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Summary. 

Advances in precision medicine offer exciting opportunities to improve healthcare provision 

and clinical decision-making. Here, developments in diagnostic capabilities provide greater 

insights into the mechanisms of disease progression and allow the stratification of patients for 

the selection of therapies for optimal treatment. Innovations in precision medicine, therefore, 

contribute to improved clinical outcomes, a patient’s quality of life, and health economics. 

Experiment presented in this investigated the development of bioinformatic tools that could 

be used to stratify patients based on transcriptomic data derived inflamed tissues. To support 

this approach, I used open access repository datasets from patients with rheumatoid arthritis.  

Rheumatoid arthritis (RA) is a chronic and systemic autoimmune disease that affects around 

1% of the adult population.  Here, inflammation of the joint (synovitis) drives disease 

progression and irreversible joint damage. The clinical presentation of synovitis is highly 

heterogeneous with distinct histological features that affects the response commonly used 

therapeutics (e.g., biological drugs against cytokines). 

Examination of synovial histopathology reveals three forms of the disease termed Follicular – 

with extensive infiltration and the presence of lymphoid aggregates; Diffuse – extensive 

infiltration but with relatively few B cells; and Pauci-immune – which is driven by the stromal 

tissue compartment.  Using transcriptomic data from each of these pathologies I designed and 

validated a disease classifier that supports the stratification of disease and the interrogation of 

results from independent patient cohorts where batch effects often restrict interpretations. 

Thus, I now present a tool that allows discrimination of these pathologies according to synovial 

transcriptomic data. 

Results presented in this thesis identified two gene signatures that perform well as identifiers 

of follicular and pauci-immune synovitis. The characterisation of diffuse synovitis is, however, 

more challenging and the application of the disease classifier tools showed that this form of 

pathology comprises a spectrum of sub-pathologies that require further characterisation. In an 

extension of these studies I further show how these bioinformatic tools may be used to record 

patient responses to biological drug therapy and unearth the biological signal pathways 

responsible for disease progression. Whilst these studies have focussed on RA as a case study, 

the methodologies are disease agnostic, and offer exciting opportunities for additional 

applications in other disease settings. 
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1. General introduction. 

1.1. Background. 

Initiated in 1990, the Human Genome Project was an international investment designed to 

determine the DNA sequence of the entire human genome. Since the publication of the first 

datasets in 2003 the subsequent two-decade has seen an explosion in our understanding of 

human genetics in health and disease and has pathed the way for significant advances in both 

computational methodologies and the development of sequencing technologies(1–3). 

Following the mapping of the human genome, various technologies have been developed that 

allow a genome-wide interrogation of genetic determinants of disease susceptibilities and 

investigations into the epigenetic mechanisms affecting gene regulation. Consequently, 

researchers interested in genetics and functional genomics now benefit from a range of 

technologies that couple traditional biochemical methods with whole-genome next-generation 

sequencing capabilities. These include the identification of Single Nucleotide Polymorphisms 

(SNPs) that predict genetic susceptibility for a disease or a biological trait within a population 

and studies of gene regulation. Here, the application of RNA-sequencing (RNA-seq), chromatin 

immunoprecipitation-sequencing (ChIP-seq), cross-linking immunoprecipitation-sequencing 

(CLiP-seq), assay for transposase-accessible chromatin-sequencing (ATAC-seq) and others have 

enhanced our ability to identify genes and pathways associated with aberrant behaviour. In 

parallel with these technology advances, we have also seen a significant expansion in 

computational capabilities and biologists with expertise in bioinformatics, biostatistics and 

mathematical modelling are increasingly used to support fundamental discovery science and 

clinical studies.

1.1.1. Big data. 

Advances in sequencing technology have reduced the time required to sequence the human 

genome. While the original human genome project took 13 years to complete, the human 

genome can now be sequenced within 24 hours using the latest technologies (4). Genetic 

sequencing through The Sanger Institute produced approximately 1 petabyte of genomic data 

up to 2012. In 2019, this same amount of data was generated every 35 days (5). During this 

time, the overall cost of sequencing has dropped considerably and the ability to multiplex 

samples for analysis has made the technology increasingly accessible. For example, studies 

performed by my laboratory have almost entirely switched away from the use of quantitative-

PCR methods to more holistic RNA-seq, which offers a greater amount of information for a 

similar cost.  
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This increase in the amount of available genetic and genomic data is similarly reflected by an 

increase in the annual number of publications. Here, the number of papers with the mention 

of “gene expression” in 2019 is double the number of publications per year since the 

publication of the human genome project (Figure 1.1).  Moreover, the number of publications 

continues to rise year over year.  These large datasets, therefore, provide the opportunity to 

utilise discriminatory analyses and machine learning to identify patterns of behaviour in the 

data.  

 

Figure 1.1:  Number of publications per year with the term “gene expression”.  

This was also expanded to identify papers that included other terms, Signature, Treatment, Survival, Diagnostic, 
Prognostic.

1.1.2. Computational analyses. 

Analysing transcriptomic data can be performed utilising a large range of statistical 

methodologies. However, these can be broadly classified into three main categories: 

differential gene expression, clustering, and prediction.   

 Clustering analyses do not include a priori information. Instead, these methods 

attempt to discern fundamental similarities between samples that identify common 

features within the datasets. These often equate to genes or samples that display a 
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common pattern of expression or contribute to a common underlying biological 

mechanism. 

 Differential gene analysis aims to identify genes that are fundamentally different 

between groups. This analysis necessitating prior information that identifies the 

groups (although this may be derived from clustering). These types of approaches are 

often applied to understand the biological significance of gene deletions or responses 

to interventions that target a specific protein or signalling pathway. 

 Predictive analyses can be implemented either diagnostically or prognostically.  These 

analyses use prior knowledge to identify patterns in the data that allow for the 

discrimination of the groups.  Future samples can then be classified based on these 

predictive features. 

These methodologies have demonstrated extensive and increasing usage with gene expression 

data, as visualised in Figure1.1.  These techniques are explored in a little more detail in the 

next section

1.1.3. Clustering. 

Methods designed to allowing clustering are broadly used in various fields of investigation. 

Clustering is an unsupervised learning methodology(6).  However, care must be taken to 

identify the correct clustering algorithm, as no one algorithm performs well for all problems(7).  

This thesis makes extensive use of hierarchical clustering and Principle Component Analysis 

(PCA) to reduce the high dimensionality of the data to a 2D representation of the data to 

identify groups.   

Hierarchical clustering can be approached using two principle methods (8). (A) Agglomerative 

nesting – where each sample is its own cluster and then iterates to make the two most similar 

samples is a cluster and progresses to include all samples. (B) Divisive analysis – this method 

takes the opposite approach and starts with the whole population and splits the data into 

progressively smaller parts until each sample is distinct. Both of these approaches using 

statistical assessments to sub-group the original data but have numerous pro’s and con’s that 

influence the choice of analysis used.  In this thesis the primary algorithms utilised was 

agglomerative hierarchical clustering using Euclidean distances and Ward linkage method. 

PCA is primarily a tool to reduce the dimensionality of the data, reducing thousands of genes 

to only the few that have the most impact on variance.  In this thesis, whilst not applied as a 

clustering algorithm, PCA allows interrogation of the datasets to determine if variance 

observed in the samples separates them into meaningful groups.
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1.1.4. Differential gene expression. 

Differential gene expression is utilised to identify the changes in transcription activity 

associated with treatment or the phenotype of interest.  At a basic level, this can be achieved 

with simple T-tests, which was often performed when using small numbers of genes. For 

example, studies of gene regulation performed using polymerase chain reaction (PCR) 

amplification.  On the larger scale of whole exomes, Bayesian approaches have been utilised 

with microarray and RNA-sequencing.  This thesis makes extensive use of limma, which is a 

package in the R programming language that utilises a parametric empirical Bayesian approach 

that allows meaningful differentially expressed genes to be observed from relatively few 

samples(9).

1.1.5. Predictive Modelling. 

Predictive models aim to identify the features that discriminate samples based on the outcome 

and is a similar analysis to that described for differential gene expression.  This thesis made use 

of three algorithms to identify gene signature that discriminates the different pathologies of 

interest:  Shrunken centroids, sparse Partial Lease Squares Discriminatory Analysis (sPLS-DA), 

and Random Forrest.

1.1.5.1. Shrunken centroids. 

The use of shrunken centroids was developed as an approach to stratify different cancer types 

using microarray data(10).  Given the large number of probes on a microarray, it was 

important to reduce the number of genes to those that contribute the most towards 

classification.  Moreover, this technique was optimised for discriminating multiple classes. 

In this approach, the average expression of each gene is calculated for the entire dataset as 

well as for each of the classes.  Subtracting the global centroid from the class-specific centroids 

allows identification of those genes that are most distinct.  Whilst this allows comparison of 

sample profiles against these classes, it utilises the entire transcriptome to perform 

stratification.  Therefore, the shrunken component of the analysis allows the reduction of the 

number of genes needed to discriminate the classes.  Shrinking is performed by 

standardisation by the within-class standard deviation, weighting genes by those that have 

most stable (less variance) expression.  A soft thresholding approach allows control of the level 

of shrinkage, and therefore the number of genes selected for discrimination.  10-fold cross-

validation it then used to determine the overall error at each thresholding level.  Figure 1.2 

illustrates the centroids of the data, effects of shrinkage, shrinkage threshold, and the resulting 

genes selected that discriminates the classes.
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Figure 1.2:  Example of shrunken centroids classification of 4 classes of cancer.   

A Grey bars show shows the centroid values for each class, red shows the denoised profile resulting from the application of shrinkage.  B Highlights the number of genes and general error rate at each 
threshold.  C the resulting 43 genes that differentiate the 4 cancer classes, and the contribution to each centroid.  Figure adapted from Tibshirani et al. (2002). Diagnosis of multiple cancer types by 
shrunken centroids of gene expression. PNAS 
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1.1.5.2. Random Forest. 

Its name comes from the creation of numerous decision trees, resulting in a “forest”, from 

which a majority vote allows the identification of the most important features.  Figure 1.3 

illustrates a very simple decision tree, that allows the stratification of three groups using two 

rules.   In the random forest approach, multiple decision trees are generated by randomisation 

of variables and rules, and the importance of these is calculated by majority vote. 

In the context of disease stratification, we need to learn the pattern of expression associated 

with the disease classes.  Using multiple iterations, it is then possible to rank genes in terms of 

their contribution, and therefore create a classifier model based of those genes most 

important.   

 

Figure 1.3:  Example of simple decision trees.   

(A) A simple dataset with 2 classes, creating a simple rule (B) of x<2 = blue, x>2 green, however, this no longer works 
with a slightly more complicated dataset with 3 classes (C) in this case we need to incorporate additional rules (D).
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1.1.5.3. Partial Least-Squares Discriminatory Analysis. 

Partial least-squares discriminatory analysis is a multivariate dimensionality-reduction tool, it 

can be thought of as a ‘supervised’ PCA.  The difference is that it reduces the dimensions, but 

with the full awareness of the class labels(11).   

The technique can be utilised for feature selection and classification(12), although it is prone 

to abuse though overfitting.  In principle component analysis eigenvectors are created based 

on variance, and groups are identified by how they cluster after dimensional reduction.  In 

partial least squares, we select for the eigenvector that allows the segregation of the 

groups(13).  

Given that only a small number of features (genes) may be responsible for driving a biological 

event, we can adapt the technique to incorporate a sparsity assumption.  Doing so we can 

assign the number of features to each component and assess the ability of the model to 

stratify the groups.  This is where the challenge appears, what are the optimal number of 

features to incorporate in each component.  To address this, a bootstrapping method performs 

multiple rounds of sPLS-DA using different features to identify the core set of features that are 

consistent amongst the models(14)

1.2. Precision medicine. 

Advances in clinical medicine and clinical innovation have seen a significant move towards a 

more personalised approach to patient treatment. Here, precision medicine methods are 

increasingly used to understand the pathways driving disease and to identify optimal 

treatments that have the best efficacy for a patient or patient group. To support these 

decision-making processes, biological, clinical and imaging biomarkers are often combined to 

improve the diagnostic and prognostic interpretation and the stratification of patients for 

optimal therapy.  A famous example of this would be the application of the biological drug 

trastuzumab, which is a monoclonal antibody used the treatment of HER2-positive breast 

cancer(15). 

As a model disease, Rheumatoid Arthritis provides an ideal target for precision medicine.  It is 

a common autoimmune disease that affects around 1% of the adult population, and patient 

response to therapy is heterogeneous.  Random controlled trials have proven the efficacy of 

conventional disease-modifying anti-rheumatic drugs (DMARD’s), biologic drugs, and small 

molecule inhibitors in treating rheumatoid arthritis.  However, approximately 30% of patients 

respond to first-line DMARDs(16), and a further 40% of patients fail to respond to the first 

choice of biological therapy. Moreover, the diagnosis of rheumatoid arthritis revolves around 

the exclusion of other diseases that may cause the symptoms.  Therefore, identification of 
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predictors that allow accurate diagnosis and prediction of therapeutic outcome would allow 

the tailoring of treatment, the very definition of precision medicine. Figure 1.5 highlights the 

number of publications associated with rheumatoid arthritis, which are predominantly 

associated with treatment, with a small but increasing section associated with prognosis, 

highlighting this need to personalise treatment. 

 

Figure 1.4: Number of publications per year with the term “Rheumatoid Arthritis”.  

This was also expanded to identify papers that also included other terms; “Prognostic”, “Gene expression”, and 
“Treatment”. 

1.3. Rheumatoid arthritis. 

Rheumatoid arthritis is a chronic, systemic autoimmune disease that primarily affects the 

synovial membranes of the diarthrodial joints. Here, synovial joint inflammation (termed 

synovitis) is associated with leukocyte infiltration, pannus formation (synovial hyperplasia) and 

associated damage to bone and cartilage. Untreated, this inflammation leads to progressive 

and permanent joint damage, and therefore patient disability.  Systemically, rheumatoid 

arthritis can affect induce inflammation in the lungs, pericardium, and skin, and has been 

associated with disruptions to sleep, cardiovascular disease, anaemia, fatigue, and 

depression(17).  It is heterogeneous in terms of clinical presentation, disease progression, 

therapeutic response, and tissue pathology.  Aspects of this heterogeneity are explored in this 

introduction, and later in the thesis.  
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1.3.1. Risk factors in rheumatoid arthritis. 

Despite the exact cause of rheumatoid arthritis being unknown(18–20), there is considerable 

evidence that disease development is associated with several genetic variants(21).  80% of 

rheumatoid arthritis patients are known to carry HLA-DRB1 (20), and this in combination with 

polymorphisms in PTPN22 it is estimated to account for 40% of the total genetic risk for 

rheumatoid arthritis (19).  Smoking and infection are known environmental factors that can 

influence development, progression and severity of rheumatoid arthritis(22,23). Additionally, 

sex is also a risk factor, with women being two-to-three fold more likely to develop the 

disease(24), which is attributed in part to exposure to hormonal factors such as oestrogen(25). 

1.3.2.  Pathogenesis of rheumatoid arthritis. 

The discovery of rheumatoid factors (RF) – anti-immunoglobulin G (IgG) antibodies – 

implicated immune dysregulation in the pathogenesis of the disease(26,27).  Additional 

autoantibodies have been discovered to be associated with disease development, particularly 

anti-citrullinated proteins antibodies (ACPAs)(28,29), as well as anti-carbamylated protein and 

anti-acetylated protein antibodies(30,31), that can precede the development of rheumatoid 

arthritis by years.  Presence of these autoantibodies (RF, ACPAs, etc) does not mean that the 

patient will develop inflammatory joint disease, and as such it is hypothesised that it is 

triggered by a “second hit” signal – such as Epstein-Barr viral infection(32,33).  A timeline of 

this is illustrated in Figure 1.5. 

Whilst the adaptive immune system is heavily implicated in the pathogenesis of rheumatoid 

arthritis, there is also evidence that stromal cells contribute to the development of the disease. 

Subsets of the fibroblast-like synoviocytes have been identified invading normal cartilage(34), 

and more recent single-cell experiments characterised fibroblast subsets that drive 

disease(35).   

Returning to the adaptive immune system, early rheumatoid arthritis is characterised by the 

infiltration of mononuclear cells – primarily CD4+ T cells and macrophages – leading to 

synovitis (inflammation of the synovial membrane).  This accumulation of both lymphoid (T, B, 

and NK cells) and myeloid (macrophages, neutrophils, mast cells, and dendritic cells) cells 

induces abnormal angiogenesis, cellular hyperplasia and alterations in the control of 

extracellular matrix. Here, single-cell RNA-seq data show that many of these activities are 

coordinated by the intimal lining of the synovium and cell communication between stromal 

tissue and inflammatory cells(36).  Additionally, the presence of the immune cells results in the 

release of significant amounts of pro-inflammatory cytokines (e.g., tumour necrosis factor, 

interleukin-1ß, interleukin-6, interferon-γ), chemotactic cytokines (chemokines), growth 
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factors and other inflammatory mediators which control the turnover of extracellular matrix 

and osteoclastogenesis(37–39). 
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Figure 1.5: Pathogenesis of rheumatoid arthritis.   
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A Genetic risk factors and neo-epitope generation that predisposes patient towards the development of rheumatoid 
arthritis. B Altered peptides induce autoantibodies.  C Stromal cells, Antigen-presenting Cells and macrophages can 
be activated locally and produce pro-inflammatory cytokines. D Autoimmune response that may require a second hit 
(e.g. Epstein-Barr virus) inducing joint damage. anti-citrullinated protein antibodies (ACPA), Rheumatoid Factor (RF), 
major histocompatibility complex (MHC), T cell Receptor (TCR),  CC-chemokine ligand (CCL), tumour necrosis factor 
(TNF), Interleukin (IL), receptor activator of nuclear factor-κB ligand (RANKL), granulocyte-macrophage colony-
stimulating factor (GM-CSF), Interferon-γ (IFNγ), Matrix metalloproteinase (MMP), microRNA (miRNA). Figure 
obtained from Smolen, J. S. et al. (2018) Rheumatoid arthritis Nat. Rev. Dis. Primers doi:10.1038/nrdp.2018.1

1.3.3. Diagnosis and measuring disease activity. 

Whilst the clinical presentation of rheumatoid arthritis is relatively slow, it does develop 

progressively – accompanied by bouts of aggressive flairs that cause joint damage and 

reduction to musculoskeletal function(40).  Therefore, clinical assessments of disease activity 

are essential for identifying the stage of the disease and how the patient responds to therapy.  

Classification criteria are not completely defined, requiring at least one clinically swollen joint 

that cannot be explained by another disease.  A positive diagnosis of rheumatoid arthritis 

requires a score of ≥6 using the ACR/EULAR 2010 classification criteria as outlined in Table 1.1. 

Table 1.1: The 2010 ACR/EULAR classification criteria for rheumatoid arthritis.   

For individuals with ≥1 clinically swollen joint not explained by another disease. Large joint defined as one of the 
following: shoulder, elbow, hip, knee, or ankle. A small joint is defined as the metacarpophalangeal joint, the 
proximal interphalangeal joint, the second to fifth metatarsophalangeal joints, the interphalangeal joint of the 
thumb and the wrist.  Rheumatoid Factor (RF), Anti-Citrullinated Protein Antibody (ACPA), C-Reactive Protein (CRP), 
Erythrocyte Sedimentation Rate (ESR). 

Joint involvement  Points 
1 large joint 0 
2-10 large joints 1 
1-3 small joints  2 
4–10 small joints 3 
>10 joints (of which ≥1 is a small joint) 5 
Symptom Duration  
<6 weeks 0 
≥6 weeks 1 
Serology  
RF and ACPA negative 0 
Low positive RF or ACPA  2 
High positive RF or ACPA  3 
Acute-phase reactants  
Normal CRP and ESR 0 
Abnormal CRP or ESR 1 

Tracking disease progression makes use of numerous disease activity measures, a 2019 review 

identified 46 methodologies involved in the literature(41).  In a clinical setting, only 11 samples 

met the minimum standard, with 5 methods being preferred for regular use: The Disease 

Activity Score (DAS) in 28 joints with Erythrocyte Sedimentation Rate (ESR) or C-Reactive 

Protein (CRP), Clinical Disease Activity Index (CDAI), Simplified Disease Activity Index, Routine 

Assessment of Patient index 3 (RAPID3), and Patient Activity Scale-II. 
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Disease Activity Score 28:  Utilises a weighted sum of the number of swollen and tender joints 

(out of 28) in conjunction with ESR or CRP and general health(20,42).  Table 1.2 outlines the 

rules that define the state of disease (high, moderate, and low) as well as the rules associated 

with tracking response to therapy(43).  The weightings are shown in the equation below 

𝐷𝐴𝑆28 = 0.56ඥ𝑇𝐽𝐶 + 0.28ඥ𝑆𝐽𝐶 + 0.7[ln(𝑒𝑠𝑟)] + 0.014(𝑔𝑒𝑛𝑒𝑟𝑎𝑙 ℎ𝑒𝑎𝑙𝑡ℎ) 

 

Table 1.2: DAS28 scoring and monitoring progression. 

Current DAS28 
DAS28 decrease from the initial value 

> 1.2  > 0.6 ≤ 1.2  ≤ 0.6 
Low ≤ 3.2 Good Moderate None 

Moderate > 3.2 ≤ 5.1 Moderate Moderate None 
High > 5.1 Moderate None None 

Clinical Disease Activity Index: the CDAI is based on a simpler composite index, with no 

weighting on the components.  It counts the number of tender and swollen joints (out of 28), 

patient global assessment of disease activity (0-10 scale), clinical provider global assessment of 

disease activity (0-10 scale)(44).   

Simplified Disease Activity Index: This follows the same concept as the CDAI but includes the 

levels of CRP in mg/dL (0-10 scale) (45). 

Routine Assessment of Patient index 3: RAPID3 is questionnaire-based and is a similar 

composite index broken into 3 components(46).  A questionnaire for activity in the past week 

(total 0-10 score) followed by a visual analogue scale (VAS) for pain and then for general 

health.   

Patient Activity Scale-II: utilises a weighted sum of Health Assessment Questionnaire Disability 

Index II (HAQ-II) and VAS for pain and patient global assessment, the weighting is shown 

below(47). 

𝑃𝐴𝑆 𝐼𝐼 =
(𝐻𝐴𝑄𝐼𝐼 ∗ 3.33) + 𝑃𝑎𝑖𝑛 + 𝑃𝑎𝑡𝑖𝑒𝑛𝑡 𝐺𝑙𝑜𝑏𝑎𝑙

3
 

Interpretation of the scores for these measures can be seen in Table 1.3. 

Table 1.3: Scoring methodologies for Disease activity measures. 

CDAI SDAI PAS-II RAPID3 Disease activity 
0.0-2.8 0.0-3.3 ≤0.25 0-1 Near Remission 

2.9-10.0 3.4-11.0 2.6-3.7 1.3-2 Low 
10.1-22.0 11.1-26 3.71-8 2.3-4 Moderate 
22.1-76.0 26.1-86 >8 4.3-10 High 
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Figure 1.6: Biologics and small-molecule inhibitors used in the treatment of rheumatoid arthritis.   

Treatments target cytokines (eg Interleukin, Tumour Necrosis Factor (TNF), Interferons) or their Receptors and downstream signalling pathways.  Additionally, cell depletion (Rituximab) or suppressing 
co-stimulation (Abatacept) provide further pathways to target. Toll-Like Receptor (TLR), Nuclear Factor ΚB (NFΚB), Janus-Activated Kinase (JAK), Mitogen-Activated Protein (MAP), Signal Transducer 
and Activator of Transcription (STAT).  Figure adapted from Choy, E.H., Kavanaugh, A.F., & Jones, S.A. (2013) The problem of choice: current biologic agents and future prospects in RA. Nature Reviews 
Rheumatology.
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1.3.4. Therapeutic intervention in rheumatoid arthritis. 

Treatment of rheumatoid arthritis revolves around reducing systemic and local inflammation, 

and thereby prevent irreversible joint damage from occurring.  Early diagnosis and treatment 

is key to an effective therapeutic response(48), and treatment guidelines follow a prescribed 

regimen of treatments utilising a treat-to-target approach with disease-modifying anti-

rheumatic drugs (DMARD’s), biological drugs, or small molecule inhibitors(16).  Figure 1.6 

illustrates the selection of biological drugs and small molecule inhibitors, as well as the 

pathways targeted. 

Upon diagnosis, immediate treatment using DMARD’s such as methotrexate are 

recommended(49).  If disease activity is not controlled by the therapeutics after 3-6 months, 

methotrexate may be supplemented with TNF inhibitors (infliximab, adalimumab, etanercept) 

unless contraindicated.  The National Institute for Health and Care Excellence (NICE) 

guidelines(50) that illustrate this prescribed regimen are shown in Figure 5.1.   

 

Figure 1.7: Therapeutic responses for patients at different stages of disease and treatment exposure.   

Data is broken into treatment naïve (early RA), experienced to methotrexate (MTX) and experienced to anti-TNF 
therapy.  Anakinra (anti IL-1) Tocilizumab (anti IL-6), abatacept (anti T-cell costimulation), Rituximab (anti-B-cell). 
Cells are coloured to demonstrate the proportion of patients who respond to treatment. Figure obtained from 
Smolen, J. & Aletaha, D. (2015 Rheumatoid arthritis therapy reappraisal: strategies, opportunities and challenges. 
Nat Rev Rheumatol 
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One important fact to consider, however, is that only 30% of patients respond to methotrexate 

monotherapy(51), and 40% of patients will have a poor response to anti-TNF therapy(16,52).  

This variability in response is one of the driving concepts behind the need for precision 

medicine in rheumatology, maximising the therapeutic window with the aim to increase the 

chances of drug-free remission(53,54).  Figure 1.7 shows a matrix of response rates to 

therapeutics for patients through the course of disease and exposure to therapy. 

First-line DMARDs attempt to control the disease through suppression of inflammation, whilst 

more targeted therapies generally operate by blocking cytokine signalling or by targeting 

lymphocytes.

1.3.4.1. Blocking Cytokine signalling. 

Anti-TNF: Five biologic agents are approved for therapeutic targeting of TNF in rheumatoid 

arthritis, with numerous biosimilars now entering the market(55). The five agents are the 

monoclonal antibodies; infliximab, adalimumab, certolizumab pegol, and golimumab, and the 

fusion protein etanercept(56).  

Anti-IL-6: Tocilizumab is a monoclonal antibody that acts as an IL-6 receptor agonist.  It, 

therefore, targets both canonical signalling through membrane-bound IL-6R as well as trans-

signalling through soluble IL-6R(57,58). 

Anti-Il-1: Anakinra is a recombinant form of human IL-1ra, whilst it has shown to be effective, 

the absolute differences in ACR23, ACR50 and ACR70 is lower than treatments such as 

etanercept or adalimumab(59). 

Small molecule inhibitors:  Tofacitinib is a small molecule inhibitor that targets JAK1 and JAK3, 

thereby interfering the Jak-STAT pathway that is downstream on many cytokine signalling 

evens (Figure 1:6)(60).

1.3.4.2. Targeting lymphocytes. 

Anti-T-cell co-stimulation:  Abatacept is a fusion protein of CTLA4 and the FC domain of IgG1.  

CTLA4 preferentially binds CD80/CD86 and by doing inhibits the transmission of the 

costimulatory signal from antigen-presenting cells, and thereby T-cell activation(61) 

Anti-B-Cell:  Rituximab is a monoclonal antibody targeting CD20 and in so doing results in the 

depletion of B-cells(62).
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1.3.4.3. Adverse effects. 

With the suppression of inflammation and other components of the immune system, this 

results in issues associated with opportunistic infections.  Moreover, these therapeutic 

interventions are associated with their own adverse effects(63).  

The adverse effects of methotrexate are generally associated with the dosage, low dosage side 

effects are generally mild: haematological abnormalities, gastrointestinal problems, the 

elevation of liver enzymes.  But ultimately fewer than 5% need to discontinue due to adverse 

effects(63) 

Anti-TNF therapies often result in reactions around the site of injection – itching, pain, and 

redness.  However, these therapies are also associated with reactivation of tuberculosis, 

demyelinating diseases and skin cancer(64).

1.3.4.4. Trial and error. 

Despite numerous therapies available, significant proportions of rheumatoid arthritis patients 

fail to respond to treatment.  Moreover, as is demonstrated in Figure 1.7, the more the disease 

progresses and is exposed to therapy the lesser the chance of good response and achievement 

of remission.  As outlined in Figure 5.1, treatment follows a proscribed regimen of therapies, 

waiting for clinical response after 3-6 months.  Not only is this approach inefficient, but it also 

leaves open the potential for irreversible damage to occur during these periods of 

uncontrolled disease.  Moreover, from a financial perspective, this results in the wasteful 

usage of valuable therapeutics for limited if any benefit. 

This highlights the need to tailor the therapeutic intervention to the individual, necessitating a 

method to predict clinical response.  The identification of the correct treatment during the 

window of opportunity early in the disease is essential in maximising the opportunity for drug-

free remission(48).  Additionally, this avoids excessive exposure to unnecessary therapeutics, 

and the adverse effects associated therein. 

1.3.5. Synovitis pathologies. 

Histopathological analysis of synovitis defines the characteristic features as hypertrophy of the 

lining layer, neo-angiogenesis, and infiltration of immune cells.  Immune cells are observed as 

two broad patterns that can overlap – randomly distributed throughout the sub-lining, or 

organised into follicular structures - defined as diffuse and follicular respectively(65–69).  

Moreover, there is a third pattern with relatively little immune infiltrate, termed pauci-

immune that still represents active disease, supporting the role of stromal cells in driving 
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synovitis.  Immunophenotypic characterisation of these pathologies is illustrated in Figure 1.8, 

staining for lymphocytes (T, B, and plasma cells) and macrophages(65,67,70,71).   

 Follicular synovitis is characterised by enrichment for lymphoid infiltrate (particularly 

B-cells) that may be arranged in aggregates called ectopic lymphoid structures that 

function as germinal centres. 

 Diffuse synovitis is characterised by a primarily myeloid infiltrate, with little B cell 

presence 

 Pauci-immune demonstrates minimal immune infiltrate. 

This heterogeneity in tissue pathology has been associated with the therapeutic outcomes, for 

example, pauci-immune patients not responding to TNF inhibition(72), whilst patients with the 

diffuse pathology were most likely to benefit from TNF inhibition(73)
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Figure 1.8:  Immunophenotyping of the synovitis pathologies.   

The three patterns of synovitis seen in the pathologies of rheumatoid arthritis.  Follicular exhibits strong staining of lymphoid cells, and the presence of ectopic lymphoid structures.  Diffuse exhibits 
high levels of macrophage staining throughout the tissue, with some T cells, but a scarcity of B cells.  Pauci-immune shows almost no immune infiltrate, but high levels of macrophage staining in the 
sub-lining layers of the synovial membrane.  Figure adapted from Pitzalis C, Kelly S, Humby F (2013) New learnings on the pathophysiology of RA from synovial biopsies. Curr Opin Rheumatol 25, 334–
44. 
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1.3.6. Predictive signatures in rheumatoid arthritis. 

Over the years, numerous signatures and rule sets have been developed aiming to improve the 

understanding of rheumatoid arthritis utilising synovial biopsies, cell cultures, and peripheral 

blood mononuclear cells (PBMC)(74).  Given the window of opportunity for drug-free 

remission necessitates early treatment to prevent irreversible joint damage from occurring.  

Because of this, the EULAR guidelines recommend the measurement of ACPA’s in early 

diagnosis(75), however, this introduces even more heterogeneity as only 50% of patients test 

positive(76).  Identification of biomarkers is therefore a topic of intensive interest. 

A systemic review in 2016 identified 57 studies that utilised 79 (bio)markers and 8 

multivariable models that resulted in 14 predictors(77).  These utilised EULAR, ACR20/50, and 

DAS28 response criteria to assess how well predictor of erosive disease, therapeutic response 

after methotrexate usage, environment risks (smoking, Epstein-Barr Virus exposure), presence 

of RF (and immunoglobulin specific forms) or ACPAs, and genotypic risks.  

Further studies have identified gene signatures that discriminate rheumatoid arthritis from 

non-rheumatoid arthritis.  In 2004, microarray analysis resulted in a set of 63 genes that 

discriminated between rheumatoid arthritis and osteoarthritis(78), further work identified a 12 

gene signature that did the same(79).  Yet despite these have not been comprehensively 

validated in other datasets, and therefore are not utilised in clinical practice. 

Clinical response to therapeutics has been a major focus of these predictive studies, numerous 

studies(71–73,80,81,81–94) aimed to identify those features that will allow stratification of 

response.  Exploration of the gene expression has been extensively used to attempt to identify 

predictive signatures.   

Over the years, many genes have been identified as discriminating responders and non-

responders for multiple therapies:   

 Methotrexate:  Two studies identified genes – 133 and 16 genes respectively – that 

differentiated responder, these studies were limited to conference proceedings, and 

have not been validated in external cohorts(95,96).  Due to the limited information in 

these proceedings, it is also impossible to see how these signatures overlap. 

 Infliximab:  Multiple studies have identified several genes(82,97–101).  Whilst none of 

these genes are found in all the studies, however, several genes were found in 

multiple studies such as CCL19, HLA-DQA1, IL2RB and FCGR1A. 
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 Rituximab:  Studies have identified multiple signatures(102,103) that discriminate 

responders, however, these show no overlap between signatures.  However, it does 

reveal several genes that overlap with infliximab, such as HLA-DQA1, MxA, and MxB.  

 Tocilizumab:  One study identified 59 genes that discriminate response(104), but 

without additional signatures to compare there are no core genes to investigate. 

One of the largest challenges with identification of biomarkers is the lack of hard definitions, in 

oncology, there is survival or remission, whilst in rheumatoid arthritis progression of the 

disease is more subtle.  Adding to this, many of these biomarkers are never replicated in future 

cohorts.  For example, whilst serum levels of calprotectin (S100A8/A9) has been associated in 

multiple studies(105,106) with disease activity in rheumatoid arthritis and response to anti-

TNF therapy, large cohort studies failed to replicate this(92).  Further challenges result from 

most studies being small, without sufficient sample sizes, these signatures are prone to 

overfitting.

1.4. Aims. 

Precision medicine requires the identification of biomarkers that are capable of discriminating 

subclasses of disease, be that pathology, therapeutic outcome, or survival.  To implement this 

clinically these markers need to be robust and capable of being validation in external datasets 

and the clinic.  Rheumatoid arthritis is a complex autoimmune disease with distinct subclasses 

that are associated with therapeutic outcome and therefore provides an ideal candidate to 

interrogate for biomarkers. 

The main goals of this thesis are: 

 Stratification of synovitis pathologies based on transcriptome:  Current 

methodologies for differentiating the pathologies revolves around the histological 

assessment of immune infiltrate into the synovitis.  Using transcriptomics is it possible 

to identify the contribution of immune cells, and therefore discriminate the form of 

synovitis seen in the patient. 

 Define a characteristic transcriptional profile for the pathologies:  Using stratified 

samples create an archetypical profile that allows comparison of other samples with 

less clear-cut disease.  This may improve the identification of “grey area” patients who 

lack defined characteristics of synovitis and indicate more appropriate therapies. 

 Pathology specific molecular pathways:  Using stratified transcriptomes, differential 

gene expression and downstream pathway analysis may provide insights into the 

pathogenesis of the disease.  This also offers the opportunity to identify novel 
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molecular targets that are more specific to the pathology, allowing the potential of 

targeted therapies that avoid unwanted systemic effects. 

 Identification of Biomarkers:  Based on stratified transcriptional profiles, is it possible 

to identify biomarkers – in this case, genes - that offer the potential to use a classifier 

of disease.  Moreover, these biomarkers need to show themselves to be robust, and 

replicable across multiple clinical cohorts.
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2. Materials and Methods. 

2.1. Reagents. 

Unless otherwise stated, all reagents were purchased from Sigma-Aldrich.

2.2. In vivo experiments. 
2.2.1. Mice strains. 

All animal work was performed in accordance with the United Kingdom Animals (Scientific 

Procedures Act 1986), and under the authority of the Home Office Personal (PIL: IBBC24E9D) 

and Project (PPL: PB3E4EE13) Licences. 

8 to 12 week-old wild type mice (C57Bl/6) were purchased from Charles River.  Interleukin-6 

receptor (Il6ra-/-, or CD126-/-) and interleukin-27 receptor subunit alpha (Il27ra-/-, or Wsx1) 

deficient mice on a C57Bl/6 background were bred in house (PPL: PCIFFFEE3 & PB3E4EE13 

respectively). 

Il6ra-/- mice were generated at GlaxoSmithKline (Stevenage, U.K.) by disrupting exons 4,5, and 

6 by insertion of a neomycin cassette through recombinase-mediated cassette exchange (107).  

Il27ra-/- mice were originally sourced from The Jackson Laboratory (line B6N.129P2-

Il27ratm1Mak/J) and were generated in the same manner with a neomycin cassette disrupting 

the fibronectin type III domain of Il27r (108).

2.2.2. Antigen-Induced Arthritis. 
Antigen-induced arthritis (AIA) is a monoarticular model of inflammatory arthritis induced by 

an intra-articular administration of antigen into the joint of antigen primed mice (109–112). 

This leads to synovitis and alterations in both cartilage and bone remodelling resembling 

clinical inflammatory rheumatoid arthritis.  The timeline for development of disease is 

illustrated in Figure 2.2. 

Mice were primed by immunising against the antigen – methylated Bovine Serum Albumin 

(mBSA) at two timepoints: day -21 and -14 (relative to arthritis induction) by subcutaneous 

(s.c.) injection of 100 µl of 1 mg/ml mBSA/Complete Freud’s Adjuvant emulsion using a 1ml 

syringe and 25G needle.  Antigenic response was modulated with the administration of 100 µl 

of 1.6µg/ml heat-inactivated pertussis toxin intraperitoneally (i.p.) (1ml syringe, 25g needle). 

mBSA/CFA emulsion was prepared by dissolving 10 mg mBSA (A1009, Sigma Aldrich) in 5ml 

sterile water (PL 1502/003R) and combining with 5ml CFA (F5881, Sigma Aldrich).  The 

mBSA/CFA mixture was passed through a 18G needle ~ 20 times until a stable, white emulsion 

which forms a defined sphere that doesn’t easily disperse when dropped into water.  8µl heat-
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inactivated Pertussis Toxin (P2980, Sigma Aldrich) in 1ml sterile water to obtain a final 

concentration of 1.6µg/ml. 

 Arthritis was induced by injecting antigen with a 10 µl intra-articular (i.a.) injection of mBSA 

(10 mg/ml) into the hind limbs using a 29G insulin needle. 

Following induction mice were sacrificed by schedule 1 method (CO2 followed by cervical 

dislocation) at two timepoints: an early stage (day 3) – representing an acute inflammatory 

synovitis, and a late stage (day 10) – representing chronic inflammation.  Additionally, naïve 

mice were sacrificed to provide non-inflamed synovium that is used as a baseline.  The 

Synovial tissue collected was stored in RNAlater (AM7024, ThermoFisher Scientific) at -80°C. 

Animal wellbeing was monitored with regular inspections (minimum 3x a week) with the 

animals being weighed when carrying out regulated procedures.  Following arthritis induction 

or adverse effects from CFA (ulceration) monitoring is increased to daily inspections.  In the 

case of ulceration, mice are treated with topical application of iodine (3030440, Farla Medical) 

and weighed.  Arthritis severity was assessed by comparing the joint diameter relative to 

baseline using a POCO 2T micrometer (Krœplin) (109), Figure 2.1 is an demonstrates the 

change in joint diameter reflecting the development of arthritis. 

 

 

Figure 2.1: Joint diameter measurements of Il6r mice post induction.   

As both knees were injected to minimise the number of mice used whilst maximising the tissue harvested, 
measurements are relative to baseline before AIA is induced. Chromatin Immunoprecipitation. 
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Figure 2.2: Timeline of procedures and the resulting joint swelling and disease stages of antigen induced arthritis.   

Blue Arrows illustrate timepoints of regulated procedures, whilst red arrows indicate timepoints at which mice are sacrificed following induction.  Initial priming induces the creation of a population of 
T-cells that are reactive against the mBSA antigen prior to the development of synovitis. Following induction, the acute inflammation is driven by an early T-cell response and infiltration of innate 
monocyte populations.  The chronic-like phase is characterised by prominent T- and B cell infiltrates.     s.c., subcutaneous, i.p., intraperitoneal, i.a., intraarticular. 
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2.3. Chromatin Immunoprecipitation. 
Chromatin Immunoprecipitation (ChIP) allows the investigation of protein-DNA interactions 

(113–115).  The basic protocol for ChIP analysis is illustrated in Figure 2.3. 

 

Figure 2.3:  Workflow involved in chromatin immunoprecipitation.   

DNA and proteins (yellow circles) are crosslinked using formaldehyde (red), before cellular and nuclear lysis.  DNA is 
fragmented before samples are incubated with antibodies; immunoprecipitation is done using protein A/G magnetic 
beads.  Crosslinks are removed, before digesting RNA and proteins, and purifying DNA for further analysis. 

In summary (116), proteins are reversibly crosslinked to the DNA using formaldehyde, and the 

cells and nuclei are lysed.  The DNA is then fragmented to 200-400 bp lengths by sonication, 

and the DNA-protein fragments are incubated with an appropriate antibody, before 

precipitation using protein A/G magnetic beads .  The crosslinked proteins are released and 

digested, and DNA purified for further investigation.

2.3.1. Adaptations for ChIP on tissue. 
The existing laboratory method for ChIP was based on protocols optimised for T-cells analysis.  

This method was modified for the analysis of synovial tissue and required the introduction of a 

tissue disruption step to disaggregate the cells from the extracellular tissue architecture.  It 

was however critical to ensure that this adaptation to the protocol did not affect the ability to 

crosslink protein bound to the DNA.  All buffers utilised in this section are detailed in Table 2.2. 

Tissue disaggregation:  Synovial tissue was removed from the RNAlater and weighed 

to achieve approximately 10 mg per pulldown (aim for ~> 20 mg tissue for Stat1 and Stat3 
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pulldowns). The tissue was snap frozen in liquid nitrogen, and ground to a powder using a 

disposable Axygen tissue grinder (12649595, ThermoFisher Scientific).  

Crosslinking DNA and proteins:  The ground samples were defrosted in 1ml 

crosslinking buffer and incubated at room temperature for 15 minutes, cells are then pelleted 

by spinning at 500xg for 1 minute at room temperature. Crosslinking is halted by resuspending 

pellet in “Stop solution” and shaking for 1 minute, before pelleting cells (500xg, 1min, at room 

temperature). Cells were washed with 1ml PBT and spun down (500xg, 1min, at room 

temperature). 

Lyse cells:  The cell pellet was resuspended in 1ml “Cell Lysis Buffer” and incubated on 

ice for 10 minutes, gently agitating every few minutes, before pelleting the nuclei (500xg, 

5min, 4°C).  Nuclei are the resuspended in 275µl “Nuclear Lysis Buffer” (NLB) and incubated on 

ice for 10 minutes, before diluting with 165µl “IP Dilution Buffer” (IPDB). 

Fragment DNA:  DNA was then fragmented using Bioruptor Plus (Diagenode) for 30 

cycles (High intensity, 30 seconds on, 30 seconds off, at 4°C).  Sample is diluted to obtain a final 

ratio of 1:4 (NLB:IPDB), with an additional 935 µl “IP Dilution Buffer”, (total volume 1375 µl) 

before separating into aliquots for Input (100 µl), IgG (100 µl) Stat1 (550 µl), Stat3 (550 µl), and 

for gel (20 µl) to check shearing size.   

Shearing of the genomic DNA was checked by removing crosslinks and digesting 

protein (20 µl sample, 1.4 µl NaCl (5M) 2.6 µl H20, 1 µl Proteinase K (AM2548, ThermoFisher 

Scientific), incubating at 65°C for 1-2 hours.  Samples were labelled with 6x loading dye (R0611, 

ThermoFisher Scientific) and loaded onto 2% (w:v) agarose gel with SYBR-safe (S33102, 

ThermoFisher Scientific) with 100bp GeneRuler ladder (SM0242, ThermoFisher Scientific) and 

running at 100v for 30-45 minutes. 

Incubate with antibodies:  Samples were incubated with antibody overnight at 4°C on 

a rotating wheel, Isotype IgG aliquots from samples at each time point was pooled. Stat1 

(#9172) used at 1:100, Stat3 (C20) used at 4 µg (20 µl), IgG (C15410206) used at 4 µg (4 µl).  

Details of antibodies used are listed in Table 2.1.  Isotype IgG acts as a control for non-specific 

binding. 

Immunoprecipitate DNA:  Magnetic protein A/G beads (78609, ThermoFisher 

Scientific) are thoroughly vortexed to ensure complete suspension, beads were washed in cold 

PBS (40 µl beads per pulldown) using magnetic stand to pellet the beads before resuspending 

in samples and incubating for 2 hours at room temperature on a rotating wheel. 
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Samples then go through a series of washes, all of which utilised 1 ml buffer on a 

rotating wheel for 5 minutes at 4°C; twice with “IP Wash Buffer 1”, twice with “IP Wash Buffer 

2”, and twice with TE. The samples were then resuspended in 100 µl TE and transferred to a 

LoBind Eppendorf.  Samples and input aliquots have of 10 µl 10% SDS, 6 µl 5M NaCl and 2 ng 

RNaseA (R6513) added before incubating at 65°C for 2-4 hours.  Sample supernatant is then 

transferred to a LoBind Eppendorf, and to maximise immunoprecipitated DNA the beads are 

washed with 100 µl TE and supernatants combined, an additional 6 µl 5M NaCl and 5 µl 

Proteinase K before incubating overnight at 45 °C.   

DNA purification:  DNA is purified by combining the sample with an 200 µl 

phenol:chloroform:isoamyl alcohol (25:24:1) (P2069-100ML) vortexing thoroughly before 

centrifuging at 16’000g for 5 minutes at room temperature.  The aqueous layer containing 

DNA, is transferred to a LoBind Eppendorf with 20 µl 3M sodium acetate (pH 5.2) (neutralising 

phosphate backbone charge leading to precipitation) and 10 µg glycogen (which acts as a 

carrier by chelating small nucleotide fragments) before thoroughly vortexing, before adding 

500 µl 100% ethanol. DNA is then precipitated at -80°C for 1-2 hours, then centrifuging at 

16800g for 20 minutes at 4°C.  The DNA pellet is then washed in ice cold 70% ethanol before 

spinning down again (16800g, 10min, 4°C), before leaving the pellet to air dry for ~15 minutes.  

The DNA pellet is resuspended in 30 µl ultrapure water

2.3.2. Antibodies. 
Table 2.1 outlines the antibodies utilised for ChIP. 

Table 2.1: Antibodies utilised for chromatin immunoprecipitation.   

All precipitations utilised an isotype control for non-specific binding. 

Target Source Species Reactivity Clone Isotype Type Company 
STAT1 Rabbit Human, Mouse, Rat m-22 IgG Polyclonal Santa Cruz 
STAT1 Mouse Human, Mouse, Rat C-136 IgG1 Monoclonal Santa Cruz 

STAT1 Rabbit 
Human, Mouse, Rat, 
Monkey D1K9Y IgG Monoclonal 

Cell Signalling 
Technologies 

STAT1 Rabbit 
Human, Mouse, Rat, 
Monkey #9172 IgG Polyclonal 

Cell Signalling 
Technologies 

STAT3 Rabbit 
Human, Mouse, Rat, 
Xenopus C-20 IgG Polyclonal Santa Cruz 

Non-
specific Mouse - X0931 IgG1 Monoclonal Dako 
Non-
specific Rabbit - C15410206 IgG Polyclonal Diagenode 
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2.3.3. Buffer composition. 
The composition of buffers used in the extraction and preparation of samples for chromatin 

immunoprecipitation are listed in Table 2.2.   

 

Table 2.2:  Buffers utilised in chromatin immunoprecipitation.   

 Compound 
Final 
Concentration 

Crosslinking 
Solution 

Ethylene glycol-bis(2-aminoethylether)-N,N,N′,N′-
tetraacetic acid (EGTA) pH 8 0.5 mM 
Ethylenediaminetetraacetic acid (EDTA) pH 8 1 mM 
2-[4-(2-hydroxyethyl)piperazin-1-yl]ethanesulfonic acid 
(HEPES) 50 mM 
NaCl 100 mM 
Formaldehyde 1.5% (v/v) 

 
  

Stop 
Solution 

Glycine 125 mM 
Triton X-100 0.1% (v/v) 
Phosphate Buffered Saline (PBS) - 

 
  

PBT 
Triton X-100 0.1% (v/v) 
PBS - 

 
  

Cell Lysis 
Buffer 

Tris-HCL pH 8.1 10 mM 
NaCl 10 mM 
Nonyl phenoxypolyethoxylethanol (NP-40) 0.2% (v/v) 
Sodium butyrate 10 mM 
phenylmethanesulfonyl fluoride (PMSF) 50 µg/ml 
Leupeptin 1 µg/ml 

 
  

Nuclear 
Lysis Buffer 

Tris-HCL pH 8.1 50 mM 
EDTA pH 8 10 mM 
Sodium dodecyl sulfate (SDS) 1% (w/v) 
Sodium butyrate 10 mM 
PMSF 50 µg/ml 
Leupeptin 1 µg/ml 

 
  

IP Dilution 
Buffer 

Tris-HCL pH 8.1 20 mM 
NaCl 150 mM 
EDTA pH 8 2 mM 
Triton X-100 1% (v/v) 
SDS 0.01% (w/v) 
Sodium butyrate 10 mM 
PMSF 50 µg/ml 
Leupeptin 1 µg/ml 
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IP Wash 
Buffer 1 

Tris-HCL pH 8.1 20 mM 
NaCl 50 mM 
EDTA pH 8 2 mM 
Triton X-100 1% (v/v) 
SDS 0.01% (w/v) 

 
  

IP Wash 
Buffer 2 

Tris-HCL pH 8.1 10 mM 
LiCl 250 mM 
EDTA pH 8 1mM 
Triton X-100 1% (v/v) 
SDS 0.01% (w/v) 

 
  

TE 
Tris-HCL pH 8.1 10 mM 
EDTA pH 8 1mM 

2.4. ChIP-qPCR. 

Quantitative Polymerase Chain Reaction (qPCR) of known STAT associated genes determines 

the levels of enrichment achieved in the immunoprecipitation (117).  

Oligonucleotide primers were designed with coverage of promoter sequences annotated with 

STAT binding sites, as well as negative controls downstream of the gene.  Primers were 

designed by downloading the promoter sequences of known STAT associated genes, these 

were analysed for Gamma interferon activation site (GAS) motifs.  Primers were designed to 

cover these GAS sites, and STAT binding was checked in the better annotated human genome 

by blasting the PCR sequences.  Negative control sequences were created similarly by looking 

downstream of the transcription start site, but with the intention of identifying sequences with 

no GAS motifs.  Downstream sequences were also checked in human genome, again because 

of the better annotation.  Figure 2.3.2 illustrates the process using the known Stat1 binding 

gene Irf1. 

All PCR runs were carried out using 10 µl reaction volume, with 1 µl of sample and 9 µl of 

primer master mix ((5 µl TaqMan Fast Advanced Master Mix (4444557, ThermoFisher 

Scientific), 4.5 µl nucleotide free water, 0.5 µl primer) mix per reaction).  Samples were run on 

either the ViiA7 or QuantStudio 12k Flex Real-Time PCR systems for 96 or 384well plates 

respectively.  Samples were run in triplicate for each primer used, in addition to a negative well 

for each primer used.  Samples were run for 45 cycles using the standard TaqMan Fast 

protocol, as listed in Table 2.3. 
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Table 2.3:  TaqMan Fast protocol used for ChIP-qPCR.   

 Stage Temperature 
Time 
(seconds) 

Uracil-N-Glycosylase incubation Hold  50°C 120 
Polymerase activation Hold  95°C 20 

PCR (45 cycles) 
Denature 95°C 1 
Anneal/Extend 60°C 20 

2.4.1. Calculation of specific enrichment from ChIP-qPCR results. 
To determine whether the immunoprecipitation was successful, we look at enrichment of DNA 

fragments from our positive controls compared negative regions and IgG isotype controls using 

qPCR.  To calculate this enrichment, we use the following steps, also illustrated in Figure 2.4: 

 IgG ΔCt was determined by subtracting the average Input Ct from average IgG Input 
(A). 

 This was then normalised by subtracting the average ΔCt of the negative controls 
(primers for the downstream sequences) (B) 

 IP ΔCt was calculated in the same manner. 
 IP normalised ΔCt was then calculated by subtracting the IgG ΔCt from the IP ΔCt (C). 
 IP normalised enrichment values were then expressed as 2^IP normalised ΔCt (C & D). 

 

Figure 2.4:  Illustrating the calculation for specific enrichment, arrows show which values are utilised for each step.   
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A; Average Ct values from qPCR using auto-thresholding.  B; IgG correction calculated ΔCt by subtracting IP Ct (in 
this case IgG) from Input Ct. this is then standardised by subtracting an average of the negative controls 
(downstream) (greyed out number).  C; Calculation of ΔCt and standardised ΔCt is performed in same manner as the 
IgG correction. Values are then normalised by subtracting IgG standardised ΔCt from IP standardised ΔCt.  
Normalised enrichment (1 being no enrichment) is calculated as 2^normalised ΔCt.  D; Plotting the normalised 
enrichment shows the preferential binding of STAT1 to Irf1 promoter, whereas Socs3 promoter has similar STAT1 
and STAT3 binding.  Note that both negative controls (downstream) show no enrichment (with values around 1).

2.4.2. Oligonucleotide primer sequences. 
Table 2.4 lists the sequences of the primers used for ChIP-qPCR.  Other primers used (Bcl3, 

Bcl6, Icam1, Il4r super enhancer, JunB, Stat3, Zeb1) were designed using the “Custom Plus 

Taqman Assay Design Tool” from ThermoFisher.  Promoter sequences (P) (see Figure 2.5) are 

sequences with known binding sites, whilst downstream sequences (DS) act as negative 

controls with no known binding sites. 

Table 2.4: Oligonucleotide primer sequences used for chromatin immunoprecipitation.   

Promoter sequences (P) with known STAT binding sites, whilst downstream sequences (DS) are utilised as negative 
controls.  TaqMan probes utilise a third primer that binds in the middle of the sequence that is incorporated into the 
new synthesised copy releasing the fluorescent marker.  This third primer increases the specificity of reported qPCR 
amplification 

Target Forward Probe Reverse 

Irf1 P CCTTCGCCGCTTAGCTCTAC ACAGCCTGATTTCC CCCACTCGGCCTCATCATT 

Irf1 DS GCCTTGGCGTGACTCTTGAC ATCTATTAGAAACGCCACCTAA ACATGACCAAACACCATTTAGCA 

Socs3 P CTCCGCGCACAGCCTTT TGCAGAGTAGTGACTAAA CCGGCCGGTCTTCTTGT 

Socs3 DS GGGTAATTCCTGCCGTCTGA TCTGACCAGAATATGC CATTTCCTTCGCAAACTTGCT 
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Figure 2.5:  Rational behind primer design for chromatin immunoprecipitation.   

In this example for Irf1.  A; The promotor sequence is extracted from Ensembl.  B; the promoter sequence is scanned 
for STAT motifs in Jaspar, STAT1 shown in red, STAT3 in blue, and both STAT1 and STAT3 in purple.  C; in-silico PCR 
identifies only the 1 amplified sequence, which overlaps the Irf1 promoter.  As can be seen, the regulatory elements 
of the mouse genome are relatively sparse, with a STAT4 binding site (orange) identified within the primer 
amplification sequence.  D; Blasting this sequence against the Human genome identifies one match in the promoter 
of IRF1.  E; the Human genome is much more complete for regulatory elements, as can be seen the blasted sequence 
overlaps STAT1 (red) and STAT3 (blue) binding sites

2.5. ChIP-seq. 

DNA was quantified using Qubit (ThermoFisher Scientific), and enrichment checked using qPCR 

as outlined previously.   

Library preparation follows the protocol outlined in the Illumina TruSeq ChIP sample 

preparation guide (Illumina 15023092 Rev. B) with a minor adaptation – performing the size 

selection step after PCR amplification of the fragments. 

In brief, the TruSeq ChIP library preparation has 6 stages; end repair, A-tail, ligate adapters, 

library amplification, size selection, and library validation, illustrated in Figure 2.6. 
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Figure 2.6: Workflow for library preparation of ChIP samples.   

End repair produces blunt end fragments by removing 3’ overhangs using 3’ to 5’ exonuclease and fills in 5’ 
overhands via polymerase.  A-tailing adds adenine overhangs to the 3’ end that complements the 3’ thymine 
overhang on the adapters.  Adapters contain index sequences that allow samples to be multiplexed, they also 
contain sequences that facilitate binding to the flow cell of the sequencer.  Libraries are amplified with 18 cycles of 
PCR, before restriction fragment sizes to 200-400 base pairs on the BluePippin.  Libraries are quantified using Qubit 
and DNA high sensitivity bioanalyzer chip.  Bead washes purify DNA products utilising AMPure XP beads that bind 
DNA fragments larger than 100 base pairs.  Safe stopping points allow for the protocol to be broken up over multiple 
days with samples being stored at -20°C. 

End repair:  DNA fragmentation can lead to overhanging sequences; therefore, samples are 

treated with a 3’ to 5’ exonuclease to remove 3’ overhangs and leave the sample with blunt 

ends for the next step. 

A-tail:  Samples have the 3’ end adenylated to provide a complementary overhang for the 

adapters to ligated to. 

Ligate adapters:  Samples have an adapter sequence ligated to them that identifies the 

samples with a barcode sequences, as well as complementary sequences needed for 

hybridisation to the flow-cell when sequencing. 

Library amplification:  PCR amplification of the samples allows for enrichment of DNA 

fragments containing the adapter molecule ligated to both ends of the sequence. See Table 2.5 

for PCR parameters. 
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Table 2.5:  PCR conditions for library amplification as specified in the Illumina TruSeq ChIP library preparation guide.   

 

 

 

Size selection:  Restriction of DNA fragment length was performed using BluePippin (Sage 

Science) (2% agarose cassette, 200-400bp), rather than agarose gel excision followed by 

purification listed in the Illumina protocol. 

Library validation:  Library quality was assessed on High Sensitivity DNA Bioanalyzer (Agilent) 

and quantified using Qubit.   

Libraries were standardised to 10 nM, and pooled before next generation sequencing on an 

Illumina HiSeq 4000.  Bioinformatic analysis of the data is covered in Chapter 3.

2.6. Public Datasets. 

Public databases (NCBI GEO, EBI Array Express, Immport) were trawled for datasets that 
containing arthritic synovial samples. Table 2.6 outlines all the identified microarray datasets 
matching this criterion, whilst Table 2.7 represents RNA-seq datasets.  The development of 
bioinformatic analysis pipelines associated with these datasets is discussed in Chapter 3.

 Stage Temperature Time (seconds) 

 Hold  98°C 30 

PCR  
(18 cycles) 

Dentature 98°C 10 
Anneal 98°C 30 
Extend 72°C 30 
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Table 2.6: Microarray datasets identified by searching online databases for samples that contained the terms “arthritis” “synovial” “synovium”.   

 
 

Accession Platform n Description 
GSE48780 Affymetrix HGU133plus2 83 2 Cohorts of RA synovium from joint resection (Cohorts of 49 and 34 patients) 
GSE45867 Affymetrix HGU133plus2 40 Synovial biopsies before and after treatment with either Tocilizumab (12 patients: 24 samples) or Methotrexate (8 

patients: 16 samples) 
GSE24742 Affymetrix HGU133plus2 24 Synovial biopsies before and after treatment with Rituximab (12 patients) 
GSE36700 Affymetrix HGU133plus2 25 Synovial biopsies from different forms of arthritis, 5 Osteoarthritis, 7 Rheumatoid Arthritis, 4 Systemic Lupus 

Erythematosus, 5 Microcrystalline arthritis, 4 Seronegative Arthritis. 
GSE77298 Affymetrix HGU133plus2 23 Synovial biopsies from end-stage rheumatoid arthritis (16 samples) and healthy controls (7 samples) 
GSE15602 Affymetrix HGU133plus2 11 Synovial biopsies after treatment with Adalimumab 
GSE38064 Affymetrix HGU133plus2 12 Synovial biopsies from patients which were CD21L+IL-17A+ (7 samples) or CD21L-IL-17A- (5 samples) 
GSE55457 Affymetrix HGU133A 33 Jena - Synovial biopsies from Healthy (10 samples), Rheumatoid Arthritis (13 samples), Osteoarthritis (10 samples) 
GSE55584 Affymetrix HGU133A 16 Leipzig - Synovial biopsies from Rheumatoid Arthritis (10 samples), Osteoarthritis (6 samples) 
GSE55235 Affymetrix HGU133A 30 Berlin - Synovial biopsies from Healthy (10 samples), Rheumatoid Arthritis (10 samples), Osteoarthritis (10 

samples) 
GSE12021 Affymetrix HGU133A/B 57 Synovial biopsies from Healthy (13 samples: 9A, 4B), Rheumatoid Arthritis (24 samples: 12A, 12B), Osteoarthritis 

(20 samples: 10A, 10B 
GSE1919 Affymetrix HGU95A 15 Synovial biopsies from Healthy (5 samples), Rheumatoid Arthritis (5 samples), Osteoarthritis (5 samples) 
GSE2053 HUMAN UNIGENE SetI Part 1 8 Synovial biopsies from Healthy (4 samples), Rheumatoid Arthritis (4 samples) 
GSE39340 Illumina HumanHT-12 V4.0 

expression beadchip 
22 Synovial biopsies from Ankylosing Spondylitis (5 samples), Rheumatoid Arthritis (10 samples), Osteoarthritis (7 

samples) 
E-TABM-104 KTH H. sapiens 29.8k cDNA v2/   

KTH H. sapiens 30.5k cDNA array v1 
32 Synovial biopsies before and after treatment with infliximab (10 patients) 

GSE21537 KTH H. sapiens 30.5k cDNA array v1 62 RA synovial biopsies before infliximab treatment 
GSE13026 INSERM Homo sapiens 14K array 

Liverpool3 
45 Synovial biopsies from Healthy (21 samples), early Rheumatoid Arthritis (12 samples), late Rheumatoid Arthritis 

(12 samples) 
GSE3698 Human Unigene3.1 cDNA Array 

37.5K v1.0 
48 Synovial biopsies from Osteoarthritis (19 samples), Rheumatoid Arthritis (18 samples), Pigmented Villonodular 

Synovitis (11 samples) 
GSE3848 LC-14 31 Synovial biopsies from Osteoarthritis (9 samples), Rheumatoid Arthritis (22 samples) 
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Table 2.7: RNA-seq datasets identified by searching online databases for samples that contained the terms “arthritis” “synovial” “synovium”.   

Accession  Platform # samples Description 
SDY998 Illumina HiSeq 2500 22 AMP Rheumatoid Arthritis Arthroplasty Phase 1 
SDY999 Illumina HiSeq 2500 34 AMP Rheumatoid Arthritis Synovial Phase 1 

SDY1299 Illumina HiSeq 2500 45 
Identification of Three Rheumatoid Arthritis Disease Subtypes by Machine Learning Integration of 
Synovial Histologic Features and RNA Sequencing Data 

E-MTAB-
6141 Illumina HiSeq 2500 154 

Pathobiology of Early Arthritis Cohort (PEAC), synovial biopsies (87 samples) and blood (62 samples) 
samples from treatment naïve rheumatoid arthritis patients 

GSE89408 Illumina HiSeq 2000 218 
Synovial biopsies from Healthy (28 samples), Rheumatoid Arthritis (152 samples), Osteoarthritis (22 
samples), Arthralgia (10 samples), Undifferentiated arthritis (6 samples) 

GSE97165 Illumina HiSeq 2000 38 Synovial biopsies before and after treatment with triple DMARDs (19 patients) 
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3. Development of analytical bioinformatic methods. 

This thesis has made extensive use of bioinformatic analyses to identify the gene signatures 

that discriminate the forms of synovitis in rheumatoid arthritis patients.  This chapter outlines 

the principles of the approaches utilised throughout this thesis, with specific adaptations 

described in their respective chapters.

3.1. Microarray analysis. 

Figure 3.1 summarizes the workflow utilised across the various steps associated with 

microarray analysis, the details of which are explored in more detail below. 

3.1.1. Microarray platforms. 

As listed in Table 2.4, there have been multiple microarray platforms used to identify the 

transcriptome of synovial samples from rheumatoid arthritis patients.  Ultimately, these can be 

broken down to two categories, single and dual-channel detection methods.  Single channel 

microarrays load a single sample per microarray chip, whist dual-channel methods utilise 

paired samples (e.g., healthy vs. diseased tissues) that are individually coded with fluorescent 

labels and provide information based on the relative abundance of transcripts. 

In this thesis, we have focussed on utilising the more common HGU133A/B and HGU133plus2 

platforms for their well-annotated probe-sets and relatively consistent behaviour across 

samples.

3.1.2. Sample metadata preparation. 

Metadata was obtained from information deposited in open access repositories and 

supporting data presented in the original study publications.  Data was compiled as a table and 

saved as a character separated value (CSV) file that listed file name, sample ID, and whatever 

additional information was available (e.g., Disease Activity Score, response to therapeutics, 

histological data).

3.1.3. Normalisation. 

Samples were normalised using the Robust Multi-Array (RMA) average expression measure 

from the affy package to allow comparison of the samples across the experiment(118).  RMA 

relies on three steps termed background correction, quantile normalisation, and median 

polishing (summarised in Figure 3.2).   

 Background correction utilises the probe-match mismatch to correct each microarray 

individually for background noise from aberrant binding. 
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 Quantile normalisation adjusts the distributions of all samples to normalise these 

across all samples being explored.  This is performed ranking all the probes from 

largest to smallest, taking the average for each rank and returning this value for each 

sample.   

 Median polish then summarises the probes and returns a single intensity value for 

each probe-set.  For each probe-set there are multiple probes, these are polished by 

subtracting the row medians (per probe) and then column medians (per sample), and 

this is repeated until the medians converge with a maximum of 5 iterations.

3.1.3.1. Batch effects and correction attempts. 

Many of the datasets used in this study lack ‘appropriate’ baseline controls and are entirely 

comprised of transcriptomic data from diseased samples. Where data was available from 

healthy controls, these were often insufficiently powered to generate meaningful statistical 

determinants. These issues represented a major challenge for this study. Therefore, attempts 

were made to combine microarray datasets from various patient cohorts containing data from 

healthy and diseased tissues (see Chapter 4.5.1). 

As a good example of these batch effects, 3 linked datasets (Berlin – GSE55235, Leipzig – 

GSE55584, Jena – GSE55457) representing a total of 79 patient samples from rheumatoid 

arthritis, osteoarthritis, and healthy controls were combined.  As demonstrated in Figure 3.3A, 

unsupervised clustering revealed no association with the individual disease states.  Instead, 

samples clustering mapped almost entirely with the site where the experiment was conducted 

(Figure 3.3B).  In an attempt to correct for these batch effects, three form correct analysis 

were applied to the datasets– removeBatchEffect from the limma package(9), 

frozenRMA(119), and Combatting Batch effects (ComBat)(120).  These methods initially 

appeared to fix the batch issue. For example, ComBat correction of the Berlin-Leipzig-Jena 

datasets in Figure 3.3C. However, further investigation found that these correction methods 

restricted the downstream analysis of biological behaviours within individual datasets. 

3.1.4. Stratification of disease pathologies. 

Identification of patient pathology is the principle aim of this thesis, to achieve this several 

methods were utilised to group samples for downstream analysis.  Initial stratification utilised 

unsupervised clustering to group patients into the 3 pathologies of rheumatoid arthritis and is 

described extensively in Chapter 4.  Following experiments made use of metadata or classifier 

results to stratify these groups for further analysis
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Figure 3.1:  The workflow utilised in microarray analysis.   

This basic workflow has been utilised to identify pathways affected in disease and create classifiers capable of discriminating disease pathologies. 
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Figure 3.2:  Boxplot and density curves of expression values before and after RMA normalisation.   

The data plotted here represents cohort1 and the healthy controls discussed in Chapter 4.  As can be seen in the raw values the 7 healthy controls at the end of the boxplots are fundamentally different 
to cohort1, and this is even more clear in the density plots.  After RMA normalisation this distribution becomes comparable between the 2 datasets. 
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Figure 3.3: Illustrating the confounding effects associated with batches.  

Three datasets or synovial samples derived from patients with rheumatoid arthritis, osteoarthritis, and no disease, from clinics in Berlin, Leipzig, and Jena.  A) Unsupervised clustering of the datasets, 
and colouring by disease revealed no association between samples.  B) Changing the colouring to reflect which research centre performed the experiments shows that this factor dominates the 
differences between samples.  C) Correcting for batch effects using ComBat results in disease being the primary differentiating factor.
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3.1.5. Immune and stromal cell marker lists 

Initial attempts to quantify the cellular composition of synovial tissue samples based on the 

transcriptional profile of a biopsy used the Cellmix package(121). However, this method was 

not well suited for cellular deconvolution in a complex tissue biopsy.  Instead, gene marker 

lists(122–125) derived in this package were combined to provide a more comprehensive cell-

type specific set of markers. These lists were further refined to consolidate any duplicate 

transcripts.  To support the analysis of  stromal cells, a bespoke fibroblast-related gene list was 

generated using transcriptomic data from differentiated synovial fibroblasts from rheumatoid 

arthritis and osteoarthritis patients, bone marrow fibroblasts and skin fibroblasts(126). 

The utility of these marker sets is shown Figures 3.4 and 3.5, which demonstrates their 

performance against 4 independent datasets of purified immune cells from PBMC.

3.1.6. Generating a predictive gene signature. 

Details describing the generation of specific gene signatures is outlined in Chapter 4 and 6. 

However, several adaptation were made to the sparse Partial Least Squares (sPLS) approach, 

which was used to identify the optimal number of genes utilised in each component of the 

classifier. 

An initial exploratory attempt utilised an early version of the bootsPLS package(14) which 

necessitated running in single-threaded manner.  As explained in Section 4.5.6, this initial 

attempt that identified a 13 gene signature, took over 18 hours to run with only 15 iterations.  

For the main analysis to be robust it needed many more iterations, therefore we investigated 

methods for improving computation time.  With an updated version of the package, this 

improved compute time and when combined with multi-threading allowed many more 

iterations to be run using the HAWK supercomputer.  To optimise the usage of compute 

resources, we identified a bottleneck that showed a maximal thread utilisation of the package, 

where going beyond 6 threads did not reduce compute time per iteration (Figure 3.6).  

Therefore, multiple runs were performed in parallel utilising 6 threads for maximal 

performance.  As there is some variability in the number of components selected in the final 

model, a random seed was assigned to ensure that the data was reproduceable.  All models 

generated are then denoted as fitX, where X represents the random seed utilised. 
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Figure 3.4:  Compute time and optimisation of signature generation.   

This illustrates the time (in minutes) taken to complete one iteration of bootsPLS on the training dataset (GSE48780).  
Compute time flattens out after 6 threads, therefore computation of the final signatures was performed by running 
multiple scripts in parallel on the HAWK supercomputer, each using 6 threads for maximal efficiency.

3.1.1. Differential gene expression. 

All experiments utilised limma to identify differentially expressed genes using an empirical 

Bayes method(9).  The details of each comparison are explained in their respective chapters, 

and unless stated otherwise used Bonferroni correction to adjust p-values for further analysis.

3.1. RNA-seq analysis. 

This thesis utilised publicly available RNA-seq datasets, and was not focussed on differential 

gene expression, and therefore has a more limited pipeline, focussed on mapping and 

quantifying the reads for stratification.  Certain datasets were obtained from repository sites 

as pre-processed tables and therefore didn’t utilise this analysis.
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Figure 3.5:  Immune and stromal markers performance on purified cells (HGU133A platform).   

Two purified immune cell datasets (GSE1133 & GSE24579) were restricted to immune and stromal markers as outlined in Chapter 3.1.5.  These markers robustly identify lymphoid cells, and preform 
well with myeloid cells. 
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Figure 3.6:  Immune and stromal markers performance on purified cells (HGU133plus2 platform).   

Two purified immune cell datasets (GSE67321 and E-GEOD-28491) were restricted to immune and stromal markers as outlined in Chapter 3.1.5.  These markers robustly identify lymphoid and myeloid 
cell populations 
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3.1.1. Mapping reads to the genome. 

One issue that was raised when testing the gene signatures derived in Chapter 4, was the 

identification of signature genes that were found in human alternative sequences.  Figure 3.7 

illustrates how these alternative sequences, from allelic sequences to fix patches are 

associated with the chromosome, with examples of the contigs that make up the alternative 

sequences.  In the case of one of these genes - LILRA3, this was found on chromosome 19, in a 

region with 4 human alternative sequences.  This results in this gene having 4 separate 

ENSEMBL identifiers (ENSG00000273884, ENSG00000275841, ENSG00000276175, 

ENSG00000278046) associated with the 4 different alternative sequences that cover this part 

of the genome.  To address this, the RNA datasets were mapped to the Gencodes GRCh38.p12 

genome using Burrows-Wheeler Aligner (BWA)(127).  Gencodes annotation file amalgamates 

the RefSeq, Ensembl and alternative sequences, providing comprehensive coverage. 

3.1.2. Generating a preditive gene signature in early arthritis. 

This utilised the same basic methodology as outlined in section 3.1.6, but with some 

adaptations required for utilisation with RNA-seq data. 

For use with the PEAC dataset, the data needed to be transformed from FPKM to TPM, as the 

low expression levels interfered with the analysis.  Moreover, the data needed extensive 

filtering to obtain a complete analysis, requiring the removal of near-zero variants using the 

packages build-in function, further filtering was performed to remove all pseudoautosomal 

region and any genes that had a 0 in more than 25% of samples

3.2. ChIP-seq analysis. 

Figure 3.8 summarises the ChIP-seq workflow used to identify peaks in the data. 

3.2.1. Quality control of reads. 

After sequencing, reads were demultiplexed and trimmed to remove adapter sequences. The 

quality of these reads were then assessed using fastqc.  Duplicate reads were flagged prior to 

mapping.

3.2.2. Mapping reads to the genome. 

Reads were mapped to GRCm38.84 (mm10) using BWA for both marked and removed 

duplicate samples.

3.2.3. Peak calling. 

Duplicates were removed and peaks were called using Model-based Analysis of ChIP-seq 

(MACS2)(128) at three q-value thresholds (0.1, 0.05, 0.01).  Bed files generated by peak calling 

were then analysed to identify overlaps with genes using the Peak Annotation and 
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VISualisation (PAVIS)(129) service using the default parameters of 5kb upstream and 1kb 

downstream of the transcription start site. 
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Figure 3.7:  Human alternative sequences associated with chromosome 19.   

Alternative allelic sequences associated with haplotypes are depicted in red, fix patches to the reference genome in green.  This figure highlights the 4 Human alternative sequences associated with 
LILRA3, resulting in 4 different ENSEMBL gene ID’s expanded out from the main chromosome. 
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Figure 3.8:  Workflow for the ChIP-seq pipeline.   

Raw sequencing data is trimmed to remove multiplexing adapters before being mapped to the reference genome.  Peaks are identified using the non-duplicated reads, and can be passed downstream 
to for further analysis to identify associated gene
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4. Stratification of synovial pathology according to transcriptional 

gene expression. 

4.1. Introduction. 

Clinical experience shows that early diagnosis and treatment of rheumatoid arthritis prevents 

irreversible joint damage and offers the best opportunity for drug-free remission.  However, 

~40% of patients fail to show adequate response to standard biological drug therapies(16,52).  

This lack of efficacy potentially reflects the clinical heterogeneity of disease seen in patients 

with RA.  For example, patients with RA often show considerable variability in the rate of 

disease progression and severity.  These differences in the clinical presentation of RA is 

epitomised by studies of synovial joint inflammation (synovitis), which shows that the 

histological features of disease vary from patient-to-patient.  Whilst routine blood tests – e.g. 

measurements of the acute-phase reactants like CRP and ESR,  as well as autoantibodies such 

as Rheumatoid Factor and anti-citrullinated protein antibody (ACPA) – are important tools in 

the clinical diagnosis of RA, they provide limited information on the type of synovial pathotype 

seen in patients(71,75,130,131).  Thus, there is a need to understand the inflammatory 

processes driving these distinct forms of pathology. 

Investigations into the molecular basis of disease heterogeneity in RA have significantly 

benefitted from advances in ultrasound-guided biopsy sampling techniques, which have 

allowed the isolation of synovial tissue biopsies at an early stage of disease 

progression(65,69,132,133).  Histological examination of these biopsies has identified 

characteristic features of RA synovitis that include hypertrophy of the synovial lining layer, 

neo-angiogenesis, and the infiltration of leukocytes associated with the control of innate and 

adaptive immune responses(134,135).  However, the pattern of synovitis identified in RA 

patients varies considerably, and synovitis is broadly classified according to defined histological 

features(70,136).  These are termed Follicular (often termed lymphoid-rich synovitis), Diffuse 

(often termed myeloid-rich synovitis), and Pauci immune (often termed fibroblast-rich 

synovitis), see Section 1.3.5 for more in-depth exploration of the characteristics of the 

different pathologies.  The definition of these distinct forms of synovitis suggests that the 

underlining inflammatory mechanisms of joint disease differ between RA patients and is likely 

to influence both the rate and severity of disease onset as well as the response to biological 

drug intervention(137,138).  Any improvement in the diagnosis or stratification of these 

different pathologies will ultimately improve clinical decisions on the best course of therapy 

for a distinct patient group(139). 
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Advances in high-throughput transcriptomic technologies have allowed investigators to 

explore gene expression associated with the development of synovitis(140,141).  Previous 

work has predominantly focussed on identifying the characteristics that discriminate RA from 

similar diseases such as osteoarthritis or looking at the response to therapeutics(142,143).  In 

the majority of these cases, the studies do not take into account pathology and how this may 

have a confounding effect on the experiment(144,145).  A small number of studies have 

utilised transcriptomic data in conjunction with the defined histological features to identify 

unique molecular phenotypes specific to each of the pathologies(73,130). 

Just as the cause of RA is unknown, so too are the factors that lead to the differentiation of 

disease and therefore clinical heterogeneity(32).  Consequently, investigation of the pathways 

associated with the different pathologies may identify commonalities that underly them and 

indicate the mechanisms controlling and potentially initiating the disease(66).

4.2. Hypothesis. 

Previous investigations have demonstrated that the pathologies have their own unique 

molecular phenotype, yet these analyses have been performed on highly stratified patient 

samples(73,130).  However, in routine clinical practice, many patients will display discrete 

patterns of synovitis that do not adhere to one of the three pathologies and therefore 

represent a “grey area” of patients. 

By identifying a characteristic profile that defines the three different pathologies, it is possible 

to characterise the profile of these “grey area” patients and determine the similarities with the 

distinct pathologies.  Furthermore, a defined archetypical profile will allow the retrospective 

analysis of datasets which, in general, have very limited metadata respecting the patients.  

Retrospective stratification of these datasets will open the possibility of increased power to 

detect the effects of therapeutics, where previously the increased variation caused by not 

defining the pathologies reduced the ability to see any effects.

4.3. Aims. 

This chapter will explore the biology underlying the three pathologies, looking at similarities 

and differences between them.  It will also demonstrate computational methods for 

identifying the different pathologies and validating them using immune marker profiles.
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4.4. Materials and Methods. 

4.4.1. Reading in data, metadata. 

Raw sample data was obtained from the NCBI Gene Expression Omnibus (GEO) repository 

under the accession GSE48780, this is the data associated with the Dennis et al. (2014) paper, 

which identified 4 major phenotypes with distinct gene expression signatures. 

GSE48780 contains 83 samples from 2 cohorts of RA patient-derived synovial tissue from 

arthroplasty and/or synovectomy.  Metadata provided in the series matrix file contains the 

following additional information for cohort 1 (labelled batch) and is otherwise missing for the 

second cohort: gender, joint location, inflammation, and batch.  For confirmation of this, the 

scan date of the individual .cel files was extracted, as can be seen in Table 4.1 the 2 cohorts 

were processed in 2008 and 2010 respectively. 

Samples from the first cohort were read in and normalised as described in Section 3.1.3. 

Table 4.1: Metadata for GSE48780 extracted from series matrix file* and scan date from the celfile.   

The first cohort of 49 patients utilised in the Dennis et al. paper is clearly distinguished by the level of detail in the 
metadata.  This is also validated by the difference in scanning date of the microarray, Cohort 1 were all scanned in 
December 2008, whilst Cohort 2 was in November 2010.  Samples belonging to the second cohort are highlighted in 
blue. 

Accession # Gender Joint Location Inflammation Batch ScanDate 

GSM1184435 male hip Inf 1 03/12/2008 

GSM1184436 female knee Inf 1 12/12/2008 

GSM1184437 female hip Inf 1 12/12/2008 

GSM1184438 female finger Inf 1 10/12/2008 

GSM1184439 female hip Non-inf 1 03/12/2008 

GSM1184440 female knee Non-inf 1 04/12/2008 

GSM1184441 female elbow Non-inf 1 19/12/2008 

GSM1184442 male finger Inf 1 04/12/2008 

GSM1184443 female Synovial Fluid Only NA 1 12/12/2008 

GSM1184444 female hand Inf 1 10/12/2008 

GSM1184445 female wrist Inf 1 10/12/2008 

GSM1184446 male knee Inf 1 12/12/2008 

GSM1184447 female NA NA 1 12/12/2008 

GSM1184448 female NA NA 1 03/12/2008 

GSM1184449 female hand Inf 1 10/12/2008 

GSM1184450 female knee Inf 1 10/12/2008 

GSM1184451 female hip Non-inf 1 12/12/2008 

GSM1184452 female hip Non-inf 1 10/12/2008 
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GSM1184453 male knee Inf 1 12/12/2008 

GSM1184454 male TKA Non-inf 1 03/12/2008 

GSM1184455 female knee NA 1 04/12/2008 

GSM1184456 female knee Inf 1 03/12/2008 

GSM1184457 female NA Inf 1 10/12/2008 

GSM1184458 female NA Inf 1 04/12/2008 

GSM1184459 female knee Inf 1 03/12/2008 

GSM1184460 female hand Inf 1 12/12/2008 

GSM1184461 female foot Inf 1 10/12/2008 

GSM1184462 female hand Non-inf 1 12/12/2008 

GSM1184463 female hand Non-inf 1 03/12/2008 

GSM1184464 male NA NA 1 10/12/2008 

GSM1184465 male hand Inf 1 12/12/2008 

GSM1184466 male hand Non-inf 1 04/12/2008 

GSM1184467 female thumb Inf 1 04/12/2008 

GSM1184468 female knee Inf 1 04/12/2008 

GSM1184469 female hand Inf 1 03/12/2008 

GSM1184470 female hand Inf 1 12/12/2008 

GSM1184471 female NA Non-inf 1 10/12/2008 

GSM1184472 female flexortenosynovium NA 1 12/12/2008 

GSM1184473 female hand Inf 1 03/12/2008 

GSM1184474 female hand Inf 1 03/12/2008 

GSM1184475 female knee Inf 1 04/12/2008 

GSM1184476 female wrist Non-inf 1 04/12/2008 

GSM1184477 female hand Non-inf 1 12/12/2008 

GSM1184478 female hand Inf 1 12/12/2008 

GSM1184479 female wrist Non-inf 1 12/12/2008 

GSM1184480 female knee Non-inf 1 10/12/2008 

GSM1184481 female NA Inf 1 12/12/2008 

GSM1184482 female NA Non-inf 1 04/12/2008 

GSM1184483 female knee Non-inf 1 03/12/2008 

GSM1184484 unknown unknown unknown 2 05/11/2010 

GSM1184485 unknown unknown unknown 2 09/11/2010 

GSM1184486 unknown unknown unknown 2 03/11/2010 

GSM1184487 unknown unknown unknown 2 05/11/2010 

GSM1184488 unknown unknown unknown 2 05/11/2010 

GSM1184489 unknown unknown unknown 2 04/11/2010 
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GSM1184490 unknown unknown unknown 2 03/11/2010 

GSM1184491 unknown unknown unknown 2 04/11/2010 

GSM1184492 unknown unknown unknown 2 05/11/2010 

GSM1184493 unknown unknown unknown 2 05/11/2010 

GSM1184494 unknown unknown unknown 2 04/11/2010 

GSM1184495 unknown unknown unknown 2 04/11/2010 

GSM1184496 unknown unknown unknown 2 09/11/2010 

GSM1184497 unknown unknown unknown 2 03/11/2010 

GSM1184498 unknown unknown unknown 2 05/11/2010 

GSM1184499 unknown unknown unknown 2 09/11/2010 

GSM1184500 unknown unknown unknown 2 05/11/2010 

GSM1184501 unknown unknown unknown 2 09/11/2010 

GSM1184502 unknown unknown unknown 2 03/11/2010 

GSM1184503 unknown unknown unknown 2 09/11/2010 

GSM1184504 unknown unknown unknown 2 05/11/2010 

GSM1184505 unknown unknown unknown 2 04/11/2010 

GSM1184506 unknown unknown unknown 2 04/11/2010 

GSM1184507 unknown unknown unknown 2 05/11/2010 

GSM1184508 unknown unknown unknown 2 09/11/2010 

GSM1184509 unknown unknown unknown 2 09/11/2010 

GSM1184510 unknown unknown unknown 2 09/11/2010 

GSM1184511 unknown unknown unknown 2 03/11/2010 

GSM1184512 unknown unknown unknown 2 05/11/2010 

GSM1184513 unknown unknown unknown 2 17/11/2010 

GSM1184514 unknown unknown unknown 2 04/11/2010 

GSM1184515 unknown unknown unknown 2 04/11/2010 

GSM1184516 unknown unknown unknown 2 05/11/2010 

GSM1184517 unknown unknown unknown 2 05/11/2010 
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4.4.1.1. Attempting to incorporate healthy controls. 

Healthy synovium samples were obtained from datasets GSE77298 and GSE82107, the healthy 

samples listed in both datasets are the same (as determined by comparing MD5sums of the 

.cel files), osteoarthritis is often used as a control; therefore this adds a total of 31 samples: 16 

RA, 10 OA, and 7 no disease (ND).  These samples have no additional metadata other than the 

disease state.

4.4.2. Hierarchical clustering of the samples. 

After normalisation, samples were filtered to remove low-quality probes (displaying cross-

hybridisation or some other deficiencies) as annotated by Affymetrix (HG-

U133Plus_2.na36.annot.tsv).  Following the removal of low-quality probes, the dataset was 

filtered further by requiring an Entrez ID – in the case of duplicates keeping the one with the 

highest variance – after filtering the dataset comprised of 17144 probes.  For clustering, the 

top 40% more variable probes were selected (by standard deviation) resulting in 6858 probes 

being used. 

Samples were clustered using 2 methods, initially using Ward’s method on Euclidean distance 

of scaled and centred data, and then using Ward’s Method on Euclidean distance on one 

minus Spearman correlation.

4.4.2.1. Testing for batch effects. 

Quantifying the severity of the batch effects was done using the R package “BEClear”(146), 

genes were tested using the non-parametric Kolmogorov-Smirnov test (FDR adjusted) to 

identify those that are different as a result of batches (dataset and condition),  after 

quantifying the genes that are different, they are binned relative to their difference from the 

median.  To determine the severity of these effects, a weighted scoring based on these bins 

provides a Batch Effect Score (BEScore).

4.4.3. Investigating the immune component in the clusters. 

As discussed in Section 3.1.5, 4263 probes representing markers of immune cells and synovial 

fibroblasts were utilised.  After restricting the dataset to these probes, the data was 

transformed into z-scores before plotting.

4.4.4. Differential gene expression. 

Differential gene expression for the clusters was determined by contrasting one cluster versus 

all clusters, using the limma package.  Clusters were compared using a contrast matrix that 

follows the following expression ( 𝑋 −
௫ଵା௫ଶା௫ଷ

ଷ
 ) where X represents the pathotype being 

compared and x represents the other clusters.  The purpose of this contrast is that whilst it 
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reduces power to detect effects by contrasting against itself, large group sizes would not 

outweigh small group sizes. 

4.4.5. Pathology specific archetypal gene expression profile. 

Pathology specific archetypical profiles were generated by taking the average for each cluster.  

Samples were then correlated against the archetype to show the similarity between a sample 

and representative pathology.

4.4.6. Identification of a predictive signature that differentiates the 

pathologies. 

A predictive gene signature that discriminates the different pathologies was obtained by 

assessing several methods: Random Forest, Prediction Analysis for Microarrays (PAM), and 

Sparse Partial Least Squares Discriminatory Analysis (sPLS-DA).
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Figure 4.1:  Initial assessment of sample distributions associated with the three datasets (GSE48780, GSE77298, and 
GSE82107).   

These plots represent the distribution of synovial transcripts from patients with rheumatoid arthritis, osteoarthritis, 
and no disease.  Transcript abundance is measured by probe fluorescence, intensity was log transformed to provide 
a useable scale.  Boxes represent the 25th and 75th percentile, whilst centre band represents the median value, 
whiskers represent 1.5x the interquartile range, and outliers are indicated with circles.  Density plots show the 
distribution of probe intensities across all the samples.  A shows the raw uncorrected data, as can be seen clearly 
from the boxplots samples from 50-82 have a different distribution of values, these samples are from datasets 
GSE77298 and GSE88107 which contain RA, OA, and no disease synovial samples.  B shows the effects of RMA 
normalisation, bringing the samples into apparent normality across datasets.  C represents probes from the 
normalised data that have been filtered in accordance to the methods utilised in the Dennis et al. paper (2014) 
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Figure 4.2: Detecting Batch effects in the data when attempting to include healthy controls.   

Clear batch effects are visible in the clustering the samples from cohort 1 of GSE48780 with samples from GSE77298, 
and GSE82107.  A Samples were normalised with RMA, filtered to A class probes only and removing probes without 
an Entrez ID, with duplicate Entrez IDs being filtered to the probe with the highest variance.  The top 40% most 
variable probes (n = 6858) were clustered (Wards method clustering, Euclidian distance on Spearman correlated 
data).  GSE48780 (Black) contains only RA samples, GSE77298 contains RA samples (Green) and No Disease (Red), 
whilst GSE88107 contain OA samples (Blue).  As can be seen clearly from the split in the dendrogram the difference 
between the datasets (GSE48780 vs GSE77298 & GSE88107) is far bigger than the difference between diseases. B 
PCA on all probes shows the same pattern of discrimination between the datasets.   

In order to quantify the severity of batch effects, the R package “BEClear” was utilised. C After identifying all of the 
genes that are different between batches (dataset and condition) using Kolmogorov-Smirnov test (p-values adjusted 
using FDR), Batch Effect Scores (BEScore) that determine the severity  of the batch effect was determined with a 
weighed score based on bins assigned by differences to median. D To provide context for the score, random batches 
were assigned to samples in cohort 1 of GSE 48780, clearly visible is how small the BEScore is relative to C. 
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4.5. Results. 

4.5.1. Batch effects. 

As GSE48780 lacked any control group, comprising entirely of RA patients, healthy controls 

were incorporated into the analysis using samples from GSE77298 and GSE82107.  As these 

transcriptomic datasets have been obtained from different sources, it was important to 

investigate, and (if present) control for batch effects. 

Looking at the raw uncorrected data Figure 4.1A there is a fundamental difference in the signal 

from the microarray.  In the boxplots, there is a distinct change in the interquartile ranges 

(inside the boxes) from sample 50 onwards that reflect the samples from GSE77298 and 

GSE82107, and this is further typified by the density plots, where there are two different 

distributions of probe intensities. 

After RMA normalisation (Figure 4.1B), it does appear that the samples are normalised 

correctly, with the interquartile ranges being consistent across the samples, though outliers 

still show different behaviour. 

After filtering probes as detailed in Section 4.4.2, this difference in the outliers for the other 

samples becomes more pronounced and causes changes to the distribution of probes. 

Figure 4.2A shows the results of unsupervised clustering of the samples according to the 

adapted methodology discussed in Section 4.4.2 identifies two primary clusters.  Identifying 

these samples in these clusters segregates the GSE48780 samples from the samples of 

GSE77298 and GSE82107.  Given that the latter two datasets contain RA, OA, and ND, 

therefore, it is clear that a batch effect that separates these datasets rather than differences 

between diseases.  This is further exemplified in Principle Component Analysis (PCA) as 

illustrated in Figure 4.2B, which utilises all of the probes, and shows the same discrimination 

between the datasets rather than by condition. 

Figure 4.2C shows a high BEScore illustrating that there is a fundamental difference between 

these datasets, as this score is essentially unitless, a comparison can be made with Figure 4.2D 

which is the result of a random assignment of batches within cohort 1 samples clearly showing 

how strong this effect is. 

As discussed in Chapter 3, methods that have been developed to address batch effects also 

have the habit of destroying biological variance.  Given this limitation, it was not possible to 

integrate these healthy samples as controls for further analysis.  As these datasets (GSE77298 

& GSE82107) only have a small number of RA samples, and no information with regards 
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pathology, it is of limited value to explore the biology of the disease.  Therefore, going forward 

the data analysed is from GSE48780 exclusively. 

 

 

Figure 4.3: Unsupervised clustering of the training dataset reveals the three pathologies of rheumatoid arthritis.   

Replicating the hierarchical clustering of the samples as performed in the Dennis et al.  A represents the original 
clustering from the paper (adapted from figure 1A).  For both figures B and C samples were filtered on the following 
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parameters: exclusion of non A-class probes (as determined by Affymetrix quality assessment); exclusion of any 
probes missing Entrez ID; and restrict any probes with multiple Entrez ID’s were restricted to the one with the 
highest variance; probes were then ranked by variance, and the top 40% most variable probes (n = 6858).  B 
replicates the methodology in the Dennis et al paper, with the samples scaled and centred, before clustering (Ward’s 
method on Euclidian distance).  However, the number of samples belonging to each cluster does not match the 
clustering seen in the original paper.  Colours reflect clusters as identified within C.  C is a reproduction of the 
dendrogram of the original paper, with a slight modification of the methodology.  Samples are clustered in a similar 
manner but utilise a 1 – correlation between samples to calculate the Euclidean distance before using Ward’s 
method.  Due to small differences possible with revisions to Affymetrix’s quality assessment, there are minor 
differences in the tree structure. However, C reproduces the grouping of 8 samples (red), 14 samples (purple), 16 
samples (grey), 8 samples (green), and 3 samples (blue) that represent C1 through 5 respectively in the original 
figure.  Clinically only 3 pathologies are described, and these are mapped in D, showing Follicular (Red) and Diffuse 
(Purple) remains the same, however the three clusters (Low Inflammatory, Fibroid, and C5) represent a similar 
immunological profile (E) and are therefore considered to be Pauci Immune (Cyan).  E Looking at the significantly 
upregulated (adjusted p-value ≤ 0.05, ≥1.5 fold change) immune markers (see chapter 4.5.3), we see that there is no 
difference in the upregulated marker probes between Low Inflammatory, Fibroid, and C5.

4.5.2. Reproduction of the original clustering. 

One important factor missing from the metadata is the synovial pathology that these patients 

exhibit, therefore it is needed to reproduce the clustering to identify the samples. 

Figure 4.3A which is derived from the original paper shows 5 clusters, labelled C1-C5, with 8, 

14, 16, 8, and 3 samples to the clusters, respectively.  Following the methodology exactly as 

laid out in the original paper results in the dendrogram shown in Figure 4.3B, immediately 

evident is that the dendrogram has no relation to that shown in Figure 4.3A.  The colouring 

shown on this tree indicates the classification of the samples as determined with the 

reproduction seen in Figure 4.3C. 

Reproducing the clustering required a modification of the methodology, instead of using 

scaled and centred data it utilises Spearman correlation of the samples.  This clustering 

reproduces the same overall shape of the dendrogram, with very small differences that may be 

the result of different quality assessment annotation – as the version used is not stated.  

Cutting the tree to provide five clusters as previously identified results in the same number of 

samples seen in the original, and these samples have been coloured to match.   

However, as previously discussed there is only histological evidence for 3 pathologies, and 

when investigating the immune profile of the samples the clusters previously identified as 

C3—C5 (see Figure 4.3A) have a similar immune profile.  Looking at the number of significantly 

upregulated immune markers (Figure 4.3E) demonstrates that these clusters are behaving the 

same, whilst C1 and C2 demonstrate very different profiles.  Therefore, taking this lack of 

difference between these three clusters and the histological evidence for 3 pathologies, they 

were collapsed into a single category as indicated in Figure 4.3D.

4.5.3. Immune component expression. 

To validate that the clusters identified reflect real pathologies, the data was restricted to 

probes that can be utilised as markers that discriminate the different immune cells(122–
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125,147) or synovial fibroblasts from RA(126) (see Section 3.1.5 for an explanation of how 

these were derived). 

Figure 4.4A shows the scaled expression data for the dataset ordered by the cell type markers.  

In general, there is a general enrichment of expression for the immune cells in the follicular 

and diffuse clusters, with pauci-immune samples exhibiting a generally downregulated 

expression across the marker list.  Unexpectedly, the fibroblast markers do not show a 

consistent upregulation across the samples, however, more of the fibroblast markers are 

significantly upregulated when looking at differentially expressed genes (Figure 4.4B).  Figure 

4.4B demonstrates the expected immune profile associated with the three pathologies when 

we look at significantly upregulated genes within this marker list: Follicular (red) being 

enriched for B cells and general lymphoid markers, as well as highest levels of T cells; Diffuse 

(purple) being massively enriched for monocyte and myeloid markers; and Pauci-immune 

(cyan) showing little enrichment for the immune cells. 

Clustering the rows in Figure 4.5 illustrates 5 clear blocks of gene expression, however, 

identifying the individual cell types here would be almost impossible – therefore the 

annotation has been collapsed down to lineages.  This annotation demonstrates clear 

enrichment of specific lineages within these clusters, notably lymphoid lineage markers in 

cluster 5 and myeloid lineage markers in clusters 1 and 2 
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Figure 4.4: Immune profile of clustered synovitis pathologies.   

Looking at the scaled expression of 4265 marker genes across the cohort 1 of GSE48780. Immune markers were 
derived from five public databases used in the R package “CellMix”, using the Abbas et al 2005 (IRIS), Palmer et al 
2006, Abbas et al 2009, Watkins et al 2009 (HaemAtlas), and Grigoryev et al 2010 marker lists. These were merged, 
with unique or matching annotations used, and where markers identified differing cell types the closes lineage 
precursor was used. Fibroblast markers were derived from Filer et al 2015 which identified markers that were 
uniquely upregulated in synovial fibroblasts in RA patients compared to skin, bone, or synovial derived cells from RA 
and OA patients.  A shows the increased expression (yellow-orange) of immune genes reflective of the immune 
infiltrates observed in histological characterisation of the pathologies.  Marker genes are indicated by the 
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annotation bars on the right of the figure.  For example an increased expression of B-cell markers in the Lymphoid, 
Granulocyte markers in the myeloid, and a general absence in the Pauci immune.  This enrichment is illustrated in B, 
with significantly upregulated markers (≥1.5 fold and p ≤ 0.05 (Bonferroni corrected)).  Follicular samples exhibit an 
enrichment for B, T and general lymphoid cells, whilst Diffuse samples are enriched for monocytes, granulocytes and 
myeloid cells, and Pauci Immune is slightly enriched for fibroblast markers. 

 

Figure 4.5:  Clustering the rows identifies blocks of genes with similar behaviours.   

Four patterns of expressions are seen, for example up in Diffuse relative to Follicular and Pauci (pattern 1).  As this 
clustering reorders the rows, this makes it impossible to visualise relative to cell type, and therefore annotation has 
been restricted to cell lineage.  Then when looking at the patterns we can see that pattern one has considerably 
more myeloid lineage markers than pattern Four, which itself is enriched for lymphoid markers.   
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Figure 4.6: Differentially expressed genes between the pathologies.   

A, B, & C show volcano plots contrasting the individual pathotypes (Follicular, Diffuse, Pauci immune respectively) against all pathologies combined, x-axis represent fold change, whilst y-axis shows 
the –log10(p-adjusted) (Bonferroni corrected). This contrast was necessitated by the lack of a control group but allows all results to be directly compared against each other.  Given the reciprocal 
nature of this contrast, further exploration into what pathways focusses on the upregulated genes that define what is increased in that pathology, rather than downregulated genes that are more of a 
representation of upregulation in another pathology. D Illustrating all the significantly differentially expressed genes across the pathologies (p.adjusted ≤ 0.05). 
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Figure 4.7:  Investigating the upregulated pathways in the three pathologies using enrichment analysis in Ingenuity Pathway Analysis (IPA). 

  Probes were selected after differential expression, retaining only those that were significant (≤0.05) after adjusting using Bonferroni correction, and had a fold change greater than 0 (therefore only 
upregulated).  These were then subjected to the core analysis for each pathology in IPA, before making a comparative analysis, exporting, and plotting the top 10 pathways in each pathology.    
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4.5.4. Differential expression. 

To investigate the pathways associated with the pathologies requires identification of 

differentially expressed genes, however, as GSE48780 lacks a control group, this necessitated 

comparing one group vs all groups.  Unfortunately, this does result in the fact that 

downregulated genes in one group are also upregulated genes in another, therefore 

downstream analysis focusses primarily on upregulated genes in each group.  The positive of 

this design, however, is that consequently, all comparisons are directly comparable between 

all three clusters, rather than being done in a pairwise manner and accordingly more tests.  As 

these have been characterised by the immunophenotypic expression discussed in section 

4.5.3, clusters will henceforth be referred to by the name of the representative synovial 

pathology. 

Figure 4.6 shows the differentially expressed genes across the 3 pathologies, notably, as 

previously discussed, the reciprocal nature of differentially expressed genes given this method 

of comparison.  2428 probes are differentially expressed across the three pathologies at a 

significance level of less than or equal to 0.05 after Bonferroni correction, reflecting 2016 

genes that are significantly different.  This breaks down to 1188 probes or 1068 genes in 

Follicular, 453 probes and 373 genes in Diffuse, and 1159 probes and 930 genes in Pauci-

immune.  However, given this reciprocal nature, further analysis of differential expression was 

restricted to only those genes that were upregulated. 

Figure 4.7 illustrates the significantly upregulated pathways in the three pathologies, the 

follicular pathology characterised by lymphocyte-associated pathways, diffuse with myeloid 

associated pathways and metabolism, and pauci-immune with tissue remodelling. 

Significant genes upregulated in the follicular pathology highlight the role of the adaptive 

immune system, with numerous genes associated with T-cell receptor signalling (ZAP70, 

CTLA4, ICOS, LAT, CD247) and B-cell signalling (CD7B, PRKCB, CARD11, CD22), as well as the 

differentiation and proliferation of lymphocytes.  Multiple cytokine signalling pathways are 

also identified (IL-2, -3, -4, -5, -7, -9, TNFα) and therefore downstream activation of the PI3K-

Akt (TCL1A, CCND3, CCNE1-3, COL4A3, PKN2), NF-κB (TNFSF14, TNFRSF13C, LTB) and Jak-STAT 

signalling (STAT5B, IL2RB, IL21R, IL12RB1). 

Significant genes upregulated in diffuse shows alterations to metabolism in particular 

gluconeogenesis and glycolysis (GPI, TPI1, PGAM1, ENO1-2, GAPDH), pentose phosphate 

(TANDO1, PGLS, ALDOA) and Fructose Mannose metabolism (SORD, HK2).  Induction of innate 

immune responses can be seen in the upregulation of genes associated with TLR (CXCL8, 
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MAP2k3, TICAM1, MYD88, IFNAR1), TREM1 (), and Fibrin Complement Receptor 3 Signalling 

Pathways (SRC, CCL2, CXCL3). 

Significant genes upregulated in pauci-immune demonstrate a role in controlling tissue 

remodelling through TGF-β regulation of the extracellular matrix (SYNM, FBLN5, TGFB2, 

BMP4), VEGF signalling (PPP3CA, PIK3CA, PIK3R1, PTK2), and wnt signalling (TCF7L1-2, PLCB4, 

RYK, FZD7-8:10).   

4.5.5. An archetype for each pathology. 

To provide a reference point for what each pathology “looks like”, an archetypical expression 

profile was constructed by taking the average expression for all probes for each of the 

representative clusters.  Comparison of individual samples was done by correlating the entire 

transcriptome (all 54675 probes) against the three pathologies.  Whilst focused on the immune 

markers the pathologies Illustrate a clear difference in expression, across the entire 

transcriptome the samples are remarkably similar, necessitating a correlation scale of 0.97-1 to 

visualise the differences between the samples and archetype (Figure 4.8). 

Obviously, the archetypes being derived from these samples, they exhibit a strong correlation 

for each of the representative samples; however, it is notable that there is considerable 

crossover between some of the pathotypes.  Examining the follicular pathology, it has a 

relatively weak correlation with samples from the other pathologies, whilst diffuse and Pauci 

show considerable overlap. 

This archetypical signature can be compared against other datasets (see Chapter 5) on the 

same (or similar) microarray platform but presents challenges when looking at other 

transcriptomic platforms and organisms due to mapping multiple probes to a single gene or 

homologous genes in different organisms.  
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Figure 4.8:  Identifying the archetypical expression for the different pathologies.   

Archetypes were constructed by taking the average expression for every probe for the different clusters.  By 
correlating the entire transcriptome of the individual samples against the architypes provides a Pearson’s correlation 
coefficient for every sample, the stronger the correlation the darker the shade of blue.   

4.5.6. Gene signature. 

Whilst interrogation of the entire transcriptome allows stratification of the patients, this isn’t 

the most efficient use of resources to determine the pathology.  Therefore, a small gene 

signature that allows the stratification of patients would provide a valuable resource for 

determining the optimal therapeutic choices.   

To approach this the first method utilised random forests to select variables that segregate the 

pathologies.  After normalisation, the entire dataset was filtered to require that probes exhibit 

a minimum expression in a proportion of the samples, in this case, a minimum expression of 

100 in 20% of samples, this reduced the number of probes in the dataset from 54’675 down to 

37’188.  Using the pathotypes as defined in Section 4.5.3, an initial random forest of 100’000 
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iterations was performed, using all of these probes demonstrates very poor performance in 

classifying the follicular pathology (AUC: 0.558) (Figure 4.9A.  Figure 4.9B illustrates the 

importance of the variables in the trees a cut-off of 25 genes was used which is illustrated in 

Figure 4.9C.  Reducing the number of variables improves the AUC for diffuse and pauci, but 

follicular still exhibits poor classification rates (Figure 4.9D).  This is reflected in the clustering, 

which fails to partition the samples according to their pathologies (Figure 4.9E)  

The second method utilised was using the package Prediction Analysis for Microarrays (PAMr) 

which utilises the nearest shrunken centroid method to identify candidate genes for 

classification.  Using the default 10-fold cross-validation it is possible to determine the 

threshold with minimal misclassification errors and the least number of genes.  Figure 4.10A 

shows the number of genes at a given threshold, whilst the misclassification rate is shown in 

Figure 4.10B, as the misclassification rate started increasing for follicular samples at a value of 

4.42, this threshold was utilised going forward.  Given this threshold, 158 probes are employed 

in the classifier (Figure 4.11), the cross-validated probabilities for these demonstrates the 

performance of the classifier (Figure 4.12A), as well as the unsupervised hierarchical clustering 

(Figure 4.12B), and the Receiver Operator Characteristics (Figure 4.12C). 

The third method utilised was sparse Partial Least Squares Discriminatory Analysis (sPLS-

DA)(148).  To determine the appropriate number of elements for each component, 

bootstrapping using the related bootsPLS(14) package was employed to calculate the optimal 

numbers. After 997 iterations, fit models were extracted from the data.  This is a 

computationally expensive analysis, with the 997 iterations taking over 24 hours to run across 

2 nodes of the Hawk supercomputer (2x 20 cores per node).  Prior to this undertaking, a pilot 

study was performed with a lower level of cross-validation (5x) and fewer iterations prior to 

implementation of multithreading necessitating around 18 hours of computation to generate 

15 iterations.  As there are a large number of observations going in, the number of iterations is 

potentially not high enough to stabilise the selection of predictors, therefore there is some 

variability to probes utilised in the model.  To account for this variability, one hundred random 

seeds were created, and a fit model performed using these seeds.  Subsequently, the 

performance of the model evaluated using a comparison of hierarchical clustering.  To account 

for this multiple sampling, identification of any common traits between the models was also 

examined.  Additionally, a signature derived from a prior pilot study investigating the 

technique was utilised. 

 Performance of the models was evaluated with two methods, an initial screening 

based on its ability to cluster the groups as assessed by a tanglegram, looking for 
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complete clustering of pathologies – belonging to distinct branches with minimal 

misclassification.   

 And those models with the best performance then explored using the Receiver 

Operator Characteristics (ROC). 

Figure 4.13A illustrates 2 good fits (fit1556 and fit8945) which whilst not perfectly stratifying 

the samples retain a hierarchical separation of the three pathologies.  Whereas Figure 4.13B 

has multiple samples miss-clustered, and the hierarchical organisation of the pathologies is 

destroyed. 

Within the seeds, a number of models exhibited good performance in clustering and area 

under the curve, as illustrated in Appendix Figure 10.1.  Table 4.1 shows the overlap between 

the probes in these good models, as well as a “bad fit”, looking across these multiple models 

identify a core set of genes that are common to all.  The similarity of multiple models at the 

28/29 probes across multiple seeds, illustrated in Table 4.1, demonstrates how close the 

models are to being stable, but due to the computational cost, no further iterations were 

performed.   

A core signature was derived from all of the fit models, resulting in 17 probes that are 

consistently present.  Moreover, 14 probes were consistently present in the first component, 

and 3 more in the second (Figure 4.14C & 4.14 D).  This signature performs well when looking 

at the area under the receiver operator curve (AUROC) (Figure 4.14B), and separates well in 

PCA space (Figure 4.14xE).  However, this is not reflected in the unsupervised clustering, with 

some misclassification and non-distinct clusters, as shown in Figure 4.14F but ultimately 

retaining hierarchical order associated with pathologies. 

A pilot study into the technique, using a low iteration implementation (15 iterations), 

identified 14 probes that stratified the pathologies.  As two of the probes (214435_x_at & 

224880_at) are for the same gene, RALA, the latter probe was removed with no major effects 

on the clustering or performance, resulting in a 13 probe/gene signature going forward.  

Investigating this signature in the larger iteration dataset demonstrates a good classification 

once the second component is included, as assessed by the ROC (Figure 4.15A & 4.15B).  As 

with the other sPLS-DA results, this signature shows good separation in the PCA space (Figure 

4.15E) and shows good performance in the unsupervised clustering (Figure 4.15F). 
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Figure 4.9:  Predicting pathologies using random forest:   

Probes were filtered to require a minimum expression of 100 across 20% of probes resulting in 37 thousand probes 
going into the classifier.  A Classifier performance using the full dataset, demonstrating relatively good performance 
for Pauci and Diffuse, but barely predicting Follicular better than Random.  B Plotting the importance of genes in 
describing variance, red line shows the intersect for 25 probes that were utilised in the restricted classifier.  C 
Heatmap of the scaled expression of the 25 probes, (D) restricting the dataset going in improves classifier 
performance for Pauci and Diffuse, but Follicular still exhibits poor classification.  E This is reflected in the 
unsupervised clustering which shows mixed clustering. 
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Figure 4.10: Identification of gene signature that discriminates pathologies using the Prediction Analysis for 
Microarrays (pamr) package .  

A Plotting the error rate to determine the cut-off threshold that balances minimisation of the misclassification error 
and the number of genes needed in predicting pathology, B shows the pathology specific error rates, as well as the 
number of probes included at a given threshold level.  The threshold value (green dotted line) of 4.42 was chosen as 
this is the point where misclassification rates for the follicular pathology starts to increase, and this minimises the 
number of genes whilst keeping the classification accuracy. 
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Figure 4.11:  The contribution of the 158 probes in discriminating the different pathologies at a threshold value of 
4.42. 
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Figure 4.12: The performance of the 158 probe signature derived through the Prediction Analysis for Microarrays 
(PAMr) package.  

A The cross-validated (10 fold) probabilities for pathology prediction.  B Illustrating the clustering obtained using 
these 158 probes compared to the clustering obtained in Figure 1.3.  C The Receiver Operator Characteristics for 
classification performances at the 4.42 threshold. 
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Figure 4.13:  Assessing fit performance using unsupervised clustering based on the gene signatures identified by 
bootsPLS   

Whilst all fits appear to perform well when looking at the ROC performance and the principle component separation.  
Unsupervised clustering demonstrates that some fit models retain a hierarchical order associated with pathology 
(A), some models lose this order, and are therefore considered bad fits (B)  
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Figure 4.14: Performance of a composite signature derived from the core features of all fit models as a method to 
stabilise selection.  

Plotting the Receiver Operator Curves to show the sensitivity and specificity of the model utilising the first 
component (A) or second component (B).  Performance was assessed using the Area Under the Curve, where 1 would 
be a perfect classification, and 0.5 would be completely random classification.  The contribution of the genes to their 
respective components is illustrated in C & D, with the colour illustrating the pathology with the maximal mean 
value.  E Plotting the variance that these probes contribute in their respective components shows a separation of the 
samples into their respective pathologies, ellipses reflect the 95% confidence interval for the different groups.  F 
Clustering the samples has mixed ability to discriminate the pathologies when performing unsupervised clustering, 
with some misclassification of the Pauci samples as well as mixing the Diffuse and Follicular branches. 
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Figure 4.15:  Investigating the performance of a signature identified in the pilot study into the technique.  

13 genes stratify pathologies A, B Receiver operator characteristics on the first and second components, and their 
loadings (C, D).  E Plotting the variance shows good separation across the two components and good separation 
when performing unsupervised clustering (F)..
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Table 4.2: Genes utilised in the signatures identified by sPLS-DA.  

Eleven of the 100 fit models were assessed as having good performance.  Despite sharing the majority of probes with the good fits, fit4948 performs poorly when looking at unsupervised clustering 
results. These probes overlap with the initial 13 gene signature identified in the pilot study, and a 17 gene core signature common to all good fits was identified. 

    Good Fit Models   “Bad”         
Probe Symbol 1556 2078 4657 5184 5237 5495 6104 6747 8395 8913 8945   4948   Core   13 gene 
205180_s_at ADAM8 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✔  ✔ 
205681_at BCL2A1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔   ✔   ✔   ✔ 
218223_s_at PLEKHO1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✔  ✔ 
210184_at ITGAX ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔   ✔   ✔   ✔ 
230966_at IL4I1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✔  ✘ 
205179_s_at ADAM8 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔   ✔   ✔   ✘ 
206881_s_at LILRA3 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✔  ✔ 
209054_s_at NSD2 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔   ✔   ✔   ✔ 
205498_at GHR ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✔  ✘ 
225589_at SH3RF1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔   ✔   ✔   ✘ 
218665_at FZD4 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✔  ✘ 
211133_x_at LILRB3 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔   ✔   ✔   ✘ 
204998_s_at ATF5 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✔  ✘ 
219385_at SLAMF8 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔   ✔   ✔   ✘ 
203047_at STK10 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔  ✔  ✘  ✘ 
244654_at MYO1G ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔   ✘   ✘   ✘ 
210784_x_at LILRB3 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✘ ✔ ✔  ✘  ✘  ✘ 
229625_at GBP5 ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✘ ✘ ✘   ✘   ✘   ✘ 
211527_x_at VEGFA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✔  ✘ 
210845_s_at PLAUR ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔   ✔   ✔   ✔ 
226152_at TTC7B ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✔  ✔ 
214435_x_at RALA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔   ✔   ✘   ✔ 
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202679_at NPC1 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✘  ✘ 
208075_s_at CCL7 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔   ✔   ✘   ✘ 
210512_s_at VEGFA ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✘  ✔ 
201849_at BNIP3 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔   ✔   ✘   ✔ 
211924_s_at PLAUR ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔  ✔  ✘  ✘ 
232214_x_at ZNF554 ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔   ✔   ✘   ✔ 
244856_at NA ✔ ✘ ✔ ✘ ✔ ✘ ✘ ✔ ✔ ✔ ✘  ✘  ✘  ✘ 
55081_at MICALL1 ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘   ✘   ✘   ✘ 
243968_x_at FCRL1 ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘  ✘  ✘  ✘ 
38521_at CD22 ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘   ✘   ✘   ✘ 
203719_at ERCC1 ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘  ✘  ✘  ✘ 
203503_s_at PEX14 ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘   ✘   ✘   ✔ 
1555425_x_at SSH2 ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘  ✘  ✘  ✘ 
212171_x_at VEGFA ✘ ✘ ✘ ✘ ✔ ✘ ✘ ✘ ✔ ✘ ✘   ✘   ✘   ✘ 
214974_x_at CXCL5 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘  ✘  ✘  ✘ 
213927_at MAP3K9 ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘   ✘   ✘   ✘ 
236449_at CSTB ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✔ ✘ ✘  ✘  ✘  ✘ 
224880_at RALA ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘ ✘   ✘   ✘   ✔ 
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4.6. Discussion. 

It is clear that the different pathologies of RA have their own unique transcriptional profiles, 

which aligns with the previous investigations,  as would be expected, these profiles are 

enriched with genes involved in pathways reflective of the biology of the pathotypes. 

Given the enrichment for T- and B- cells and the formation of germinal centres in the follicular 

pathology, the strong associations with T & B cell receptor signalling fits well with understood 

biology of the pathotype.  Similarly, the enhanced proliferation and angiogenesis pathways 

observed in the pauci samples reflects the increased pannus formation observed in the joint, 

highlighting that the stromal cells have a key role in disease progression.  Within the diffuse 

pathology, we see numerous myeloid associated pathways that reflect the increased myeloid 

component observed in the joint.  Interestingly we also see that IL-17 responses and an 

important component of the diffuse pathology, that were previously described as associated 

with the follicular pathology(88,149).  

The next chapter will focus more on testing these signatures identified here, but it is important 

to note the novelty of this approach.  Prior investigations have identified that the pathologies 

have their own unique molecular profiles, yet necessitated the use of the majority of the 

transcriptome to differentiate them(73,130).  Having identified a much smaller subset of genes 

that discriminate between the pathologies allows for the possibility of a diagnostic test that 

when used in conjunction with existing knowledge of how pathologies respond to therapeutics 

will allow for more tailored medicine for the patients.  Identifying opportunities for precision 

medicine has several potential positives: primarily by identifying the appropriate treatment 

early, it is possible to prevent irreversible joint damage from occurring; moreover, by avoiding 

non-efficacious treatments it minimises the negative aspects of immunomodulatory 

treatments and avoids potential negative outcomes that may be associated with them; and 

thirdly it minimises the expenditure on expensive biologic therapeutics that would be of no 

benefit to the patient. 

One thing that is important to note with this approach, however, is that these samples 

represent late-stage RA, which is fully differentiated and represents patients who have been 

treated with unknown medication.  At the start of this project, these patients represented the 

largest single cohort of RA patients on a modern platform, as will be explored later, newer 

datasets are becoming available which provide additional samples and better metadata.  

Moreover, if pathology becomes a focus in treatment decisions, it would seem likely that 

longer-term studies like R4RA will allow for better exploration of identifying signatures that 

predict response to therapeutics.  Additionally, there is evidence for RA pathologies not being 



 

83 

discrete and being more of a spectrum, therefore looking forwards it would be advantageous 

to see if it is possible to identify these “grey area” patients and see if these have different 

outcomes.
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5. Testing signature in independent clinical datasets. 

5.1. Introduction. 

The advent of high throughput bioinformatic analysis of transcriptomic datasets (derived by 

microarray or RNA-seq) from clinical studies has opened opportunities to identify prognostic 

signatures that inform patient outcomes.  Primarily this has been used in oncology(150) and 

transplantation(151) to identify signatures that define response to therapeutics, metastatic 

propensity, clinical features, or organ rejection.  In the case of rheumatoid arthritis, high-

throughput screening approaches have been extensively used to investigate synovial 

histopathology or the phenotypic properties of fibroblast-like synoviocytes and circulating 

blood leukocytes.  These studies have identified several gene signatures that discriminate 

between rheumatoid arthritis and other forms of disease or healthy controls (152–154), as 

well as highlighting differentially expressed genes that give insights into the mechanisms 

controlling the disease(155,156).  However, one of the biggest challenges is translating these 

discoveries into clinical practice as these signatures often fail to replicate across independently 

generated datasets(157). 

Clinical decisions on the best course of rheumatoid arthritis therapy involve the tracking of a 

prescribed regime of therapeutics to determine efficacy against defined clinical outcomes and 

recommended NICE guidelines (16,49,50,158), outlined in Figure 5.1.  This necessitates a 

longitudinal assessment of clinical responses to therapy for three to six months following the 

start of a new course of treatment (12,13), unless contraindicated by an adverse reaction. Any 

lack of response can lead to the progression of irreversible joint damage or uncontrolled 

synovitis(159). Significantly, patients may also experience a lack of therapeutic response 

towards multiple biological drug regimes. Here, the therapeutic strategy is geared towards 

maintaining the disease in a low inflammatory state and is designed to ensure the best quality 

of life outcome for the patient (160).  

Prior studies have retrospectively identified an association between therapeutic response and 

histological joint pathology or immune cell phenotype(84,86,89,91,161–166). Here, ongoing 

clinical trials (R4RA, STRAP) with collaborators in Queen Mary University London have 

investigated pathology specific responses to biological therapeutics in rheumatoid arthritis 

(167–169).  Currently, joint pathology is not assessed as part of clinical treatment decisions, 

partially due to the complex method of sample preparation and histological analysis.  Here, 

early and effective diagnosis of the underlying pathology is proposed as a major decision-

making tool in tailoring treatment options to enhance the likely response to biological drug 

therapy. 



 

85 

 

Figure 5.1: Algorithm illustrating NICE guidance on biologic drugs for the treatment of RA.  

NICE (2011) algorithm: ‘rheumatoid arthritis’. www.nice.org.uk. Algorithm was accurate at the time of publication 
CI: contraindication.  Figure from Kiely, P.D.W., et al. 2012 

Histological assessments of joint biopsies provide details of cellular hyperplasia, leukocyte 

infiltration and the organisation of immune cells within the inflamed synovium. Whilst these 

approaches are labour intensive, they have opened further investigations into the 
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transcriptomic mechanisms that drive disease heterogeneity in rheumatoid arthritis patients. 

Here, a prognostic gene signature that stratifies joint pathology (i.e. a disease classifier) would 

provide enhance treatment decisions by ensuring patients receive the most efficacious therapy 

for their form of the disease. 

5.2. Hypothesis. 

Based on the computational models described in Chapter 4, it was hypothesised that these 

analytical tools will aid the stratification of rheumatoid arthritis patients studied in 

independently evaluated clinical cohorts.  

5.3. Aims. 

Previous investigations have detected gene signatures that define therapeutic 

responses(82,144,145), but these determinations often fail to be replicated in independent 

datasets from alternate patient cohorts.  Therefore, to test that the classifier identified in the 

previous chapters are not the result of overfitting, signatures derived from Chapter 4 were 

tested against 2 independent cohort studies that have comprehensive metadata that 

authentications their accuracy as validation datasets. with an overall aim to identify which 

gene signature displays the best performance in stratifying patients according to synovial joint 

pathology.

5.4. Materials and Methods. 

5.4.1. Repository datasets and associated metadata. 

The synovial transcriptomic datasets presented in Chapter 3 (Tables 2.4.1 & 2.4.2) were 

generated using a diverse selection of platforms – various microarray platforms and RNA-seq 

technologies. However, only two datasets contained sufficient metadata to allow comparison 

of transcriptomic data with joint histopathology – identified as GSE24742 and E-MTAB-6141.  

To allow interpretations across platforms, datasets were transformed to negate issues 

associated with batch effects. In this regard, all data was scaled relative to itself and not 

between datasets. 

GSE24742 evaluated the clinical response of 12 patients to rituximab in matched samples 

taken before and after treatment (24 samples total). A full histological assessment of the joint 

biopsies derived from this study is presented as supplementary information (Tables 1a-c) 

within the original article publication(145).  Importantly, transcriptomic datasets generated 

from this study were generated using the same Affymetrix HGU133plus2 microarray platform 

as used to produce the training data described in Chapter-4(73).  Whilst the synovial pathology 

observed in this patient cohort was not classified into specific pathotypes, a detailed 
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histological characterisation of each biopsy was available for this patient cohort.  Using the 

classification system defined in Humby et al. 2018, pathologies were categorised using the 

histological criteria presented in Table 5.1.  Pathologies utilised in testing classifier 

performance are listed in Table 5.2 and visualised in Figure 5.2. 

Table 5.1: Pathotype characterisation rules as defined by Humby et al. 2019  

Using a semi-quantitative evaluation of immune infiltrate.  Follicular is characterised by an enrichment of B-cell and 
plasma cells with the presence of aggregates; Diffuse by CD3 and CD68 infiltrate low B-cell and plasma-cells and no 
aggregates; Pauci by low infiltrates across the board. 

  Follicular Diffuse Pauci 
B-cell (CD20) ≥2 ≤1 <1 
Plasma cell (CD138) ≥2 ≤2 <1 
T-cell (CD3)   ≥1 <1 
Aggregates + - - 
Macrophage SL (CD68)   ≥2 <2 

 

E-MTAB-6141 documents data derived from the Pathobiology of Early Arthritis Cohort (PEAC), 

which investigated matched blood and synovium from treatment naïve early rheumatoid 

arthritis patients, for testing purposes samples were restricted to synovial samples.  This 

dataset has comprehensive metadata (see Table 5.3) and includes defined pathologies for each 

of the biopsy samples.  Transcriptomic data from this study was generated by RNA-seq data, 

which necessitated some transformation of the data for modelling purposes.  Here, several of 

the genes listed within each of the classifier signatures aligned to an alternative human 

sequence. These sequences originate from the over-representation of haplotype diversity in 

the reference genome. For example, the 2018 annotated genome reference sequence 

comprised 261 alternate loci that are highly enriched in polymorphic genomic regions 

associated with immune-related recombination events(170,171).  To control for this issue, 

sequencing reads were mapped against the Gencode V29 Annotations(172).   
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Figure 5.2: The immune profile of synovial biopsies prior to the administration of rituximab (dataset: GSE24742).   

Plotting the scaled expression of these immune probes with the archetypical signature derived in chapter 4.  Samples were clustered using the 13 gene signature, which reveals 3 main groups of 
samples.  In the first cluster, the correlation between sample transcriptome and archetype shows the majority show a pauci-immune like signature, which matches with the low scores across the 
histological markers. Using the stricter rules of no diffuse infiltrates or lymphoid structures however reduces this to a single sample.  Likewise the second cluster which strongly correlates with the 
diffuse archetype is almost devoid of samples containing ectopic structures.  And all the samples in the third cluster show correlations with the follicular archetype, and have the presence of lymphoid 
structures.  Pathotypes used for testing classifier performance are indicated in purple, red, and cyan – follicular, diffuse, and pauci-immune respectively 
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Table 5.2: Metadata of the 12 samples before rituximab treatment. 

 EULAR response – assessed by change in DAS28, Good, Moderate and Poor; CRP = C-Reactive Protein, VAS = Visual Analogue Scale; DAS-28 CRP = Disease Activity Score based on 28 joints and CRP 
levels; Histological scoring measures, Flow cytometry for CD19 (B-cells) and CD3 (T-cells); Synovial immunohistochemistry measures for specific cells – CD3 (T-Cell), CD15 (Myeloid), CD20 (B-cell), CD68 
(Macrophage), CD138 (Plasma cell).  Pathology was defined using rules from Humby et al 2019 

Sam
ple N

am
e 

EU
LAR Response 

Patient 

G
ender 

Age 

Rheum
atoid Factor 

Anti-CCP antibodies 

Sw
ollen joints 

Tender joints 

CRP (m
g/dl) 

VAS patient 

DAS-28 CRP Score 

Synovial hyperplasia 

Diffuse cellular infiltrates 

Lym
phoid structures 

Fibrinoid necrosis 

Vascular hyperplasia 

Sub-lining Ki67 im
m

unostaining 

Lining Ki67 im
m

unostaining 

Peripheral blood CD
19 (%

) 
 

Peripheral blood CD
3 (%

) 

Synovial CD
3 

Synovial CD
15 

Synovial CD
20 

Synovial CD
68 

Synovial CD138 

Pathology 

GSM607508 G 1 F 51 + + 10 9 2.2 50 5.3 2 2 0 0 2 0.5 2 17 64 2 1 2 2 1 Diffuse 

GSM609031 G 2 F 64 + + 6 5 1.6 11 4.1 0 1 0 0 1 0 0 11 69 1.5 0 1 1 1 Diffuse 

GSM609033 G 3 F 68 - - 21 24 1.6 54 6.8 3 2 1 3 2 2 0 11 72 3 2 2 2 2 Follicular 

GSM609035 M 8 M 44 + + 6 11 6.3 69 5.8 2 2 0 0 1 0.5 0 7 79 2 1 1 1 2 Diffuse 

GSM609037 M 9 F 33 - + 19 38 7 97 7.8 3 3 1 1 2 2 0 10 80 2 1 1 1 N/A Follicular 

GSM609386 M 10 M 59 - - 13 29 2.7 80 7 2 1 0 1 2 0.5 0 3 87 1 0 1 2 2 Diffuse 

GSM609388 M 11 F 77 - - 23 26 5.1 93 7.6 2 3 1 1 1 2 0 9 84 3 1 2 3 3 Follicular 

GSM609390 M 12 F 68 - + 5 30 0.1 73 5.5 0 0 0 0 0 0 0 15 71 0 0 0 0 0 Pauci 

GSM609392 M 13 F 21 + - 4 4 1.4 71 4.6 2 3 1 1 1 1 1 14 79 3 2 2 3 3 Follicular 

GSM609394 P 17 M 64 - - 7 17 6 80 5 3 2 0 1 0 1 2 7 78 1.5 1 1 2 1 Diffuse 

GSM609396 P 18 F 47 - + 4 9 4.5 94 3.8 1 1 0 0 1 0.5 0 4 82 1 0 0 1 1 Diffuse 

GSM609398 P 19 F 59 + NA 6 6 1.2 87 6.3 3 2 1 1 1 2 1 NA 81 3 0.5 2 3 2 Follicular 
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Table 5.3: Sample of the metadata provided for the PEAC dataset.   

In addition to pathotype, the dataset contains a wealth of clinical measures that have been explored in the original paper (Lewis, M.J. et al. 2019). Ind = Individual, to match paired blood and synovial 
samples; ESR =  Erythrocyte Sedimentation Rate; CRP = C-Reactive Protein; CCP = cyclic citrullinated peptides or Anti-citrullinated protein antibody; RF = Rheumatoid Factor; VAS = Tender = Number of 
tender joints; Swollen = Number swollen joints; HAQ = Health Assessment Questionnaire disability index; DAS28 = Disease Activity Score based on 28 joints, Inf Score =  Inflammatory score. 

ENA_RUN Age Sex Ind Tissue Onset ESR CRP CCP RF VAS TENDER SWOLLEN HAQ DAS28 Inf score Pathotype 
ERR2179090 62 F 1 blood 12 106 79 179 1 48 27 26 3 8.27 4 lymphoid 
ERR2179089 62 F 1 synovium 12 106 79 179 1 48 27 26 3 8.27 4 lymphoid 
ERR2179092 61 F 2 blood 8 74 35 340 1 61 14 23 2 7.31 8 lymphoid 
ERR2179091 61 F 2 synovium 8 74 35 340 1 61 14 23 2 7.31 8 lymphoid 
ERR2179094 89 F 3 blood 12 28 9 17 1 50 4 4 NA 4.85 3 myeloid 
ERR2179093 89 F 3 synovium 12 28 9 17 1 50 4 4 NA 4.85 3 myeloid 
ERR2179096 71 F 4 blood 1 28 0 0 0 48 28 18 1.875 7.58 7 lymphoid 
ERR2179095 71 F 4 synovium 1 28 0 0 0 48 28 18 1.875 7.58 7 lymphoid 
ERR2179098 71 M 5 blood 3 95 162 600 1 92 21 24 2.875 8.47 1 fibroid 
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Figure 5.3: Workflow for testing RNA-seq data.  

 A The microarray platform utilised in the initial training has multiple probes for the same gene, whilst RNA-seq is mapped to unique genes.  Therefore, probes are filtered to remove duplicate genes, 
keeping the most important ProbeID for each gene.  As this removes the effects of these other probes, the performance of the classifier is first examined using the training data to determine if there are 
significant changes to the models output.  Given no deleterious effects on the classifier performance, this is then taken on to testing in an external dataset.  B Some genes exist as Human Alternative 
Sequences, for genes that match this, given their 100% sequence identity just alternate mapping, the FPKM values were summed and returned as a single value for further testing. 
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5.4.2. Testing of classifier performance. 

For predictions made using the PEAC data, signature probes corresponding to the same 

transcript were reduced to a single gene entry. The impact of removing these duplicated gene 

probes on the model was assessed by plotting Receiver Operator Curve (ROC) and comparing 

the Area Under the Curve (AUC) for each prediction to the training dataset.   

Transcriptomic data from the respective datasets were restricted to the signature 

probes/genes and fed into the prediction model. Here, predictions were tested against the 

histologically described pathotype in a one vs all method. That is, for each pathology, samples 

were assigned true/false values for the pathology, and prediction confidence from the 

classifier was tested as case/control in ROCR(173), and this was then repeated for all 

pathologies, This workflow is shown in Figure 5.4 using Pauci-immune as the example 

pathology.  To correct for discrepancies between microarray probes, gene annotation, and 

human alternative sequences the workflow was changed as illustrated in Figure 5.3B. 

Specifically, the FPKM value for genes with an alternate gene sequence was combined and 

returned as a sum FPKM value for each gene and entered as a single value in the classifier 

(Figure 5.3B).  To avoid the issue of batch effects, and to make comparisons possible across 

platforms, all values were scaled across genes.

5.4.3. Incorporating archetypes from the microarray dataset. 

GSE24742 is on the same microarray platform as the archetypes derived from GSE48780 in the 

previous chapters. Thus, each of the archetypes derived in Chapter-4 can be directly scaled for 

evaluation of the GSE24742 dataset.  To explore the immune profile of PEAC dataset, the 

archetypical expression values of the microarray probes were converted to a compatible 

format to allow direct comparison with the datasets derived by microarray analysis.  As with 

the classifier (see Section 5.4.2), genes annotated by multiple probes were reduced to a single 

value and renamed according to the Ensembl ID.  Unlike the classifier, these probes do not 

have any inherent ranking of importance due to their contribution to a model.  Instead, they 

were identified as markers of immune or stromal cells. Therefore, all probes associated with 

immune markers were ordered by average expression and the highest one used.  In the case of 

multiple Ensembl IDs as a result of human alternative sequences, these ordered probes were 

used to fill out alternative Ensembl IDs, repeated if necessary.
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Figure 5.4: Testing rational for assessing classifier performance.  

Pathologies were obtained from the metadata and tested one vs all, in this example for pauci-immune.  Using the 
metadata, the true values for testing were reduced to true/false values, so all samples that were classified as pauci 
(fibroid from metadata) are assigned as one, and anything else a zero.  Classifier predictions were then restricted to 
just the pathology being tested, and combined with the true values allow the performance to be assessed using the 
receiver operator characteristics, quantified using the area under the curve.  This is then repeated for the other 2 
pathologies.
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5.5. Results. 

5.5.1. The clinical datasets. 

Histological assessments of the 12 biopsy samples in the GSE24742 dataset identified synovial 

pathologies characterised as pauci-immune (n=1; coloured cyan), follicular (n=5; coloured 

purple), and diffuse (n=6; coloured red) shown in Figure 5.2.   The patients utilised in this 

cohort were all resistant to anti-TNF with a mean disease duration of 12.6 years, therefore 

these samples represent established disease.   

The PEAC dataset provides information on 87 synovial joint biopsies characterised 

histologically as follicular (lymphoid; n=45), diffuse (myeloid; n=20), or pauci-immune (fibroid; 

n=16) synovitis. A further 6 samples had unclassified pathologies.  The naming of the dataset, 

Pathobiology of Early Arthritis Cohort, demonstrates that these are patients with early disease, 

and from the patient description are all treatment naïve.  The accompanying metadata 

provides a wealth of other clinical scores and outcome measures which have been extensively 

reported in several papers and used to support the investigation described here(71,130).

5.5.2. Classifier performance. 

The performance of all the models generated in Chapter 4 was assessed against both 

independent clinical cohorts, except for the PAMR signature which fails to translate across 

platforms, requiring the full set microarray probes that are then assessed using a shrunken 

centroid methodology based on a pre-determined delta threshold, and is therefore only tested 

against GSE24742. 

Removal of duplicate probes was assessed via AUC to ensure no drastic effects from changes 

to the signature, which in most cases resulted in a small increase in AUC as illustrated in Figure 

5.3A 

Within the GSE24742 dataset, all the models displayed a very good performance classifying 

pauci-immune (AUC: 0.91).  The PAMR and Random Forest models have good accuracy 

predicting the follicular samples, but like all the models have a very poor ability to predict the 

diffuse pathology (AUC: 0.31~0.33).  The results of all models are shown in Table 5.2. 

The results of model performance within the PEAC dataset are listed in Table 5.5. However, as 

described above, these signatures perform well as predictors of synovial pauci-immune (AUC: 

0.73~0.8) and follicular (AUC: 0.69~0.77) pathology, but as shown previously demonstrated a 

poor performance to predict diffuse synovitis (AUC: 0.43~0.51). 
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Table 5.4: Summary of the different model's performance in the GSE24742 dataset. 

Model 
GSE24742 

AUC Youden's Index 
Follicular Diffuse Pauci Follicular Diffuse Pauci 

PAMR 0.86 0.33 0.91 0.66 0.17 0.91 
Random Forest 0.73 0.31 0.91 0.31 0.17 0.91 

Bo
ot

sP
LS

 

13 gene 0.63 0.31 0.91 0.43 0.17 0.91 
17 gene 0.54 0.31 0.91 0.37 0.00 0.91 

1556 0.54 0.33 0.91 0.23 0.17 0.91 
2078 0.60 0.31 0.91 0.29 0.17 0.91 
4657 0.54 0.33 0.91 0.23 0.17 0.91 
4948 0.60 0.31 0.91 0.31 0.17 0.91 
5184 0.60 0.31 0.91 0.29 0.17 0.91 
5237 0.60 0.33 0.91 0.31 0.17 0.91 
5495 0.60 0.31 0.91 0.29 0.17 0.91 
6104 0.60 0.31 0.91 0.29 0.17 0.91 
6747 0.54 0.33 0.91 0.23 0.17 0.91 
8395 0.66 0.33 0.91 0.51 0.17 0.91 
8913 0.54 0.33 0.91 0.23 0.17 0.91 
8945 0.60 0.31 0.91 0.29 0.17 0.91 

Table 5.5: Model performance in the PEAC dataset. 

Model 
PEAC 

AUC Youden's Index 
Follicular Diffuse Pauci Follicular Diffuse Pauci 

PAMR - - - - - - 
Random Forest 0.73 0.46 0.80 0.36 0.05 0.54 

Bo
ot

sP
LS

 

13 gene 0.74 0.43 0.76 0.43 0.04 0.50 
17 gene 0.77 0.51 0.77 0.45 0.17 0.46 

1556 0.69 0.48 0.75 0.32 0.14 0.45 
2078 0.69 0.48 0.75 0.32 0.14 0.45 
4657 0.69 0.48 0.75 0.32 0.14 0.45 
4948 0.67 0.48 0.73 0.32 0.15 0.42 
5184 0.69 0.48 0.75 0.32 0.14 0.45 
5237 0.78 0.48 0.78 0.50 0.15 0.50 
5495 0.69 0.48 0.75 0.32 0.14 0.45 
6104 0.69 0.48 0.75 0.32 0.14 0.45 
6747 0.69 0.48 0.75 0.32 0.14 0.45 
8395 0.76 0.48 0.75 0.45 0.14 0.46 
8913 0.69 0.48 0.75 0.32 0.14 0.45 
8945 0.69 0.48 0.75 0.32 0.14 0.45 
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Figure 5.5: Best performing models looking in the independent clinical datasets - GSE24742 and PEAC. 

 All 3 models (13 gene, 17 gene, and Random Forest) show good performance for Pauci (cyan) and Follicular (purple) pathologies, but perform poorly with the Diffuse pathology (red). 
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Figure 5.6:  The immune profile of early arthritis.  

Immune markers expressed in the PEAC dataset, compared to the archetypical expression derived in the previous chapter.  Of the metadata supplied, the defined pathology and DAS28 score were 
plotted beneath the heatmap.  Archetype expression was adapted by reducing the probes to a single gene, and mapping to the appropriate Ensembl ID.  In keeping with the performance of the 
classifiers, there are distinct clusters that resemble the archetypes.  Notably, the left cluster containing the fibroid samples behaves similarly to the to the pauci samples in the archetype, likewise the 
cluster on the right that contains a large proportion of the lymphoid samples shows matching behaviour to the follicular archetype.  However, the cluster in the centre that contains the majority of the 
myeloid samples don’t align to any of the archetypical behaviours.
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5.5.2.1. The prediction classifier distinguishes between pauci-immune 

and follicular pathologies. 

Comparing across both cohorts, all the models performed well at classifying the pauci immune 

and follicular forms of synovitis.  Three models consistently performed well as classifiers of 

follicular and pauci-immune pathologies, both in terms of AUC and Youden’s Index, which 

quantifies the point of maximum difference between the TPR and FPR (sensitivity and 1-

specificity).  The performance of these three models – Random Forest, 13 gene, and 17 gene – 

is plotted in Figure 5.5.   

5.5.2.2. The prediction classifier is less able to stratify diffuse pathology. 

All models showed poor performance when predicting the diffuse pathology, illustrated in 

Figure 5.5 as the red line.  In the GSE24742 dataset whilst not identifying the diffuse pathology 

correctly, demonstrates a level of discrimination as the ROC is showing an inverted prediction 

behaviour, that is consistently below the 0.5 line of a truly random classifier.  However, this 

behaviour is not seen in the PEAC dataset, where the classifier performance tracks the 0.5 line 

suggesting an inability to discriminate pathology.

5.5.3. Is the immune profile consistent between early-stage and to 

established rheumatoid arthritis? 

The poor performance or inability of the classifiers to predict diffuse synovitis in these 

datasets, raised the question whether the diffuse pathology observed in early-stage 

rheumatoid arthritis showed any resemblance to the transcriptional datasets derived from 

established or late-stage disease and used to generate the prediction tool? To assess this, 

scaled datasets from biopsies with early-stage and established synovitis were related to the 

archetypal gene expression signature derived from the training data (Figures 5.2 and 5.6). 

In Figure 5.6 there is a clear correlation between the transcriptome of the follicular archetype 

and the presence of ectopic lymphoid structures as shown in the top annotation of the 

heatmap.  Likewise, the first cluster in Figure 5.6 shows samples that have very similar 

transcriptomes to the pauci archetype, and this is further evidenced by the histological 

assessments for each sample score.  However, the diffuse samples show aspects of all three of 

the pathologies seen in the archetypical signatures, with no clear association with that of the 

diffuse archetype signature. 
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Figure 5.7:  Comparing immune marker expression between archetypes derived from GSE48780 and the average 
expression of the pathologies as identified by histology.   

The follicular immune profile is replicated in the lymphoid samples, likewise the pauci-immune profile is replicated in 
both the fibroid and ungraded samples.  Aspects of the diffuse profile are seen in lymphoid and myeloid samples, 
however the myeloid sample lack a clear expression profile that matches any of the archetypes. 

This is further exemplified in Figure 5.6, where the cluster on the left side of the plot that has a 

strong similarity to the pauci archetype, and this is evidenced with the majority of samples 

being identified as fibroid in the metadata – as well as a generally having a lower DAS28 score.  

There is also a strong correlation of follicular pathology with the cluster on the right, which is 

completely composed of samples identified as lymphoid in the metadata (Figure 5.6).  There is 
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also a second cluster in the centre that shows a mix of diffuse and follicular samples according 

to the metadata, and this is reflected with a slightly mixed pattern of upregulated markers 

with components of both archetypical marker genes.  Looking at the samples identified as 

diffuse, there are no clear patterns of marker expression that matches that of the diffuse 

archetype.  This is exemplified when looking at the average values of the PEAC samples when 

using the histologically defined pathologies in Figure 5.7.  In addition to the defined 

pathologies, it can be seen that the 6 samples that were ungraded in the original data strongly 

resemble that of the pauci samples.  And that the average myeloid expression has no strong 

correlation with any of the previously identified archetypes. 

These established-disease patients are reflective of those used in the Dennis et al. training 

dataset, in addition to being measured on the same microarray platform.  In Figure 5.2 three 

distinct clusters of samples match up with the immune profiles seen in the archetypes, which 

can be quantified by correlating the entire transcriptome between the samples and archetype.  

Specifically, when looking at the 2nd cluster that contains many of the diffuse samples and 

shows clear similarities with the diffuse archetype. 

5.5.3.1. Re-evaluating the clinical definition of the pathologies. 

In the original published analysis of the PEAC dataset(71,130), the authors re-evaluated the 

clinical definition of the synovial pathotypes to reflect the close relationship between a pauci 

immune synovitis and low inflammatory synovitis that reflected the enrichment of fibroblasts 

within the joint biopsies.  Similarly, follicular-driven pathology was refined to a ‘lymphoid-

myeloid’ pathotype to account for the role of myeloid cells in addition to CD20 B-cell rich 

lymphoid aggregates.  This allowed the definition of diffuse synovitis to be characterised by 

the involvement of myeloid cells in the absence of a significant, organised synovial B-cell 

infiltrates. To consider this extra layer of sub-classification, the expression of the immune and 

stromal cell markers were compared between the early-stage samples and the archetypical 

profiles of established disease. 

 Therefore, in Figure 5.8 isolating the B-cell markers shows a clear enrichment and 

characteristic follicular pathology for the right-hand cluster comprised of entirely 

follicular samples, with the central cluster showing some samples with the strong B-

cell marker expression and others without.  And the left-hand cluster comprising 

primarily of pauci samples lack this expression. 

 Likewise, exploring the fibroblast markers in Figure 5.9 shows the distinct expression 

pattern of the pauci-immune archetype in the fibroid samples in the left-hand cluster. 
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 Restricting to myeloid markers in Figure 5.10 fails to recapitulate the diffuse pathotype 

seen in the late stage archetypical patients.  Furthermore, these myeloid markers 

show differing components within and between clusters, but no consistent pattern 

associated with exclusively myeloid or diffuse patients. 

In summary, both the pauci immune and follicular pathologies reflect the pattern of immune 

and stromal cell markers seen in the archetypical late-stage disease, but the diffuse pathology 

shows mixed behaviour relative to late-stage disease.  Therefore, whilst there are similarities, 

and histological data shows that joint pathology is relatively stable between early and late 

disease(174,175), early diffuse synovial transcriptome has differences that will need to be 

accounted for to have an effective clinical tool.
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Figure 5.8: : Scaled expression of B-cell markers in the PEAC dataset relative to archetype.  

Given the definition of the diffuse pathotype as being poor in CD20+ B-cells, all B-cell markers were isolated and plotted to show the strong enrichment within the Lymphoid-myeloid or follicular 
pathology. 
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Figure 5.9 : Scaled expression of Fibroblast markers in the PEAC dataset relative to archetype.  

The left cluster mainly comprising fibroid samples reflects the fibroblast signature seen in established 
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Figure 5.10: Scaled expression of Myeloid markers in the PEAC dataset relative to archetype.   

Early stage RA fails to recapitulate the expression of myeloid markers seen in the established disease.
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5.6. Discussion 

Given that synovial pathology affects the response to biological therapies, and that early 

intervention is key to remission, the ability to inform therapeutic decisions with easily 

obtained pathology data will be key to effective precision medicine.  Previous studies have 

demonstrated signatures that discriminate between rheumatoid arthritis and osteoarthritis or 

other diseases, but these often fail to be replicated in other independent studies(74,157).  

Here, clinical studies describing the efficacy or mode-of-action of biological therapies tend to 

ignore the heterogeneity of synovitis seen in rheumatoid arthritis patients and details of the 

joint pathology are often not included as part of the clinical assessment (144,145). This may 

explain why some biological therapies fail to meet their clinical endpoints. One example is 

secukinumab. This anti-IL-17 blocking monoclonal antibody displayed poor efficacy in 

rheumatoid arthritis (176–178). However, as greater insights into the potential role of IL-17 in 

ectopic lymphoneogenesis emerge, the effects of this biological drug on patients with 

lymphoid-driven pathology may have been lost due to lack of stratification. Here, a greater 

understanding of the biological processes driving synovial pathology combined with clinical 

outcome measures in routine practice is helping to formulate new clinical trials. For example, 

patients with lymphoid-rich synovitis typically show an inadequate response to anti-TNF 

inhibitors (80).  This observation has led to clinical trials (e.g., R4RA and STRAP) where patients 

stratified according to synovial histopathology are prescribed tocilizumab or rituximab 

targeting either Jak-STAT signalling or depletion the involvement of B-cells in lymphoid-rich 

pathology (167–169). In this Chapter, experiments tested the utility of a transcriptomic 

classifier tool as a potential diagnostic tool that may support these therapeutic strategies.  

Several of the gene signatures displayed good performance in the 2 independent datasets 

tested as a classifier of pauci and follicular disease, in particular the Random Forest, 13 gene, 

and 17 gene signatures.  Unfortunately, this performance was not translated to the 

stratification of diffuse pathology. This inability to stratify patients with diffuse synovitis 

undoubtedly affects the performance of the classifier’s ability to discriminate pauci-immune or 

follicular from that of myeloid-rich disease.  As demonstrated in Figure 5.3A removal of 

additional probes from duplicated genes can improve the AUC, therefore additional probes 

involved in discriminating diffuse in the original dataset may affect the accuracy of 

classification.  In GSE24742, the classifier exhibited an inverse predictive behaviour, so whilst 

incorrectly defining the diffuse pathology it was doing so more than would be expected by 

random.  Given this behaviour, it might be tempting to correct the inversion by subtracting the 

AUC from 1, however, this is not replicated in PEAC dataset and therefore is not reliable to 

determine diffuse pathology.  Furthermore, the main causes for such an inversion are not 
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applicable: from labelling errors when creating the model (i.e. reversing the case/control 

definitions) or imbalances in the training/test data(179,180).  However, the models were 

generated as a multi-class stratification and are not assigned a true/false label that could be 

accidentally reversed.  Likewise, there are differences between the proportion of pathologies 

seen in training and test data sets (Train: 8 Follicular, 14 Diffuse, and 27 Pauci; and 5F,6D,1P 

respectively for GSE24742, and 45F,20D,16P, with addition 6 ungraded for PEAC), however, the 

models prove effective with the other pathologies 

Here, an examination of the immune cell involvement in each of the pathologies demonstrated 

that this was due to an underrepresentation of myeloid-specific gene signatures within the 

datasets from patients with early forms of synovitis. As a consequence, myeloid-specific gene 

signatures were more prominent in synovial biopsies from patients with more established 

disease (see Figure 5.10). The data further suggests that the tracking of myeloid-specific 

signatures in synovial biopsies may not work as a robust diagnostic of synovial pathology, 

particularly during the early stage of the disease. Whilst myeloid-cells are integral to the 

pathology of diffuse synovitis, they are also associated with follicular disease and 

transcriptomic analysis of the myeloid compartment within the datasets tested showed a close 

association between these two forms of pathology. Moreover, resident synovial mononuclear 

cells will also actively contribute to all forms of synovitis including the pauci immune 

pathology. Such observations may explain why diffuse synovitis was difficult to predict using 

the classifier tool and equally suggests a closer inspection of the innate immune system is 

warranted to understand how myeloid cells contribute to this development of synovitis. In this 

regard, diffuse synovitis has recently been sub-classified to identify both fibroblast-myeloid 

and myeloid-lymphoid forms of synovitis(130). Thus, the form of pathology may display 

various ‘shades’ of pathology suggesting the need for a more detailed analysis of this form of 

disease. 

Given the inherent differences between the transcriptional profile of the early and late-stage 

disease, further work will be required to evolve prediction tools that differentiate early-stage 

gene signatures that inform the future course of synovitis and the development of alternate 

synovial pathotypes.  This will be explored in greater detail in Chapter-6. 

In summary, the initial approach adopted here has demonstrated that effective classifiers can 

be utilised on datasets derived from various analytical platforms.  By scaling the data this has 

eliminated problems arising from batch effects between the alternate datasets, and data 

derived using different analytical platforms. The approach may also have utility in linking 
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analyses between mouse and human studies allowing a greater mechanistic understanding of 

pathways driving disease heterogeneity in rheumatoid arthritis.
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6. Testing of the disease classifier in early-stage rheumatoid 

arthritis. 

6.1. Introduction. 

Clinical outcomes associated with the management of rheumatoid arthritis show that early 

intervention offers the best opportunity to control disease activity(49,181). Here, successful 

therapy with the correct drug strategy often leads to improvements in the patient quality of 

life and the potential drug-free remission of disease(48). Since the introduction of biological 

drugs, the classification of what constitutes early disease has significantly changed and may 

constitute as little as 6 weeks following clinical diagnosis(182). However, the definition of this 

‘window of opportunity’ for therapy remains highly subjective and is dependent on the rate of 

disease progression seen in a patient or patient group. Diagnostic prediction tools must, 

therefore, recognise both the signs of disease progression and the pathways responsible for 

driving the pathology. Incorporating the bioinformatic approaches developed in this thesis, 

experiments described in this Chapter evaluated their utility as classifiers of early pathology.  

The importance of early intervention in clinical practice is perhaps best reflected by studies on 

rheumatoid arthritis patients on standard DMARD therapy(183). Here, the likelihood of 

DMARD-free remission is reduced by delays in clinical diagnosis or referral to a 

rheumatologist(183)(184,185). Moreover, the prescriptive treat-to-target guidelines adopted 

by NICE further compromises the decision-making process and necessitates waiting to 

determine treatment efficacy before taking the next steps.  In a move towards a more 

precision medicine approach as outlined by the methods described in the previous Chapters, 

an improved prediction of pathology at an early stage of the disease would provide valuable 

insights into the best course of therapy for a particular patient or patient demographic. 

Previous investigations suggest that early and established disease have very similar 

histopathology and cytokine profiles(186–189).  Evidence of this stability was illustrated 

through my analysis of follicular and pauci pathologies, which showed a strong correlation 

between early and established disease (discussed in Chapter-5).  However, the classification of 

patients with diffuse synovitis remained more challenging due to the varying composition of 

immune and stromal cell involvement in this form of pathology. To potentially improve the 

prediction of early diffuse synovitis, experiments outlined in this Chapter sought to generate a 

more bespoke classifier of early disease. 
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6.2. Hypothesis. 

Experiments outlined here will test the hypothesis that a bioinformatic classifier generated 

from transcriptomic data derived from early arthritis patients will improve the classification of 

synovial pathology. To address this hypothesis, studies used the datasets obtained through the 

PEAC study of early synovitis..

6.3. Aims. 

As demonstrated in the previous chapter, the transcriptome of follicular and pauci pathologies 
are stable across both early and established disease.  However, the classification of diffuse 
synovial pathology is more complex and variations in the cellular composition of the disease 
process makes the analysis more challenging (see Chapters 4 & 5). Experiments were, 
therefore, conducted to generate a bespoke classifier of early disease using transcriptomic 
datasets obtained from patients enrolled to early arthritis clinics. Here, the aim was to improve 
the stratification of synovial samples presenting with an early form of diffuse pathology. 

6.4. Materials and Methods. 

6.4.1. Repository datasets and associated metadata. 

Containing a wealth of clinical outcome measures, E-MTAB-6141 (Pathobiology of Early 

Arthritis Cohort; PEAC), was used to generate a classifier of early-stage synovitis (130). 

RNA-sequencing data available through the GSE89408 dataset provides synovial transcriptomic 

data from healthy, arthralgia, osteoarthritis, undifferentiated arthritis, early rheumatoid 

arthritis, and established arthritis. The supplementary metadata associated with this dataset 

offers additional information on the gender, age, and the detection of anti-citrullinated protein 

antibodies (ACPA) in a subset of the patient samples.  A summary of the baseline 

characteristics of this dataset is provided in Table 6.1. 

Table 6.1: Baseline patient characteristics of GSE89408. 

Disease n Female (%) Age (years) ACPA Positivity (%) 
Arthralgia 10 80 52.5 (33-66) 100 
Healthy 28 50 35 (13-73) NA 
Osteoarthritis 22 59 49 (17-77) NA 
Rheumatoid arthritis (early) 57 58 56 (25-93) 68 
Rheumatoid arthritis (established) 95 77 54 (24-85) 30 
Undifferentiated arthritis 6 83 Unknown 100 

 

6.4.2. Generating an early-stage predictive signature. 

Gene signatures were explored using Sparse Partial Least Squares Discriminatory Analysis 
(sPLS-DA).  To ensure that the bootstrapping method utilised previously in Chapter 4 worked 
with the datasets used here, several filtering steps were required to prepare the data.  The 
details of data preparation are outlined in Chapter 3..2.2.  Briefly, genes were filtered to 
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remove values corresponding to pseudoautosomal region mappings and near-zero variance.  
To determine the optimal number of genes per component, analysis employed 400 rounds of 
bootstrapping.

6.4.3. Stratifying early and established disease. 

As the metadata associated with the GSE89408 dataset provided no information on the precise 
synovial histopathology seen in each tissue extract, samples were stratified using 
transcriptomic data derived from immune and stromal cells (as described in Chapter 4) and 
archetypes derived from the PEAC cohort where transcriptomic data could be assigned to 
specific forms of histopathology.  Through this analysis, a subset of samples with clearly 
defined parameters of disease was selected from the GSE89408 cohort for further testing of 
classifier performance.

6.4.4. Testing classifier performance. 

The performance of classifiers obtained from early and established forms of synovitis was 
assessed for sensitivity and specificity using the prediction models described in Chapter 4 and 
the new signatures derived from the PEAC dataset.

6.5. Results. 

6.5.1. An early-stage signature. 

As discussed in Chapter 4, the models of best fit employed to test the accuracy of the 
prediction tools showed some degree of intervariability. As a consequence, 5 best fit models 
were generated. The performance of these models are summarised in Table 6.2.  As the 
purpose of this analysis was to improve the stratification of diffuse patients, the best 
predictive model for this pathology is fit123, which achieves an AUC of 0.892 (Figure 6.1B).  
This model also has the benefit of having the smallest number of genes (how many?), which is 
ideal in the context of a diagnostic tool.

Table 6.2: Fit models derived from 400 iterations of bootstrapping on the PEAC dataset.   

Fit represents a seed set to ensure reproducibility (see Chapter 3.1.6) 

Fit 

# genes (1st + 
2nd 

component) 

AUC 

Follicular Diffuse Pauci 
22 323 0.93 0.86 0.94 
42 218 0.91 0.82 0.93 

123 34 0.93 0.89 0.95 
1234 102 0.93 0.87 0.95 
2020 218 0.91 0.82 0.93 
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Figure 6.1: Testing performance of classifier derived from early arthritis.   

Fit123 results in a 34 gene classifier that stratifies pathologies. A, B Receiver operator characteristics on the first and second components, and their loadings (C, D).  E Plotting the variance shows good 
separation across the two components 
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Figure 6.2: Immune and stromal markers in early Arthritis. 

Patients with early rheumatoid arthritis from GSE89408 are contrasted with the archetypes derived from GSE48780 (Follicular, Diffuse, Pauci) and E-MTAB-6141 (Lymphoid, Myeloid, Fibroid, 
Ungraded).  This dataset lacks metadata to define pathology therefore samples were characterised by similarity to the archetypes. Samples that are representative of these pathologies are denoted by 
the coloured box (Follicular – purple; Diffuse – red; Pauci – cyan) which was then utilised in further analysis.  
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Figure 6.3: Immune and stromal markers in early arthritis with defined pathologies.   

The defined samples that show clear stratification of early-stage rheumatoid arthritis patients (GSE89408) that match the immune profile of the archetypes.  Resulting in 21 follicular, 7 diffuse, and 13 
pauci-immune samples that can be tested going forwards.   
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Figure 6.4:  Immune and stromal markers in established rheumatoid arthritis.   

Patients with established disease from GSE89408 are contrasted with the archetypes derived from GSE48780 (Follicular, Diffuse, Pauci) and E-MTAB-6141 (Lymphoid, Myeloid, Fibroid, Ungraded).  This 
dataset lacks metadata to define pathology therefore samples were characterised by similarity to the archetypes. Samples that are representative of these pathologies are denoted by the coloured box 
(Follicular – purple; Diffuse – red; Pauci – cyan) which was then utilised in further analysis.   
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Figure 6.5: Immune and stromal markers in established arthritis with defined pathologies.   

The defined samples that show clear stratification of established rheumatoid arthritis patients (GSE89408) that match the immune profile of the archetypes. Resulting in 22 follicular, 7 diffuse, and 13 
pauci-immune samples that can be tested going forwards. 
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Figure 6.6: Comparing the immune and stromal transcriptomes of early and established disease.   

Pathotypes are grouped together to contrast early-stage with that of established disease.  Follicular and Pauci pathologies in both early and established show a strong correlation with that of the 
archetypes derived from both GSE48780 and the PEAC datasets.  Diffuse samples have a mixed expression during the early stage and resemble the archetypes in established, although in this dataset 
with an overlap with markers associated with Pauci-immune.
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6.5.2. Stratified early and established disease. 

Figure 6.2 depicts the entire series of early-stage samples that show characteristic immune and 
stromal cell profiles associated with the archetypical expression of each pathotype. To 
enhance the interpretation of these data, individual transcriptomic datasets were grouped 
according to a defined form of pathology (Figure 6.3). Data acquired from biopsies with early 
stage synovitis resulted in 21 follicular, 7 diffuse, and 13 pauci-immune samples. This approach 
was repeated for data acquired from samples with established disease (Figure 6.4 and 
condensed down in Figure 6.5). These resulted in the classification of 28 follicular, 28 diffuse, 
and 16 pauci-immune forms of synovitis. These groupings were taken forward for further 
performance testing of the prediction tools.  

As discussed in the previous chapter, both the follicular and pauci-immune pathologies show 
clear similarities in the immune and stromal markers between early-stage and established 
disease.  However, as previously discussed, when looking at the diffuse pathology (Figure 6.6), 
early-stage samples demonstrated a mixed expression of cellular markers that don’t clearly 
identify with a specific archetypal signature for an individual with this form of diffuse synovitis.

6.5.3. Testing classifier performance in early and established disease. 

Next, to understand how well these signatures discriminate the pathologies in both early and 
established disease, the classifiers were assessed in the stratified samples explored in 6.5.2. 

Employing the classifiers generated from the analysis of established disease (derived in 
Chapter 5) with the ones generated from early-stage synovitis (derived here from the PEAC 
dataset), experiments tested the utility of these tools as predictors of disease.  

Classifier performance was tested using the pathologies assigned by immune and stromal 
transcriptional profiles in the previous section.  Performance of the classifiers was assessed 
using the area under the curve and graded ‘good’, ‘acceptable’, and ‘poor’ based on guidelines 
outlined in the literature(179,180) (≥0.8, ≥0.6<0.8, <0.6 respectively). 

Investigating the early-stage samples in Figure 6.7 shows the performance of the three best 
models identified previously (A: 13 gene, B: 17 gene, and C Random Forest), and the best 
model derived from the PEAC dataset (D: Fit123).  As shown in the previous chapter, these 
three models continue to demonstrate good performance at discriminating the follicular and 
pauci-immune pathotypes, and also shows acceptable performance with the diffuse pathology.  
Unfortunately, the best model from the PEAC dataset does not replicate this performance; 
whilst demonstrating good performance for follicular, it fails to stratify the diffuse and pauci-
immune pathotypes.  The performance of all applicable models discussed in this and previous 
chapters are outlined in Table 6.3. 

For the samples with established disease (Figure 6.8), reduced performance is observed in all 
of the -fit models.  All of the models demonstrated good or acceptable performance in 
discriminating the follicular pathology.  However, whilst these models identified in chapter 5 
performed well at stratifying pauci-immune samples in early disease, this was reduced for 
pauci-immune samples in established disease.  The signatures generated in this chapter have 
no ability to stratify pauci-immune samples in established disease. 
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Table 6.3: Classifier performance as assessed by AUC when stratifying early-stage and established rheumatoid 
arthritis patients from GSE89408.   

Colours represent good (green≥0.8), acceptable (yellow≥0.6<0.8) and poor (red, <0.6) performance at stratifying the 
pathologies 

Model 
Early-Stage   Established 

Follicular Diffuse Pauci   Follicular Diffuse Pauci 

Bo
ot

sP
LS

 G
SE

48
78

0 
13 gene 0.87 0.61 0.99 

  

0.76 0.48 0.51 
17 gene 0.82 0.67 0.99 0.82 0.57 0.61 
fit1556 0.93 0.65 1.00 0.82 0.51 0.62 
fit2078 0.93 0.65 1.00 0.82 0.51 0.62 
fit4657 0.93 0.65 1.00 0.82 0.51 0.62 
fit5184 0.93 0.65 1.00 0.82 0.51 0.62 
fit5237 0.95 0.68 1.00 0.82 0.53 0.61 
fit5495 0.93 0.65 1.00 0.82 0.51 0.62 
fit6104 0.93 0.65 1.00 0.82 0.51 0.62 
fit6747 0.93 0.65 1.00 0.82 0.51 0.62 
fit8395 0.95 0.67 1.00 0.84 0.57 0.57 
fit8913 0.93 0.65 1.00 0.82 0.51 0.62 
fit8945 0.93 0.65 1.00 0.82 0.51 0.62 
fit4948 0.92 0.64 0.99 0.81 0.51 0.58 

PE
AC

 

fit22 0.68 0.32 0.33 0.81 0.23 0.37 
fit42 0.72 0.32 0.33 0.81 0.22 0.38 

fit123 0.92 0.31 0.50 0.85 0.19 0.41 
fit1234 0.72 0.33 0.34 0.81 0.23 0.41 
fit2020 0.72 0.32 0.33 0.81 0.22 0.38 

RandomForest 0.80 0.73 0.97 0.71 0.59 0.79 
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Figure 6.7:  Testing classifier performance against early-stage disease.  

Stratified early-stage rheumatoid arthritis samples as defined in Figure 6.3 were tested using previously determined models (A-C) and the new gene signature derived from the PEAC dataset (D).  
Models 13 gene, 17 gene, and RandomForest show good performance stratifying Pauci (Cyan) and Follicular (Purple) pathologies, in addition to reasonable performance in Diffuse (Red).  The new 
signature (D) shows good performance with the Follicular pathology but fails to discriminate Pauci and Diffuse. 
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Figure 6.8:  Testing classifier performance against established disease.   

Stratified established rheumatoid arthritis samples as defined in Figure 6.6 were tested using previously determined models (A-C) and the new gene signature derived from the PEAC dataset (D).  
Models 13 gene, 17 gene, and RandomForest show good performance stratifying the Follicular (Purple) pathology, but limited performance with the Pauci (Cyan) and Diffuse (Red).  The new signature 
performs well for Follicular but fails to discriminate Diffuse and Pauci pathologies.
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6.6. Discussion 

Experiments outlined in Chapter 5 demonstrated that computational tools designed to classify 

synovial pathology based on transcriptomic data could be used to distinguish pauci-immune 

and follicular synovitis. However, this approach was unable to accurately predict the 

identification of myeloid-rich or diffuse synovitis. The analysis presented in this Chapter 

reinforces this view and shows that Classifier tools are poor predictors of myeloid-rich 

pathology in datasets derived from both early stage synovitis and late-stage or established 

disease. Based on this analysis, I conclude that myeloid-rich synovitis may be sub-classed into 

pathologies that display transcriptional profiles that veer more towards either pauci-immune 

or follicular synovitis. Thus, making the classification more challenging.  

The limited forms of metadata associated with the GSE87408 dataset meant that the nature of 

the synovial pathology had to be inferred through comparisons with transcriptomic datasets 

obtained from immune and stromal cells. The validity of this type of approach was confirmed 

when viewing datasets displaying follicular-like or pauci-immune-like gene signatures and the 

identity of these forms of pathology were clearly delineated in early and established forms of 

disease. However, the classification of diffuse synovitis was again difficult to predict. 

According to the literature, there is little difference between early and established disease.  

Histological examinations revealed no differences with regards scoring of cellular infiltrates 

and hyperplasia(189,190) or the presence of molecules such as cytokines and matrix 

metalloproteins(188).  This is replicated when exploring the transcriptomes, with Figure 6.6 

showing the stability of the follicular and pauci-immune transcriptional profiles but highlights 

the difference between early-stage and established for those diffuse patients.  The overlap 

observed in early diffuse samples may well reflect that early in disease there is a distinct and 

transient change to the cytokine profile of the synovial fluid(191).  This change has been 

associated with cytokine production by T-cells and stromal-cells, which may explain the 

“muddy’ profile observed. 

The signatures derived from the PEAC dataset resulted in a completely new set of genes that 

perform well at predicting follicular pathology in both early and established disease.  

Unfortunately, these new signatures don’t exhibit improved performance with regards to the 

diffuse pathology and the classifier was less specific for detection of pauci-immune synovitis. 

In early disease, all of the models derived in the previous chapter exhibited good or excellent 

performance for the follicular and pauci-immune and demonstrated some acceptable ability 

for the diffuse samples. The best overall model in early disease would be fit5327, a classifier 

based on 36 genes, which exhibited near-perfect stratification of the follicular and pauci-
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immune samples, but also good performance with the diffuse samples.  The RandomForest 

model showed the best performance for classifying diffuse, but at the cost of slightly reduced 

performance with the follicular pathology. 

In established disease, however, all models showed reduced ability to stratify disease.  

RandomForest continues to exhibit the best performance with the diffuse pathology, but not 

enough to be considered acceptable. It does, however, demonstrate the best performance for 

classifying the pauci-immune samples. 

Overall, these models demonstrate that it is possible to predict follicular and pauci-immune at 

an early stage of the disease.  Therefore, combined with the knowledge of pathology effect on 

therapeutic response (for example reduced response to TNFα blockade in pauci-immune(72)) 

this opens the door towards a more effective treat-to-target approach in early treatment, 

which is essential for improving clinical outcomes.
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7. Monitoring clinical responses to therapeutic interventions. 

7.1. Introduction. 

Treatment guidelines for rheumatoid arthritis follow a prescribed regimen of disease-

modifying anti-rheumatic drugs (DMARD’s) or biologic agents (Figure 5.1).  While the 

adherence to these guidelines has dramatically improved patient outcomes, many patients fail 

to respond to conventional DMARD’s or biological drugs.  Results from the previous chapters 

have illustrated the heterogeneous nature of synovitis in RA. It is, therefore, proposed that 

alternate patterns of inflammatory regulation shape the course of disease progression. These 

differences are likely to influence the way a patient or patient group respond to therapy. 

Following diagnosis, the ACR and EULAR guidelines recommend that patients immediately start 

on methotrexate (MTX) as the initial disease-modifying therapy(49). For patients with 

prognostic factors indicative of high disease activity, MTX may be combined with either 

glucocorticoids or some other DMARD (e.g. sulphasalazine, leflunomide, hydroxychloroquine).  

However, only 30% of patients achieve low disease activity following MTX monotherapy (51), 

necessitating the use of a biological drug. 

First line biological drugs include anti-TNF therapies such as adalimumab, etanercept, and 

infliximab. These therapies are similar in terms of efficacy and tolerability and target the TNF 

cytokine(192).  Although these therapies have revolutionised the treatment of immune-

mediated inflammatory diseases, approximately 25-35% of patients with RA fail to respond to 

anti-TNF therapy. For these patients, biological drugs that target other inflammatory pathways 

are frequently prescribed. For example, monoclonal antibodies that inhibit IL-6R signalling 

(e.g., tocilizumab; TCZ), deplete circulated CD20+ B-cells (e.g. rituximab; RTX), or small 

molecule inhibitors that block specific intracellular signalling pathways (e.g., tofacitinib). 

One of the surprising things about many of these therapies is that their mechanism of action in 

RA is still relatively unclear (74,193).  For example, whilst MTX is known to inhibit dihydrofolate 

reductase and prevents thymidine synthesis in cancer(194), its role in RA is less clear.  As in 

cancer, T-cell proliferation is controlled by MTX; however, it is also involved in interrupting cell 

signalling, changes in cell adhesion molecules, and cellular migration(193). Similarly, whilst 

depletion of autoantibody producing B-cells is a significant mode of action of RTX, its clinical 

efficacy in B-cell poor pauci-immune patients indicates that the therapeutic mode-of-action of 

RTX in RA maybe broader than B-cell depletion (62,90,145,195).  

Numerous clinical studies have interrogated the effect of these therapeutics on the synovium 

(71,81,82,86,97,144,145,196) to understand pathological mechanisms within the inflamed 
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joint.  However, many of these studies have ultimately been confounded by a lack of detailed 

information specific the precise clinical presentation of synovitis seen in patients.  Adopting 

the classifier tools developed in the previous Chapters, experiments outlined here tested 

whether these tools could be used to identify biological responses to therapeutic intervention 

specific to the individual pathologies.  Results obtained through this study showed that 

synovial histopathology had to be taken into account when predicting response to therapy in 

RA(81).  Moreover, my findings show that commonly prescribed biological drugs modulate 

different sets of genes in different forms of synovitis.  

7.2. Hypothesis. 

Experiments will evaluate the overarching hypothesis that patient stratification based on 

synovial histopathology will increase the ability to detect the mechanisms of action of 

biological therapeutics. Thus, allowing the identification of signatures that predict response to 

an individual biological drug therapy. 

7.3. Aims. 

To address this hypothesis, the bioinformatic prediction tools developed in the previous 

Chapters were used to: (1) classify synovial pathology in absence of reliable histological data, 

and (2) identify differential patterns of gene regulation that predict a therapeutic response to 

treatment. Specifically, open access repository datasets were used to evaluate treatment 

responses to MTX, RTX and TCZ .

7.4. Materials and Methods. 

7.4.1. Repository datasets and associated metadata. 

Several previously described datasets were used. The specifics for each of these datasets are 

summarised in Table 7.1.  For this chapter, GSE24742 (containing synovial transcriptomic data 

from patients before and after RTX treatment) and GSE45867 (containing synovial 

transcriptomic data from patients before and after MTX or TCZ treatment) datasets were 

interrogated. 

GSE24742 provides a wealth of metadata, including histological scores relating to the synovial 

pathology and specific immune cell scores based on immuno-histochemical staining.  Using the 

rules outlined in Chapter 5.4.1, synovial joint pathology was defined using this metadata. 

GSE45867 provides less information but contains DAS28 scores as a response to therapy. 
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1.1.1. Pathotype stratification. 

Samples before administration of MTX or TCZ (GSE45867) were compared with the archetypes 

derived in Chapter 4.  

For both MTX and TCZ treatments, samples were clustered according to the 13 gene signature 

(1-Spearman’s correlation and Ward’s D) generated in Chapter 4.5.6.  This form of analysis was 

initially applied to datasets obtained before treatment and subsequently extrapolated to the 

datasets extracted from sample post treatment.  Thus, allowing a direct comparison of data 

before and after intervention.

1.1.2. Differential expression. 

Differential gene expression was determined using the limma package. To simplify the 

interpretations, samples were defined as responders (“good” and “moderate”) or non-

responders (“poor”) using the DAS28 response criteria(43).  Thus, allowing changes in gene 

expression as a response to therapy to be compared with improvements in DAS28 scores. 

Here, the sub-classification of transcriptomic data according to synovial pathology was used to 

understand how patients with defined forms of pathology respond to MTX, RTX or TCZ 

intervention.

1.2. Results. 

1.2.1. Response to therapy and pathotype stratification 

Inspection of the GSE24742 dataset identified 24 samples from 12 patients taken before and 

12 weeks after RTX treatment.  Further analysis of these 12 patients revealed 5 patients with 

follicular pathology, a further 6 patients with a diffuse form of synovitis, and 1 with pauci-

immune synovitis.  Of these patients, 9 responded to therapy and 3 displayed no improvement 

in disease activity (Figure 7.1).   

The GSE45867 sample cohort contained 40 samples from 20 patients (12 received TCZ, 8 

received MTX). The analysis presented in Figure 7.2 shows that this dataset could be 

delineated into patients with follicular (comprising 4 patients), diffuse (comprising 9 patients) 

or pauci-immune (comprising 7 patients) synovitis.  

Whilst the available data from GSE24742 and GSE45867 allowed the gathering of information 

on a patient’s responses to treatment, the limited numbers of patients characterised as non-

responders restricted the ability to understand the mechanisms that may prohibit effective 

therapy (Table 7.2).  



 

126 

Table 7.1: Summary of the number of patients belonging to each group defined by pathology and response to 
therapeutics. 

Dataset Treatment 
Responders Non-Responders 

Follicular Diffuse Pauci Follicular Diffuse Pauci 
GSE24742 RTX 4 3 1 1 3 NA 

GSE45867 
MTX 1 2 1 1 1 2 
TCZ 1 6 4 1 NA NA 
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Figure 7.1: Changes in immune and stromal markers as a result of rituximab therapy.  

Immune and stromal markers for GSE24742, looking at response to Rituximab before and after treatment.  Before treatment samples were clustered using the 13 gene signature (1-Spearman 
correlation and Ward’s D), and compared to the archetype expression (Pearson’s correlation) shown as the top annotation of the heatmap.  GSE24742 contains comprehensive histology metadata, the 
scoring for the relevant features are shown under the heatmaps.  Pathotype is defined using the rules outlined in Table 5.1, leading to 5 Follicular, 6 Diffuse, and 1 Pauci-immune sample.  
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Figure 7.2: Immune and stromal markers for GSE45867, looking at response to Methotrexate or Tocilizumab before and after treatment.  

Before treatment samples were clustered using the 13 gene signature (1-Spearman correlation and Ward’s D) and compared to the archetype expression (Pearson’s correlation) shown as the top 
annotation of the heatmap.  Pathotypes were assigned as by this correlation with archetype, as indicated with the boxes around the samples; 4 Follicular samples (purple), 9 Diffuse (red), and 7 Pauci-
immune (cyan). 
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Table 7.2: Publicly available datasets that specifically explore the response to therapeutics in RA synovium. 

Accession 
number Platform 

# 
samples Description 

GSE45867 Affymetrix HGU133plus2 40 
Synovial biopsies before and after treatment with either Tocilizumab (12 
patients: 24 samples) or Methotrexate (8 patients: 16 samples) 

GSE24742 Affymetrix HGU133plus2 24 Synovial biopsies before and after treatment with Rituximab (12 patients) 
GSE15602 Affymetrix HGU133plus2 11 Synovial biopsies after treatment with Adalimumab 

E-TABM-
104 

KTH H. sapiens 29.8k 
cDNA v2/KTH H. sapiens 
30.5k cDNA array v1 32 Synovial biopsies before and after treatment with infliximab (10 patients) 

GSE21537 
KTH H. sapiens 30.5k 
cDNA array v1 62 RA synovial biopsies before infliximab treatment 

GSE97165 Illumina HiSeq 2000 38 Synovial biopsies before and after treatment with triple DMARDs (19 patients) 
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1.2.2. Differentially expressed genes. 

Whilst single samples are not desirable, the limma package allows the incorporation of 

information from other samples to be explored(9). Here, it is assumed that variance is the 

same between groups and maybe simulated from a single sample.  Despite this limitation in 

the analysis, stratification still provided valuable information on the unique properties of the 

pathology and the response to therapy.   

Table 7.3: Number of significantly differentially expressed probe-sets associated with therapeutic response in the 
synovium of RA patients for the two datasets explored. 

Dataset Treatment 
Responders Non-Responders 

Follicular Diffuse Pauci Follicular Diffuse Pauci 

GSE24742 RTX 

Unadjusted        
(P ≤0.01) 670 101 666 142 132 NA 

Adjusted (FDR) 
(P ≤0.05) 0 0 24 0 0 NA 

GSE45867 

MTX 

Unadjusted        
(P ≤0.05) 8592 5954 1606 9552 1813 1628 

Adjusted (FDR) 
(P ≤0.05) 593 13 2 1301 0 0 

TCZ 

Unadjusted        
(P ≤0.05) 1641 6538 1616 2263 NA NA 

Adjusted (FDR) 
(P ≤0.05) 5 548 0 20 NA NA 

1.2.2.1. GSE24742 – Increased detection of differentially expressed genes as a response 

to rituximab. 

Analysis of the GSE24742 dataset by the authors of the original publication identified 549 

probe-sets that were differentially expressed as a response to RTX treatment (145). However, 

their statistical analysis (P ≤0.01) was conducted on unadjusted p-values. This type of analysis 

seemed inappropriate and the identification of 549 probe-sets from the 54,765 probe-sets 

within the microarray platform would be expected to arise through pure chance based on this 

statistical method. I therefore performed a revised analysis of these datasets.  

Here, reanalysis found that the classification of pathology substantially improved the ability to 

distinguish a specific set of differentially expressed genes that remain significant when 

adjusting of multiple testing. Ultimately, the small size of the dataset means that there is 

limited power to detect effects, and for most conditions fails to detect any significantly 

differentially expressed probe-sets after multiple testing correction.  Table 7.3 outlines how 

incorporating the stratification of pathology and response results in an increase in the number 
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of probe-sets that are significant at the same level as the original publication – although this is 

based on raw unadjusted p-values.   

Due to the limited power to detect significantly differentially expressed genes due to the small 

sample size, further analyses were done using the unadjusted p-values.  Figure 7.3 

demonstrates the differentially expressed genes identified for all the conditions (pathotype 

and response), annotating the most significant probe-sets. 

By contrast, incorporation of response and pathology increases the number of probe-sets 

observed as significantly differentially expressed, with some still significant after multiple 

testing (24 probe-sets in pauci-immune responders). This more detailed interpretation was 

missed in the original paper (the most significant result being 1.31E-4, unadjusted).  Looking 

across all the pathologies and responses results in 1’659 probe-sets that are significant at 0.01 

unadjusted, considerably more than the original publication.   Figure 7.3 shows volcano plots 

of all the conditions measured, highlighting those genes with the most significant results. 

Molecular pathway analysis of the differentially expressed genes identified several biological 

pathways involved in each of the synovial pathologies and showcased several processes that 

were selectively blocked by therapy.  A summary of these findings is shown in Table 7.4. 

Table 7.4:  Number of genes that are significantly differentially expressed (P ≤0.05, non-adjusted), and pathways 
associated with these genes, following rituximab treatment. 

Condition 
Upregulated 
genes (probes) 

Downregulated 
genes (probes) Associated pathways 

Follicular 
Responders 1038 (1706) 1394 (1700) 

TLR signalling, IL-2 signalling, Jak-
STAT signalling, cytokine signalling 

Follicular Non-
Responders 418 (555) 367 (472) 

PI3 kinase and angiotensin II 
signalling 

Diffuse Responders 285 (433) 402 (498) Wnt signalling 
Diffuse Non-
Responders 292 (345) 546 (781) FGFR3 and IL-6 signalling 

Pauci-immune 
Responders 1029 (1439) 1016 (1293) 

Fatty acid metabolism, EGF 
receptor signalling 

1.2.2.2. GSE45867 

1.2.2.2.1. Methotrexate. 

The original investigation(144) of the effects of methotrexate on the synovium identified 1’196 

probes as significantly differentially expressed (P ≤0.05) without multiple testing correction.  

Incorporation of the pathotypes and response to therapy not only increased the number of 

probe-sets, but also identified more probe-sets that are significant after multiple testing 

correction.  Table 7.5 breaks down the 1’738 probes that are significantly differentially 
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expressed after multiple testing correction (P ≤0.05, after FDR correction). Figure 7.4 highlights 

some of the most significant genes for each condition. 

Table 7.5:  Number of genes that are significantly differentially expressed (P ≤0.05, FDR adjusted), and pathways 
associated with these genes, following methotrexate treatment. 

Condition 
Upregulated 
genes (probes) 

Downregulated 
genes (probes) Associated pathways 

Follicular 
Responders 257 (402) 307 (338) 

BMP signalling, IGF regulation, 
mTOR signalling 

Follicular Non-
Responders 572 (724) 477 (577) 

Spliceosome, mRNA processing, 
autophagy  

Diffuse Responders 2(3) 6 (9) NF-B signalling, TLR signalling
Pauci-immune 
Responders - 2 (2) - 

1.2.2.2.2. Tocilizumab. 

The original paper describing the effects of Tocilizumab on the synovium provided a large 

number (6,683) of significant probe-sets (144) Again, this number of probe-sets was derived 

without multiple testing correction.  Without the raw P-values (supplementary table 2 from 

the original publication lists the probe-sets, but not p-values) it is not clear how many of these 

would be significant after correction.  Incorporation of the pathotype and response increased 

the number of significantly differentially expressed probes detected to 10,660, but this is 

before multiple testing correction.  When adjusted using FDR, 569 probe-sets are identified as 

significantly differentially expressed and are explored in Table 7.6.  Figure 7.5 highlights the 

most significant differentially expressed genes. 

Table 7.6:  Number of genes that are significantly differentially expressed (P ≤0.05, non-adjusted), and pathways 
associated with these genes, following tocilizumab treatment. 

Condition 
Upregulated 
genes (probes) 

Downregulated 
genes (probes) Associated pathways 

Follicular 
Responders 1 (1) 4 (4) 

IL-1 regulation of extracellular 
matrix, osteopontin/osteoclast 
signalling 

Follicular Non-
Responders - 18 (20) 

Tryptophan catabolism, nitric 
oxide response 

Diffuse Responders 43 (50) 364 (498) 

Netrin-1 signalling, Wnt 
signalling, PhopholipaseD 
signalling, IL-2 signalling, 
chemokine signalling 

Pauci-immune 
Responders - - - 
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Figure 7.3: Differentially expressed genes for the three pathotypes as a result of Rituximab treatment.  

Samples from GSE24742 were stratified to pathology and tested for differential expression between baseline and 12 weeks after treatment for responders and non-responders.  Due to the small 
sample size only a small number of genes are significant after multiple testing correction (FDR) in pauci-immune responders (24 genes) but not other pathologies/responses, therefore unadjusted p-
values are plotted. Yellow and blue points represent significant genes (P ≤0.05) and more than 1.5-fold change – up and down respectively. 
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Figure 7.4: Differentially expressed genes for the three pathotypes as a result of Methotrexate treatment.   

Samples from GSE45867 were stratified to pathology and tested for differential expression between baseline and 12 weeks after treatment for responders and non-responders.  X axis shows fold 
change, and y axis –log10(adjusted P-value (FDR)) Yellow and blue points represent significant genes (P ≤0.05) and more than 1.5-fold change – up and down respectively.  20 most significant genes 
(below 0.05 threshold) are annotated 
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Figure 7.5: Differentially expressed genes for the three pathotypes as a result of Tocilizumab treatment.  

Samples from GSE45867 were stratified to pathology and tested for differential expression between baseline and 12 weeks after treatment for responders and non-responders.  X axis shows fold 
change, and y axis –log10(adjusted P-value (FDR)) Yellow and blue points represent significant genes (P ≤0.05) and more than 1.5-fold change – up and down respectively.  20 most significant genes 
(below 0.05 threshold) are annotated



 

136 

1.3. Discussion 

Results presented in this chapter has demonstrated that stratification of patients improves the 

ability to detect differentially expressed genes as a response to biological drug therapy and 

provides new opportunities to understand the pathways that drive pathology.  What these 

datasets have highlighted predominantly is the issue with small sample sizes, especially when 

not pre-screened for possible confounding variables such as pathology. Incorporating 

pathology consistently increased the number of differentially expressed genes detected. 

However, the analysis was often restricted to comparisons of 1 sample per condition, which 

limited the power to detect changes.   

Stratification is not just important in identifying more differentially expressed genes but is 

needed to account for confounding effects.  At least one publication(81) has identified that 

components of the pathologies can profoundly affect the interpretation of results. For 

example, the presence of synovial infiltrating lymphocytes versus the specific organisation of 

these cells into discrete lymphoid aggregates.  This has prompted the evaluation of synovial 

histopathology in clinical studies (73,196), and steered the design of biological drug trials 

including R4RA and STRAP(169,197) 

This ability to retroactively stratify patients should allow further work to re-examine some of 

the previously published datasets outlined in Chapter 2.6. This may reveal novel pathways to 

target.  For example, molecular pathway analysis identified Wnt signalling in diffuse synovitis 

as a common pathway targeted by therapy. Similar responses to therapy were also linked to 

the IL-2 (and presumably other IL-2-related cytokines) system and TLR signalling.   

The principle aim of this chapter was to test whether inclusion of pathology would improve on 

the classification of differentially expressed genes following treatment.  What wasn’t possible 

with the small sample sizes was the generation of a signature that predicts response.  Future 

work with larger cohorts, particularly those with predefined pathologies to ensure balanced 

datasets, may well allow the development of prognostic signatures for therapeutic response.
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8. Evaluating the involvement of Jak-STAT signalling in synovitis. 

8.1. Introduction. 

Synovitis is associated with elevated levels of inflammatory cytokines, including various 

interleukins, interferons and growth factors (37,39,155,177,198–200).  These cytokines 

activate cells through receptor systems that signal via a diverse array of transcription factors 

responsible for the control of proliferation, survival, differentiation and specific gene 

regulation. For example, Nuclear Factor kappa-B (NF-B), RAR-related Orphan Receptor 

gamma (RORγ) and transcription factors linked to the mitogen-activated protein kinase 

cascade and the Janus-activated kinase–Signal Transduction and Activator of Transcription 

(Jak-STAT) pathway (87,149,201–204). Biological drugs and small molecule inhibitors used in 

the treatment of immune-mediated inflammatory diseases often inhibit these signalling 

events. These include the Jak inhibitors tofacitinib, baracitinib and ruxolitinib, and tocilizumab, 

sarilumab, siltuximab, mavrilimumab and lenzilumab, which target cytokines that signal via the 

Jak-STAT pathway (204,205). 

The Jak-STAT pathway has evolved to sense and interpret cytokine cues essential for tissue and 

immune homeostasis. In RA, cytokines acting via the Jak-STAT pathway promote autoimmunity 

and tissue inflammation and are targeted by biological drugs (e.g., tocilizumab) or oral 

inhibitors (e.g., tofacitinib) prescribed in clinical practice. As part of their mode-of-action, these 

drugs block cytokine signalling through STAT1 and STAT3 transcription factors. In murine 

models of RA, these transcription factors contribute to the control of leukocyte recruitment, 

synovial hyperplasia, joint erosion, and T-cell driven autoimmunity(202,206–211). Both STAT1 

and STAT3 have been demonstrated to have increased levels of active phosphorylation in the 

inflamed synovium of RA patients(203,206,207,212,213). However, given the complex nature 

of synovitis seen in humans it is currently unclear how these transcriptional mechanisms shape 

the course of inflammation to drive disease heterogeneity. 

STAT1 and STAT3 transcription factors often display opposing actions in immune and stromal 

cells(214,215). Here, genetic ablation studies show that STAT1 and STAT3 share a complex 

working relationship and often oppose one another19,37-39. In this regard, STAT1 activities are 

often protective. For example, reducing proliferation and inducing apoptosis of recruited 

inflammatory cells(213). In contrast, STAT3 promotes inflammation through the production 

and secretion of pro-inflammatory cytokines and other mediators, the initiation of cellular 

hyperplasia and resistance to apoptosis(202,216). 

To identify the contribution of the Jak-STAT pathway in each of the datasets investigated in 

this thesis, it is important to have an accurate list of STAT-associated genes.  However, 
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bioinformatic resources from pathway tools(217–219), as well as studies utilising ChIP-

seq(220–223) find significant differences in the numbers of genes associated, with limited 

overlapping genes. Thus, investigations presented in the Chapter aimed to generate a bespoke 

list of STAT1 and STAT3 target genes that could then be applied to human transcriptomic 

datasets to document the involvement of these transcription factors in each synovial 

pathotype.

8.2. Hypothesis. 

It is hypothesized that the Jak-STAT pathway plays an integral role in the development of 

synovitis and steers the expression of discrete gene signatures that underpin the development 

of pauci immune, diffuse or follicular synovitis.

8.3. Aims. 

Experiments outlined in this Chapter aimed to identify the STAT regulated gene signatures 

linked to each of the synovial pathologies seen in RA. Further analysis evaluated the expression 

of these genes in specific cell populations contributing to synovitis. 

8.4. Materials and methods 

8.4.1. STAT1 and STAT3 associated genes from pathway analysis datasets. 

Pathway analysis tools provide curated lists of genes associated with STAT1 or STAT3 activity. 

Gene lists were extracted from ingenuity pathway analysis (IPA)(217), Panther(219), and the 

Harmonizome(218) databases. 
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Table 8.1: ChIP-seq experiments for STAT1 or STAT3 were identified from the ENCODE encyclopaedia and literature.   

Accession identifies either the ENCODE experiment or the paper from which the data was obtained.  Species, cell type, and stimulation were derived from data associated with the experiment, the 
number of peaks mapped to genes either used published data or were mapped using the Peak Annotation and VISualisation (PAVIS) software using default parameters. 

  Accession Species Cell type Stimulation 
Number of peaks 
mapped to gene  

ST
AT

1 

ENCSR000DZM Human GM12878 NA 5983 

ENCSR000EZK Human HeLa-S3 IFNγ for 30min 5966 

doi: 10.4137/GRSB.S11433 Human HeLa-S3 IFNγ for 30min 1441 

ENCSR000FAV Human K562 IFNα for 30min 795 

ENCSR000FAU Human K562 IFNα for 6H 720 

ENCSR000EHK Human K562 IFNγ for 30min 533 

ENCSR000EHJ Human K562 IFNγ for 6H 1706 

doi: 10.1038/s41590-019-0350-0 Mouse Tnv NA 78 

doi: 10.1038/s41590-019-0350-0 Mouse Tnv IL-6 for 30min with CD3/CD28 361 

doi: 10.1038/s41590-019-0350-0 Mouse Tem IL-6 for 30min with CD3/CD28 46 

ST
AT

3 

ENCSR000DOZ Human MCF 10A 0.01% ethanol 5695 

ENCSR000DOQ Human MCF 10A 4-hydroxy-tamoxifen for 12 hours 11076 

ENCSR000DPB Human MCF 10A  4-hydroxy-tamoxifen for 36 hours 12707 

ENCSR000DZV Human GM12878 NA 3734 

ENCSR000EDC Human HeLA-S3 NA 2930 

doi: 10.1016/j.immuni.2010.05.003 Mouse Tcell 
CD3, CD28, IL-6, TGFβ, IFNγ for 72H + 
IL6 restimulation for 1H 3176 

doi: 10.1182/blood-2011-09-381483 Mouse Macrophage IL-10 for 4H 1103 

doi: 10.1016/j.cell.2008.04.043 Mouse ESC LIF and BMP4 1156 

doi: 10.1038/s41590-019-0350-0 Mouse Tnv NA 16 

doi: 10.1038/s41590-019-0350-0 Mouse Tnv IL-6 for 30min with CD3/CD28 218 

doi: 10.1038/s41590-019-0350-0 Mouse Tem IL-6 for 30min with CD3/CD28 84 
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8.4.2. Identification of STAT1 and STAT3 gene targets from publicly available 

ChIP-seq results. 

Chromatin-immunoprecipitation sequencing (ChIP-seq) datasets for STAT1 and STAT3 were 

obtained from the ENCODE encyclopaedia(220). Additional results were obtained by searching  

the literature for STAT1 or STAT3 ChIP-seq experiments. To obtain a list of associated genes, 

peaks from the ENCODE experiments were uploaded to the Peak Annotation and Visualisation 

(PAVIS) tool(129) using the default parameters of 5kb upstream and 1kb downstream of the 

Transcription Start Site (TSS) to identify all peaks that fell into these regions.  For literature 

results, the associated genes were obtained from supplemental data available with each 

publication.  A summary of this information is presented in Table 8.1, listing the cell type, and 

stimulation, as well as the number of peaks mapped to specific gene loci.

8.4.3. Tracking STAT1 and STAT3 involvement in synovitis. 

To investigate the role of STAT1 and STAT3 in synovial pathology, datasets within the 

GSE48780 cohort were interrogated using the STAT-associated gene list available through IPA.  

Additional analysis of the GSE45867 cohort was used to examine how biological drug targeting 

of the IL-6R modifies the expression of STAT regulated genes. 

8.4.4. ChIP-seq analysis of STAT1 and STAT3 in murine antigen-induced 

arthritis. 

ChiP-seq was performed on synovial tissue from mice with antigen-induced arthritis (protocols 

described in Chapter 2).  Synovial samples were collected from naïve unchallenged mice, and 

at day-3 (reflecting early stage disease) and day-10 (reflecting late stage disease) of antigen-

induced arthritis in wild type (WT), Il6ra-/- and Il27ra-/- mice. 

8.5. Results. 

8.5.1. Common STAT1 and STAT3 associated genes from pathway analysis 

datasets 

Inspection of the computational toolkits within Harmonizome, IPA, and Pather identified a 

panel of genes affiliated with STAT1 and STAT3 signalling. From each of these databases a total 

of 643, 230, and 634 unique genes where identified for STAT1, and an additional 1366, 396, 

and 819 unique genes for STAT3.  The Venn diagrams presented in Figure 8.1 highlight the 

small overlap seen between datasets. Analysis identified 2 shared genes for STAT1 (MYC and 

PDGFRB), and a 11 genes for STAT3 (ANGPT2, CCL8, CDKN1A, ID2, IKBKE, KAT2B, LTA, MYC, 
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PGR, RBPJ, and SNAI1). 

 

Figure 8.1:  Venn diagram of STAT associated genes from pathway analysis databases.   

STAT1 or STAT3 associated genes were extracted from the pathway analysis tools Harmonizome, Ingenuity Pathway 
Analysis (IPA) and Panther.  Numbers on the Venn diagram represent the numbers of genes from each database and 
how they overlap 

8.5.2. Identification of STAT1 and STAT3 associated genes from ChIP-seq 

experiments. 

ChIP-seq experiments for STAT1 or STAT3 were obtained from human and mouse sources, 

comparison of the genes associated with all the STAT1 ChIP-seq datasets revealed no common 

core genes, however, when restricted to human samples only, this results in 17 core genes 

(AIM2, APOL1, APOL6, BAZ2A, HLA-E, ICAM1, IRF9, ITPR1, KSR1, NAPA, NCOA7, OTOF, RUNX1, 

SEMA4B, SP140L, STAT1, and WARS).  STAT3, however, has 9 core genes that are found in both 

the human and mouse datasets (ARHGEF12, BCL3, CDK6, CDKAL1, NFKBIZ, SOCS3, STAT3, 

ZFP36, and ZFP36L1). 

Table 8.2 and 8.3 show the numbers of overlapping genes for STAT1 and STAT3 respectively.  

Broadly, both tables make it clear that sharing stimulus results in more overlapping genes, with 

some associated to specific cell types. 

.
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Table 8.2: Number of STAT1 associated genes derived from ChIP-seq experiments and how they overlap when comparing conditions.  Samples compared is illustrated by the percentage of overlaps 
(from sample total peaks) listed in the main table. 

  Sample GM12878 HeLa-S3 HeLa-S3 K562 K562 K562 K562 Tnv Tnv Tem 
  Stimulus - IFNγ IFNγ IFNα IFNα IFNγ IFNγ - IL-6 IL-6 
  # genes 5983 5966 1441 795 720 533 1706 78 361 46 
Comparison # overlaps                     
HELA-S3 1236   20.7% 85.8%               
IFNγ 179   3.0% 12.4%     33.6% 10.5%       
K562 59       7.4% 8.2% 11.1% 3.5%       
K562-IFNα 297       37.4% 41.3%           
K562-IFNγ 318           59.7% 18.6%       
IL-6 2                 0.6% 4.3% 
Epithelial 363 6.1% 6.1% 25.2%               
Human 17 0.3% 0.3% 1.2% 2.1% 2.4% 3.2% 1.0%       
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Table 8.3: Number of STAT3 associated genes derived from ChIP-seq experiments and how they overlap when comparing conditions.   

  Sample GM12878 HeLA-S3 MCF 10A MCF 10A MCF 10A Tcell ESC Tnv Tem Macrophage 
  Stimulus - - EtOH TAM TAM Mix LIF/BNP4 IL6 IL6 IL10 
  # genes 3734 2930 5695 11076 12707 3176 1156 218 84 1103 
Comparison # overlaps                     
Tamoxifen 10039       90.6% 79.0%           
Epithelial 476 12.7% 16.2% 8.4% 4.3% 3.7%           
IL6 14               6.4% 16.7%   
MCF 10A 5127     90.0% 46.3% 40.3%           
T-cell 10           0.3%   4.6% 11.9%   
Lymphocyte 4           0.1%   1.8% 4.8% 0.4% 
Human 476 12.7% 16.2% 8.4% 4.3% 3.7%           
Mouse 54           0.1% 0.3% 1.8% 4.8% 0.4% 
All 9 0.2% 0.3% 0.2% 0.1% 0.1% 0.3% 0.8% 4.1% 10.7% 0.8% 
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8.5.3. Identification of STAT1 and STAT3 involvements in synovial pathology. 

8.5.3.1. GSE48780 – Stratified established disease. 

Adopting the gene signatures associated with STAT1 and STAT3 activity, computational 

analysis evaluated the expression of these genes in each of the synovial pathologies. This 

approach identified 3 well defined clusters of gene expression. As represented in Figure 8.2, 

genes affiliated with Cluster 1 showed considerable overlap with both diffuse and pauci-

immune synovitis. In contrast, Cluster 2 was predominantly linked with diffuse and follicular 

synovitis and Cluster 3 was more closely associated with follicular pathology.  Thus, Jak-STAT 

signalling through STAT1 and STAT3 transcription factors appear to be intrinsically linked with 

each form of synovitis and control unique sets of genes involved in pauci immune, diffuse and 

follicular synovitis. In this regard, many of the genes linked to these individual clusters identify 

with factors that shape the course of disease. For example, analysis of Cluster-1 identified 202 

genes (388 probe-sets), which are affiliated with VEGFA-VEGFR2 signalling, the control of focal 

adhesion through the PI3K-Act-mTOR and AGE-RAGE pathways and the TGFß regulation of the 

extracellular matrix. Genes seen in Cluster-2 comprised 240 genes (453 probe-sets) linked with 

type-II interferon signalling, whereas Cluster 3 had 170 genes (264 probe-sets) associated with 

the control of lymphocyte survival, the differentiation of T-cells towards a Th17 lineage and 

the regulation of lymphokine activities.

8.5.3.2. GSE45867 – Before and after tocilizumab treatment. 

With the limited number of samples, there is no clear difference between follicular and diffuse 

pathologies expression of STAT associated genes (Figure 8.3).  Pauci-immune samples do 

demonstrate lower STAT associated gene expression overall, which is most clearly 

demonstrated in Cluster-2. Cluster-1 does not demonstrate any clear pattern of expression 

when considering pathology or response to tocilizumab. Cluster-2 has 282 genes (524 probes) 

that show strong expression in the follicular and diffuse pathologies, and these are “switched 

off” following tocilizumab treatment.  Following treatment, these follicular and diffuse patients 

now resemble those of pauci-immune after a successful response to therapeutics.  The one 

patient who failed to respond to therapy showed a maintained expression of STAT associated 

genes in Cluster-2.  Pathway analysis of Cluster-2 indicates it is associated with T-cell receptor 

regulation of apoptosis, and type II interferon signalling.
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Figure 8.2: Expression of STAT1 and STAT3 associated genes in stratified established disease.   

Clustering the associated probes identifies three clusters of genes that are associated with the three pathologies of rheumatoid arthritis.  Cluster 1 has mixed expression in diffuse (red) and pauci-
immune (cyan) samples, which are associated with pathways linked to stromal growth and modification of the extracellular matrix.  Cluster2 is primarily associated with the diffuse with some overlap 
into follicular (purple) pathologies, and is heavily enriched for type II interferon signatures.  Cluster 3 is strongly expressed in follicular and linked to control of apoptosis and T-cell differentiation. 
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Figure 8.3: Expression of STAT1 and STAT3 associated genes before and after tocilizumab treatment.  

 Before treatment, the pathologies demonstrate differential behaviour in cluster 2, with follicular (purple) and diffuse (red) showing high expression and pauci-immune (cyan) having low expression.  
Following treatment responders in the follicular and diffuse patients now have a pauci –immune like profile.  These STAT associated genes in cluster 2 are associated with T-cell receptor signalling in 
apoptosis and type II interferon signalling.
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8.5.4. STAT1 and STAT3 genes from ChIP-seq of murine AIA. 

Given the discrepancy in STAT associated genes covered in sections 8.5.1 and 8.5.2, it becomes 

apparent that to understand the role of STAT1 and STAT3 in the pathogenesis of RA, it is 

essential to identify the STAT associated genes from inflamed synovial tissue.  Therefore, 

libraries were prepared from STAT1 or STAT3 immunoprecipitated DNA derived from the 

inflamed synovial tissue of mice with AIA.  Library quality was assessed using bioanalyser 

(Figure 8.4) and nanodrop and was deemed sufficient to proceed to sequencing.   

Table 8.4:  Mapping statistics for the STAT1 and STAT3 immunoprecipitations 

  
Number of 
read pairs 

After 
trimming 
(%) 

After 
mapping 
(%) 

Forward 
Strand 
(%) 

Reverse 
strand 
(%) 

Duplicated 
(%) 

WT A I 78615864 77.7 77.2 50.2 49.8 79.9 

WT A S1 84125691 92.3 92.0 50.2 49.8 72.6 

WT A S3 51215919 85.2 84.7 50.3 49.7 65.8 

Il-6r-/- A I 84664897 94.5 93.7 50.4 49.6 73.4 

Il-6r-/- A S1 51123107 77.9 77.4 50.2 49.8 33.1 

Il-6r-/- A S3 72830052 86.5 86.0 50.2 49.8 69.1 
 

Table 8.4 contains the alignment statistics, which demonstrates the good mapping of the 

trimmed reads, with no bias towards the forward or reverse strand. However, a large 

percentage of duplicates (30-70%) were identified within the datasets.  Figure 8.5 illustrates 

the fastqc report using one of the samples (Il6ra-/- STAT1), which shows excellent quality reads 

across the length and full-length 75bp reads, but a high percentage of GC content that doesn’t 

match the theoretical distribution.  Therefore, sequencing accuracy was high for the reads, but 

the DNA utilised for the library preparation was not very diverse (high duplicates). 

Table 8.5: Number of peaks detected by max at each threshold value. 

  Number of Peaks 

  Q = 0.1 Q = 0.05 Q = 0.01 

WT A S1 1504 724 431 

WT A S3 172 167 127 

Il6ra-/- A S1 218 139 109 

Il6ra-/- A S3 209 184 75 
After mapping, peaks were called on the samples with duplicates removed, with the number of 

peaks detected outlined in Table 8.5 for each of the thresholds.  The association between the 

immunoprecipitated peaks and genes was identified using PAVIS, to maximise the number of 

associated genes the threshold value of q=0.1 was utilised, the number of associated genes is 
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listed in Table 8.6.  Visualising these associated genes demonstrates that only 20-30% of peaks 

are associated with genes, as shown by that large percentage of non-associated peaks (dark 

grey) in Figure 8.6.  Unsurprisingly, most of the peaks (70-80%) associated with genes are 

protein-coding, but there are also a considerable percentage of sequencing peaks affiliated 

with long intergenic non-coding RNA (12-20%). 

Table 8.6: Number of associated genes identified by PAVIS using default parameters of 5kb upstream and 1kb 
downstream using MACS Q=0.1 results 

  Linked genes 
WT A S1 321 
WT A S3 25 

Il-6r-/- A S1 31 

Il-6r-/- A S3 36 
Investigating some of these peaks directly in Integrative Genomics Viewer (IGV)(224) does 

highlight some good peaks, an example of which is shown in Figure 8.7.  Unfortunately, this 

peak is not associated with any genes, but it does demonstrate a good enrichment of reads in 

the immunoprecipitated sample (pink or green) compared to the input (grey) when looking at 

the BAM coverage.  The numbers in square brackets on the plots illustrate the highest depth of 

reads seen at these genomic loci. 

However, exploring further into the dataset reveals some issues with the data, most of the 

peaks are associated with low numbers of reads 10-20 reads that are difficult to differentiate 

from general noise.  However, there are several locations in the genome that have excessive 

numbers of reads, not just in the immunoprecipitated samples but also the input sample.  An 

example of this is shown in Figure 8.8, where high proportion of the total reads (1-2%) are 

observed in a single small region (10kb), this was associated with all conditions.  Where peaks 

elsewhere have reads that vary from 10 to 150 read depths, the peaks in Figure 8.8 have a 

peak read depth of 17.5 thousand reads, which is considerably higher than average.  

Moreover, these peaks exhibit the same pattern of mapping in all of the samples  - from both 

genotypes (WT, Il6ra-/-) and for input and immunoprecipitated DNA.  This clearly indicates 

some kind of technical bias in the sample preparation that has not been determined.
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Figure 8.4: Bioanalyser report on library quality of immunoprecipitated samples.   

Peaks in samples fell between 70 and 90 seconds which translates to between 300 and 700 base pairs.
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Figure 8.5:  Typical Fastqc results for ChIP-seq run.  

 In this case for the Il6r-/- A STAT1 sample.  Reads showed high quality across the whole length with phred scores above 30 for entire reads(A), which all maximised the 75bp sequencing length(B).  Per 
base content isn’t ideal(C), and this is reflected in the deviation from the theoretical distribution of GC content(D).
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Figure 8.6:  Summary of the association between immunoprecipitated peaks and genes.  

The first pie chart illustrates the distribution of peaks associated with genes – using the default parameters of PAVIS.  
For all samples the majority of peaks are not associated with genes (shown in dark grey).  Of those peaks that 
overlapped with genes, the majority were associated with protein coding genes (dark blue), but also a surprising 
number of long intergenic non-coding RNA.
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Figure 8.7: An example of a good ChIP-seq peak.   

WT STAT1 exhibits a large depth of reads that clearly exceeds that of the input sample and is therefore called as a peak, peaks are also called in all samples, though WT STAT1 is the clearest.  
Unfortunately, this peak is not associated with any genes 
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Figure 8.8:  An example of the issues associated with the ChIP-seq results.   

A considerable proportion (1-2%) of the total reads are found enriched in this single region – even in the input which should show no bias towards reads.



 

154 

8.6. Discussion. 

This chapter demonstrates that very few genes can be definitively linked to either STAT1 or 

STAT3, comparison of STAT associated genes from pathway tools and ChIP-seq experiments 

failed to provide identify a core set of genes that was consistent across all of these resources.   

In looking for a core set of STAT-associated genes, the ChIP-seq results demonstrate that 

stimulus drives more consistent gene sets than cell origin.  For example, a larger percentage of 

genes are associated with interferon response vs genes common to K562 cells, whilst 

Tamoxifen has a larger component of genes compared to the MCF 10A cell line.  This 

reinforces the point that to understand the roles of STAT1 and STAT3 in the pathogenesis of 

rheumatoid arthritis, we need a signature that is reflective of the stimulus these cells received 

in the inflamed joint. 

Moreover, these ChIP-seq results highlight the potential for batch effects to alter what genes 

are associated with the STATs. For example, STAT1 in HeLa-S3 cells stimulated with IFNγ has a 

considerable difference in the number of associated genes detected (5996 vs 1441 genes), 

which could be attributed to several factors such as antibodies used, peak-calling parameters 

etc. although these samples had a high degree of overlap for the smaller dataset (85%) and a 

good proportion of the larger (21%). 

That said, even without a true core STAT-associated gene list, it is still possible to explore the 

role of STAT1 or STAT3 in synovitis.  Exploring STAT-associated genes obtained from the IPA 

database in defined pathologies highlights distinct clusters of expression that is linked to the 

pathology, which is associated with numerous pathways known to be important in rheumatoid 

arthritis. Similarly, we see that these STAT-associated genes are “switched off” in patients who 

respond to treatment. 

Unfortunately, ChIP-seq is somewhat of an art and ultimately demonstrates no easy positive 

controls.  Adding to the difficulties is the AIA model takes a month to prepare and necessitates 

pooling of mice to provide enough tissue to analyse.  Whilst the initial sequencing run 

identified many peaks, it also highlighted several issues with the sample preparation, resulting 

in an early cessation of the experiment, and overall a failure to correctly identify a STAT1 and 

STAT3 profile in synovitis. Ultimately, further work will be required to re-examine the role of  

STAT1 and STAT3 in the synovium.
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9. General Discussion. 

9.1. Introduction. 

Rheumatoid arthritis is a heterogeneous disease with considerable variability in clinical 

presentation, disease progression, and associated comorbidities. As consequence, patients 

often display varying efficacies to treatment. Here, differences in therapeutic response to 

standard DMARDs or biological drugs often reflect differences in synovitis. Small needle biopsy 

sampling of inflamed joints has identified three discrete forms in synovial pathology – termed 

follicular, diffuse, and pauci-immune synovitis. Research conducted in this thesis developed 

several bioinformatic tools to interrogate transcriptomic data deposited in open access 

repositories. My ambition was to establish methodologies that could be used across different 

patient cohorts to improve the classification of synovitis, identify the inflammatory pathways 

that drive disease heterogeneity, and support predictions of clinical response to biological 

therapy.  

9.1. Gene signatures that stratify pathology. 

Several gene signatures have been discussed in this thesis, that demonstrated good 

performance and stratified both the follicular and pauci-immune pathologies.  One of the 

biggest challenges for any prognostic gene signature is its validation in independent cohorts.  

In this thesis, I demonstrated that two signatures (17 gene, and RandomForest; Chapter 4) 

have performed consistently well. For example, these methods stratified follicular and diffuse 

synovitis across multiple independent clinical cohorts, and in both early and established 

disease. Figure 9.1 shows the performance of these models in each of the four independent 

cohorts, with the 17 gene signature exhibiting the most consistency across the datasets.  

Unfortunately, the models perform poorly at classifying the diffuse pathology.  Given the 

differences observed in the datasets as to expression of immune markers, it is quite possible 

that the gene signatures generated in Chapter 4 are overfitted to this dataset.  Therefore, with 

a better-defined diffuse pathology, it may be possible to develop a classifier that works on 

these datasets and any future datasets released.
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Figure 9.1: The two best models across all 4 independent datasets utilised in this thesis.  

Testing the 17 gene and RandomForest classifiers across the 4 independent clinical cohorts.  These samples represent both early (PEAC and GSE89408) and established disease (GSE24742, GSE45867, 
GSE89408).  These classifiers performed consistently well at discriminating Follicular and Pauci-immune pathologies (with the exception of GSE45867 for RandomForest)  
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9.2. Rheumatoid arthritis pathologies have distinct transcriptional profiles. 

Previous studies have demonstrated that rheumatoid arthritis is highly heterogeneous with 

synovial pathologies displaying alternate transcriptional profiles(73,130). Extending these 

investigations, I now present several key pieces of new information, which may help 

understand the course of synovitis development in rheumatoid arthritis. 

Histological studies and interpretations from transcriptomic datasets suggest that specific 

stromal and immune cells play central roles in the development of follicular (lymphoid-rich), 

diffuse (myeloid-rich), and pauci-immune (fibroblast-rich) synovitis. However, current 

evaluations of synovitis have failed to establish whether:  

(A) The described synovial pathologies arise through specific inflammatory pathway that 

drive the course of the disease  

or 

(B) That differences in the clinical presentation of synovitis represent individual stages 

within the natural trajectory of the disease.  

Analysis of transcriptomic data for follicular and pauci-immune synovitis showed that the 

transcriptional profiles for both pathologies where highly stable and remained comparable 

between early and established disease. Here, interrogation of all the datasets utilised in this 

thesis revealed that lymphoid markers are consistently upregulated in all samples classified as 

follicular synovitis (see Figures 9.2 and 9.3). For example, the archetype for follicular synovitis 

derived from GSE48780 showed a strong expression of lymphoid lineage markers, as well a 

considerable component of myeloid lineage markers.  This transcriptional stability is also 

observed in the pauci-immune samples, which generally shows low expression of immune 

markers across the cohorts, with a small subset of markers consistently expressed in biopsies 

from early and established disease (Figures 9.4 and 9.5).  Thus, follicular and pauci-immune 

synovitis may originate from specific inflammatory pathways that steer lymphoid or fibroblast 

involvements  

The diffuse pathology however demonstrates considerable overlap between the follicular and 

pauci-immune profiles (Figure 9.6 and 9.7). This fits with a more updated description of diffuse 

synovitis, which subsets this form of disease into “lymphoid-myeloid” and “fibroblast-myeloid” 

synovitis (71,130). In the dataset used to develop my bioinformatic classifiers (GSE48780) the 

diffuse samples fall into 2 primary clusters of probes that have limited overlap with the other 

pathologies. These profiles were not, however, detected in any of the other cohorts analysis 

(see Figure 9.7). Here, analysis of the RNA-seq datasets available in GSE89408 identified 

patients with diffuse synovitis with similarities to either pauci immune or follicular pathology. 
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Figure 9.2:  Follicular samples from the microarray based datasets GSE48780, GSE24742, and GSE45867.   

Samples demonstrate consistent expression of lymphoid markers identified in the training dataset (GSE48780) but also show some overlap with the diffuse archetype in the other two datasets 
(GSE24742, GSE45867).
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Figure 9.3:  Follicular samples from the RNA-seq based datasets E-MTAB-6141 and GSE89408 (early and established).   

Due to differences with genes mapped between the microarray and RNA-seq datasets, the archetype derived from GDE48780 is plotted to allow comparisons across all the datasets.  Both RNA-seq 
datasets show strong expression of lymphoid markers identified in the archetype, but like the other datasets in figure 9.2 also demonstrate some overlap with the Diffuse archetype
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Figure 9.4:  Pauci-immune samples from the microarray based datasets GSE48780, GSE24742, and GSE45867.   

GSE24742 contains only single sample that is pauci-immune.  Pauci-immune samples demonstrate low expression of immune markers in general, and expression is consistent across the datasets
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Figure 9.5:  Pauci-immune samples from the RNA-seq based datasets E-MTAB-6141 (including ungraded) and GSE89408 (early and established).   

Both RNA-seq datasets show good replication of the archetype across the samples, however, early stage disease does show some limited expression of lymphoid and myeloid markers that may reflect 
the initial inflammation and transient infiltration of immune cells.
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Figure 9.6:  Diffuse samples from the microarray based datasets GSE48780, GSE24742, and GSE45867.   

Diffuse samples demonstrate considerable variability in transcriptional profile between the datasets.
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Figure 9.7:  Diffuse samples from the RNA-seq based datasets E-MTAB-6141 and GSE89408 (early and established).   

The variability in transcriptional profiles is also seen in the RNA-seq datasets, with early disease in GSE89408 shows expression of all markers associated with all 3 pathologies.
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Figure 9.8:  Dimensional reduction (PCA) reveals manifold like structures with diffuse samples being midway between follicular and pauci-immune.   

A shows the raw PCA, with B annotating a cartoon manifold above it.  C shows example data from single cell experiments looking at differentiation pathways: the first looking at mouse intestinal 
eplithelium (Current best practices in single-cell RNA-seq analysis: a tutorial) and the second for epithelial to mesenchymal transition (MAGIC: A diffusion-based imputation method reveals gene-gene 
interactions in single-cell RNA-sequencing data) 
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Thus, diffuse synovitis may reflect an entire spectrum of disease presentations or sub-

pathologies.   

When looking at how these pathologies behave relative to each other (e.g., using dimensional 

reduction techniques such as principle component analysis PCA), samples with diffuse synovitis 

sit between follicular and pauci-immune synovitis.  In the field of single-cell genomics, we 

often see trajectories of cells as they develop towards their fate.  It is, therefore, possible that 

we are seeing a similar behaviour in diffuse synovitis where follicular and pauci-immune 

synovitis reflect the extremes, and diffuse synovitis the transitionary phases that reside 

between. Support for this hypothesis is shown in Figure 9.8, which plots the PCA of several of 

the datasets evaluated in this thesis together with a manifold behaviour of transitioning cells 

from single-cell sequencing. Whilst this type of analysis requires further exploration, the 

principles suggest that future studies may require a more detailed interrogation of synovial 

biopsies. For example, the analysis of sequential biopsies from the same joint or studies in 

explant cultures to track disease progression. 

With the datasets exploring therapeutic responses (GSE24742 & GSE45867) and disease and 

disease progression (GSE89408), this allows investigation of these transcriptional profiles over 

time.  This reveals an interesting observation that the transcriptional profile of pauci-immune 

is generally consistent with that of healthy synovium (Figure 9.9), and that following successful 

treatment those patients with other pathologies take on a similar profile (Figures 7.1, 7.2, 8.3).   
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Figure 9.9:  Transcriptional profile of Pauci-immune and Healthy synovium.  

GSE89408 contains samples from multiple arthritic diseases and healthy synovium, Pauci-immune (Cyan) 
demonstrates a similar transcriptional profile to healthy synovium (green).

9.3. Missing metadata and underpowered studies. 

One issue identified during the course of my studies was the absence of consistent metadata 

to support the interpretations. The PEAC dataset provides an example of excellent metadata, 

providing not only histological data, but copious amounts of disease activity measures.  This, 

however, was not always the case. Several of the datasets examined had limited, and often 

incomplete, metadata.  Moreover, the available metadata was often not directly linked to the 

transcriptomic data. This necessitated the need to extraction additional information from 

supplementary data within the original publications. 

Furthermore, many of these studies have low numbers of samples. GSE24742 has only 12 

patients (before and after rituximab), GSE45867 has 20 patients split into 2 groups of therapy 8 

methotrexate and 12 tocilizumab.  Other datasets had fewer patients, but their focus was 
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usually on comparing rheumatoid arthritis to osteoarthritis or similar analysis. This lack of 

Power made the generation of prediction tools and classifiers challenging and hampered the 

analysis of diffuse synovitis due to the complexity of this disease setting. Whilst the impact of 

batch effects reduced my ability to work with combined datasets. Despite these challenges, I 

believe that the computational methods generated in this thesis offer real potential for further 

development as classifiers of synovitis. In this regard, the approaches used provide important 

proof-of-concept discoveries showcasing how my research may help interrogate the responses 

to therapy and the pathways driving synovitis. Further advances in machine-based learning will 

help to refine these approaches. However, my thesis has for the first time described the 

generation of a bespoke classifier tool for the study of disease heterogeneity in immune-

mediated inflammatory disease. I believe that these methods will have real-life utility in future 

clinal trials. 

9.4. Future work. 

Data presented in this thesis demonstrate that it is possible to stratify patients based off a 

small gene signature.  However further refinements to these signatures are required to enable 

them to be introduce into clinical studies and routine clinical practice.   

 Predictive assessment of classifier performance: the classifiers discussed in this thesis 

have been assessed using independent clinical datasets. However, ideally these 

signatures require continued testing (and potentially further honing) using newer 

cohorts with more complete metadata. Training with newer studies should also allow 

for refinement of the signature, improving its classification performance. Thus, clinical 

studies may need to be built around the testing of the tools. 

 Better define the diffuse pathology:  Identifying a consistent transcriptional profile 

associated with the diffuse pathology is essential for future work.  As demonstrated in 

this thesis, the diffuse samples have a mixed profile of immunological marker 

expression and this results in significant differences between training and testing 

datasets. These significantly impacted the classifiers ability to call patients with diffuse 

pathology.  With transcriptional datasets obtained from larger cohorts it should be 

possible to identify a more robust transcriptional profile that discriminates the diffuse 

pathology. Possibly linked to smaller sub-groups of diffuse pathology. Moreover, it 

would be interesting to evaluate the temporal evolution of diffuse pathology to 

establish whether these forms of synovitis represent defined end-points of disease or 

specific stages of disease development. 
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 Identify an accurate diffuse classifier:  With a better-defined diffuse cohort, retraining 

the classifiers should allow for improved performance of the gene signatures to stratify 

these diffuse patients. 

 Therapeutic response signature: The reporting of larger clinical studies examining the 

therapeutic responses of patients with distinct forms of synovitis (e.g., R4RA, STRAP 

studies) has necessitated the need to develop new methodologies that predict disease 

outcome. Whilst clinical experience offers some helpful insights (e.g. patients with 

pauci-immune synovitis show poor efficacy to anti-TNFα therapy), this is not a precise 

science. Therefore, tools (such as those developed in this thesis) offer really 

opportunities to improve precision medical decision-making. The identification of 

precision medicine approaches will improve decisions on the best course of therapy 

sooner in the clinical management and improve real-world opportunities for disease 

remission in clinical practice. Thus, leading to improvements in patient quality of life, 

health economics and the overall strain on NHS resources. 

 Identification of the role of STAT1 and STAT3 in synovitis: As shown in Chapter 8, 

STAT1 and STAT3 have a clear role in disease progression. However, attempts in this 

thesis failed to identify the comprehensive list of STAT-associated genes in synovitis. 

Repeating the ChIP-seq (or adopting ATAC-seq methods) experiments with alternative 

antibodies may reveal the genes associated with either STAT1 or STAT3 under the 

conditions of inflammatory arthritis and give insights into the mechanisms that 

promote disease onset and progression. 

 Define the minimum standard of metadata for studies:  To maximise the utilisation of 

datasets generated, some thought is required to implement a clinical version of 

Minimum Information About a Microarray Experiment (MAIME)(225) or Findability, 

Accessibility, Interoperability, and Reusability guidelines(FAIR)(226), which 

standardises the clinical metadata format for further analysis and re-evaluation.  This 

would need to be driven by the clinical and academic communities to push for relevant 

metadata selection and updating records wherever possible
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9.5. Conclusion. –  

These gene signatures offer some possibilities to improve clinical approaches to treatment in 

rheumatoid arthritis.  Whist evidence for pathology-specific therapeutic responses is limited at 

the time being(71,72,89,91), ongoing trials are starting to show the association(169).  

Therefore, with the utilisation of precision medicine this will increase the identification of 

these associations and improve therapeutic targeting and therefore improve clinical outcomes.   

Moreover, whilst this thesis has been focussed on rheumatoid arthritis, the techniques utilised 

are disease agnostic and therefore can be adapted to other conditions where subclassification 

of pathology may be needed. 
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10. Appendix 

 

Figure 10.1:  Multiple good fit models as determined by ability to replicate the clustering from the original.   

Quantification of the performance of the models was first assessed using the tanglegrams, looking for distinct clusters of 
samples, so minimal inclusion of other pathotypes within the cluster, and that the clusters are distinct for the pathologies 
(so avoiding clusters of pathotype split across two branches).  Performance was also examined by looking at the AUC for the 
different pathologies when utilising both component 1 and 2
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