
machine learning &

knowledge extraction

Article

Leaving No Stone Unturned: Flexible Retrieval of Idiomatic
Expressions from a Large Text Corpus

Callum Hughes 1, Maxim Filimonov 1 , Alison Wray 2 and Irena Spasić 1,*

����������
�������

Citation: Hughes, C.; Filimonov, M.;

Wray, A.; Spasić, I. Leaving No Stone

Unturned: Flexible Retrieval of

Idiomatic Expressions from a Large

Text Corpus. Mach. Learn. Knowl. Extr.

2021, 3, 263–283. https://doi.org/

10.3390/make3010013

Academic Editor: Chris Biemann

Received: 2 February 2021

Accepted: 25 February 2021

Published: 3 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Computer Science and Informatics, Cardiff University, Cardiff CF24 3AA, UK;
hughescj4@cardiff.ac.uk (C.H.); FilimonovM@cardiff.ac.uk (M.F.)

2 School of English, Communication and Philosophy, Cardiff University, Cardiff CF10 3EU, UK;
WrayA@cardiff.ac.uk

* Correspondence: spasici@cardiff.ac.uk

Abstract: Idioms are multi-word expressions whose meaning cannot always be deduced from the
literal meaning of constituent words. A key feature of idioms that is central to this paper is their
peculiar mixture of fixedness and variability, which poses challenges for their retrieval from large
corpora using traditional search approaches. These challenges hinder insights into idiom usage,
affecting users who are conducting linguistic research as well as those involved in language education.
To facilitate access to idiom examples taken from real-world contexts, we introduce an information
retrieval system designed specifically for idioms. Given a search query that represents an idiom,
typically in its canonical form, the system expands it automatically to account for the most common
types of idiom variation including inflection, open slots, adjectival or adverbial modification and
passivisation. As a by-product of query expansion, other types of idiom variation captured include
derivation, compounding, negation, distribution across multiple clauses as well as other unforeseen
types of variation. The system was implemented on top of Elasticsearch, an open-source, distributed,
scalable, real-time search engine. Flexible retrieval of idioms is supported by a combination of
linguistic pre-processing of the search queries, their translation into a set of query clauses written in
a query language called Query DSL, and analysis, an indexing process that involves tokenisation
and normalisation. Our system outperformed the phrase search in terms of recall and outperformed
the keyword search in terms of precision. Out of the three, our approach was found to provide the
best balance between precision and recall. By providing a fast and easy way of finding idioms in
large corpora, our approach can facilitate further developments in fields such as linguistics, language
education and natural language processing.

Keywords: information retrieval; natural language processing; corpus linguistics; multi-word ex-
pressions; idioms

1. Introduction

An idiom is a sequence of words that constitutes a preferred way of expressing a given
idea, even though it is not necessarily the most direct or obvious one. Many, though not
all, idioms have a metaphorical meaning that in some way can still be linked to a literal
one, e.g., ‘fly in the face of’, though sometimes changes in the language or culture strand
the metaphorical interpretation without an easily retrievable literal counterpart, e.g., ‘go
to the wall’, ‘pig in a poke’. Old forms can become stranded inside fossilised expressions
that could not now be generated using the active language forms, e.g., ‘by and large’,
‘hi-fallutin’, ‘take umbrage’. In other cases, the most obvious-looking explanation for the
origin may not be the correct one, e.g., ‘give someone the cold shoulder’, ‘donkeys’ years’.
Yet there is a subset of idioms that are grammatical, transparent and logical, e.g., ‘have a
nice day’ and ‘don’t do anything I wouldn’t do’.

As far as we know, every language has idioms [1]. It also seems likely that at least
some of the idioms in every language have peculiar characteristics like those just men-

Mach. Learn. Knowl. Extr. 2021, 3, 263–283. https://doi.org/10.3390/make3010013 https://www.mdpi.com/journal/make

https://www.mdpi.com/journal/make
https://www.mdpi.com
https://orcid.org/0000-0002-3144-9252
https://orcid.org/0000-0002-8132-3885
https://doi.org/10.3390/make3010013
https://doi.org/10.3390/make3010013
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/make3010013
https://www.mdpi.com/journal/make
https://www.mdpi.com/2504-4990/3/1/13?type=check_update&version=1

Mach. Learn. Knowl. Extr. 2021, 3 264

tioned. This suggests that idioms exist for reasons relating to both cultural and cognitive
behaviour. In cultural terms, their irregularity may play a part in social inclusion, exclusion
and coherence, because their unpredictable forms and meanings mean that they are com-
prehensible only to those who have enough in-group experience to have encountered them
and learned their meaning [2]. Cognitively, their irregularity may be a natural outcome
of holistic processing, whereby their form and meaning are learnt and accepted without
question, and thus not ‘corrected’ to keep up with the changing patterns of the language
over time [3].

A key feature of idioms that is central to this paper is their peculiar mixture of
fixedness and variability. In English, while some idioms have a completely unchangeable
structure, e.g., ‘by and large’, ‘lock stock and barrel’, ‘arms akimbo’; the majority do not. For
instance, variability is generally inevitable if idioms contain a finite verb with an unspecified
subject, because it needs to agree with the subject in person, number and tense and aspect
(e.g., ‘I/you/he/she/we/they (is/are/was/were/etc) weigh(s)/weighed/weighing up
the options’). Verbs can also be passivised and modals can be added. In addition, many
English idioms can accept optional adjectives and adverbs (e.g., ‘a (very) tall story’; ‘weather
the (current) storm’).

This intrinsic scope for variation within an idiom form, which varies across typologi-
cally different languages to create a range of additional challenges [1], constitutes a major
logistical test for corpus linguists looking for occurrences of idioms. Which form(s) should
they look for? Indeed, could they even anticipate all the different ways in which a given
idiom might be realised? The answer to this second question is almost certainly no, for
no sooner do we know an idiom than we start to play with it, in a process that Hanks [4]
terms the exploitation of norms. In this process, we push at the boundaries of what others
will recognise as an instance of the idiom, often for comic effect (e.g., ‘joyful as a newt’, a
novel extension of ‘pissed as a newt’ used in a BBC radio drama [5].

Any computational approach to finding instances of an idiom will need something
specific to look for: one or more words invariably associated with it. However, at the most
extreme end of the variability continuum, there might be rather little such material available.
Consider the idiom ‘Is the Pope a Catholic?’ If we treat this on its own, it is unproblematic,
in that it does not vary. However, there is a set of alternative versions of this idiom—
alternatives in the sense that they perform exactly the same semantic function—including
‘Does a one-legged duck swim round in circles?’ and ‘Does a bear shit in the woods?’
If these are all versions of the same idiom, there is no word that is always present, only
an underlying frame consisting of an existential question (preferably somewhat comical
or ridiculous) to which the answer is ‘yes’. The corpus linguist will be hard pressed to
find a way to search for instances of this idiom, even using tags. Wray [3] fortunately
argues that there is no need to conceptualise these examples as one idiom, since it is much
more difficult to create a new one than it is to vary an idiom. Rather, she proposes, each
should be treated as a separate idiom, even though they are synonymous. Should reasons
nevertheless be found to prefer viewing this set as variations on one idiom, this case may
need to be considered the exception that tests the boundaries of the rule. Not being able to
search for this very extreme case is a misfortune, not a tragedy.

Other major challenges include the inherent rarity of many idioms. In one of the first
corpus investigations to tackle variability in idioms, Moon [6] found a striking absence
of instances of many of her target idioms, despite making considerable efforts to find
variations in the form. At a mere 18 million words, her corpus was, it is true, small by
today’s standards, but even very large corpora can provide remarkably few examples of
idioms that are well-known enough to give the impression of being frequent.

Since variations in idioms are hard to search for, linguists often still use their intuition
to judge how a given form may and may not change. The relationship between intuitions
and evidence is something, however, that corpus linguistics has done much to question.
Meanwhile, those researching their second language are at a significant disadvantage when
intuition plays a major role, if they have had less exposure to rare examples, and are less

Mach. Learn. Knowl. Extr. 2021, 3 265

confident about judging what is possible. For these reasons, and because the challenge is
there to be met, finding a way to more neutrally identify idioms computationally, across
their broad range of possible realisations, is a research goal of some importance.

To that end, the main aim of this study was to create an idiom search engine that
takes an idiom as input and finds all of its occurrences in a given corpus. The aim is
to provide greater flexibility than simple string-matching techniques commonly used in
existing search engines. By doing so, we aim to provide corpus linguists with a software
tool that can help them investigate how idioms are used in discourse.

2. Related Work

This section reviews studies in natural language processing (NLP) that focus specifi-
cally on idioms. In particular, we focus solely on English idioms as the problems associated
with processing of idioms in typologically different languages may vary considerably and
any such comparisons are outside the scope of this study.

The majority of related studies focus on sense classification of potentially idiomatic
expressions (PIEs), which are defined as multi-word expressions that cover both literal and
non-literal uses of idiomatic expressions [7]. However, none of them provides a compre-
hensive algorithm for systematic retrieval of idiom mentions. More precisely, they largely
focus on a subclass of idioms with relatively simple syntax (e.g., verb-noun constructions)
and only address certain types of variation (e.g., substituting one pronoun by another).
This review of related work aims to unravel this research gap and demonstrate the limited
impact of idiom sense classification studies upon NLP due to their inability to systemat-
ically identify idiom mentions in free text. In that sense, our study is complementary to
existing research in this area: when combined with existing sense classification approaches,
idiom retrieval can be used to fully automate their recognition in free text. First, PIEs need
to be retrieved and only then can their sense be classified. This positions our study as a
catalyst in unlocking the use of idioms as features in NLP applications.

Interpreting PIEs requires automatic sense disambiguation between literal and id-
iomatic usage. For example, the PIE ‘ring a bell’ can be interpreted as ‘sound vaguely
familiar’ (e.g., ‘Well the name rings a bell.’) or literally as ‘ring a bell’ (e.g., ‘To enter you
must ring a bell.’). The challenge of automatically differentiating between the two senses
can be cast as a binary classification problem solved using machine learning approaches.
For example, Cook et al. [8] proposed an unsupervised approach based on an assumption
that idiomatic usages tend to occur in a small number of canonical forms for a given PIE,
whereas the literal usages are less syntactically restricted and expressed in a greater variety
of patterns. However, they only considered a subclass of idioms, verb-noun construction
(VNC), which are formed from the combination of a verb and a noun in its direct object
position for which such a strong assumption may well be valid. As the examples we will
use later illustrate, this assumption does not generalise well to all idioms, which may
exhibit a variety of deviations from their canonical forms.

Peng et al. describe a supervised approach for the binary classification of sentences
into idiomatic and non-idiomatic [9]. Their approach is not confined to a particular lin-
guistic construction such as VNC. This makes their approach more general than that of
Cook et al. [8], although the supervised nature of their approach, which involved training
on a small set of 600 idioms, may be another source of concern about generalisation. Our
own approach does not involve training using specific idioms or targeting a narrow class
of syntactic constructions. In Cook et al., the problem of potential overfitting is further
accentuated by the choice of problem representation, which was based on the bag-of-words
model with stopwords removed. Such representation strips the model of important in-
formation such as syntactic relations (including order) as well as relevant content. Our
approach uses the concept of distance as means of syntactic approximation, which allowed
us to preserve stopwords. Prepositions and conjunctions do play an important role in the
formation of idioms with some consisting entirely of such words (e.g., ‘out and about’),
which are routinely deleted as stopwords. On the other hand, the focus on content words

Mach. Learn. Knowl. Extr. 2021, 3 266

does have advantages when the problem of binary sense classification is framed as that of
identifying semantic (or lexical) outliers, i.e., observations that appear to be inconsistent
with the discourse [10]. For example, when the PIE ‘hot potato’ co-occurs with other
food-related words as the following example illustrates, then it is less likely to be used in
its idiomatic sense: ‘Put tomato pieces or whole cherry tomatoes among the drained, hot
potatoes on serving plates and spoon sauce prettily over each serving.’ In contrast, when
the same expression co-occurs with unexpected words as the following example illustrates,
then it is more likely to be used in its idiomatic sense: ‘That’s when you see the Colonel and
his council playing pass-the-parcel with a hot potato.’ This sort of distributional semantics
approach has the additional advantage of not requiring class label information.

Liu and Hwa also confirmed that distributional semantics serves as a helpful heuristic
for estimating the likelihood that a PIE is used literally [11]. Their approach was based on
an assumption that a PIE’s relationship with its context is more predictable when it is used
literally than when it is used figuratively. To capture such predictability, they measured the
semantic similarity between the context and the PIE’s literal representation. Here, a PIE’s
literal usage is represented as a collection of the word embeddings of the PIE’s constituent
words and other words they co-occur with frequently. When a PIE is used in its literal
sense, the words from its context are expected to be semantically closer to the literal usage
representation. Cosine similarity is used to compare the words from the two collections
(literal usage versus context) and determine average similarity. The higher the similarity,
the higher the likelihood that the PIE is intended literally. Therefore, an appropriately
chosen threshold can be used to differentiate between the literal and figurative meaning.

Sporleder and Li [12] proposed another unsupervised method for binary classification
of PIEs based on their links with the overall cohesive structure of the discourse. The
stronger the links, the higher the likelihood that a PIE is intended literally. Lexical cohesion
is a property observed in texts where concepts discussed within individual sentences are
typically related to concepts mentioned elsewhere [13]. Its practical usefulness depends on
the choice of a method for computing semantic relatedness. Lexical knowledge bases such
as WordNet [14] can be used to approximate semantic relatedness by using the shortest
path in the semantic network between two concepts or by measuring the overlap of their
glosses. Unfortunately, not all concepts are covered by WordNet and, for those that are,
their connections are limited to thesaurus-like relationships. Alternatively, distributional
approaches can be used to infer semantic relationships from the usage patterns in a large
corpus. Sporleder and Li [12] used normalised Google distance (NGD), which computes
relatedness based on the number of pages returned by the search engine for a query that
combines two concepts [15]. A threshold applied to NGD values can be used to build a
cohesion graph of the surrounding discourse. If removing the PIE’s constituent words from
such graph results in a higher connectivity calculated as the average edge weight, then the
given PIE is assumed to be used non-literally. In their experiments, Sporleder and Li [12]
focused on PIEs consisting of a verb followed by either a noun phrase or a prepositional
phrase. Haagsma et al. [7] combined the two approaches proposed in [12] and [11]. They
used the idea of lexical cohesion graphs but replaced NGD between two words by cosine
similarity between the corresponding word embeddings.

Liu et al. [16] also explored the idea of lexical cohesion and word embeddings to learn
to differentiate between literal and idiomatic meaning. Instead of comparing individual
words from a PIE with its context, they compared the literal meaning of the PIE itself against
the context. The literal meaning was calculated from the PIE’s constituents using a tree-
structured long short-term memory (LSTM) [17]. Rather than using a similarity measure to
compare this meaning against the context, a neural model was used to detect the boundary
between literal and idiomatic meaning. The surrounding context was represented as an
LSTM-based function of its words. The binary classification of the intended meaning
(literal versus idiomatic) was then obtained using a single layer multi-layer perceptron.
Salton et al. [18] used a framework based on recurrent neural networks to encode a sentence
into a distributed representation and then decode it to predict the neighbouring sentences.

Mach. Learn. Knowl. Extr. 2021, 3 267

Consequently, the context of a sentence is encoded without the need to access it explicitly.
Based on that assumption, a supervised classifier of idiom usage can be trained on a set of
distributed sentence representations without having to model long windows of context
and without using methods to extract topic representations.

The related work described thus far focuses on automatic sense disambiguation
between literal and idiomatic usage. Their main deficiency lies in the way in which
they identify PIEs to disambiguate. When used in discourse, almost all idioms vary.
The extent of these variations makes them difficult to retrieve from a large corpus using
traditional brute-force approaches such as keyword or phrase search. More sophisticated
ways of modelling variation in idioms computationally are required. One way is to
model idioms using a local grammar approach. In an earlier study, we defined a set of
lexico-semantic pattern-matching rules (represented by regular expressions) manually to
automate subsequent recognition of idiom occurrences in text [19]. These rules were idiom
specific, i.e., only idioms that were included explicitly in the model could be matched
in text. To address the issues of generalisability and scalability, we later developed an
approach to derive the pattern-matching rules automatically from idioms’ canonical forms,
i.e., their corresponding entries in a monolingual dictionary [20]. Flor and Beigman
Klebanov [21] implemented a similar rule-based generation of pattern-matching rules,
which were evaluated on a corpus of essays written by non-native English speakers.
Although efficient algorithms for matching regular expressions have been in existence for
a long time [22,23], widely used programming languages do not necessarily implement
the most efficient solution available [24]. This study seeks to replace regular expressions
by more efficient methods of finding idioms in a large corpus of text based on the state-
of-the-art technology from information retrieval. By doing so, this study aims to fill the
gap that is prominent in all related work presented: finding idioms in text is a prerequisite
for any automated reasoning about idiom usage. None of the existing approaches offers a
comprehensive solution to this problem that is both generalisable and scalable. This study
aims to address this very problem. Our own approach does not include disambiguation, but
it can easily be extended to support such functionality by combining idiom retrieval with
any of the classification approaches described earlier. However, this particular problem is
beyond the scope of the current study.

3. Methods
3.1. Technology

In this section, we provide details about the chosen technology in a quest to justify its
choice as well as facilitate a reader in understanding the details of implementation specific
to our application.

3.1.1. Elasticsearch

Elasticsearch is an open-source, distributed, scalable, real-time search engine [25]. It
is built on top of Apache Lucene, an advanced, high-performance, full-text search engine
library [26]. Elasticsearch uses Lucene internally for indexing and searching but hides
its inner complexity behind a simple-to-use RESTful API, which allows programming
languages to communicate with Elasticsearch using a web client.

Elasticsearch stores documents formatted in JavaScript Object Notation (JSON), each
representing a hierarchy of fields. By default, every field is indexed, and, hence, searchable.
An inverted index associates each word with a list of documents in which it appears. Such
data structure greatly accelerates the process of full-text searching. In addition, an index
in Elasticsearch is implemented as a collection of shards. In other words, an index is a
logical namespace that points to one or more physical shards. Effectively, documents are
stored and indexed in shards, which are allocated to nodes (servers), which work together
in a cluster to increase the availability, scalability and reliability of the search engine. This
is how Elasticsearch distributes data. Elasticsearch migrates shards between nodes to
maintain the balance within a cluster as it grows or shrinks. Applications do not need to

Mach. Learn. Knowl. Extr. 2021, 3 268

communicate to shards directly. Instead, they communicate with an index, which simplifies
the development of applications that require scalable full-text searching.

3.1.2. Indexing

To improve the “searchability” of documents, indexing in Elasticsearch uses analysis, a
process that involves character filtering, tokenisation and normalisation (or token filtering).
Character filters are used to tidy up the text, e.g., by stripping out mark up, converting
special characters, etc. A tokeniser segments the filtered text into tokens, each being a
sequence of characters grouped together as a unit for further processing. Token filters
are applied to individual tokens to modify them (e.g., lowercase), remove them (e.g.,
stopwords) or associate them with other tokens (e.g., synonyms). Such functionalities are
integrated into a single package called an analyser, which can be configured using the
syntax given in Figure 1. The full-text fields are analysed during indexing. For a query
to match indexed content, it needs to undergo the same analysis. When a full-text field is
queried, the query automatically applies the analyser associated with the field to produce a
list of search terms compatible with the inverted index.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 6

Elasticsearch stores documents formatted in JavaScript Object Notation (JSON), each
representing a hierarchy of fields. By default, every field is indexed, and, hence,
searchable. An inverted index associates each word with a list of documents in which it
appears. Such data structure greatly accelerates the process of full-text searching. In
addition, an index in Elasticsearch is implemented as a collection of shards. In other
words, an index is a logical namespace that points to one or more physical shards.
Effectively, documents are stored and indexed in shards, which are allocated to nodes
(servers), which work together in a cluster to increase the availability, scalability and
reliability of the search engine. This is how Elasticsearch distributes data. Elasticsearch
migrates shards between nodes to maintain the balance within a cluster as it grows or
shrinks. Applications do not need to communicate to shards directly. Instead, they
communicate with an index, which simplifies the development of applications that
require scalable full-text searching.

3.1.2. Indexing
To improve the “searchability” of documents, indexing in Elasticsearch uses analysis,

a process that involves character filtering, tokenisation and normalisation (or token
filtering). Character filters are used to tidy up the text, e.g., by stripping out mark up,
converting special characters, etc. A tokeniser segments the filtered text into tokens, each
being a sequence of characters grouped together as a unit for further processing. Token
filters are applied to individual tokens to modify them (e.g., lowercase), remove them
(e.g., stopwords) or associate them with other tokens (e.g., synonyms). Such
functionalities are integrated into a single package called an analyser, which can be
configured using the syntax given in Figure 1. The full-text fields are analysed during
indexing. For a query to match indexed content, it needs to undergo the same analysis.
When a full-text field is queried, the query automatically applies the analyser associated
with the field to produce a list of search terms compatible with the inverted index.

Figure 1. Defining an analyser in Elasticsearch.

3.1.3. Querying
Elasticsearch provides its own query language called Query DSL (domain-specific

language) whose syntax is also based on JSON. Query clauses are building blocks that can
be combined to create complex queries. A query clause typically follows the structure
given in Figure 2.

Figure 1. Defining an analyser in Elasticsearch.

3.1.3. Querying

Elasticsearch provides its own query language called Query DSL (domain-specific
language) whose syntax is also based on JSON. Query clauses are building blocks that
can be combined to create complex queries. A query clause typically follows the structure
given in Figure 2.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 7

Figure 2. The structure of a query clause in Query DSL.

A leaf clause is used to match one or more fields against a query string. A compound
clause combines other query clauses in a hierarchical fashion. Each query clause generates
a relevance score for each document. Its calculation depends on the type of query clause,
e.g., fuzzy query calculates how similar two matched strings are, a terms query
incorporates the percentage of search terms that were matched successfully, etc. In
general, relevance score is based on the similarity between the contents of a full-text field
and a full-text query string. The relative weight of any query clause can be controlled by
specifying a boost value. Ultimately, the results of full-text searching are ranked by
relevance score, i.e., the extent to which a document matches the query. When a query is
complex, it can become difficult to understand how the relevance score was calculated.
Therefore, Elasticsearch provides an option to attach an explanation of the specific score
value to every search result. In addition, the relevant snippets of text can be highlighted
so that the user can see how a retrieved document matches the query.

Standard full-text search treats each document as a bag of words. The match query
simply determines whether a document contains the search terms and does not consider
the relationships among them, e.g., order or distance. On the other hand, the
match_phrase query matches documents that contain all search terms but only when they
maintain the same positions relative to one another. For example, the query given in
Figure 3 will only match documents that contain the three given words, ‘scream’, ‘blue’
and ‘murder’, when they occur in the exact same order.

Figure 3. An example of a match_phrase query.

Positions (within a document) can be stored in an inverted index to be utilised at run
time by position-aware queries such as the match_phrase one. Phrase matching may be
too rigid—ignoring many phrases with only minor variations. The slop parameter allows
for some flexibility in phrase matching by allowing the search terms to be spaced apart
within a document while still considering it a match (see Figure 4 for an example). More
precisely, the slop parameter prescribes the number of word position changes allowed
within a document for a phrase to match exactly. This means that with a sufficiently large

Figure 2. The structure of a query clause in Query DSL.

Mach. Learn. Knowl. Extr. 2021, 3 269

A leaf clause is used to match one or more fields against a query string. A compound
clause combines other query clauses in a hierarchical fashion. Each query clause generates a
relevance score for each document. Its calculation depends on the type of query clause, e.g.,
fuzzy query calculates how similar two matched strings are, a terms query incorporates
the percentage of search terms that were matched successfully, etc. In general, relevance
score is based on the similarity between the contents of a full-text field and a full-text query
string. The relative weight of any query clause can be controlled by specifying a boost
value. Ultimately, the results of full-text searching are ranked by relevance score, i.e., the
extent to which a document matches the query. When a query is complex, it can become
difficult to understand how the relevance score was calculated. Therefore, Elasticsearch
provides an option to attach an explanation of the specific score value to every search result.
In addition, the relevant snippets of text can be highlighted so that the user can see how a
retrieved document matches the query.

Standard full-text search treats each document as a bag of words. The match query
simply determines whether a document contains the search terms and does not consider
the relationships among them, e.g., order or distance. On the other hand, the match_phrase
query matches documents that contain all search terms but only when they maintain the
same positions relative to one another. For example, the query given in Figure 3 will only
match documents that contain the three given words, ‘scream’, ‘blue’ and ‘murder’, when
they occur in the exact same order.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 7

Figure 2. The structure of a query clause in Query DSL.

A leaf clause is used to match one or more fields against a query string. A compound
clause combines other query clauses in a hierarchical fashion. Each query clause generates
a relevance score for each document. Its calculation depends on the type of query clause,
e.g., fuzzy query calculates how similar two matched strings are, a terms query
incorporates the percentage of search terms that were matched successfully, etc. In
general, relevance score is based on the similarity between the contents of a full-text field
and a full-text query string. The relative weight of any query clause can be controlled by
specifying a boost value. Ultimately, the results of full-text searching are ranked by
relevance score, i.e., the extent to which a document matches the query. When a query is
complex, it can become difficult to understand how the relevance score was calculated.
Therefore, Elasticsearch provides an option to attach an explanation of the specific score
value to every search result. In addition, the relevant snippets of text can be highlighted
so that the user can see how a retrieved document matches the query.

Standard full-text search treats each document as a bag of words. The match query
simply determines whether a document contains the search terms and does not consider
the relationships among them, e.g., order or distance. On the other hand, the
match_phrase query matches documents that contain all search terms but only when they
maintain the same positions relative to one another. For example, the query given in
Figure 3 will only match documents that contain the three given words, ‘scream’, ‘blue’
and ‘murder’, when they occur in the exact same order.

Figure 3. An example of a match_phrase query.

Positions (within a document) can be stored in an inverted index to be utilised at run
time by position-aware queries such as the match_phrase one. Phrase matching may be
too rigid—ignoring many phrases with only minor variations. The slop parameter allows
for some flexibility in phrase matching by allowing the search terms to be spaced apart
within a document while still considering it a match (see Figure 4 for an example). More
precisely, the slop parameter prescribes the number of word position changes allowed
within a document for a phrase to match exactly. This means that with a sufficiently large

Figure 3. An example of a match_phrase query.

Positions (within a document) can be stored in an inverted index to be utilised at run
time by position-aware queries such as the match_phrase one. Phrase matching may be
too rigid—ignoring many phrases with only minor variations. The slop parameter allows
for some flexibility in phrase matching by allowing the search terms to be spaced apart
within a document while still considering it a match (see Figure 4 for an example). More
precisely, the slop parameter prescribes the number of word position changes allowed
within a document for a phrase to match exactly. This means that with a sufficiently large
slop value, words do not necessarily need to appear in the same order. However, a higher
relevance score is given to documents in which the search terms are found closer together.

Although proximity queries introduce a degree of flexibility into phrase searching,
the fact that they require all search terms to be found within a document may still be too
rigid. Rather than using proximity matching (i.e., phrase matching with a slop) as an
absolute requirement, we can make it a desirable one within a bool query, where it can
be combined with other queries under the must, must_not and should parameters for
additional flexibility (see Figure 5 for an example). For example, an exact match query
with the minimum_should_match parameter can be used as a must clause to constrain
the search space followed by more sophisticated queries targeting different aspects of
document relevance as should clauses. Every query clause that matches will increase the
relevance of the corresponding documents.

Mach. Learn. Knowl. Extr. 2021, 3 270

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 8

slop value, words do not necessarily need to appear in the same order. However, a higher
relevance score is given to documents in which the search terms are found closer together.

Figure 4. An example of a proximity query.

Although proximity queries introduce a degree of flexibility into phrase searching,
the fact that they require all search terms to be found within a document may still be too
rigid. Rather than using proximity matching (i.e., phrase matching with a slop) as an
absolute requirement, we can make it a desirable one within a bool query, where it can be
combined with other queries under the must, must_not and should parameters for
additional flexibility (see Figure 5 for an example). For example, an exact match query
with the minimum_should_match parameter can be used as a must clause to constrain the
search space followed by more sophisticated queries targeting different aspects of
document relevance as should clauses. Every query clause that matches will increase the
relevance of the corresponding documents.

Figure 5. An example of a bool query.

Figure 4. An example of a proximity query.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 8

slop value, words do not necessarily need to appear in the same order. However, a higher
relevance score is given to documents in which the search terms are found closer together.

Figure 4. An example of a proximity query.

Although proximity queries introduce a degree of flexibility into phrase searching,
the fact that they require all search terms to be found within a document may still be too
rigid. Rather than using proximity matching (i.e., phrase matching with a slop) as an
absolute requirement, we can make it a desirable one within a bool query, where it can be
combined with other queries under the must, must_not and should parameters for
additional flexibility (see Figure 5 for an example). For example, an exact match query
with the minimum_should_match parameter can be used as a must clause to constrain the
search space followed by more sophisticated queries targeting different aspects of
document relevance as should clauses. Every query clause that matches will increase the
relevance of the corresponding documents.

Figure 5. An example of a bool query. Figure 5. An example of a bool query.

3.2. Implementation
3.2.1. Data

The British National Corpus (BNC) is a large corpus of British English texts from 1960
onwards [27]. It is composed of text samples of both spoken and written language, each no
longer than 45K words and chosen to be as varied as possible to achieve a wide coverage
of subject fields, registers and genres. Though not the largest corpus, the advantage of
using the BNC in linguistics research is the fact that it is balanced, thus allowing for
extrapolation of properties that apply to the language in general. The XML Edition of the
BNC contains 4049 texts comprising almost 100M orthographic words. The BNC XML
edition is marked up in XML and encoded in Unicode [28], which can be easily converted
into other formats as necessary using XML-aware processing tools. The text content is

Mach. Learn. Knowl. Extr. 2021, 3 271

tokenised and tagged with part of speech (POS), resulting in tokens being represented as
separate XML elements and grouped hierarchically into sentences and paragraphs also
represented as XML elements (see Figure 6). XML can easily be converted into JSON
format, which can then be imported into Elasticsearch.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 9

3.2. Implementation
3.2.1. Data

The British National Corpus (BNC) is a large corpus of British English texts from 1960
onwards [27]. It is composed of text samples of both spoken and written language, each
no longer than 45K words and chosen to be as varied as possible to achieve a wide
coverage of subject fields, registers and genres. Though not the largest corpus, the
advantage of using the BNC in linguistics research is the fact that it is balanced, thus
allowing for extrapolation of properties that apply to the language in general. The XML
Edition of the BNC contains 4049 texts comprising almost 100M orthographic words. The
BNC XML edition is marked up in XML and encoded in Unicode [28], which can be easily
converted into other formats as necessary using XML-aware processing tools. The text
content is tokenised and tagged with part of speech (POS), resulting in tokens being
represented as separate XML elements and grouped hierarchically into sentences and
paragraphs also represented as XML elements (see Figure 6). XML can easily be converted
into JSON format, which can then be imported into Elasticsearch.

Figure 6. A sample sentence from the BNC formatted in XML.

Alternatively, a character filter can be applied during indexing to strip off the XML
mark up and only import raw text. Neither is entirely appropriate for our application—
the retrieval of idioms. In theory, idioms such ‘bury the hatchet’ and ‘dig up the hatchet’
can have their lexical content distributed across sentences as the following example taken
from a blog [29] illustrates: ‘Look I know they buried the hatchet. Then Uma dug it up.
Then she reburied it. But I think she buried it in a shallow grave.’

However, idioms generally tend to be encompassed by single sentences. Therefore,
sentences were chosen to represent the basic units of retrieval in our application. Given
that sentences have already been marked up in the BNC XML edition, we converted the
content of this particular XML element into the corresponding full-text field in JSON (see
Figure 7).

Figure 6. A sample sentence from the BNC formatted in XML.

Alternatively, a character filter can be applied during indexing to strip off the XML
mark up and only import raw text. Neither is entirely appropriate for our application—the
retrieval of idioms. In theory, idioms such ‘bury the hatchet’ and ‘dig up the hatchet’ can
have their lexical content distributed across sentences as the following example taken from
a blog [29] illustrates: ‘Look I know they buried the hatchet. Then Uma dug it up. Then
she reburied it. But I think she buried it in a shallow grave.’

However, idioms generally tend to be encompassed by single sentences. Therefore,
sentences were chosen to represent the basic units of retrieval in our application. Given
that sentences have already been marked up in the BNC XML edition, we converted the
content of this particular XML element into the corresponding full-text field in JSON (see
Figure 7).

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 10

Figure 7. A sample sentence from the BNC formatted in JSON.

The Natural Language Toolkit (NLTK) corpus package defines a collection of corpus
reader classes [30], which can be used to access the content of various corpora including
the BNC. Each corpus reader class is specialised to parse a corpus-specific format. The
BNC corpus reader was used to extract sentences from the XML edition. As Figure 6
illustrates, the content is tokenised with each word represented by a separate XML
element. Each XML-formatted sentence was then detokenised using the NLTK
TreebankWordDetokenizer class to remove the mark up but also to restore the raw text
compliant with English writing norms, which prescribe conventional ways of using
punctuation and white spaces. A total of 6,026,276 sentences were extracted from the BNC
XML edition and imported into Elasticsearch database in the JSON format given above
(see Figure 7).

3.2.2. Indexing
A custom analyser was created to index sentences in a way that supports sensitivity

and transparency of retrieving various forms of idioms (see Figure 8). In Elasticsearch, the
standard analyser, which is the default for full-text fields, does not remove stopwords.
Prepositions, conjunctions and determiners, which are typically removed as stopwords,
play an important role in the phrasal stability of idioms. For example, removing them
from idioms such as ‘in the teeth of’, ‘be up in arms’ or ‘on the up and up’ would also
remove the overall meaning. Therefore, although stopwords can easily be added to a
custom analyser, we retained the default position not to remove them. Our custom
analyser starts by expanding enclitics, removing apostrophes and lowercasing alphabetic
characters.

Figure 7. A sample sentence from the BNC formatted in JSON.

Mach. Learn. Knowl. Extr. 2021, 3 272

The Natural Language Toolkit (NLTK) corpus package defines a collection of corpus
reader classes [30], which can be used to access the content of various corpora including the
BNC. Each corpus reader class is specialised to parse a corpus-specific format. The BNC
corpus reader was used to extract sentences from the XML edition. As Figure 6 illustrates,
the content is tokenised with each word represented by a separate XML element. Each
XML-formatted sentence was then detokenised using the NLTK TreebankWordDetokenizer
class to remove the mark up but also to restore the raw text compliant with English writing
norms, which prescribe conventional ways of using punctuation and white spaces. A
total of 6,026,276 sentences were extracted from the BNC XML edition and imported into
Elasticsearch database in the JSON format given above (see Figure 7).

3.2.2. Indexing

A custom analyser was created to index sentences in a way that supports sensitivity
and transparency of retrieving various forms of idioms (see Figure 8). In Elasticsearch,
the standard analyser, which is the default for full-text fields, does not remove stopwords.
Prepositions, conjunctions and determiners, which are typically removed as stopwords,
play an important role in the phrasal stability of idioms. For example, removing them from
idioms such as ‘in the teeth of’, ‘be up in arms’ or ‘on the up and up’ would also remove
the overall meaning. Therefore, although stopwords can easily be added to a custom
analyser, we retained the default position not to remove them. Our custom analyser starts
by expanding enclitics, removing apostrophes and lowercasing alphabetic characters.

To understand the role of other functionalities that were integrated into the analyser,
we first need to review the ways in which idioms may vary. The difficulty associated with
searching for idioms in a big corpus is the fact that idioms are heterogeneous in terms
of their transformational capacity [31]. While some idioms allow virtually no variation
without the loss of the idiomatic sense, others may exhibit extensive variation [6,32,33]. In
this study, we focus on the most common types of idiom variation, namely inflection, open
slots, adjectival or adverbial modification and passivisation [34]. Some of these phenomena
can be addressed at indexing time, whereas others need to be resolved at querying time.

In terms of inflection, verbs can be used in different tenses, nouns can be used in
singular or plural, whereas adjectives can be inflected to express different degrees of
comparison. For example, the verb in the idiom ‘jump the gun’ was used in the present
perfect tense in the following example: ‘But I have jumped the gun.’ Similarly, the noun in
the idiom ‘cross to bear’ is used in plural the following example: ‘I know you haven’t it’s
just one of these crosses you’ve got to bear haven’t you?’

To support retrieval of inflected forms, stemming both the canonical form of an idiom
(i.e., the search query) and the sentences to be matched (i.e., indexed document) would
effectively neutralise the inflection. In Elasticsearch, stemming is handled by stemmer
token filters, which can be either algorithmic stemmers (i.e., based on transformational
rules) or dictionary stemmers (i.e., based on dictionary lookup). In practice, algorithmic
stemmers usually outperform dictionary stemmers in terms of coverage (e.g., stemming of
unknown words) and efficiency (i.e., time and memory requirements). For these reasons,
the Porter stemmer [35] was selected as a token filter and integrated into our custom
analyser. As a result, a stem rather than the original surface form is stored in the index. For
a search query to match indexed content, it needs to undergo stemming as well. When a
full-text field is queried, Elasticsearch automatically launches the analyser associated with
the field. In our case, this means that a search query will always get stemmed to produce a
list of search terms compatible with the inverted index.

Mach. Learn. Knowl. Extr. 2021, 3 273
Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 11

Figure 8. A custom analyser for indexing idioms.

To understand the role of other functionalities that were integrated into the analyser,
we first need to review the ways in which idioms may vary. The difficulty associated with
searching for idioms in a big corpus is the fact that idioms are heterogeneous in terms of
their transformational capacity [31]. While some idioms allow virtually no variation
without the loss of the idiomatic sense, others may exhibit extensive variation [6,32,33]. In
this study, we focus on the most common types of idiom variation, namely inflection,
open slots, adjectival or adverbial modification and passivisation [34]. Some of these
phenomena can be addressed at indexing time, whereas others need to be resolved at
querying time.

Figure 8. A custom analyser for indexing idioms.

Mach. Learn. Knowl. Extr. 2021, 3 274

By and large, stemming will resolve the problem of matching inflected word forms.
However, one shortcoming of algorithmic stemmers is that they do not cope well with
irregular words, so the problem of irregular words persists. For example, idioms such as
‘swim against the tide’, ‘wolf in sheep’s clothing’ and ‘stand in good stead’ will not match
their mentions in the following examples:

‘He had swum against the tide.’

‘But now we know they’re just wolves in sheep’s clothing.’

‘A polite and considered approach, avoiding outright confrontation, will stand
you in better stead.’

Irregular words represent a case where dictionary stemmers perform better. Rather than
reverting to dictionary stemmers, we can use a small dictionary for irregular words only.
Elasticsearch can match different tokens by using the synonym token filter. Although, as
the name suggests, this functionality is used primarily to conflate synonyms, i.e., different
words with the same meaning (e.g., ‘jump’, ‘leap’ and ‘hop’), it can just as well be used to
match different forms of irregular words. To patch the stemming of irregular words, we
complemented the stemmer token filter with the synonym token filter designed specifically
to model inflection of irregular words.

In addition to inflection, some other types of idiom variation are simple enough to be
modelled by the synonym token filter. For example, idioms often feature a pronoun used
as an anaphor, which can vary in terms of number, gender and case to match that of the
antecedent as the following instance of the idiom ‘butterflies in one’s stomach’ illustrates:
‘The morning she saw him she suddenly felt butterflies in her stomach.’

By indexing pronouns as synonyms, they can be flexibly replaced by one another at
querying time. In addition to pronouns, some content words can sometimes be replaced
while still preserving the idiomatic sense, e.g., ‘take a load/weight off someone’s mind’ or
‘swim against the stream/tide’. Although, individual words are not necessarily synonyms
themselves, the overall figurative sense remains synonymous. Given that this variation
is confined to the token level, it too can be modelled by the synonym token filter. To
identify tokens that can replace one another in idioms, we parsed a list of idiom definitions
acquired from Learn English Today, a free website for learners of English [36]. Equivalent
tokens were identified using the slash character as indicated in the examples above, e.g.,
load/weight and stream/tide.

3.2.3. Querying
Modification

The components of some idioms are modifiable, e.g., nouns and verbs can be modified
by adjectives and adverbs, respectively. The following example of the idiom ‘grasp at
straws’ contains both types of modification: ‘Vologsky grasped desperately at the floating
straw.’ A simple phrase search query would fail to retrieve idioms that contain inserted
modifiers. As we discussed earlier, Elasticsearch supports phrase matching with a slop,
which allows a certain number of words to be inserted between the matching words from
the search phrase. A fixed slop value may be too generous for short idioms, thus reducing
the precision. On the other hand, it may be too strict for long idioms, thus reducing the
recall. The slop value should be set so that consistent performance is achieved across all
idioms regardless of their length. More precisely, it is the number of modifiable elements
that should be used to determine the slop rather than the raw length. We estimated the
slop value by counting the number of relevant parts of speech. Prior to launching a search,
NLTK is used to tag the search phrase (i.e., the canonical form of the idiom) provided
by the user. POS tags are then used to count the total number of nouns and verbs as
potentially modifiable components. The dynamically calculated slop and the input idiom
are combined into a phrase search query.

Mach. Learn. Knowl. Extr. 2021, 3 275

Open Slots

Many idioms contain pronouns as open slots that can be substituted by other phrases.
For example, in the idiom ‘keep someone at arm’s length’ the open slot, which is indicated
by an indefinite pronoun, is substituted by a noun phrase in the following example: ‘They
preferred to persist in Piłsudski’s strategy of keeping both Germans and Russians at arm’s
length.’ The following example illustrates even more complex substitution: ‘They may
prefer the limited protection provided by keeping each other (and their own needs) at
arm’s length by replaying the old scenarios.’ The most basic substitutions are addressed at
indexing time by using the synonym token filer, which allows one pronoun to be replaced
by another pronoun. However, as the two examples demonstrate, pronoun substitutions
are not limited to a closed vocabulary and, hence, require a pattern-matching approach
at querying time. To account for open slots, we can identify pronouns in the original
search phrase, which has already been tagged with POS. Each pronoun is then removed
from the query and the previously calculated slop value is increased to allow room for its
substitution by more complex phrases.

Passivisation

In addition to inflection, verbs in idioms may vary in terms of their voice too. Passive
voice allows the object of an otherwise active sentence to become the subject of a passive
sentence. In this process, the order between the verb and its object gets reversed. For
example, compare an active form of the idiom ‘open the floodgates’ ‘The case could open
the floodgates for thousands of similar claims worldwide.’ to a passive one ‘And with
Wright gone, the floodgates were opened.’ To account for the passivisation of idioms, POS
tags can be used to identify non-auxiliary verbs at the beginning of an idiom and produce
an additional search query for its passive form by repositioning the verb to the end of the
idiom. A slop is used to accommodate the auxiliary verb in front of the past participle of
the given verb (e.g., ‘were’ in the last example) and its potential modification. If the idiom
also contains a pronoun, this suggests a passivised version of the idiom may contain an
open slot. Therefore, an open slot in the passivised query is processed as described earlier
by replacing the pronoun by a wildcard and increasing the slop further. Table 1 provides
a summary of querying approaches taken to address specific types of idiom variation
together with a run-through example.

Table 1. Summary of query generation.

ID Variation Problem Solution POS Example Query

1 modification insertion slop noun + verb {“query”: “call someone’s bluff”,
“slop”: 4}

2 open slot replacement wildcard + slop pronoun {“query”: “call * bluff”, “slop”: 5}

3 passivisation with
modification reordering + insertion reordering + slop verb {“query”: “someone’s bluff * call”,

“slop”: 5}

4 passivisation with an
open slot reordering + replacement reordering + wildcard

+ slop verb + pronoun {“query”: “* bluff * call”, “slop”: 6}

Up to four search queries are generated for a given idiom. Each query is represented
by a separate clause. A single bool query is then used to combine all queries as should
clauses (see Figure 9). If a should clause matches a document, then it increases its overall
relevance score, otherwise it has no effect. A similarity model used to score matching
documents is the default—BM25 [37], which is based on the probabilistic relevance model
and is considered to be a state-of-the-art ranking function. No bespoke boosting was
applied to different clauses of the query. However, documents matching the first clause of
the query will score highest.

Mach. Learn. Knowl. Extr. 2021, 3 276

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 14

Table 1. Summary of query generation.

ID Variation Problem Solution POS Example Query

1 modification insertion slop noun + verb
{“query”: “call someone’s

bluff”, “slop”: 4}

2 open slot replacement wildcard + slop pronoun
{“query”: “call * bluff”, “slop”:

5}

3
passivisation with

modification
reordering +

insertion reordering + slop verb
{“query”: “someone’s bluff *

call”, “slop”: 5}

4
passivisation with an

open slot
reordering +
replacement

reordering + wildcard
+ slop

verb +
pronoun

{“query”: “* bluff * call”,
“slop”: 6}

Up to four search queries are generated for a given idiom. Each query is represented
by a separate clause. A single bool query is then used to combine all queries as should
clauses (see Figure 9). If a should clause matches a document, then it increases its overall
relevance score, otherwise it has no effect. A similarity model used to score matching
documents is the default—BM25 [37], which is based on the probabilistic relevance model
and is considered to be a state-of-the-art ranking function. No bespoke boosting was
applied to different clauses of the query. However, documents matching the first clause
of the query will score highest.

Figure 9. A bool query combining queries given in Table 1.

Although originally developed to address specific types of idiom variation outlined
in Table 1, the combined query is flexible enough to handle other types of variation as the
examples provided in Table 2 illustrate. The stemming filter applied during indexing will
neutralise not only inflection but derivation as well. The first example contains a
nominalised instance of an idiom as does the second, which also combines it with
compounding. Modification is not necessarily restricted to adjectives and adverbs.
Negated verbs can also be retrieved (see examples 3 and 5). More complex prepositional
phrases can be used to modify nouns within idioms (see example 4). The components of
some idioms may be distributed over multiple clauses (see example 5). Some unforeseen
variations such as emulation of stuttering have been captured as well (see example 6).

Figure 9. A bool query combining queries given in Table 1.

Although originally developed to address specific types of idiom variation outlined
in Table 1, the combined query is flexible enough to handle other types of variation as
the examples provided in Table 2 illustrate. The stemming filter applied during indexing
will neutralise not only inflection but derivation as well. The first example contains
a nominalised instance of an idiom as does the second, which also combines it with
compounding. Modification is not necessarily restricted to adjectives and adverbs. Negated
verbs can also be retrieved (see examples 3 and 5). More complex prepositional phrases can
be used to modify nouns within idioms (see example 4). The components of some idioms
may be distributed over multiple clauses (see example 5). Some unforeseen variations such
as emulation of stuttering have been captured as well (see example 6).

Table 2. Other types of idioms variation covered.

ID Variation Idiom Example

1 derivation bury the hatchet These occasions are marked by much conviviality
and the temporary burying of hatchets.

2 compounding grease someone’s palm
Palm-greasing for just about anything from entry to
a favoured school to obtaining a bank loan has been

considered a fact of life.

3 negation grease someone’s palm

The gondoliers threatened to go on strike and all the
floodlights on the night of the show were

mysteriously switched off because someone hadn’t
had their palm greased.

4 modification by a
prepositional phrase open the floodgates

The floodgates to total permissiveness were opened
and a society in which “the permissive intellectual’s

anything goes” was created.

5 distribution over multiple clauses born with a silver spoon in
one’s mouth

She was born, if not with a silver spoon in her
mouth, then certainly not one with any chicken soup

on it.

6 orthographic simulation of stutter head over heels H-have to admit it, old thing, I’m h-head over
h-heels in love with you.

Mach. Learn. Knowl. Extr. 2021, 3 277

3.2.4. Search Results

As explained before, each retrieved document (in our case is an individual sentence)
will receive a relevance score, which reflects how well it matches a query. The relevance
score is represented by a positive floating-point number with higher values reflecting
higher relevance. As noted earlier, a bool query combines multiple should clauses, so the
overall score will aggregate their individual scores, which can make it difficult for a user to
understand how it was calculated. Elasticsearch can produce an explanation of the score for
every search result by setting the explain parameter to true. We provide the relevance score
with every search result as a clickable link, which brings about an explanation on demand.

Elasticsearch also allows for the matching snippets of text to be highlighted in the
search results. We added a JSON element (see Figure 10) to the search query that prescribes
that the matching tokens should be automatically enclosed by the chosen XML tags. These
tags are then used to highlight the matching text in HTML for the user’s to visual inspection
but also to mark idioms up in a downloadable text file for the user to use offline with other
tools of their choice.

Mach. Learn. Knowl. Extr. 2021, 3 FOR PEER REVIEW 15

Table 2. Other types of idioms variation covered.

ID Variation Idiom Example

1 derivation bury the hatchet
These occasions are marked by much conviviality and the temporary

burying of hatchets.

2 compounding
grease someone’s

palm
Palm-greasing for just about anything from entry to a favoured school

to obtaining a bank loan has been considered a fact of life.

3 negation grease someone’s
palm

The gondoliers threatened to go on strike and all the floodlights on
the night of the show were mysteriously switched off because

someone hadn’t had their palm greased.

4
modification by a

prepositional phrase open the floodgates
The floodgates to total permissiveness were opened and a society in

which “the permissive intellectual’s anything goes” was created.

5 distribution over
multiple clauses

born with a silver
spoon in one’s

mouth

She was born, if not with a silver spoon in her mouth, then certainly
not one with any chicken soup on it.

6
orthographic

simulation of stutter head over heels
H-have to admit it, old thing, I’m h-head over h-heels in love with

you.

3.2.4. Search Results
As explained before, each retrieved document (in our case is an individual sentence)

will receive a relevance score, which reflects how well it matches a query. The relevance
score is represented by a positive floating-point number with higher values reflecting
higher relevance. As noted earlier, a bool query combines multiple should clauses, so the
overall score will aggregate their individual scores, which can make it difficult for a user
to understand how it was calculated. Elasticsearch can produce an explanation of the score
for every search result by setting the explain parameter to true. We provide the relevance
score with every search result as a clickable link, which brings about an explanation on
demand.

Elasticsearch also allows for the matching snippets of text to be highlighted in the
search results. We added a JSON element (see Figure 10) to the search query that
prescribes that the matching tokens should be automatically enclosed by the chosen XML
tags. These tags are then used to highlight the matching text in HTML for the user’s to
visual inspection but also to mark idioms up in a downloadable text file for the user to use
offline with other tools of their choice.

Figure 10. Highlighting matching snippets in the search results. Figure 10. Highlighting matching snippets in the search results.

4. Results
4.1. Baseline

Earlier in this paper, we argued that the extent of variation in the forms of idioms
makes them difficult to retrieve from a large corpus using traditional brute-force approaches
such as keyword or phrase search, and hence we proposed a sophisticated search strategy
that addresses such variation automatically. To test the efficacy of the new search strategy
it therefore makes sense to compare it to the two search options that we have claimed are
inadequate. The first baseline is the keyword search, which matches the search terms using
their stems and ignoring their order and distance within the matching documents. The
second baseline is the phrase search, which matches the search query as an exact phrase not
allowing for any variation in word order or their morphology. Both baseline approaches
are commonly supported by search engines, so they represent strategies that users looking
for idioms in large corpora would be most likely to employ. Therefore, they represent a
standard benchmark to gauge the effectiveness of search performance.

4.2. Measures

The ideal aim of information retrieval is to collect all and only those documents that
are relevant to the search. Any shortfall in this outcome is indicative of limitations in the
search design. A means is needed for calculating the efficacy of the search. To this end,
any document retrieved by a system can be classified either as a true positive (TP) if it

Mach. Learn. Knowl. Extr. 2021, 3 278

is relevant to the user’s information need expressed by the query or as a false positive
(FP) otherwise. Conversely, any relevant document from the given collection that is not
retrieved by the system constitutes a false negative (FN). Using the total numbers of TPs,
FPs and FNs, precision (P) and recall (R) are calculated simply as the following ratios and
combined into the F score as their harmonic mean:

P =
TP

TP + FP
R =

TP
TP + FN

F =
2·P·R
P + R

(1)

Precision measures the proportion of correctly retrieved documents, while recall
measures the proportion of relevant documents that are retrieved by the system. To
calculate precision, the retrieved documents need to be inspected manually in order to
differentiate between TPs and FPs.

To calculate recall, the whole document collection needs to be inspected manually
in order to differentiate between TPs and FNs. When the document collection is as large
as the BNC, measuring recall becomes highly impractical. However, the total number of
relevant documents, i.e., the sum of TPs and FNs, is independent of the search strategy
used. In other words, the recall denominator remains constant regardless of the actual
search. Therefore, when comparing different search strategies in terms of recall, it suffices
to compare just the numerators, i.e., the numbers of TPs retrieved. It is still desirable to
normalise the number of TPs on a scale from 0 and 1. The relative recall achieves this by
dividing the number of TPs by the total number of relevant documents retrieved by any of
the considered search strategies [38].

4.3. Testbed

The PIE Corpus was developed to support the automatic detection of potentially
idiomatic expressions [7]. In addition to figurative uses, PIEs also encompass literal ones
such as ‘The sharp blade gave me a close shave in one go, but I also cut myself twice’ for
the idiom ‘close shave’ whose figurative sense is ‘a situation that was nearly an accident’.
The corpus uses a pre-defined set of 591 PIEs and consists of 2239 sentences extracted from
a set of 23 documents from the BNC. Each sentence may contain a PIE and is annotated for
its presence. If it does, the given PIE is annotated according to its sense: literal or figurative.
Unfortunately, the number of sentences per idiom was too small to evaluate the recall.
Moreover, a closer inspection of the idiom types revealed that the vast majority seemed to
be fixed phrases, which would not sufficiently stretch the system.

Therefore, we opted to randomly select 100 out of around 3000 idioms available
from an educational web site—Learn English Today [36]. Nonetheless, we were able to
re-purpose the original annotation guidelines from the PIE Corpus. Given a test idiom,
every sentence retrieved automatically was annotated manually for whether it contained
the given idiom regardless of its sense. If it did, the sentence was further annotated with
the sense the idiom was used in, idiomatic, literal, unclear and other. The sense was deemed
unclear when the sentence itself did not provide sufficient context to differentiate between
idiomatic and literal sense. The sense was annotated as other when it was certainly neither
idiomatic nor literal.

For each idiom from the testbed, we ran three searches: (1) the flexible search using
the system described in this paper, (2) the keyword search and (3) the phrase search. These
searches retrieved three ranked lists of sentences from the BNC. To make the annotation
workload manageable, the lists were truncated to 100 top-ranked sentences. We effectively
measured precision and recall at k, where k = 100. This approach is commonly used
to evaluate ranked search results, where users are normally expected to start at the top
working their way down the ranked list of retrieved documents. However, from the
linguistic point of view, the most interesting examples of idioms, i.e., those that differ
the most from their canonical forms as measured by the slop parameter of phrase search,
would be ranked lower. Our choice of the parameter k allowed us to cut off the long tail of
search results while preserving the expected number of idioms based on their distribution.

Mach. Learn. Knowl. Extr. 2021, 3 279

According to [6], we can expect 88%, 11% and 1% of idioms to occur <1, 1–5 and 5–50 times
per million words respectively. If we project the expected frequencies to 100 M words in
the BNC, we can see that we can expect to find less than 100 mentions for the vast majority
of idioms. Indeed, the average number of sentences retrieved for the phrase, keyword and
flexible search was 13.57, 29.52 and 49.89 respectively. The truncation had to be performed
only in 2, 6 and 8 cases respectively.

The three lists of retrieved sentences, one for each search method, were merged,
duplicates removed to reduce the manual annotation effort and the order randomised to
reduce the annotation bias. The data were annotated by a single annotator.

For quality control purposes, a sample of data were annotated by the second annotator.
For each idiom, up to two sentences, preferably one with idiomatic and one with another (lit-
eral, unclear or other) sense, were selected randomly. The confusion matrix shown in Table 3
compares the labels provided by the two annotators. Their agreement was measured using
Cohen’s kappa coefficient [39], which is calculated according to the following formula:

κ = 1 − 1 − po

1 − pe
(2)

where po is the observed agreement (i.e., the proportion of items on which both anno-
tators agree) and pe is the expected chance agreement calculated under the assumption
that annotators act independently of each other and that random assignment of labels is
governed by their distribution. At κ = 0.9043 with a standard error of 0.0294 [40] and a 0.95
confidence interval of 0.8468 to 0.9618, the inter-annotator agreement was found to be very
good using the following scale [41]: 0–0.20 (poor), 0.21–0.40 (fair), 0.41–0.60 (moderate),
0.61–0.80 (good), 0.81–1.00 (very good).

Table 3. Confusion matrix on the double-annotated subset.

Label Idiomatic Unclear Literal Other Total

Idiomatic 122 0 2 1 125

Unclear 3 4 0 0 7

Literal 0 0 19 0 19

Other 3 0 1 43 47

Total 128 4 22 44 198

The final testbed consists of 100 idioms and up to 100 sentences per idiom, where
each sentence was annotated with the sense the given idiom was used in: idiomatic, literal,
unclear or other. Note that our system only performs retrieval of PIEs without any attempt
to disambiguate them. In that respect, we only need to differentiate between PIEs (positive
instances) and non-PIEs (negative instances). That means that, for the purpose of this
study, we aggregated the idiomatic, literal and unclear labels to represent PIEs and used
the other label to represent non-PIEs. The main reason for performing annotation that was
finer-grained than necessary was to create a dataset that could also support future studies
on sense disambiguation. Knowing that manual annotation is costly and time-consuming
endeavour, it is worthwhile to maximise its utility for further research. The testbed is
publicly available at https://github.com/ispasic/idiometry/tree/master/data (accessed
on 1 January 2021).

https://github.com/ispasic/idiometry/tree/master/data

Mach. Learn. Knowl. Extr. 2021, 3 280

4.4. Results

Once the merged search results were annotated, the labels were distributed across the
original three lists, one for each search method. Within each list, all sentences retrieved for
a given idiom were assorted into true and false positives. A sentence was regarded to be a
TP is it contained the corresponding PIE (i.e., it was previously labelled idiomatic, literal or
unclear), otherwise it was considered an FP (i.e., its label was other). Precision, relative
recall and their harmonic mean were then calculated. Table 4 provides these values for a
sample of 10 idioms. Precision, recall and F score were micro- and macro-averaged across
all 100 idioms for each search method (see Table 5).

Table 4. A sample of flexible search results.

Idiom TP FP P R F

bitten by the bug 11 0 100.00% 100.00% 100.00%

blot one’s copy-book 5 0 100.00% 100.00% 100.00%

come up in the world 8 2 80.00% 22.86% 35.56%

lose one’s marbles 16 2 88.89% 100.00% 94.12%

get the better of someone 98 2 98.00% 51.31% 67.35%

give the all clear 39 1 97.50% 66.10% 78.79%

go out of one’s way 1 5 16.67% 12.50% 14.29%

risk life and limb 24 1 96.00% 96.00% 96.00%

sink or swim 31 0 100.00% 96.88% 98.41%

turn the tide 98 2 98.00% 73.13% 83.76%

Table 5. Evaluation results.

Micro-Average Macro-Average

Method P R F P R F

Phrase search 99.92% 31.20% 47.55% 81.98% 33.35% 47.41%

Flexible search 95.33% 82.79% 88.62% 95.28% 85.92% 90.36%

Keyword search 73.06% 44.63% 55.42% 72.54% 49.44% 58.80%

As Table 4 shows, there was some variation in retrieval performance across the idioms.
The system will overgeneralise in cases where the words from idiom tend to co-occur with
one another as the following FPs for idiom ‘go out of one’s way’ illustrate:

‘Work out a rough way of what you’re going to give for.’

‘Some may go to out-of-the-way places to sniff which can add to the dangers.’

‘We went out separate ways, nearly all of us to be affected in one way or another
by the Bodyline tour.’

However, a closer inspection of the search results showed that such behaviour was an
exception rather than a rule. Indeed, the average precision of 95% (see Table 5) confirmed
the fact that fewer FPs were typically retrieved. This may come at the cost of recall,
which was found to be less stable (see Table 4). Nonetheless, average recall was over 80%,
which was found to be much higher than either of the baselines (see Table 5). Somewhat
surprisingly, our method outperformed the keyword search in terms of recall. This is
because the standard English analyser in Elasticsearch does not remove the stopwords.
Had the stopwords been removed, then the recall of keyword search would have been much
higher. However, by loosening up the search conditions the precision of keyword search
would have fallen even more dramatically. As it stands, it was already poorer by more than

Mach. Learn. Knowl. Extr. 2021, 3 281

20 percentage points. When precision and recall were combined, the performance of our
method was found to be superior improving the F score by at least 30 percentage points.

5. Conclusions

We have described a system for the large-scale retrieval of idiom mentions. It takes
a (presumably) canonical form of an idiom and expands it automatically to account for
the most common types of idiom variation including inflection, open slots, adjectival or
adverbial modification and passivisation, but also derivation, compounding, negation,
distribution over multiple clauses and other unforeseen types of variation. The system
provides a selection of almost 3000 idioms that a user can use to explore the search func-
tionality, which is by no means limited to this list. In other words, a user can search for
idioms of their own choice.

We envisage that the prospective userbase will consist primarily of linguists and
teachers or learners of English who can use the system to gain new insights into idiom
usage. Linguists can easily access the data that can be used to challenge (or verify) existing
theories on idioms, including their variation, compositionality, perception, etc. Teachers
can retrieve real-world examples of idiom usage that can be used to test English proficiency.
Like any other words and phrases, idioms need to be learnt in context in order to prevent
systematic forgetting [42]. Our system can be used to extend well beyond the examples of
idiom usage provided in traditional textbooks. The links to full documents in the BNC can
be used to set these examples into wider context.

Although the online system only provides access to the BNC, the search method itself
is applicable to any corpus. The codebase is shared under open access license, which allows
other corpora to be imported into its local installations. Moreover, the search method can
be easily integrated into other NLP applications to mark up PIEs, which can then be used to
support the recognition of multi-word expressions and classification of their usage (literal
versus figurative). Two particular areas of NLP that can benefit from this are sentiment
analysis and machine translation.

Deep learning approaches were found to learn some features repeatedly across multi-
ple networks, but rare features such as idioms are not always learnt [43]. Yet, rare features
tend to improve text classification accuracy [44,45]. Indeed, our previous study on sen-
timent analysis identified idioms as very predictive but comparatively rare features [19].
Our approach allows sentiment analysis to use idioms as features, which would otherwise
be difficult to learn automatically using machine learning approaches.

Similarly, despite the success for neural machine translation in generating continually
improving translations, translation of idioms remains an open challenge [46]. The first step
towards addressing this challenge is the creation of data sets for learning and evaluating
idiom translation. Our approach allows for large-scale identification of idioms in English
as the source language. By aligning them with translations in the target language, training
data for idiom translation can be created automatically.

Author Contributions: Conceived the idea and designed the system, I.S.; implemented the core func-
tionality of the system, C.H.; adapted the system for online use, M.F.; helped refine user requirements
from a perspective of a linguist, A.W.; drafted the manuscript, I.S., C.H. and A.W. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Data Availability Statement: Data cited herein have been extracted from the British National Corpus,
distributed by the University of Oxford on behalf of the BNC Consortium. All rights in the texts cited
are reserved.

Acknowledgments: We are thankful to Kathleen Beke, the creator of the web site Learn English
Today, for kindly letting us use their data.

Conflicts of Interest: The authors declare no conflict of interest.

Mach. Learn. Knowl. Extr. 2021, 3 282

Code Availability: The demo of the system is available at https://datainnovation.cardiff.ac.uk/
idiometry (accessed on 1 January 2021). The code is shared at https://github.com/ispasic/idiometry
(accessed on 1 January 2021) under GPL v3 license. The annotated dataset used to evaluate the
system is also provided with the code.

References
1. Buerki, A. (How) is formulaic language universal? Insights from Korean, German and English. In Formulaic Language and New

Data: Theoretical and Methodological Implications, Formulaic Language; Piirainen, E., Filatkina, N., Stumpf, S., Pfeiffer, C., Eds.; De
Gruyter: Berlin, Germany, 2020; Volume 2, pp. 103–134.

2. Wray, A.; Grace, G.W. The consequences of talking to strangers: Evolutionary corollaries of socio-cultural influences on linguistic
form. Lingua 2007, 117, 543–578. [CrossRef]

3. Wray, A. Formulaic Language and the Lexicon; Cambridge University Press: Cambridge, UK, 2002.
4. Hanks, P. Lexical Analysis: Norms and Exploitations; MIT Press: Cambridge, MA, USA, 2013.
5. BBC Radio 4. Spoilers for May 25th–28th 2020. Available online: https://www.facebook.com/notes/archers-appreciation/

spoilers-for-may-25th28th-2020/851327765348107/ (accessed on 1 January 2021).
6. Moon, R. Fixed Expressions and Idioms in English: A Corpus-Based Approach; OUP Oxford: Oxford, UK, 1998; p. 356.
7. Haagsma, H.; Nissim, M.; Bos, J. The other side of the coin: Unsupervised disambiguation of potentially idiomatic expressions by

contrasting senses. In Proceedings of the Joint Workshop on Linguistic Annotation, Multiword Expressions and Constructions,
Santa Fe, NM, USA, 25–26 August 2018; pp. 178–184.

8. Cook, P.; Fazly, A.; Stevenson, S. Pulling their weight: Exploiting syntactic forms for the automatic identification of idiomatic
expressions in context. In Proceedings of the Workshop on A Broader Perspective on Multiword Expressions, Prague, Czech
Republic, 28 June 2007; pp. 41–48.

9. Peng, J.; Feldman, A.; Street, L. Computing linear discriminants for idiomatic sentence detection. Res. Comput. Sci. 2010, 46,
17–28.

10. Feldman, A.; Peng, J. Automatic detection of idiomatic clauses. In Proceedings of the 14th International Conference on
Computational Linguistics and Intelligent Text Processing, Samos, Greece, 24–30 March 2013; pp. 435–446.

11. Liu, C.; Hwa, R. Heuristically informed unsupervised idiom usage recognition. In Proceedings of the Conference on Empirical
Methods in Natural Language Processing, Brussels, Belgium, 31 October 2018–4 November 2018; pp. 1723–1731.

12. Sporleder, C.; Li, L. Unsupervised recognition of literal and non-literal use of idiomatic expressions. In Proceedings of the 12th
Conference of the European Chapter of the Association for Computational Linguistics, Athens, Greece, 30 March–3 April 2009;
pp. 754–762.

13. Halliday, M.A.K.; Hasan, R. Cohesion in English; Longman: London, UK, 1976; p. 374.
14. Miller, G.A. WordNet: A lexical database for English. Commun. ACM 1995, 38, 39–41. [CrossRef]
15. Cilibrasi, R.L.; Vitanyi, P.M.B. The Google similarity distance. IEEE Trans. Knowl. Data Eng. 2007, 19, 370–383. [CrossRef]
16. Liu, P.; Qian, K.; Qiu, X.; Huang, X. Idiom-aware compositional distributed semantics. In Proceedings of the Conference on

Empirical Methods in Natural Language Processing, Copenhagen, Denmark, 7–11 September 2017; pp. 1204–1213.
17. Tai, K.S.; Socher, R.; Manning, C.D. Improved semantic representations from tree-structured long short-term memory networks.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint
Conference on Natural Language Processing, Beijing, China, 26–31 July 2015; pp. 1556–1566.

18. Salton, G.D.; Ross, R.J.; Kelleher, J.D. Idiom token classification using sentential distributed semantics. In Proceedings of the 54th
Annual Meeting on Association for Computational Linguistics, Berlin, Germany, 7–12 August 2016; pp. 194–204.

19. Williams, L.; Bannister, C.; Arribas-Ayllon, M.; Preece, A.; Spasić, I. The role of idioms in sentiment analysis. Expert Syst. Appl.
2015, 42, 7375–7385. [CrossRef]

20. Spasić, I.; Williams, L.; Buerki, A. Idiom-based features in sentiment analysis: Cutting the Gordian knot. IEEE Trans. Affect.
Comput. 2020, 11, 189–199. [CrossRef]

21. Flor, M.; Klebanov, B.B. Catching idiomatic expressions in EFL essays. In Proceedings of the Workshop on Figurative Language
Processing, New Orleans, LA, USA, 6 June 2018; pp. 34–44.

22. Pike, R. The text editor sam. Softw. Pract. Exp. 1987, 17, 813–845. [CrossRef]
23. Laurikari, V. NFAs with tagged transitions, their conversion to deterministic automata and application to regular expressions. In

Proceedings of the Seventh International Symposium on String Processing and Information Retrieval, La Curuna, Spain, 27–29
September 2000; pp. 181–187.

24. Cox, R. Regular Expression Matching can be Simple and Fast (but is Slow in Java, Perl, PHP, Python, Ruby,...). Available online:
https://swtch.com/~{}rsc/regexp/regexp1.html (accessed on 1 January 2021).

25. Gormley, C.; Tony, Z. Elasticsearch: The Definitive Guide; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2015.
26. Białecki, A.; Muir, R.; Ingersoll, G. Apache Lucene 4. In Proceedings of the SIGIR Workshop on Open Source Information

Retrieval, Portland, OR, USA, 16 August 2012; pp. 17–24.
27. Burnard, L. Reference Guide for the British National Corpus (XML Edition). 2007. Available online: http://www.natcorp.ox.ac.

uk/docs/URG/ (accessed on 1 January 2021).

https://datainnovation.cardiff.ac.uk/idiometry
https://datainnovation.cardiff.ac.uk/idiometry
https://github.com/ispasic/idiometry
http://doi.org/10.1016/j.lingua.2005.05.005
https://www.facebook.com/notes/archers-appreciation/spoilers-for-may-25th28th-2020/851327765348107/
https://www.facebook.com/notes/archers-appreciation/spoilers-for-may-25th28th-2020/851327765348107/
http://doi.org/10.1145/219717.219748
http://doi.org/10.1109/TKDE.2007.48
http://doi.org/10.1016/j.eswa.2015.05.039
http://doi.org/10.1109/TAFFC.2017.2777842
http://doi.org/10.1002/spe.4380171105
https://swtch.com/~{}rsc/regexp/regexp1.html
http://www.natcorp.ox.ac.uk/docs/URG/
http://www.natcorp.ox.ac.uk/docs/URG/

Mach. Learn. Knowl. Extr. 2021, 3 283

28. BNC Consortium. The British National Corpus, Version 3 (BNC XML Edition). Available online: http://www.natcorp.ox.ac.uk/
(accessed on 1 January 2021).

29. Tumblr. I Don’t Think Uma will Ever Fully Forgive Mal. Available online: https://tmblr.co/ZVqBcbYOic9sWi00 (accessed on 1
January 2021).

30. Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python—Analyzing Text with the Natural Language Toolkit; O’Reilly
Media: Newton, MA, USA, 2009; p. 504.

31. Vega-Moreno, R.E. Creativity and Convention: The Pragmatics of Everyday Figurative Speech; John Benjamins Publishing Company:
Newton, MA, USA, 2007; p. 264.

32. Langlotz, A. Idiomatic Creativity: A Cognitive-Linguistic Model of Idiom-Representation and Idiom-Variation in English; John Benjamins:
Amsterdam, The Netherlands, 2006; p. 326.

33. Dutton, K. Exploring the Boundaries of Formulaic Sequences: A Corpus-Based Study of Lexical Substitution and Insertion in Contemporary
British English; VDM Verlag: Saarbrücken, Germany, 2009; p. 272.

34. Riehemann, S.Z. A Constructional Approach to Idioms and Word Formation; Stanford University: Stanford, CA, USA, 2001.
35. Porter, M.F. An algorithm for suffix stripping. Program 1980, 14, 130–137. [CrossRef]
36. Beke, K. Learn English Today. Available online: https://www.learn-english-today.com/ (accessed on 1 January 2021).
37. Robertson, S.; Zaragoza, H. The probabilistic relevance framework: BM25 and beyond. Found. Trends Inf. Retr. 2009, 3, 333–389.

[CrossRef]
38. Clarke, S.J.; Willett, P. Estimating the recall performance of Web search engines. Aslib Proc. 1997, 49, 184–189. [CrossRef]
39. Cohen, J. A coefficient of agreement for nominal scales. Educ. Psychol. Meas. 1960, 20, 37–46. [CrossRef]
40. Fleiss, J.L.; Cohen, J.; Everitt, B.S. Large sample standard errors of kappa and weighted kappa. Psychol. Bull. 1969, 72, 323–327.

[CrossRef]
41. Altman, D.G. Practical Statistics for Medical Research; Chapman and Hall/CRC: Boca Raton, FL, USA, 1990; p. 624.
42. Richards, J.C.; Rogers, T.S. Approaches and Methods in Language Teaching; Cambridge University Press: Cambridge, UK, 2006.
43. Li, Y.; Yosinski, J.; Clune, J.; Lipson, H.; Hopcroft, J. Convergent learning: Do different neural networks learn the same

representations? In Proceedings of the 1st NIPS International Workshop on Feature Extraction: Modern Questions and Challenges,
Montréal, QC, Canada, 11–12 December 2015; pp. 196–212.

44. Price, L.; Thelwall, M. The clustering power of low frequency words in academic Webs. J. Assoc. Inf. Sci. Technol. 2005, 56, 883–888.
[CrossRef]

45. Schönhofen, P.; Benczúr, A.A. Exploiting extremely rare features in text categorization. In Proceedings of the 17th European
Conference on Machine Learning, Berlin, Germany, 18–22 September 2006; pp. 759–766.

46. Fadaee, M.; Bisazza, A.; Monz, C. Examining the tip of the iceberg: A data set for idiom translation. In Proceedings of the Eleventh
International Conference on Language Resources and Evaluation (LREC 2018), Miyazaki, Japan, 7–12 May 2018; pp. 925–929.

http://www.natcorp.ox.ac.uk/
https://tmblr.co/ZVqBcbYOic9sWi00
http://doi.org/10.1108/eb046814
https://www.learn-english-today.com/
http://doi.org/10.1561/1500000019
http://doi.org/10.1108/eb051463
http://doi.org/10.1177/001316446002000104
http://doi.org/10.1037/h0028106
http://doi.org/10.1002/asi.20177

	Introduction
	Related Work
	Methods
	Technology
	Elasticsearch
	Indexing
	Querying

	Implementation
	Data
	Indexing
	Querying
	Search Results

	Results
	Baseline
	Measures
	Testbed
	Results

	Conclusions
	References

