, the inter-dependency of steps makes such learning
extremely difficult when rewards are sparse. Considering the
task where an RL agent is learning to stack 2 distinct blocks
(A and B), with a reward function that only rewards task
completion, the agent will never learn to place A on B before
it successfully learns to grasp A. In other words, exploration
(i.e., collecting useful data) becomes more inefficient when
learning towards later steps, as the probability of encountering
meaningful rewards decreases.

One popular approach to this problem is to hand-craft
a human prior-based reward function, which eliminates the
reward sparsity but demands complex design and introduces
human bias [5]. Another way is to use demonstrations [6].
For example, kinematic trajectories performed by a human
can help improve learning efficiency. However, such demon-
strations are exhausting to obtain and not readily available for
many tasks [1], [2], [6].

In short, given the research gaps identified above, this paper
studies the following questions:

1) How to learn the various desired outcomes of a multi-
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step task?
2) How to improve the learning efficiency for such tasks

with easy-to-collect knowledge/demonstrations?
For question 1) we unify hierarchical reinforcement learning

(HRL) and universal policies, leading to our novel Universal
Option Framework (UOF). HRL enables the robot to learn
long-horizon multi-step tasks via high-level planning and low-
level motion control. It typically decomposes a task into
ordered steps (e.g., grasping followed by placing the grasped
object in a block stacking task), while universal policies, one
at the planning level and one at the control level, enable
multi-goal learning for various outcomes (planning level) and
manipulation skills (control level).

We propose to train both the high-level and low-level
policies in parallel. This will allow more computationally
efficient learning without the need of repetitive data collection.
However, parallel training can be highly unstable. This is
because the data for training the high-level policy is produced
by an exploring low-level policy, and thus is noisy and not
informative for most of the time [7]. Such noisy data prevents
the high-level policy from stable improvement. Most previous
works attempted to avoid this issue by simply training them
separately [8]–[10], while, in this work, we propose to stabilise
parallel training by adaptively reducing exploration of the low-
level policy based on the performance of achieving goals in
different steps.

To address question 2), we introduce an abstract form of
demonstrations, i.e., the correct orders of steps, to deal with
extremely sparse rewards. This is inspired by real-world exam-
ples such as instructions of building a Lego toy or assembling
a piece of furniture. Instead of collecting demonstrations of
kinematic trajectories or altering the reward function, using
abstract demonstrations, in our experiments, has been shown
to significantly improve the learning efficiency.

We test our methods by simulating a 7-DoF Fetch Robot to
learn a set of block-stacking tasks, as illustrated in Fig. 1.
Other similar tasks can also be easily accommodated. The
low-level (control) policy is trained with the DDPG (Deep
Deterministic Policy Gradient) algorithm with Hindsight Ex-
perience Replay (HER) [4], [11]. For the high-level (planning)
policy, we adapt the Intra-Option Learning algorithm [12] to
a deep learning and experience replay version (Section V-A).
The source codes including the simulation environment and
algorithms will be made available on GitHub1.

The rest of this paper is organised as follows. We re-
view related studies in Section II. Preliminaries (including
standard RL, the Option Framework and Goal-conditioned
RL) are reviewed in Section III. Our novel Universal Option
Framework (UOF) is presented in Section IV, with training
algorithms in Section V. Section VI introduces the tasks and
experimental setup, while Section VII analyses the experiment
results. Section VIII concludes this research.

II. RELATED WORK

This work relates closely to three topics, including hierar-
chical reinforcement learning (HRL), goal-conditioned rein-

1https://github.com/IanYangChina/UOF-paper-code

forcement learning (GRL), and robotic block-stacking tasks.
Options and HRL: The Option Framework (OP) [13] pro-

vides a promising architecture to enable temporally extended
actions. One research direction is to define or pre-train a fixed
set of options (low-level policies), given which one can train an
inter-option (high-level, gating) policy for symbolic planning
[14], [15] or skill composition [10].

Two challenges studied in this work are related to HRL. The
first is the non-stationary transition problem (see section IV-C
for details) that occurs when training policies at different
levels in parallel [7]. A typical approach for such problems
is to train them independently [8]–[10]. We propose a novel
exploration strategy to address this non-stationary issue during
parallel training (see section V-B). Different from methods
that focus on improving exploration efficiency [16]–[18], we
instead aim to reduce unnecessary exploration of the low-level
control policy and thus stabilise parallel training. Secondly,
we train a high-level policy to reuse the low-level policies
to achieve different final outcomes, e.g., stacking blocks in
different orders, while recent hierarchical methods only focus
on solving a single-outcome task [3], [8], [9], [19].

GRL: A goal-conditioned value function (or policy) in-
tegrates knowledge about pursuing different purposes in the
same environment [3], [20], [21]. This broadened definition
was further exploited by hindsight-goal-relabelling methods,
which significantly improve the sampling efficiency of contin-
uous Reinforcement Learning with sparse rewards [4]. Recent
implementations in robotics include language-based goals [9],
imitation learning [2], auxiliary tasks learning [22] and goal-
generation (related to intrinsic motivation) [16], [17], [23].

Our work casts the idea of GRL into the Option Frame-
work to obtain a universal hierarchical reinforcement learning
architecture. By doing this, our framework can learn multiple
outcomes and skills, while previous hierarchical frameworks
lack this ability [3], [8], [9], [19].

Robotic Block-stacking Tasks: Block-stacking is deemed
as a typical robotic task that requires long-horizon motion
planning and control. Conventionally, this task has been widely
used to validate various classic planning methods. These well-
researched classic methods for motion and task planning have
been proved to be effective in various settings [24].

The closest topic to our work would be the Task-motion
planning (TMP) [25] that addresses the problem of gener-
ating high-level task sequences and uses a motion planner
to solve each task. For task level planning, most works use
symbolic planning methods [26], [27]. For the low-level task
solver, algorithms such as probabilistic random map (PRM)
or rapidly-exploring random trees (RRT) are common choices
[24]. However, these classic methods rely heavily on expert
knowledge and hard-coded rules, thus they are in general
very domain-specific. In addition, classic methods require re-
planning for every task, at both levels, while deep reinforce-
ment learning-based frameworks can output valid solutions
without any searching and provide better generalisibility [9].

Previously, some works have used RL approaches on sim-
plified tasks either with a block being grasped in hand [28]
or heavily shaped reward functions [5]. More recently, based
on GRL [4], researchers started to solve more complex cases
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that require manipulating more blocks (up to 9 blocks) with
only sparse rewards [1], [2]. They extensively use human-
demonstrated kinematic motion trajectories [6], which are
not readily available. These works regarding RL have merely
learnt one particular order to stack blocks, typically in a fully
end-to-end fashion, without considering the combinatorial
nature of such multi-step problems.

III. PRELIMINARIES

The following sub-sections introduce the preliminaries for
the proposed UOF, namely the standard Reinforcement Learn-
ing, the Option Framework formalising a hierarchical archi-
tecture for learning low-level control and high-level planning
[13], and the GRL for learning tasks with multiple goals
[3]. Mathematical notations are summarised in supplementary
material.

A. Standard Reinforcement Learning (RL)

Standard RL problems are based on discrete time Markov
Decision Processes (MDPs), which is a model for sequential
decision-making. MDPs assume that the underlying system
dynamics is a Markov process, in which the future states are
only affected by the current state and action [29]. An MDP
is formalised by a set of states S, a set of actions A, a
distribution of initial states p(s0), a system transition function
p(st+1|st,at), a reward function r : S×A → R and a discount
factor γ ∈ [0, 1].

Given an MDP, a reinforcement learning agent interacts
with the system in the discrete timesteps. At a timestep t,
the agent observes a system state st and takes an action at.
The system then transits to the next state st+1 according to
the transition function, and emits a reward rt+1. In most
cases, it is hard to obtain an exact transition function for
complex environment interactions. Thus, as many other works,
we assume the transition function is unknown to the agent.
The reward function is usually defined to reflect the success
or failure of a given task.

The objective of the agent, i.e., of a standard RL problem,
is to find a policy π(a|s) : S → A that produces actions
for given states to maximise an expected discounted return
(i.e., cumulative rewards) E[R] = E[

∑T
t=0 γ

tr(st,at)]. The
policy could also be implicitly represented by an action-value
Q-function Qπ(s,a), which is itself the expected discounted
return after taking an action at a state and following a policy
thereafter [29].

B. The Option Framework (OF)

The OF is a classic hierarchical RL architecture. It intro-
duces the notion of ‘temporal abstraction’ into the standard RL
problem, enabling abstract planning with temporally-extended
actions, called options. An option can be regarded as a subtask,
a step or a skill, which may take several actions over a period
of time [13]. For example, robotic arm motions for grasping
and placing objects can be regarded as two options.

Formally, an option is denoted as o〈Io, πo, βo(s)〉, where,
Io ⊆ S is the set of initialisation states; πo is an intra-
option policy that can be pre-trained with standard RL using

a reward function specific to the subtask; and βo(s) ∈ [0, 1]
is the termination function indicating whether an option is
terminated at a state [13].

Given a set of pre-defined options, O, the aim of OF is
to find an inter-option policy Ω(o|s) : S → O that selects
options (i.e. steps) for given states to maximise an expected
discounted return. Similar to the standard RL, it can also be
represented by an option-value function QΩ(s, o) [13].

The inter-option policy plans over options to finish a task.
For instance, given two options that can grasp and place
blocks, the inter-option policy may learn to stack several
blocks by selecting the options in a particular order.

In the rest of the paper, intra- and inter-option policies are
referred to as low-level and high-level policies, denoted as πL

and πH, respectively.

C. Goal-conditioned Reinforcement Learning (GRL)

GRL formalises the problem of learning multiple goals in
one environment. A policy in GRL is called a universal policy
as it integrates knowledge about achieving different goals in
one environment [3]. Our framework is an integration of OF
and GRL.

In GRL, the MDPs remain the same with standard RL,
except that the reward function depends additionally on goals:
r : S × G → R. It is assumed that an achieved goal can be
easily found given a state. Typically, one can use part of the
system states to represent goals, e.g., the desired Cartesian
coordinates of blocks in a block stacking task.

It is assumed that every goal g ∈ G corresponds to a
predicate fg : S → {0, 1}, and a GRL agent aims to achieve
any state s such that fg(s) = 1. If a goal is a desired state and
S = G, the predicate is simply: fg(s) = [s = g]. More often
the predicate is defined by some relationships between the
achieved goals and desired goals, e.g., whether the L2-norm
of their difference is within a threshold.

The reward function can then be defined as r(s, a, g) =
−[fg(s) = 0], given a desired goal g ∈ G. Such a function
gives a reward of value 0 when a desired goal is achieved and
−1 otherwise. The objective is then to maximise the expected
return with respect to various goals [4].

IV. THE UNIVERSAL OPTION FRAMEWORK

In this section, we propose the Universal Option Framework
(UOF). In the original OF, a high-level policy plans over
options to accomplish one task, while low-level policies of
these options take low-level actions over a period of time to
complete different subtasks [13]. We extend both the levels
to be goal-conditioned, such that only one universal option
is needed for different subtasks by setting different low-level
goals, and only one universal high-level policy is needed to
plan for different tasks.

Briefly, Section IV-A defines the universal option and the
goal-conditioned high-level policy, followed by Section IV-B
illustrating the links between the two levels. Section IV-C
discusses the non-stationarity of parallel training. Section
IV-D provides specific representations of the main components
(states, actions, goals and rewards) of the UOF for multi-step
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Figure 2: The procedure of the Universal Option Framework in the context of multi-step block-stacking tasks. The numbers
in dashed circles indicate the four sub-processes: 1) an episode starts with a high-level goal (e.g., a desired order of blocks:
Green→Blue→Red); 2) the high-level policy takes an action, which relates to a low-level goal (e.g., “Grasping Green Block”);
3) the low-level policy selects several actions (e.g., continuous gripper movements) to interact with the environment and try to
achieve the low-level goal; 4) the low-level policy is terminated when the low-level goal is achieved, upon which the high-level
policy selects another low-level goal.

block-stacking tasks. Mathematical notations are summarised
in supplementary material.

A. Universal Option and High-level Policy

1) A universal option, denoted as og〈Ig, πLg , βLg 〉, eliminates
the need of training multiple low-level policies. It has three
components.
Ig is the set of states where a goal is achievable. In this

work, we assume that every goal can be achieved from any
state, though it may need several intermediate actions. Thus,
the initialisation set for any goal is the state space: Ig = S.
πLg (aL|s,gL) is a goal-conditioned low-level policy where

gL ∈ GL is a low-level goal. This policy produces actions
according to different states and goals, e.g., controlling a
gripper.
βLg (s) is the goal-conditioned termination function. For any

goal, it gives the probability of that goal being achieved at a
state and so the option terminates. We assume it to be a known
deterministic mapping:
fgL : S → {0, 1}, ∀gL ∈ GL, where fgL is the human-

specified predicate used in GRL problems to identify whether
a goal is achieved at a state [4].

A sparse reward function for training the universal policy
can thus be defined as rLg (s,aL) = −[fgL = 0].

2) A universal high-level policy is denoted as
πHg (aH|s,gH), where gH ∈ GH is a high-level goal. It
learns to achieve various high-level goals by assigning
low-level goals to the universal option. Given a predicate
fgH that indicates whether a high-level goal is achieved at a
state, a sparse high-level reward function can be defined as
rHg (s,aH) = −[fgH = 0].

B. Links between Low-level Control and High-level Planning

This subsection illustrates the links between a universal
option (with a low-level control policy) and a high-level
planning policy. In this paper, we manually decompose a task
into N crucial steps. Then, we assume the available access
to a mapping ψN : S → GL1 ,GL2 , ...,GLN from states to N
subsets of desired low-level goals, each of which corresponds
to a step.

To enable planning over steps, we assume the high-level
policy has N discrete actions, corresponding to the N steps.
When a high-level action is taken, the low-level policy receives
a low-level goal related to the chosen step, generated by the
mapping ψN based on the current state. Thus, the high-level
policy acts at a higher level as it demands the low-level policy
to achieve different steps. Note that, the low-level policy can
only act according to the low-level goals assigned by the high-
level policy.

Such a mapping that generates desired goals is usually
deployed for simulation-based tasks [4], [8], [9]. Table I
gives a mapping example for a two-step block-stacking task
(N = 2). The first row is the state s. Two distinct low-
level goals (second and third rows) that correspond to two
distinct steps are mapped from the state. The second row
corresponds to the step ‘grasping the blue block’ and the third
row corresponds to the step ‘placing the blue block on top
of the red block’. The high-level policy thus has two actions,
related to the two steps, whilst the low-level policy needs to
learn to achieve these steps by controlling a gripper.

The universal high-level policy and the universal option
linked by the mapping define the UOF. Fig. 2 summarises
the running procedure of the UOF in the context of multi-step
task learning. It comprises four sub-processes:

1) An episode starts with a random high-level goal gH;
2) The high-level policy πHg takes an action aH, i.e., selects

a step, that maps to a low-level goal gL via ψN ;

Table I: An example of ψN for a two-step block-stacking task

Pos.Red Pos.Blue Pos.Grip. Wid.Fin.

s ∈ S (xr, yr, zf , || xb, yb, zf , || xgr, ygr, zgr, || wgr)

g1 ∈ GL1 (xr, yr, zf , || xb, yb, zf , || xb, yb, zf , || sblock)

g2 ∈ GL2 (xr, yr, zf , || xr, yr, zf + h, || xr, yr, zf + h, || sblock)

Abbreviation: Pos.: position (as Cartesian coordinates); Grip.: gripper;
Wid.Fin.: gripper finger width; x/yr/b/gr : the x and y coordinates of the
red or blue block or the gripper tip; zf : the absolute height of the block centre
when laying on the workbench; h: the absolute height of a block; sblock: size
of blocks; ||: Vector concatenation.
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3) The low-level policy πLg (i.e., the universal option) then
tries to achieve the given goal. Each low-level action aL

causes the environment to transit to a new state and emit
rewards (rHg , r

L
g );

4) The low-level policy is terminated when a low-level goal
is achieved (βLg (s) = 1), only upon which can the high-
level policy select a new action.

This architecture summarises recent studies in combining
goal-conditioned and hierarchical reinforcement learning [8],
[9], [16], [17], [22], [23], emphasising the idea of knowledge
sharing and integration in a hierarchical RL system.

C. Parallel Training Instability

Parallel training is promising as it allows the high-level
policy to learn simultaneously with the low-level one. There
are two benefits of doing so. First, parallel training is less
computationally expensive as the high-level policy can start
learning without waiting for the pre-training of the low-level
policy to finish. Secondly, when trained separately, the pre-
trained low-level policy needs to be fine-tuned while training
the high-level policy [9], [14], [15], whereas parallel training
allows both levels to adapt intermediately.

Parallel training is unstable for the high-level policy due
to an exploratory low-level policy [7]. This can be examined
from the transition function for the high-level MDPs, i.e., the
probability of the policy entering a new state s′, written as

pH(s′) = pH(s) πHg (aH|s) pH(s′|aH, s)
= pH(s) πHg (aH|s) πLg (aL|aH, s) pE(s′|aL, s)

where, pE is the system dynamics. The equation reveals that
pH(s′) depends on the probability of the low-level policy
selecting an action, e.g., πLg , given a low-level goal chosen
by the high-level policy πHg . This means that a randomly
exploring low-level policy will cause the high-level transition
probability distribution to be non-stationary.

A policy with a constant exploring ratio will let the agent
have the same probability to deviate from the correct trajectory
at every timestep. This benefits the low-level policy in terms of
better exploration [4], [11]. However, it harms the high-level
policy in parallel training because the high-level only obtains
reward when the low-level achieves the desired goal. For a
task that takes several steps to finish, a constantly exploring
low-level policy and the massive search space impede the
success of the task and, hence, considerably hinder the learning
efficiency of the high-level policy. Previous works separately
trained both levels because separate training ensures the low-
level policy to be fully deterministic, and thus the high-level
policy to learn stably.

In this work, we propose a novel exploration strategy
that adapts the low-level exploration to resolve this problem
(in Section V-B). We demonstrate that with this strategy,
parallel training can achieve better performance with lower
computational demands (in Section VII-C).

D. Task-specific Definitions for UOF

This subsection describes the numerical representations
of states, actions, goals and rewards for the block-stacking
tasks in this work, as an example of applying our proposed
UOF. The two levels have different actions, goals and reward
functions, but share states and the initial state distribution.

1) States & initial state distribution: For a block-stacking
task with M blocks, we define a state s as a vector of
states for the gripper sgrip and the blocks (sb1||sb2||...||sbM ),
where || denotes vector concatenation. The gripper state is
a vector concatenated by the absolute Cartesian coordinates
and the linear velocity of the gripper, the linear velocity of
the gripper fingers (symmetric), and the gripper stroke width,
formulated as sgrip = (xagrip||vagrip||vafinger||wfinger). The
state of the i-th block is represented by a vector concatenating
its relative Cartesian coordinates, linear and angular veloci-
ties with respect to the gripper’s local frame, formulated as
sbi = (xri ||vri ||wr

i ),∀i ∈ {1, ...,M}. Therefore, a state of the
system can be defined as s = (sgrip||sb1||sb2||...||sbM ).

The initial pose of the robot gripper is fixed at the same
place for all tasks, while the initial positions of blocks are
randomised and the initial orientations are always aligned with
the world frame. For the i-th block, its initial position, (xi0, y

i
0),

is uniformly sampled on the planar workspace within a square
centred at the gripper position (xgr0 , y

gr
0 ), i.e., xi0 ∼ U(xgr0 −

δ, xgr0 + δ) and yi0 ∼ U(ygr0 − δ, y
gr
0 + δ), where δ is half of

the square edge length. In this work, δ = 15 cm.
2) Actions: A low-level action comprises four elements,

including the motion of the end effector in the Cartesian space
(∆xgr,∆ygr,∆zgr) and the gripper stroke width wfinger, de-
noted as aL = (∆xgr||∆ygr||∆zgr||wfinger). All dimensions
are continuous within [−1, 1]. An exception is the Rotation
Task (see section. VI-A2), where the agent is additionally
allowed to rotate the gripper around its Z-axis.

As discussed in Section IV-B, there are N high-level actions
related to the N steps, i.e., aH ∈ {1, 2, ..., N}.

3) Low-level goals & reward function: Low-level goals are
represented by the absolute Cartesian coordinates of blocks
and the gripper as well as the gripper stroke width. Thus,
given M blocks, a low-level goal is described as gL =
(xagrip||wfinger||xa1 ||xa2 ||...||xaM ).

We measure the difference between an achieved low-level
goal gL′ and a desired low-level goal gL via the L2-Norm of
their difference, formulated as ||gL−gL′||2. Given a threshold
εg , a predicate fgL(s′) = [ ||gL − gL′||F < εg ] is used to
define a sparse reward function:

rL(s,aL,gL) =

{
0, fgL(s′) = 1
−1, fgL(s′) = 0

where s′ is the state that occurs after an action a is executed
at state s. In this work, we set εg = 0.02.

It is worth mentioning that most existing works represent
goals for the block-stacking tasks with only the absolute Carte-
sian coordinates of the blocks [1], [2], [4], and we call such
goals block-informed goals. In contrast in our work, the goals
consist of not only the coordinates of blocks but also the grip-
per and its stroke width, which we call block-gripper-informed
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goals. We notice through experiments (Section VII-A) that
training with block-informed goals is inefficient and results
in inconsistent behaviours. We hypothesise that this is due to
the lack of information about gripper motion provided by the
goals (and thus by rewards).

On the one hand, when rewards are only related to block
positions, exploration is difficult in a block-stacking task with
sparse rewards. If goals contain information about the gripper,
then some rewards are expected to ‘teach’ the policy about the
direct effects of actions, which are correspondingly gripper
movements in this context. It is therefore expected that the
policy would first learn to control its gripper to move around
before learning to use it to manipulate blocks.

On the other hand, block-informed goals incline to induce
a mixture of undesirable or unpredictable behaviours, includ-
ing slicing, pushing, grasping and moving several objects
simultaneously. We hypothesise that this is because block-
informed goals (and corresponding rewards) encourage the
robot to finish tasks, but ignore how the tasks are achieved.
Thus, only the blocks’ positions are considered insufficient
for representing the goals in accomplishing tasks that favour
certain behaviours.

We therefore adopt block-gripper-informed goals and
demonstrate empirically (in Section VII-A) that such goals
alleviate the severe exploration problem and produce more
consistent behaviours.

4) High-level goals & reward function: We have experi-
mented on two types of representations for high-level goals,
including the block-gripper-informed representation (discussed
in section IV-D3) as applied to the low-level goals and a binary
representation.

The binary representation is a binary vector with N di-
mensions, where N is the number of steps for a task. The
value of each dimension is computed using the predicate
of the according low-level goal, fgL . Using the task given
in Table I as an example which has 2 steps (N = 2)
with two distinct low-level goals (g1 and g2), a high-level
goal is then represented by a 2-dimensional binary vector:
gH = ( fgL1 , fgL2 ), where fgLn ∈ {0, 1}.

As an example, in Table I, a high-level goal with values
(1, 0) means gL1 should be achieved, while (0, 1) means that
gL2 should be achieved. The high-level reward function is
defined simply by checking whether the desired high-level goal
is achieved, using the element-wise equality with the actual
achieved goal gH′, as formulated below:

rH(s,aL,aH,gH) =

{
0, gH = gH

′

−1, gH 6= gH
′ (1)

where s′ is the state after a low-level action aL is executed at
the last state s.

V. TRAINING APPROACH

In this section, we first propose a deep learning version of
the Intra-Option Learning algorithm [12], [13], named Deep
Intra-Option Learning (DIOL), for training the high-level pol-
icy. Next, we propose an exploratory strategy to stabilise the
parallel training, named Auto-Adjusting Exploration Strategy

(AAES), and abstract demonstrations to improve the learning
efficiency. Finally, we review the popular goal-relabelling
method, Hindsight Experience Replay (HER), that boosts the
efficiency for GRL problems [4].

For updating the low-level policy, we apply the Deep De-
terministic Policy Gradient (DDPG [11]) algorithm following
the implementation in [4], but with a second critic to reduce
the overestimation error [30]. The pseudo-code of the training
process is presented in Algorithm 1. Algorithm parameters are
given in Appendix A. Mathematical notations are provided in
the supplementary material.

Algorithm 1 Parallel training pseudo-codes

Input: maximum epochs, cycles and episodes M0,M1,M2

Initialise DIOL (section V-A) and DDPG [11]
Initialise AAES (Section V-B)
for epoch = 1 to M0 do
| for cycle = 1 to M1 do
| | for episode = 1 to M2 do
| | | Sample a high-level goal
| | | for t = 0 to T − 1 do
| | | | if use demonstrations (section V-C, VII-D)
| | | | | Obtain the correct next low-level goal
| | | | else
| | | | | Sample a low-level goal from the high-level policy
| | | | end if
| | | | while not low level goal achieved
| | | | | Sample an action from the low-level policy with AAES
| | | | | Execute the low-level action and observe the next state
| | | | | Store the transition
| | | | end while
| | | end for
| | end for
| | Perform HER on RL with the “episode” strategy [4]
| | Perform Topt optimisation steps with DDPG [11]
| | Perform Topt optimisation steps with DIOL (Eq. 2, 3)
| end for
| Perform tests to obtain current low-level performance
| Update AAES (Section V-B, Eqs. 4, 5)

end for

A. Deep Intra-Option Learning (DIOL)

To train a high-level policy, a typical approach is to repre-
sent the policy by an option-value function Q(s, o) updated
by the classic Semi-MDP Q-Learning method, which has
been adopted in recent hierarchical RL studies [8], [9]. It
updates Q(s, o) with a discounted return, only when an option
terminates. This is not data efficient as it discards all the
data generated by a low-level policy except at the point of
termination. An alternative is the Intra-Option Learning (IOL)
method, which learns more efficiently from data generated at
every timestep [12], [13]. The original IOL update rule for
tabular problems is defined as:

Q(s, o)← Q(s, o) + α [(r + γ U(s′, o))−Q(s, o)]

where α is a step size and U(s′, o) is the option value upon
arrival defined as:

U(s′, o) = (1− β(s′)) Q(s′, o) + β(s′) max
o′∈O

Q(s′, o′)
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We extend it to a goal-conditioned, experience replay-
based mini-batch update for neural network approximators.
In training, off-line transitions are uniformly drawn from
the replay buffer D. A transition is denoted by ξ =
(s,gH,aH, r, bs′gL , s

′), where, s is the encountered state, gH

is the desired high-level goal, aH is the action (a low-level
goal) selected by the policy, r is the reward, bs′gL is a
binary value indicating whether the selected low-level goal
is achieved and s′ is the next state. The loss function for
computing the gradient is:

Lθi = Eξ∼U(D)[(r + γU(s′,gH,aH′, bs′gL ; θ−i )

−Q(s,g,aH; θi)]
(2)

where U(s′,gH,aH′, bs′gL ; θ−i ) is the goal-conditioned option
value upon arrival estimated by the target network, defined as:

U(·) = (1− bs′gL) Q(s′,gH,aH; θ−i )

+ bs′gL max
aH′∈AH

Q(s′,gH,aH′; θ−i )
(3)

where θ−i denotes the target network parameters (a partial or
delayed copy of the parameters of the main network θi [11],
[30], [31]).

Equations 2 and 3 are used to update the high-level policy
in our framework. For better learning stability with neural
network approximations, we employ two individual value
networks, each of which has a target network, to reduce value
overestimation as suggested by [30]. The estimated option
value upon arrival (Equation 3) takes the minimum value
between those computed by the two target networks. Both
target networks are updated w.r.t. their main networks softly
with a parameter τ � 1, i.e., θ− ← τθ+ (1− τ)θ− [11]. We
name this algorithm ‘Deep Intra-Option Learning’ (DIOL), as
it is a deep learning and experience replay extension of the
original IOL algorithm [12].

B. Auto-Adjusting Exploration Strategy (AAES)

As mentioned in Section IV-C, when training policies at
different levels of a hierarchical RL system in parallel, the
transition of higher level MDPs is non-stationary due to
the instability of the low-level policy caused by the random
exploration nature [7]. Previous works typically avoid this
issue by training two levels separately, keeping the low-level
policy unchanged when training the high-level one [8], [10].
Separate training is a viable but costly solution, especially
when the data-collection process is expensive (e.g., real-
life tasks or complex simulations). One existing approach
to this, Hierarchical Actor Critic (HAC), modifies the high-
level transitions as if the low-level policy is an optimal policy
[7]. However, it cannot fundamentally eliminate the non-
stationarity.

Based on the theoretical analysis in section IV-C, we
propose the AAES method, which adaptively reduces un-
necessary exploration of the low-level policy according to
its performance. AAES builds upon a common exploration
strategy for continuous reinforcement learning agents [11].
Specifically, the agent will either sample a random action from

a uniform distribution with a probability of α or takes an action
(with a probability of 1− α) using the learnt policy π(a|s, g)
with added Gaussian noises according to N (0, σ2). The policy
can be then formalised as πb(a|s, g) = π(a|s, g) +N (0, σ2).
In the former case, the agent explores the environment more
aggressively by randomly sampling actions in a large search
space globally. On the contrary, the noisy actions will explore
more locally. On top of this, AAES adjusts α and σ after each
epoch according to the testing success rate of each step:

αe+1 = cα (1− Se); σe+1 = cσ (1− Se) (4)

where cα, cσ ∈ (0, 1] are the upper bound constants of the
random action probability and noise standard deviation; the
subscript e denotes the epoch index; αe+1 and σe+1 are N -
dimensional vectors of random action probabilities and noise
standard deviations at epoch e+ 1; and Se is a N -dimension
vector of the averaged success rates of the N steps after
epoch e. Equations 4 allow the agent to adjust its exploration
adaptively such that an increase of the testing success rate,
after the e-th epoch, will result in a decreased probability of
taking random actions and a reduced deviation of action noise,
in the (e+ 1)-th training epoch.

In other words, at the beginning of training, AAES assigns
the highest probability of taking random actions and the
highest deviation of sampling action noise, since the success
rates are all 0. As the low-level policy becomes more skilled
at achieving a particular step (as its success rate grows),
AAES reduces the random action probability and action noise
deviation related to that step. When a step is well-learnt by
the agent (with its success rate approaching 1), AAES tends to
stop exploration and only takes greedy actions without noises.
This thus ensures the high-level policy to stably move forward
to later steps while learning a task. The upper bound constants
cα and cσ are empirically determined (see Appendix A).

In practice, directly computing αe and σe using the original
success rate results in bumping changes of the two values
that may not reflect the real performance of the policy. For
example, if a success rate occasionally grows up significantly
after an epoch, it is more possible that it is tested in a more
familiar task distribution region than that it truly performs well
in all cases. Thus, we smooth out the bumping changes using
a delayed copy of the original success rate vector: S−e . This
value is updated slowly via

S−e+1 ← τsSe + (1− τs)S−e (5)

with τs � 1. Finally, we use this delayed copy to compute
αe and σe, obtaining smoothly changing curves of the two
values and thus more smoothly auto-adjusting exploration.

C. Abstract Demonstrations

We introduce an abstract form of demonstrations to accel-
erate the learning for multi-step tasks with sparse rewards.
As mentioned, most existing works use human demonstrations
at the trajectory level that can be difficult to obtain and are
usually not readily available [2], [6], [16].
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In this work, we provide the agent with the correct orders
of steps at the symbolic level for achieving final outcomes,
hence named ‘abstract demonstrations’. For example, if a
desired step is to place a blue block on top of a red block,
the demonstration would be a sequence of steps: 1) grasping
the blue block and 2) placing it on top of the red block. In
our implementation, they are represented by different ordering
of step indexes. Such abstract demonstrations are relatively
easier to obtain, and resemble many human instructions in real-
world scenarios, e.g., instructions of building a Lego house,
assembling/disassembling a machine, etc.

Despite its simplicity, we consider that this form of demon-
strations would benefit both levels. For the low-level policy,
it serves as a pre-designed curriculum, guiding the low-level
policy to learn to achieve goals in a reasonable order (i.e.,
from easy to hard). For the high-level policy, it serves as the
right action sequences that lead to desired outcomes.

D. Hindsight Experience Replay (HER)

HER is a data augmentation method, which relabels rewards
and desired goals of experienced transitions, aiming to im-
prove the sample efficiency for sparse reward GRL problems
[4]. A transition is collected after the system passes one
timestep. In GRL, a transition commonly consists of a state,
a desired goal, the next state, an achieved goal, and a reward.
Before pushing the transitions of a full trajectory into a replay
buffer, HER samples (k) goals using a sampling strategy. Then,
another k synthetic trajectories are produced by copying the
old trajectories and replace their desired goals with the ones
sampled previously. Rewards for these new transitions are
recomputed according to the goal-conditioned reward function.

We use the episode strategy for all low-level policies to
sample goals, which samples the k goals uniformly within a
collected trajectory, with k = 4 working reasonably well [4].

VI. EXPERIMENTS SETUP

This section introduces a set of block-stacking tasks exper-
imented in this work and the training and testing procedures.
To begin with, we declare two general assumptions used in this
work. First, we assume that any given task to be solved by the
agent can be decomposed into a finite number of intermediate
steps (based on human prior). Second, we assume that there
is always an achieved goal given a system state, which is the
required assumption for using the hindsight experience replay
technique [4].

A. Task configurations

We conduct simulation experiments on eight variants of
block-stacking tasks in the Open AI Gym environment with
the MuJoCo engine [32]. A 7-DOF Fetch robot is used in the
simulation.

1) Basic tasks: Table II lists the configurations of four basic
block-stacking tasks, where a robot needs to stack some cuboid
blocks on top of one another to form a tower. Three blocks of
different colours (Red, Blue, Green) are used in these tasks.

(a) (b)

Figure 3: (a) The ‘B→G→R’ outcome of the fourth basic task;
(b) the ‘R→BG’ outcome of the pyramid task.

Each task has a different number of desired outcomes (high-
level goals), and thus requires different number of steps to
accomplish them all.

For example, ‘B→G→R’ is one desired planning outcome
that denotes the desired top-down order of three blocks of
task 4 (Fig. 3a). This ‘B→G→R’ order would require five
steps: 1) grasping block G, 2) placing G on the top of R, 3)
grasping block B, 4) placing B on the top of G and R, and
5) moving the grip away. Since the robot also has to learn
the other order ‘G→B→R’, there are in total 10 steps in task
4. ‘Training timesteps’ and ‘Testing timesteps’ represent the
number of actions the robot can take before the system resets
(i.e., the length of a training or testing episode).

Among the four basic tasks, we analyse the effect of dif-
ferent representations of goals with tasks 1 and 2. The effects
of the AAES, parallel training and abstract demonstrations are
validated on only task 2. All basic tasks are used to evaluate
the ability of learning diverse desired planning outcomes with
a single policy.

2) Additional tasks: We also propose four additional tasks
in different configurations that are considered more complex
than the basic block-stacking task. The first one is designed
to demonstrate that the proposed UOF can handle tasks of
different stacking types, while the second one is the same
with the task 1 in Table II, except that the gripper is allowed to
rotate along the Z-axis, providing one more degree-of-freedom
in control. The third and fourth tasks are designed to test the
generalisation ability of our method by randomising the sizes
of blocks. For the sake of clarity, the first task is termed as
‘pyramid task’, the second task is termed as ‘rotation task’ and
third and forth are termed as ‘randomised block size (RBS)
tasks’.

The pyramid task is more difficult than the basic tasks
as it requires the robot to place one or two blocks at one
level (compare Fig. 3a and 3b). In Table III, ‘R→BG’ in the
‘Desired outcomes’ column denotes an outcome where a blue
and a green blocks are placed at the bottom closely, and a
red block longer than the others is placed on top of them
(shown by Fig. 3b). This would require seven steps to finish:
1) grasping block G, 2) placing G on the front side of the
tray, 3) grasping block B, 4) placing B on the back side of the
tray close to G, 5) grasping block R, 6) placing R on top of
B and G, and 7) moving the grip away. With the other order,
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Task Blocks No. of steps Desired outcomes Training epochs Training timesteps Testing timesteps

1 R, B 3 B→R 150 25 50
2 R, B, G 6 B→R; G→R 800 25 50
3 R, B, G 15 B→R; B→G; R→B; R→G; G→R; G→B 1000 25 50
4 R, B, G 10 B→G→R; G→B→R 1500 40 60

Table II: Basic Block-stacking Tasks.

Task Blocks Control No. of steps Desired outcomes Training epochs Training timesteps Testing timesteps

Pyramid R, B, G Position, finger 14 BG→R; R→BG 2000 60 80
Rotation R, B Position, finger, Z-rotation 3 B→R 300 25 50
RBS 1 R, B Position, finger 3 B→R Test only - 50
RBS 2 R, B, G Position, finger 6 B→R; G→R Test only - 50

RBS: random block size.

Table III: Additional Block-stacking Task.

‘BG→R’, the total step count is 14.
The rotation task is more difficult as the extra degree of

freedom enlarges both the state and action spaces of the agent.
In particular, we add the Euler angles of the end-effector and
blocks into the agent’s state representation, which, for task
1, adds 9 more dimensions into the state space. As such, we
train the agent for 300 epochs, which is twice longer than the
original basic task 1. Except for the state and action spaces and
the training time, all other definitions of the rotation task and
algorithm remain the same, as presented in subsection IV-D
and Appendix A.

The RBS tasks are modified from tasks 1 and 2 presented
in the basic tasks (Table II). They aim to test the zero-shot
generalisation ability of the trained policies. Specifically, they
are the same with the basic tasks except that, at the beginning
of a test episode, the block sizes are sampled uniformly from
an interval of [15cm, 35cm]. Since the agent is only trained
with a fixed block size of 25cm, its performance on the
RBS tasks without fine-tuning will showcase its zero-shot
generalisation ability (see results and discussion in section
VII-G).

B. Training Details

The training process is summarised in Algorithm 1 in
supplementary material, with detailed parameter settings given
in Appendix A.

Training: Both levels are trained in parallel, The training
process consists of Epochs, Cycles and Episodes. An epoch
includes 50 cycles, and each cycle is composed of 16 episodes.
States and goals are normalised using a running average of
the mean and variance. At the end of each cycle, we apply
the HER method using the episode strategy with k = 4 [4] to
relabel the low-level trajectories. Then, along with the original
trajectories, they are merged into the low-level replay buffer.
For the networks at both levels, samples are uniformly drawn
from the buffers to perform 40 optimiser steps after each cycle.

Testing: For performance evaluation, we test both levels
at the end of each epoch with only greedy actions for 30
episodes, and record the average returns, success rates and
time steps towards the completion.

It is worth mentioning that the performance of the low-level
policy is related to the abstract demonstrations. This is because
of the step inter-dependency, as some steps require others to be
reached in advance. In a testing episode, the low-level goals
are passed to the low-level policy according to the abstract
demonstrations.

For the high-level policy, its performance is evaluated
regardless of how well the low-level policy performs at the
time of testing. This is different from testing its stand-alone
planning performance using an optimal low-level policy, since
we aim to improve the parallel training process instead of
separate training.

The numbers of training epochs, training and testing
timesteps of each task differ (see Table II). All basic tasks and
the rotation task were run with 3 random seeds to calculate the
means and deviations of the results, while the Pyramid task
was run with one seed. The experiment is computationally
expensive and takes a long time to run, ranging from 2 days
to a week in our work. We use a workstation with an Intel
i7-8700 CPU and a Nvidia RTX-2080 GPU.

VII. RESULTS

We evaluate the performance of the following aspects,
namely, representations of goals, AAES, abstract demonstra-
tions, and parallel training. We also give a comparison with
a state-of-the-art algorithm, HAC, and experiments on the
additional tasks. The main performance metric used in this
section is the success rate, while we also provide the curves
of test returns in the supplementary material.

A. Representations of Goals

1) Low-level goals: To evaluate the performance differ-
ence introduced by the proposed low-level goal representa-
tion, named block-gripper-informed goals (defined in section
IV-D3), we perform a comparative study with the block-
informed goals used in previous works [1], [2], [4]. Since this
experiment is to evaluate the low-level control performance,
only low-level policies were trained, without using AAES.
In block-gripper-informed cases, desired low-level goals are
provided in the correct order; while in the block-informed
cases, desired goals (blue block position) were uniformly
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sampled on the table, in the air or on top of the red block, as
this is the only way to succeed without using kinematic-level
demonstrations, suggested by [4].

(a) (b)

Figure 4: (a) Average success rates of low-level kinematic
control of the final step of task 1 with different goal rep-
resentations; (b) Visualisation of the step.

In Fig. 4a, the red line depicts the success rate of block-
gripper-informed goals of the final step (‘Moving Gripper
Away While Keeping The Blocks Stacked’, as shown in
Fig. 4b), and the grey line depicts the success rate of block-
informed goals for stacking the blue block on top of the red
block.

The grey line shows a higher variance and grows much more
slowly compared to the red line. This means that using block-
gripper-informed goals converges significantly faster with a
lower variance. This result indicates that learning from only
block-informed goals is inefficient. It is clear that introducing
the extra gripper information in describing the goals effectively
increases the performance.

2) High-level goals: This subsection analyses the perfor-
mance of the high-level policy with the high-level goals in
the block-gripper-informed representation and in the binary
representation (see Section IV-D).

(a) Task 1 (b) Task 2

Figure 5: Average success rates with block-gripper-informed
and binary high-level goals.

Fig. 5 displays the average testing success rates of the
high-level policy using the two high-level goal representations.
Comparative experiments were performed on basic task 1 and
2 (see Table II). The binary representation outperforms the
block-gripper-informed representation. Though Fig. 5a shows
no performance difference, Fig. 5b shows a clear advantage of
deploying the binary representation (red line) over the block-
gripper-informed representation (grey line) with task 2.

Based on the results above, in the rest of the paper, we use
the binary representation to describe high-level goals.

B. Auto-adjusting Exploration Strategy (AAES)

This subsection evaluates the AAES for parallel training.
The evaluations are focused on the high-level planning policy,
as the AAES is introduced to stabilise the high-level MDP

(a)

(b)

(c)

(d)

Figure 6: (a): Average success rate of high-level planning
in task 2; (b)-(d): Three consecutive steps (left column) of
task 2 (grasping blue block, placing on the red block, and
leaving) and the average timesteps required for completion
(right column). The red lines represent the performance with
AAES and the grey lines depict the baseline without AAES.
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transitions. The baseline performance is obtained with a non-
adaptive version of the AAES, where α and σ are kept equal
to the constant bounds (cα = 0.2, cσ = 0.05, section IV in
supplementary material), as an exploration strategy equivalent
to that in [4].

Fig. 6a displays the average success rates of task 2 (see
Table II). It shows that using AAES (red line) improves the
learning efficiency over the baseline (grey line) and reaches a
success rate of 0.941 ± 0.003. Moreover, it starts to diverge
from the grey line at about epoch 120, as expected, showing
that AAES is considerably more effective for later steps.

Figs. 6b–6d display the average timesteps required to com-
plete 3 consecutive steps: “Grasping Green Block”, “Placing
Green Block On Red Block”, and “Moving Gripper Away”.
From the start to the later steps, (correspondingly from Figs.
6b to 6d), one can observe that, as expected, the least re-
quired number of timesteps for finishing a task step increases
(around 5, 15 and 23 timesteps respectively) after the training
stabilises. The advantage of deploying AAES becomes clearer
gradually through the three steps. In particular, for the first step
(Fig. 6b), it shows no clear improvement, while Figs. 6c and
6d demonstrate clear reductions of about 10 and 20 timesteps
on average relative to the baseline at the end of the training
process. In addition to the reduction of required timesteps,
AAES considerably improves the speed of convergence for
learning the later steps. As shown in Figs. 6a, 6c and 6d, one
can see that the red lines converge at around the 450-th epoch,
while the grey lines do not show any obvious trend of reaching
convergence within 800 epochs.

In short, these results empirically prove that, for tasks com-
prising inter-dependent steps, the proposed AAES improves
the learning for the high-level planning in parallel training,
especially for later steps, in terms of convergence speed and
learnt performance.

C. Parallel and separate training

This subsection analyses the performance of high-level
planning, when training both levels in parallel and separately.
Fig. 7 displays the average success rates of the high-level
policy in task 2 (see Table II). The grey line depicts the success
rate of high-level planning trained in 300 epochs with a pre-
trained low-level policy; and the red line depicts the one that
was trained in parallel with the low-level policy from scratch,
aided by the AAES.

Figure 7: Average success rates of high-level planning. Sepa.:
Trained with a pre-trained low-level policy; Para.: Parallel
training with low-level policy from scratch.

In Fig. 7, the grey line starts with a higher success rate
(around 0.4), but has no obvious improvement afterwards
(stay at around 0.661 with a standard deviation of 0.152).
In comparison, the red line starts from zero because both the
policies start from scratch. However, it surpasses the grey line
at around 150-th epoch and converges at a higher average
success rate (0.896) with a lower deviation (0.017).

Training a planning policy with a pre-trained control policy,
as deployed in [8], [10], starts learning faster. However, par-
allel training achieves a higher and more stable performance.
In addition, parallel training is more time efficient without the
need to pre-train the low-level policy. For example, the low-
level policy for task 2 needs to be pre-trained for 300 epochs,
thus, parallel training is roughly twice more time-efficient than
separate training in this case.

D. Abstract demonstrations

This subsection discusses the effect of abstract demonstra-
tions. Fig. 8 shows the success rates of both low-level (Fig. 8a)
and high-level policies (Fig.8b) given different numbers of
demonstrated episodes.

The number of episodes to be provided with demonstrations
is specified by a proportion of each cycle, denoted by x. Each
cycle has 16 episodes in total. For instance, when x = 0.25, the
number of demonstrated episodes within each training cycle
will be 16 × x = 4. In that case, each cycle would contain
4 episodes of high-level actions from the provided demon-
strations. We conducted experiments with various values of x:
{0, 0.25, 0.5, 0.75, 1}. All cases are trained in parallel with the
AAES.

(a) Low-level (b) High-level

Figure 8: Average success rates with different proportions
of demonstrated episodes in the task 2. 0.0-D, 0.25-D, 0.5-
D, 0.75-D, and 1.0-D denote the respective proportions of
demonstrations added in the episodes.

Overall, Fig. 8 shows that, given half of the episodes being
demonstrated (green lines in both subfigures), both levels reach
a success rate that roughly triples those without demonstrations
(blue lines in both subfigures). This indicates that abstract
demonstrations significantly benefit both low-level and high-
level policies.

Fig. 8a shows that, for the low-level control policy, demon-
strating more than half of the training episodes does not
achieve much more further improvements on performance, as
the green, red and purple lines grow closely together. Besides,
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demonstrating 0.75 proportion of the episodes did further
accelerate the convergence, but increasing upon 0.75 did not.

On the other hand, Fig. 8b shows a different phenomenon
that too many demonstrations result in a destructed high-level
policy (purple line). This is because an RL algorithm needs
not only rewards, but also random exploration to collect ex-
periences without rewards for distinguishing good behaviours
from the bad ones [29]. Our result also shows that exploration
and exploitation for the high-level policy was well-balanced by
selecting 0.75 proportion of the episodes to be demonstrated.

On the contrary, providing full demonstration to the low-
level policy dose not degrade its performance. This is because
the given demonstrations are the correct sequences of low-
level goals, and this does not directly influence the exploration
behaviour of the low-level policy, i.e., what gripper control
actions to be selected. Instead, adding more abstract demon-
strations will further improve the low-level performance as
shown in Fig. 8a, because it serves as a kind of curriculum
and frees the low-level policy from learning the dependencies
between low-level goals from scratch.

In short, these results prove that abstract demonstrations,
which can be easily obtained, can significantly accelerate the
learning efficiency of both low level (kinematic) control and
high level (symbolic) planning.

E. Comparison with Hierarchical Actor Critic

We compare our method with Hierarchical Actor Critic
(HAC) [7], which is considered a state-of-the-art goal-
conditioned hierarchical reinforcement learning algorithm, and
suits the multi-outcome tasks as it is goal-conditioned in all of
its hierarchies. In HAC, three modifications are applied to the
collected transitions to deal with the non-stationary transition
problem described in section IV-C. However, it can not be
directly applied to the multi-step settings discussed in our work
because the high-level policy in HAC produces a continuous
multi-dimensional vector as a low-level goal. This cannot be
changed as their transition modification approaches depend on
continuous high-level actions.

Note that, though the comparison is not perfectly fair, it
provides an intuition of how hard it is to learn in a continuous
goal space. The UOF proposed in this work starts by task de-
composition and only learns the sequences of sub-tasks at the
higher level, while HAC was designed to learn in continuous
goal spaces at every level. To ensure the comparison to be as
fair as possible, we also provide abstract demonstrations to the
HAC agent2.

Results show that, for tasks 1 and 2, the average success
rate of the low-level policy of the HAC agent can only reach
around 0.5, while the high-level policy success rates are even
lower (grey lines in Fig. 9). This means the HAC agent
can only learn the first step of the task (grasping a block),

2Abstract demonstrations are represented by the correct sequences of steps
towards some desired final outcomes. They are lists of integer indices, with
each index related to a set of sub-goals of a unique step. Thus, given the
simulator, we can obtain a sub-goal vector related to a step by selecting
an index. As for the UOF agent, the high-level policy takes the indices as
demonstrated actions, while for the HAC agent, it takes the multi-dimensional
sub-goal vectors as demonstrated actions.

while our method (red lines) can solve all tasks satisfactorily.
This is expected since HAC is not designed to handle multi-
step tasks [7]. This implies that task decomposition, which
may be done automatically in future research, is essential for
long horizon manipulation tasks as it enables reasoning in a
discrete space with vastly lower dimensionality. On the other
hand, though HAC provides techniques to alleviate the non-
stationary transition problem, it does not completely erase the
exploratory behaviours of the low-level policy as what AAES
does when a step is well-mastered.

(a) Task 1 - Low-level (b) Task 2 - Low-level

(c) Task 1 - High-level (d) Task 2 - High-level

Figure 9: Average success rates of HAC and UOF.

F. Learning Diverse Combinatorial Results

This subsection evaluates the high-level planning perfor-
mance obtained by a universal high-level policy and separated
policies. For a universal policy, we merge data into one replay
buffer; while for separated policies, we store data of different
final goals in different replay buffers, each of which is used
to train a corresponding policy. The replay buffers have a
capacity of 1e6 datapoints and discard the oldest data, when
new data comes in if it is full. Thus, they are trained with the
same amount of data, but each separate policy only learns one
task.

Fig. 10 shows that, for tasks 1-4 (Fig. 10a to 10d), the
planning performance is not sacrificed when training with only
one universal policy (red lines). Instead, it even surpasses sep-
arate policies (grey lines). Moreover, the more final planning
outcomes needed to be learned, the greater the advantage of
universal policy over separated policies (task 1 has 1 final
outcome; task 2 and task 4 have 2; and task 3 has 6).

One reason for the better performance with the universal
policy could be due to the knowledge sharing mechanism
within a single policy that allows the learnt experience to
be shared among different desired planning outcomes, while
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(a) Task 1 (b) Task 2

(c) Task 3 (d) Task 4

Figure 10: Average success rates of planning over multiple
steps with universal and separated policies for the four tasks.
Univ: single universal policy; Sepa: separated policies.

separated policies will have to learn everything from scratch
for each desired planning outcome.

However, as shown in Fig 10d, although knowledge shar-
ing improves the sampling efficiency for learning multiple
outcomes, its advantage is less obvious when solving longer
horizon tasks (task 4). We consider that it is because, with
more data required by longer horizon tasks, using separate
policies for each of the final outcomes will reduce the amount
of required training data. Therefore, for universal policies, the
advantage of knowledge sharing is counter-balanced by the
increased data requirement.

On the other hand, another advantage of such a universal
policy is the reduced memory usages. A clear difference of
memory usages for training these policies tasks is shown in
Table IV. The “Step Num.” column shows the number of steps
that are required for each task.

The ‘Buffer’ column specifies the memory size of filled-
up replay buffers, each of which contains 1e6 transitions
(datapoints). This column shows an increasing buffer size as
the task becomes more complex (from rows 1 to 4), and a no-
ticeable increased memory occupancy with separated policies
than universal policies (in total, from ∼ 1.72G to ∼ 2.60G
for a universal policy, and from ∼ 5.16G to ∼ 36.30G for
separated policies).

The ‘Network’ column shows the memory consumption of
neural network parameters of these policies. For separated
policies, the increment of memory needed to store these
parameters is also noticeably greater than a universal policy.
Since we use Multi-Layer Perceptrons (MLPs), these networks
are relatively small. However, such an increment of memory
consumption would become considerably more severe when
using more complicated neural networks.

Table IV: Memory Usages for Training High-Level Policies

Task Step Num. Policy Network Buffer

1 3 Universal ∼1.08M ∼1.72G
Separate ∼3.25M ∼5.16G

2 6 Universal ∼1.12M ∼2.42G
Separate ∼6.73M ∼14.52G

3 15 Universal ∼1.12M ∼2.42G
Separate ∼16.80M ∼36.30G

4 10 Universal ∼1.31M ∼2.60G
Separate ∼11.30M ∼26.00G

Fig. 10 and Table IV altogether suggest that training a single
universal policy without sacrificing its performance has clear
advantages in terms of better knowledge sharing and lower
memory consumption.

G. Additional task

This subsection examines the performance of our framework
on the additional block-stacking tasks. Specifically, we further
test our method on four additional tasks: the pyramid task, the
rotation task and two randomised block size (RBS) tasks as
shown by Table III.

For the pyramid task, results show that the low-level policy
achieved 0.6 average success rate and the high-level achieved
0.4. This is expected because each of the two final desired
outcomes of the additional task requires 7 consecutive steps
to finish, while those of the hardest basic task (the fourth in
Table II) only require 5.

For the rotation task, results show that the low-level policy
achieved 0.95 average success rate and the high-level achieved
0.8. The rotation task is the same as task 2 in Table II except
that the gripper has one more degree of freedom (DoF). This
extra DoF enlarges the search space of solution and thus
doubles the training time required for the agent to converge.

Finally, the results of the RBS tasks show that the trained
policies can achieved an average success rate of 0.66 in both
tasks in 30 testing episodes for each step.

This successful zero-shot generalisation is potentially due
to the use of block-gripper-informed-goal representation (see
section IV-D3). After training, the agent develops a connection
between its goals, observations and actions in a non-trivial
way, such that it is able to match the selected gripper width
(action) according to the block size (goals and observations).

We have also observed some failures when the blocks are
too small or too large (near the extremes of the sampling
interval [15cm, 35cm]. However, the zero-shot generalisation
performance is considered satisfactory and a fine-tuning pro-
cess can be conducted for a different size of blocks if higher
performance is demanded.

Overall, these results demonstrate that the UOF is able to
handle different types of tasks that can be more complicated
and that our method can achieve a satisfactory level of zero-
shot generalisation performance. Improving the performance
would require more efforts such as more complicated neural
networks, more informative representation of goals and fine-
tuning on tasks with different target objects.
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VIII. CONCLUSIONS

In this paper, we propose a hierarchical reinforcement
learning framework, the Universal Option Framework (UOF),
to formalise multi-step manipulation tasks learning more uni-
versally. We then extend the Intro-Option Learning algorithm
to a deep learning and experience replay version for training
the high-level policy. We also propose the Auto-Adjusting
Exploration Strategy and Abstract Demonstrations to stabilise
and accelerate parallel training. The UOF is tested on a set
of block-stacking tasks with a 7-DOF Fetch robot in the Gym
simulation environment [32].

We empirically demonstrate that our method is able to learn
multiple combinatorial outcomes from multi-step manipulation
tasks with universal low- and high-level policies. Compared
to separate and repetitive training, our parallel training con-
siderably reduces the memory consumption and computational
costs.

Concretely, the parallel training is stabilised bottom-up
by the proposed auto-adjusting exploration strategy at the
low-level and accelerated top-down by an abstract form of
demonstrations that provides the correct orders of steps at the
high level.

There are two main limitations of the proposed method.
First, as an extended version of goal-conditioned reinforce-
ment learning, UOF requires a mechanism for goal generation
[4]. Such a requirement prevents our method from handling
tasks that cannot generate goals in advance. Another limitation
is that our method requires users to manually separate the
space of sub-goals in a way that each of the subsets relates to
a high-level goal (a task step).

Future research will try to address the two aforementioned
limitations. First, to improve the generalisability of the UOF,
it is essential to develop a more generalised goal generation
mechanism. For example, for cases where goals could only
be represented by images or in other complex forms, a goal
generation mechanism may be developed based on Generative
Neural Networks (GNNs). Regarding the second limitation, it
is valuable to develop a technique that can automatically define
a set of meaningful sub-goals, such that these sub-goals cor-
respond to some critical steps for the overall task. Besides, we
will also try to improve the degree of knowledge integration
of universal policies, either for planning or kinematic control,
by, e.g., learning from different types of reward functions.

APPENDIX A
ALGORITHM AND PARAMETER SETTINGS

This section elaborates the implementation details of the
training algorithm used in this work. Experimental programs,
including environments and algorithms, are based on Python.
Simulation environments are adapted from the Open AI Gym
environments [32]. Neural network implementation is based
on the PyTorch library [33]. The parallel training procedure is
summarised in the Algorithm 1 in supplementary material.

The goal-conditioned low-level policy of a universal option
is trained using the DDPG algorithm [11], while the goal-
conditioned high-level policy is trained using the DIOL pro-
posed in Section V-A. They both use a secondary critic to

reduce value estimation error [30], with the discount factor
γ = 0.98.

These components are represented by MLPs of the same
size (3× 256), activated by ReLU. The final layer of the low-
level actor network is activated by Hyperbolic Tangent (Tanh);
final layers of the low-level critics and option-value function
do not use activation functions.

The states and goals are concatenated as the inputs for the
policy and the option-value networks. Low-level actions, states
and goals are concatenated as the inputs of the critic networks
of the low-level policies. The states and goals are normalised
using a running average of the mean and variance.

The replay buffers for both levels have the same size of
1e6. The networks are optimised using Adam with the same
learning rate of 1e − 3 and batch size of 128. All networks
take 40 optimiser steps after each cycle. Estimated target
action values for updating low-level policies are clipped within
[−25, 0]; estimated target option values for updating high-level
policies are clipped within [−t, 0] where t is the maximal
training timesteps of an episode (see Table II). After each
optimiser step, corresponding target networks are updated
softly with τ = 0.1.

The AAES for the low-level policy uses constant upper-
bounds cα = 0.2 and cσ = 0.05. The copy of the performance
S−n,e is updated with τs = 0.05. These three values are selected
according to comparative experiments, with resultant figures
given in section IV of the supplementary materials.

The high-level policy uses an episode-wise decaying-ε-
strategy modified from [31], with ε being decayed using the
following equation:

εi ← ε− + (ε+ − ε−) e
−i
ρ

where ε+ is the upper-bound, ε− is the lower-bound, e is the
natural exponential base, i is the total number of past episodes
and ρ is the decaying efficiency parameter. In all tasks, we
use ε+ = 1.0 and ε− = 0.02. For basic tasks 1 and 2, we set
ρ = 3e4; for basic task 3, ρ = 8e5; for basic task 4, ρ = 1e6;
for the additional task, ρ = 2e6;. Note that ε does not change
within an episode.
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