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Abstract. Many statistical applications require establishing central limit theorems for sums/integrals

ST (h) =
∫

t∈IT
h(Xt)dt or for quadratic forms QT (h) =

∫
t,s∈IT

b̂(t − s)h(Xt, Xs)dsdt, where Xt is a

stationary process. A particularly important case is that of Appell polynomials h(Xt) = Pm(Xt),
h(Xt, Xs) = Pm,n(Xt, Xs), since the “Appell expansion rank” determines typically the type of central
limit theorem satisfied by the functionals ST (h), QT (h). We review and extend here to multidimensional
indices, along lines conjectured in [F. Avram and M.S. Taqqu, Lect. Notes Statist. 187 (2006) 259–
286], a functional analysis approach to this problem proposed by [Avram and Brown, Proc. Amer.
Math. Soc. 107 (1989) 687–695] based on the method of cumulants and on integrability assumptions
in the spectral domain; several applications are presented as well.
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1. Introduction

Motivation. Following the work of Szegö, Schur, Wiener, Kolmogorov, and others, the theory of stationary
one-dimensional discrete time series, obtained by choosing I = Z, became a very well developed topic, tightly in-
terwoven with several branches of mathematics. It brought forth jewels like for example the Wiener-Kolmogorov
formula identifying the variance of the prediction error with respect to the past with the integral of the log of the
spectral density. However, transposing these jewels to the multidimensional and continuous parameter case has
not always been straightforward. Indeed, modifying the nature of the index set may involve subtle challenges,
as may be seen for example from the extension of the Wiener-Kolmogorov formula provided by Krein for the
continuous time case I = R.
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The convenience of time series comes largely from the FARIMA family of parametric models, defined as
solutions of equations

φ(B)(1 −B)dXt = θ(B)ξt,

where B is the operator of backward translation in time, φ(B), θ(B) are polynomials (with the usual assumption
that these are the polynomials without common zeros and without zeros in the unit circle in the complex
plane), d is a real number and ξt is white noise [22,40,45,46,73]. Using the FARIMA family of models, one
attempts, via an extension of the Box-Jenkins methodology, to estimate the parameter d and the coefficients
of the polynomials φ(B), θ(B) such that the residuals ξt display white noise behavior (and hence may be safely
discarded for prediction purposes).

An extension of this approach to continuous time and to multi-parameter processes (spatial statistics) has
been long time missing. Only recently, the FICARMA [5,25] and the Riesz-Bessel families of processes (which
essentially replace the operator B by the Laplacian – see Appendix E), have allowed a similar approach for
processes with continuous and multidimensional indices (at least in the rotationally invariant case).

These examples illustrate the point that extension of time series results to continuous and multidimensional
indices, preferably in a unified framework, is an important challenge.

Such a framework can be provided by separable locally compact abelian groups [60]. Let I denote such a
group, let S denote the dual locally compact abelian group of its characters, let

(∫
t∈I

ν(dt),
∫

l∈S
μ(ds)

)
denote

respectively the integrals with respect to the normalized Haar measures, let f̂ denote the Fourier transform,
for f ∈ L1(dν) ∩ L2(dμ) (which ensures the validity of the Plancherel formula), and assume that the Haar
measures are associated, i.e. that the Parseval identity holds for every continuous complex-valued function of
compact support on I. Under this setup, it is possible to provide a unified treatment of discrete and continuous
(multi-dimensional) index sets I.

Model. Consider a real, centered, stationary in the strict sense random field Xt, t ∈ I, where I denotes a
separable locally compact abelian group endowed with its Haar measure, and

∫
t∈I

ν(dt) is integral with respect
to the Haar measure. We will focus on the cases when I is R

d endowed with Lebesgue measure, or Z
d with the

counting measure, to be referred to respectively as the continuous and discrete setups. Note that in these cases,
a vector structure is available as well. For the continuous case, we assume that Xt, t ∈ R

d, is a measurable
random field.

Note. Discrete sums might be written below either as integrals (in the statement of theorems), or in traditional
sum notation (in the expository part).

We will assume throughout the existence of all order cumulants ck(t1, t2, ..., tk) for our stationary random field
Xt, and also that they are representable as Fourier transforms of “cumulant spectral densities” fk(λ1, ..., λk−1) ∈
L1, i.e.:

ck(t1, t2, ..., tk) = ck(t1 − tk, .., tk−1 − tk, 0)

=
∫

λ1,...,λk−1∈S

ei
∑k−1

j=1 λj(tj−tk)fk(λ1, ..., λk−1)μ(dλ1)...μ(dλk−1).

Throughout, S will denote the “spectral” space of discrete/continuous processes and μ(dλ) will denote the
associated Haar measure, i.e. Lebesgue measure normalized to unity on [−π, π]d and Lebesgue measure on R

d,
respectively. The functions fk(λ1, ..., λk−1) are symmetric and complex valued in general, for the real field Xt.

The random field Xt is observed on a sequence IT of increasing dilations of a bounded convex domain I1, i.e.

IT = T I1, T → ∞

(for I = Z
d, by convex domains we mean those which can be represented as an intersection D

⋂
Z

d, where D is
a convex domain in R

d).
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Correspondingly, we will consider linear and bilinear forms ST and QT (see (1.2), (1.3) below), where sum-
mation/integration is performed over domains IT .

In the discrete-time case, the cases IT = [1, T ]d, T ∈ Z+ (in keeping with tradition) or IT = [−T/2, T/2]d,
T ∈ 2Z+ will be assumed. In the continuous case, we focus on rectangles IT = {t ∈ R

d : −T/2 ≤ ti ≤ T/2, i =
1, ..., d}.

Later on we will see that the choice of a specific set I1 leads (when working in the spectral domain) to using
an associated Dirichlet type kernel

ΔT (λ) =
∫

t∈IT

eitλν(dt) (1.1)

and a multivariate Fejér kernel (1.4). Explicit well-known formulas are available when I1 is a rectangle or a
ball, both for the discrete and continuous case (see Appendix D). We will work in the paper with rectangular
domains, however, extensions are possible for balls by adapting the corresponding estimates for the norms of
the kernels ΔT (λ) (see Appendix D).

Central limit theorems for quadratic forms. Asymptotic statistical theory, and in particular, estimation
of the parameters of FARIMA and Riesz-Bessel processes, requires often establishing central limit theorems
concerning

sums/integrals ST (h) =
∫

t∈IT

h(Xt)ν(dt) (1.2)

and bilinear forms QT (h) =
∫

t,s∈IT

b̂(t− s)h(Xt, Xs)ν(ds)ν(dt) (1.3)

of functions of stationary processes Xt with discrete or continuous time and their generalizations to multidi-
mensional setup (or continuous multidimensional parameter).

Note. The kernel of the quadratic form will be denoted by b̂(t), so that we may reserve b(λ) for its Fourier
transform.

A particularly important case is that of Appell polynomials1 h(Xt) = Pm(Xt), h(Xt, Xs) = Pm,n(Xt, Xs)
associated to the distribution of Xt, which are the building block of the so called “chaos/Fock expansions”.
Two main cases were distinguished, depending on whether the limit is Gaussian or not (the latter case being
referred to as a non-central limit theorem).

This line of research, initiated by Dobrushin and Major [27] and Taqqu [70] in the Gaussian case (see also
Ivanov and Leonenko [49] for Gaussian continuous case), by Giraitis and Surgailis [35,36], and by Avram and
Taqqu [14] in the linear case, continues to be of interest today [33,38,39,56,58,64] to name only a few papers.

Our interest here is in obtaining extensions to continuous and multi-parameter processes of the central limit
theorem for sums and quadratic form, obtained in the case of discrete time series by Breuer and Major [24],
by the method of moments. Note, that applying this method, that is, showing that all the moments converge
to those of Gaussian distribution (a distribution which is uniquely identifiable by its moments), we will get
convergence in distribution, but convergence of all moments give us even stronger statement. In the results
below, where we state convergence in distribution to Gaussian law, in fact, convergence of all moments holds
(see, Thm. 1.3, Cor. 3.3, and Thms. 3.5, 4.1, 4.3, 4.7, E.2).

Analytic tools. A key unifying role in our story is played by the multivariate Fejér kernels

Φ∗
T (u1, ..., un−1) =

1
(2π)(n−1)dμ(I1)T d

ΔT

(
−

n−1∑
e=1

ue

)
n−1∏
e=1

ΔT (ue), (1.4)

and by their well-known kernel property, i.e. the fact that when T → ∞, the multivariate Fejér kernels Φ∗
T

converge weakly to a δ measure. More precisely

1 For the definition of Appell polynomials see, for instance, Avram and Taqqu [14], Giraitis and Surgailis [36], or Appendix A.
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Lemma 1.1. The kernel property. For any bounded function C(u1, ..., un−1), which is continuous at a point
(α1, ..., αn−1), the multivariate Fejér kernel with I1 a rectangle satisfies:

lim
T→∞

∫
Sn−1

C(u1 − α1, ..., un−1 − αn−1)Φ∗
T (u1, ..., un−1)

n−1∏
i=1

μ(dui) = C(α1, ..., αn−1).

For the proof of this result, we refer when I = Z, for example, to [12], which is easily extendable to I = Z
d 2.

For the continuous (as well as discrete) multidimensional case, with I1 a rectangle, we refer to Bentkus [20,21]
(see also [9], Prop. 1), where it is shown that the kernels Φ∗

T (u1, ..., un−1) constitute an approximate identity
for convolution (as defined, e.g., in Rudin [62]).

Developing limit theory for multivariate Fejér kernels was the key point in several papers [11–13,15] which
generalized the Breuer and Major central limit theorem [24]. The papers above introduced a new mathematical
object to be called “Fejér graph integrals” – see (3.4) in Section 3, which captures the common structure of
several cumulant computations. Replacing the cyclic graph encountered in the specific case of quadratic forms
in Gaussian random variables by an arbitrary graph, these papers reduce the central limit theorem for a large
class of problems involving Appell polynomials in Gaussian or moving average summands to an application of
three analytical tools:

(1) Identifying the graphs involved by applying the well-known diagram formula for computing moments/
cumulants of Wick products – see Appendix B.

(2) Applying a generalization of a Grenander-Szegö theorem on the trace of products of Toeplitz matrices
to the Fejér graph integrals – see Section 3, to obtain the asymptotic variance. This theorem is valid
under some general integrability assumptions furnished by the Hölder-Young-Brascamp-Lieb inequality.

(3) The resolution of certain combinatorial graph optimization problems, specific to each application, which
clarify the geometric structure of the polytope of valid integrability exponents on the functions involved
(spectral density, kernel of the quadratic form, etc.) and allows therefore to evaluate the integrals
representing higher order (≥3) cumulants.

Here, we observe that a similar approach works in the multidimensional and continuous indices case. More
precisely, the only changes are (a) the normalizations, which change from T to T d; and (b) the condition for the
validity of the Hölder-Young-Brascamp-Lieb inequality (see Appendix C) in the continuous case. Therefore, the
previously obtained central limit theorems continue to hold in the multidimensional case, including continuous
indices, after simply adjusting the normalizations and integrability conditions.

The two cases most easy to study are that of Gaussian and that of linear processes, defined in the discrete
case by

Xt =
∑
u∈Zd

â(t− u)ξ(u),
∑
u∈Zd

â2(u) < ∞, t ∈ Z
d,

where ξ(u), u ∈ Z
d, are independent random variables (see (5.1) and (5.3) in the applications Section 5 for the

continuous case and further details). This assumption has the advantage of implying a product representation
of the cumulant spectral densities – see for example Theorem 2.1 of [5]. Namely, for the cumulants we get the
explicit formula

ck(t1, ..., tk) = dk

∫
s∈I

k∏
j=1

â(tj − s) ν(ds),

2The convergence of measures there was derived as a consequence of the Hölder-Young-Brascamp-Lieb inequality (see Thm. C.1),
using estimates of the form

||ΔT ||
s−1

v
≤ k(sv)T d(1−sv)

with optimally chosen sv, v = 1, . . . , V .
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where dk is the k’th cumulant of ξ(0). This yields in the spectral domain

fk(λ1, ..., λk−1) = dk a

(
−

k−1∑
i=1

λi

)
k−1∏
i=1

a(λi) = dk

k∏
i=1

a(λi)δ

⎛⎝ k∑
j=1

λj

⎞⎠ . (1.5)

For k = 2, the spectral density f2(λ) = d2a(λ)a(−λ) will be denoted simply by f(λ).
We introduce now a class of spaces needed below:

Definition 1.2. Let

Lp(dμ) =

{
Lp(dμ) if p <∞,

C0 if p = ∞
(1.6)

that is, the only difference in comparison with the usual definition of Lp(dμ) spaces is that for p = ∞ it will
be supposed that L∞ is the space C0 of all continuous functions which “vanish at infinity” (that is, functions
f such that for every ε > 0 there exists a compact set K such that |f(x)| < ε for all x not in K). With this
definition our spaces Lp, 1 ≤ p ≤ ∞, will be the closure of the continuous functions of bounded support under
the Lp norm, with L∞ norm being, as usual, uniform supremum norm (see, e.g., Rudin [61], Chap. 3). Note,
that in the discrete case our Lp spaces just coincide with Lp for all 1 ≤ p ≤ ∞.

Note. In the continuous case (when “spectral” space S is R
d) we will need these Lp spaces for the parts b)

and c) of Theorem 4.1: in such a way we can easily adopt the approach used in the torus case (S = [−π, π]d).
Recall that in the torus case [11] the approach was used, when the statements were established first for complex
exponentials, and extended then to the Banach space of functions which may be approximated arbitrarily close
in Lp(dμ) sense by linear combinations of complex exponentials, endowed with the Lp norm). Analogously, here
we will show that the statements hold for continuous functions with bounded support and, therefore, can be
extended to spaces Lp.

Considering bilinear forms QT we will work under the following integrability assumption on the spectral
density f and the Fourier transform of the kernel of the quadratic form b:

Assumption A. For some 1 ≤ pi ≤ ∞, i = 1, 2,

f ∈ Lp1 (dμ), b ∈ Lp2(dμ).

Note. 1) While a general stationary model is parameterized by a sequence of functions fk(λ1, ..., λk−1), k ∈ N,
the linear model (1.5) is considerably simpler, being parameterized by a single function a(λ).

2) We note that all our results may be formulated directly in terms of characteristics of the field Xt, which
suggests that the moving average assumption may be unnecessary; indeed, more general results which make
direct assumptions that functions fk(λ1, ..., λk−1) belong to some special Lp-type spaces, have been obtained in
certain cases – see, for example, [13].

Contents. We present a warmup example involving quadratic Gaussian forms in Section 2. The results here are
closely connected to those of the paper by Ginovian and Sahakyan (2007). We define the concept of Fejér graph
and matroid integrals in Section 3. We will consider here only the first case (i.e. graphic matroids associated
to the incidence matrix of a graph).

Our main result is Theorem 3.1, a limit theorem (of Grenander-Szegö type) for Fejér graph integrals in
the discrete and continuous multiparameter cases. Its importance is amply demonstrated by several new limit
theorems for the Gaussian and linear model, presented in Sections 2, 3, 5. In particular, see Theorem 4.5,
analogous to a result by Ivanov and Leonenko [49], however stated here under spectral domain conditions,
and Theorem 1.3, generalizing to random fields results by Ginovian [33] and Ginovian and Sahakyan [34]. For
the class of linear random fields with continuous parameter based on the stochastic integration with respect
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to independently scattered random measures with infinite divisible distributions, we present a central limit
theorem for quadratic forms (Thm. 4.1). Also, we present a CLT for linear and quadratic forms of the linear
Riesz-Bessel motion (Thm. E.2). We consider possible applications of these results to the minimum contrast
estimation of unknown parameter of linear stochastic processes and state the results on asymptotic normality
of the estimates under weaker conditions than in [8,52].

To make the paper self-contained we supply in Appendices the material we refer to in the main part of
the paper. Various estimates concerning kernels are collected in Appendix B.4, and a particular case of the
Hölder-Young-Brascamp-Lieb inequality required here is presented in Appendix C.

2. An example: the central limit theorem for Gaussian bilinear forms

We present first our method in the simplest case of symmetric bilinear forms

QT = Q
(1,1)
T = QT (P1,1) =

∫
t,s∈IT

[XtXs − EXtXs] b̂(t− s)ν(ds)ν(dt), (2.1)

in stationary zero-mean Gaussian fields Xt, with covariances r(t− s), t, s ∈ I and spectral density f(λ) (note
that S(1)

T = ST (P1) =
∫

t∈IT
Xtν(dt) is “too simple” for our purpose, since it is already Gaussian and its kth

order cumulants χk(S(1)
T ) = 0, ∀k 	= 2). The presentation follows [11] for the discrete case and [33] for the

continuous case, except that we clarify the point that the previous results hold in any dimension d.
To obtain the central limit theorem for T−d/2Q

(1,1)
T by the method of cumulants it is enough to show that:

lim
T→∞

χ2

(
Q

(1,1)
T

T d/2

)
is finite, and lim

T→∞
χk

(
Q

(1,1)
T

T d/2

)
= 0, ∀k ≥ 3.

A direct computation based on multilinearity (see, e.g. [41,47], or apply Appendix B.2) yields the cumulants of
Q

(1,1)
T :

χk = χ(QT , ..., QT ) = 2k−1(k − 1)! Tr[(TT (b)TT (f))k]. (2.2)

Here, Tr denotes the trace and

TT (b) = (b̂(t−s), t, s ∈ IT ), TT (f) = (r(t − s), t, s ∈ IT )

denote Toeplitz matrices (with multidimensional indices) of dimension T d×T d in the discrete case and truncated
Toeplitz-type operators in the continuous case3.

While the cumulants in (2.2) may be expressed using powers of two Toeplitz matrices, it turns out more
convenient in fact to consider more general products with all terms potentially different (taking advantage thus
of multilinearity).

Suppose therefore given a set fe(λ) : S → R, e = 1, . . . , n of “symbols” associated to the set of Toeplitz
operators, where (S, dμ) denotes either R

d with Lebesgue measure, or the torus [−π, π]d with normalized
Lebesgue measure. Assume the symbols satisfy integrability conditions

fe ∈ Lpe(S, dμ), 1 ≤ pe ≤ ∞. (2.3)

3Recall that in continuous case, the truncated Toeplitz-type operator generated by a function f ∈ L1 (f̂ ∈ L∞) is defined for
u ∈ L2 as follows

TT (f)u(t) =

∫
IT

f̂(t − s)u(s)ν(ds).
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Let f̂e(t), t ∈ I, be the Fourier transform of fe(λ):

f̂e(t) =
∫

S

eitλfe(λ)μ(dλ), t ∈ I,

where I = Z
d in the torus case and I = R

d in the case S = R
d, respectively. In this last case, we would also

need to assume that fe ∈ L1(Rd, dμ), for the Fourier transform to be well defined. Consider the extension of
our cumulants:

J̃T = Tr

[
n∏

i=1

TT (fi)

]
=
∫

t1,...,tn∈IT

f̂1(t2 − t1)f̂2(t3 − t2)...f̂n(t1 − tn)
n∏

v=1

ν(dtv). (2.4)

Replacing the sequences f̂e(t) by their Fourier representations f̂e(t) =
∫

S
fe(λ)eitλμ(dλ) in (2.4) yields the

following alternative spectral integral representation for traces of products of Toeplitz matrices or truncated
Toeplitz operators4:

JT =
∫

λ1,...,λn∈S

f1(λ1)f2(λ2)...fn(λn)
n∏

e=1

ΔT (λe+1 − λe)
n∏

e=1

μ(dλe) (2.5)

=
∫

u1,...,un−1∈S

(∫
λ∈S

f1(λ)f2(λ+ u1)...fn

(
λ+

n−1∑
1

ue

)
μ(dλ)

)
ΦT (u1, ..., un−1)

n−1∏
e=1

μ(due)

=
∫

u1,...,un−1∈S

C(u1, ..., un)ΦT (u1, ..., un−1)
n−1∏
e=1

μ(due),

where the index n+ 1 is defined to be equal 1, where

ΦT = ΔT

(
−

n−1∑
1

ue

)
n−1∏
e=1

ΔT (ue),

is, after normalization with the factor 1
(2π)(n−1)dT d

, the “multivariate Fejér kernel” (1.4), and where the inner
integral

C(u) = C(f1,...,fn)(u1, ..., un−1) :=
∫

λ∈S

f1(λ)f2(λ+ u1)...fn(λ+
n−1∑

1

ue)μ(dλ), (2.6)

will be called a graph convolution.
The first expression in (2.5) is our first example of a “Fejér graph integral” to be introduced in general

in the next section. These are integrals involving products of Dirichlet kernels ΔT and functions, applied to
linear combinations, which are related to the vertex-edge incidence structure of a certain directed graph (in the
occurrence, the cyclic graph on the vertices {1, ..., n}).

The second expression in the RHS of (2.5) reveals the asymptotic behavior of Fejér graph integrals, since, as
noted, when T → ∞, the multivariate Fejér kernel Φ∗

T convergences weakly to a δ measure.
Note now that the inner integral/graph convolution C(f1,...,fn)(u1, ..., un−1) is well defined precisely under

the classical Hölder conditions, i.e. when the integrability indices in (2.3) satisfy:{∑
e p

−1
e ≤ 1 when S = Z

d,∑
e p

−1
e = 1 when S = R

d,
(2.7)

4 Of course, the two expressions J̃T , JT are equal if fe ∈ L1, e = 1, ..., n. Note however that the “spectral representation” (2.5)

is well defined even without the last condition.
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(and it is only under these conditions that the second expression in (2.5) is valid). It turns out that even more
is true under these conditions:

Lemma 2.1. The “graph convolution” function C(u1, ..., un−1) defined in (2.6) is bounded and continuous
if (2.3) holds with integrability indices satisfying the condition (2.7).

Proof. Note that the function C : Sn−1 → R is a composition

C(u1, ..., un−1) = C(T1(u1,...,un−1),...,Tn(u1,...,un−1))

of the functional

C(f1,...,fn) :
n∏

e=1

Lpe → R.

defined by5

C(f1,...,fn) :=
∫

λ∈S

n∏
e=1

fe(λ)μ(dλ)

with the continuous functionals
Te(u1, ..., un−1) : Sn−1 → Lpe

defined by Te(u1, ..., un−1) = fe(· +
∑e−1

v=1 uv), e = 1, ..., n.
Indeed, the continuity of the functionals Te is clear when fe is a function which is continuous and of bounded

support, and this continues to be true for functions fe ∈ Lpe , by our definition of these spaces. In conclusion,
under the Hölder assumptions, the continuity of the functional C(u1, ..., un−1) will follow automatically from
that of C(f1,...,fn).

Finally, under the “Hölder conditions” (2.7), the continuity as well as boundedness of the function C(f1,...,fE)

follow from its multilinearity and from the Hölder inequality:

|C(f1,...,fn)| ≤
n∏

e=1

‖fe‖pe . �

Finally, since the function C(u1, ..., un−1) is bounded and continuous at the point (0, ..., 0), we may apply the
kernel Lemma 1.1 to the last expression in (2.5), to conclude:

T−dJT → (2π)(n−1)d
C(0, ..., 0) = (2π)(n−1)d

∫
λ∈S

f1(λ)f2(λ)...fn(λ)μ(dλ).

We summarize this in the next result:

Theorem 2.2. Let fe ∈ Lpe , e = 1, ..., n, where 1 ≤ pe ≤ ∞, e = 1, ..., n, and let JT , J̃T be defined by (2.5),
(2.4) respectively. Then, it follows that:

(1) If the integrability indices satisfy the Hölder conditions{∑
e p

−1
e ≤ 1 when S = Z

d∑
e p

−1
e = 1 when S = R

d,

then

lim
T→∞

T−dJT = (2π)(n−1)d
∫

λ∈S

n∏
e=1

fe(λ)μ(dλ). (2.8)

5Note again this is well defined precisely under the classical Hölder conditions.
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(2) If α :=
∑

e p
−1
e > 1, then it holds that:

JT = o(Tαd).

(3) If in the continuous case it holds in addition that if fe ∈ Lpe ∩ L1, e = 1, ..., n, then Fourier coefficients
f̂e(k) may be defined, and the previous results hold also for J̃T = Tr[

∏n
e=1 TT (fe)].

Proof. Following the proof of [12], we see that part 1 of Theorem 2.2 follows from Lemmas 1.1, 2.1 above, for
part 2 we refer to the proof of Theorem 3.1(c) bellow, where more general case is considered. �
Notes. 1) In the case (2), the exact exponent of magnitude is unknown, except for the upper bound αd.

2) The result above is a refinement of a limit theorem of Grenander and Szegö [41] concerning traces of
products of truncated Toeplitz operators. Under the current strengthened integrability conditions, it was
obtained when d = 1 in the discrete case in [11]; as we show below, the result holds in fact in any dimension
d, in discrete and continuous case (after modifying the necessary integrability condition in accordance to the
Hölder-Young-Brascamp-Lieb inequality).

We may apply now the previous result to establish the CLT for Q(1,1)
T . The kth cumulant is of the form (2.4)

with spectral representation (2.5), where n = 2k, f2i−1 = f, f2i = b, i = 1, ..., k. In particular, part 1 of the
theorem above yields the convergence of the normalized variance:

lim
T→∞

χ2,T (Q(1,1)
T )

T d
= lim

T→∞
2Tr[(TT (b)TT (f))2]

T d

= 2(2π)3dCf,f,b,b(0, ..., 0) = 2(2π)3d

∫
λ∈S

f2(λ)b2(λ)μ(dλ)

provided the conditions of part (1) are satisfied for n = 4, f1 = f2 = f, f3 = f4 = b, i.e. that

2
(

1
pf

+
1
pb

)
≤ 1 in the discrete case, (2.9)

2
(

1
pf

+
1
pb

)
= 1 in the continuous case.

We note now that the conditions (2.9) imply also the fact that the cumulants of order k ≥ 3 converge to 0

lim
T→∞

χk,T

T dk/2
= 0.

Indeed, let z = zf + zb. If kz ≤ 1, convergence to 0 is implied by part 1 and by the normalization; if
1 < αk := kz ≤ k/2, it is implied by part 2 (finally, kz > k/2 is impossible by (2.9)).

We arrive thus at the following asymptotic normality result, generalizing Avram [10], Ginovian [33] and
Ginovian and Sahakyan [34].

Theorem 2.3. Consider the quadratic functional Q(1,1)
T defined by (2.1), where Xt, t ∈ I, is a zero-mean

Gaussian random field with spectral density f(λ) ∈ Lpf
. Assume the generating function b of the quadratic

functional is such that b(λ) ∈ Lpb
, and in the discrete and continuous cases it holds respectively that:

1
pf

+
1
pb

≤ 1
2
,

1
pf

+
1
pb

=
1
2
·

In the continuous case, assume also that b(λ) ∈ L2, f(λ) ∈ L1.
Then, the central limit theorem holds:

T−d/2QT → N(0, σ2), T → ∞,
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where
σ2 := 2(2π)3d

∫
S

b2(λ)f2(λ)μ(dλ). (2.10)

Let us summarize the key steps leading to this CLT, with a view to generalizing:
(1) The cumulants of interest have an explicit formula (2.2) which gives rise in the spectral domain to the

“Fejér graph integral” (2.5): the integral of a product involving spectral densities and Fejér kernels.
(2) Consider the Fejér graph integral corresponding to the variance. Once integrability conditions are

assumed ensuring that its inner part (involving the spectral densities) called “graph convolution”, is
well-defined, the graph convolution is automatically bounded and continuous, and therefore a limit
theorem for the variance holds as well (Thm. 2.2).

(3) Finally, we need to check whether the previous integrability conditions ensuring that the limiting vari-
ance is well-defined are also sufficient to imply that the normalized higher order cumulants converge to
0. We will see later that when checking this, the specific structure of the graphs involved may efficiently
be exploited (which is the main advantage of this approach).

3. Fejér graph/matroid integrals and graph/matroid convolutions

In this section, we introduce a unifying graph-theoretical framework for problems similar to those of the
previous section.

Definition 3.1. Let G = (V , E) denote a directed graph with V vertices, E edges, a basis of C independent
cycles6 and co(G) components. The incidence matrix M = {Mv,e}v∈V,e∈E of the graph is the V × E matrix
with entries

Mv,e =

⎧⎪⎨⎪⎩
1 if the vertex v is the end point of the edge e,
−1 if the vertex v is the start point of the edge e,
0 if v /∈ e.

A circuit matrix M∗ is a C × E matrix whose rows are obtained by assigning arbitrary orientations to a basis
of circuits (cycles) c = 1, ..., C of the graph, and by writing each edge as a sum of ± the circuits it is included
in, with the ± sign indicating a coincidence or opposition to the orientation of the cycle .

Besides the graph framework, we will hint also to possible matroid generalizations (not surprising, since,
quoting Tutte [71]: “it is probably true that any theorem about graphs expressible in terms of edges and
circuits exemplifies a more general result about vector matroids”).

However, while we use occasionally matroid terminology in the exposition, we will only state results for the
graph case, since the general case is not yet fully understood.

Let us recall briefly that matroids are a concept which formalizes the properties of the “rank function”
r(A) obtained by considering the rank of an arbitrary set of columns A in a given arbitrary matrix M . More
precisely, a matroid is a pair E , r : 2E → N of a set E and a “rank like function” r(A) defined on the subsets
of E . Matroids may also be defined in equivalent ways via their independent sets, via their bases (maximal
independent sets), via their circuits (minimal dependent sets), via their spanning sets (sets containing a basis),
or via their flats (sets which may not be augmented without increasing the rank). For precise definitions and
for excellent expositions on graphs and matroids, see [57? ] or [72].

The most familiar matroids, called vectorial matroids, are defined by the set E of columns of a matrix and
by the rank function r(A) which gives the rank of any set of columns A (matrices with the same rank function
yield the same matroid).

Some useful facts from matroid theory are the fact that to each matroid M one may associate a dual matroid,
with rank function

r∗(A) = |A| − r(M) + r(E −A).

6A basis of cycles is a set of cycles, none of which may be obtained via addition modulo 2 of other cycles, after ignoring the
orientation.
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For vectorial matroids, the dual matroid is also vectorial, associated to any matrix whose rows span the space
orthogonal to the rows of M . Furthermore, in the case of graphic matroids, the dual matroid is associated to
the circuit matrix.

Tutte’s “conjecture” holds true in our case: a matroid Szegö-type limit theorem was already given in [11].
However, for simplicity, we will restrict ourselves here to the particular case of graphic matroids associated to
the incidence matrix M of an oriented graph. In this case, the proofs are more intuitive, due to the fact that the
algebraic dependence structures translate into graph-theoretic concepts, like circuits corresponding to cycles,
etc.

Let (S, dμ) denote either R
d with Lebesgue measure, or the torus [−π, π]d with normalized Lebesgue measure,

and let fe(λ) : S → R, e = 1, . . . , E denote a set of functions (“base functions”) associated to the columns of
M , which satisfy integrability conditions

fe ∈ Lpe(S, dμ), for some pe : 1 ≤ pe ≤ ∞. (3.1)

Let f̂e(t), t ∈ I, be the Fourier transform of fe(λ):

f̂e(t) =
∫

S

eitλfe(λ)μ(dλ), t ∈ I,

where I = Z
d in the torus case and I = R

d in the case S = R
d, respectively. In this last case, we would also

need to assume that fe ∈ L1(Rd, dμ), for the Fourier transform to be well defined. However, all our analytic
results concern the spectral domain, and hence this assumption will not be necessary.

Our object of interest, in its “time domain representation”, is:

J̃T = J̃T (M, fe, e = 1, ..., E) =
∫

s1,...,sV ∈IT

f̂1(t1)f̂2(t2)...f̂E(tE)
V∏

v=1

ν(dsv), (3.2)

where t = (t1, ..., tE) = (s1, ..., sV )M = sM , where ν(dsv) stands for Lebesgue measure and counting measure,
respectively.

Note. To keep the transparent analogy with the case d = 1, we make the following convention concerning
notations. Here and in what follows we will treat a product of a vector, whose components are d-dimensional,
and a matrix (or another vector) with scalar components in a specific sense: we will still perform multiplication
component-wise according to the usual rule, and as a result we obtain a vector, whose components are d-
dimensional again (or, correspondingly, just a d-dimensional vector). Thus, writing above t = (t1, ..., tE) =
(s1, ..., sV )M = sM we mean that each d-dimensional tk, k = 1, ..., E, is representable as a linear combination
of d-dimensional vectors sl, l = 1, ..., V , with coefficients Mk,l: tk =

∑V
l=1 slMl,k (that is, as multiplication of

the row (s1, ..., sv) by kth column of M).
A Fejér graph integral is the expression obtained by replacing the sequences f̂e(t) in (3.2) by their Fourier

representations f̂e(t) =
∫

S fe(λ)eitλμ(dλ): under the assumption fe ∈ L1(S, dμ), an easy computation (see [12],
Lem. 1) shows that (3.2) may be written also as the integral (3.4) below. We introduce however a more general
concept.

Definition 3.2. Let (S, dμ) denote either R
d with Lebesgue measure, or the torus [−π, π]d with normalized

Lebesgue measure. Let M be a matrix of dimensions V × E, with arbitrary coefficients in the first case and
with integer coefficients in the second case. Let fe(λ) : S → R, e = 1, . . . , E denote a set of functions associated
to the columns of M . Suppose these functions satisfy integrability conditions

fe ∈ Lpe(S, dμ), 1 ≤ pe ≤ ∞. (3.3)
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A Fejér matroid integral (FMI) is defined by the following “spectral representation”:

JT = JT (M, fe, e = 1, ..., E) (3.4)

=
∫

λ1,...,λE∈S

f1(λ1)f2(λ2)...fE(λE)
V∏

v=1

ΔT (uv)
E∏

e=1

μ(dλe),

=
∫

λ1,...,λE∈S

∫
s1,...,sV ∈IT

f1(λ1)f2(λ2)...fE(λE)e〈sM,λ〉
V∏

v=1

ν(dsv)
E∏

e=1

μ(dλe), (3.5)

where ΔT (u) is the kernel defined by (1.1), where (u1, ..., uV )′ = M(λ1, ..., λE)′ (in the torus case the linear
combinations being computed modulo [−π, π]d), and where s = (s,..., sV ).

A Fejér matroid integral will be called a Fejér graph integral for graphic matroids associated to the incidence
matrix M of a directed graph G. In this case, the functions and kernels in (3.4) are associated respectively to
the edges and vertices of the graph.

The cycle graph/Toeplitz example. Consider the particular case of a cyclic graph with n edges. In this
case, the matrix M with n columns and rows, is:

M =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−1 0 0 . ... 0 1
1 −1 0 0 ... 0 0

0 1 −1
. . . ...

...
...

...
. . . . . .

0 0
. . . −1 0

0 0 . . . 1 −1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
and its Fejér graph integral is given by:

JT =
∫

λ1,...,λn∈S

f1(λ1)f2(λ2)...fn(λn)
n∏

v=1

ΔT (λv − λv+1)
n∏

e=1

μ(dλe),

the integral, which we have already encountered in Section 1.

Note. For analytical results concerning only Fejér matroid integrals as defined by (3.4), the condition fe ∈
L1(S, dμ) is unnecessary.

4. Limit theory for Fejér graph integrals

The main points of the limit theory for Fejér graph integrals, to be presented now, are that:
(1) Upper bounds for Fejér graph integrals may always be obtained. They involve a specific function αM (z),

related to the graph structure and to the integrability indices pe, which is defined in (4.6) below (as the
value of an optimization problem). Its computation being a key point, we expound on it in Section 4.1.

(2) Under certain Hölder-Young-Brascamp-Lieb conditions necessary to ensure the existence of the limiting
integral, the following convergence holds as T → ∞:

T−d co(M) JT (M, f1, ..., fE) →
∫

SC

f1(λ1)f2(λ2)...fE(λE)
C∏

c=1

μ(dyc), (4.1)

where (λ1, ...λE) = (y1, ..., yC)M∗ (with every λe reduced modulo [−π, π]d in the torus case), M∗ being
any matrix whose rows span the space orthogonal to the rows of M , and C being the rank of M∗.
Informally, the kernels disappear in the limit, giving rise to the “dual matroid” M∗.
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(3) When the Hölder-Young-Brascamp-Lieb conditions do not hold, then, cf. part c) of the theorem below,
the normalizing by the factor T d αM (z) appearing in part a) will lead to a zero limit.

Theorem 4.1. Suppose that fe ∈ Lpe(dμ) for part a), and fe ∈ Lpe (dμ) for parts b),c) and set z =
(p−1

1 , ..., p−1
E ).

Let JT = JT (M, f1, ..., fE) denote a Fejér matroid integral and let r(A), r∗(A) denote respectively the ranks
of a set of columns in M and in the dual matroid M∗.

Suppose that for every row l of the matrix M , one has r(M) = r(Ml), where Ml is the matrix with the row l
removed. Then:

a)

JT (M, f1, ..., fE) ≤ cMT d αM (z)
E∏

e=1

‖fe‖pe (4.2)

where cM is some constant independent of z (see Rem. 3) below) and{
in the discrete case αM (z) is given by (4.6)

in the continuous case αM (z) is given by (4.10).

b) If αM (z) = V − r(M) = co(M) or, equivalently, if

in the discrete case
∑
j∈A

zj ≤ r∗(A), ∀A (4.3)

in the continuous case, in addition
∑
e∈Gk

ze = Ck, k = 1, ..., co(M)

where Gk, Ck denote respectively the k’th component of the graph and its number of cycles, then

lim
T→∞

JT (M)
T d co(M)

= J (M∗, f1, ..., fE), (4.4)

where

J (M∗, f1, ..., fE) =
∫

SC

f1(λ1)f2(λ2)...fE(λE)
C∏

c=1

μ(dyc) (4.5)

where (λ1, ...λE) = (y1, ..., yC)M∗ (with every λe reduced modulo [−π, π]d in the discrete case), where
C denotes the rank of the dual matroid M∗.

c) If a strict inequality αM (z) > co(M) holds, then the inequality (4.2) of Theorem 4.1 a) may be strength-
ened to:

JT (M) = o(T d αM (z)).

Remarks.

1) Note that for connected graphs the exponent in part b) reduces to d, and that for cycle graphs the
power counting conditions

∑
j∈A zj ≤ r∗(A) reduce to

∑n
j=1 zj ≤ 1, as in Theorem 2.2.

2) The exponent bounds αM (z) can never be tight when αM (z) > co(M). Even the first-order asymptotics
of the Fejér graph integrals is unknown in this case.

3) The constant cM is the product of the constant appearing in the Hölder-Young inequality (C.1) with
the constant CV

V
V −1

defined in the kernel estimate (D.2) in Appendix D, due to the monotonicity of Cp

in p (see, Appendix D) and to the inequality sv ≤ 1 − 1/V, by Lemma 2 of [11].
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4) The result follows trivially from the case co(M) = 1. This formulation is however worthwhile as an
intermediate step towards the general nonunimodular matroid case (where an extra constant will appear
in the limit (4.4) of part b)).

5) Note that the results of this theorem: the expression of αM (z), the limit integral J (M∗) = J (M∗, f1, ...,
fE), and the convergence conditions of the integrals depend on M,M∗ only via the two equivalent rank
functions r(A), r∗(A), i.e. only via the matroid dependence structure between the columns, and not on
the chosen representing matrices.

4.1. The upper bound for the order of magnitude of Fejér matroid integrals

We turn now to the “upper bound exponent” αM (z) for the order of magnitude of Fejér matroid integrals
(useful when it is not precisely d). In the discrete case [11], the exponent αM (z) of this upper bound turns out
to be d times the solution of a graph optimization problem:

αM (z) = co(M) + max
A⊂1,...,E

⎡⎣∑
j∈A

zj − r∗(A)

⎤⎦ (4.6)

or equivalently,

αM (z) = max
A⊂1,...,E

f(A), f(A) :=

⎡⎣co(M −A) −
∑
j∈A

(1 − zj)

⎤⎦ (4.7)

where co(M −A) represents in the graph case the number of remaining components, after the edges in A have
been removed, and, for a general Fejér matroid integral, we define

co(M −A) := V − r(M −A). (4.8)

We will call the problem (4.7) a graph breaking problem: find a set of edges whose removal maximizes the
difference between the number of remaining components and

∑
j∈A(1 − zj), or, equivalently, the difference

between
∑

j∈A zj and the dual rank r∗(A).

Remark 4.2. In examples involving connected graphs, the solution of the optimal breaking problem is often
obtained at the “total breaking” (TB) set A = M with f(M) = V +

∑
e(ze−1) or at the “no breaking” (NB) set

A = ∅ with f(∅) = co(M) (geometrically, these are the most important facets of the power counting polytope
(PCP)). It is useful to introduce therefore the lower bound:

αc
M (z) = max

A∈{M,∅}

⎡⎣co(M − A) −
∑
j∈A

(1 − zj)

⎤⎦ = max

{
co(M),

∑
e

(ze − 1) + V

}

= max

{
co(M), co(M) +

∑
e

ze − C

}
= 1 +

(∑
e

ze − C

)
+

, (4.9)

where the equality before the last holds by Euler’s relation C = E−V +co(M) and where C denotes the number
of cycles in a graph, and, more generally, the rank of the dual matroid M∗.

Note that in the case of a cycle graph of size m, this reduces to

αc
m(z) = max

{
1,

m∑
e=1

ze

}
= 1 +

(
m∑

e=1

ze − 1

)
+

as stated in Theorem 2.2.
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In the case of graphs with several components, this gives rise to the additive extension

αc
M (z) = co(M) +

co(M)∑
j=1

⎛⎝∑
e∈Gj

ze − Cj

⎞⎠
+

, (4.10)

where Gj , Cj denote the set of columns and the number of cycles belonging to the j’th component.

4.2. Computation of αM(z) and applications

As observed in Corollary 2 of [11], and as in the particular case of Theorem 2.2, Theorem 4.1 may be used
for establishing asymptotic normality, whenever the cumulants may be written as sums of Fejér graph integrals.

Corollary 4.3. Let XT , T → ∞, be a sequence of centered random variables with cumulants of all orders χk,T ,
for which

χk,T =
∑

G∈Gk

FT (G),

where FT (G) are d-dimensional Fejér graph integrals, and the summation runs over some families of connected
graphs Gk. Then, if the “exponent inequalities”

αG ≤ k/2, ∀G ∈ Gk

are satisfied for all Fejér graph integrals intervening in the expansion of the cumulant of order k, then the central
limit theorem

XT

T d/2
→ N(0, σ2), where σ2 =

∑
G∈Gk

J (G),

holds.

Proof. Since the CLT normalization here is T d/2, it is enough to notice that for all the Fejér graph integrals
appearing in the expansion of the kth cumulant it holds that

FT (G) = O(T dαG(z)) = O(T kd/2),

and
FT (G) = o(T dk/2),

since if the second “O” is not an “o”, then αG > 1 and the first “O” must be an “o”, by Theorem 4.1 c). �

Remark 4.4. Note since the functions αG(z) are nondecreasing in z, it is enough to establish the exponent
inequalities on the nondominated part of the boundary of the PCP polytope.

In conclusion, establishing normality is reduced to computing the functions αG(z) i.e., to solving a sequence
of graph breaking problems.

We present now one more result for Gaussian fields, which is related in the discrete case to the classical
result of Breuer and Major [24], and in the continuous case to the result of Ivanov and Leonenko [49]. We note
that these authors worked under time-domain assumptions, however, reasonings in the spectral domain with
the methodology of [11] and the present paper immediately lead to the following result.

Theorem 4.5. Let Xt be a d-parameter zero-mean Gaussian random field with spectral density f(λ) ∈ Lp. Let
ST =

∫
t∈IT

Pm(Xt)ν(dt), where Pm(Xt) are univariate Appell (orthonormal Hermite) polynomials and m ≥ 2.
Assume that:

z := p−1 ≤ 1 − 1
m

(4.11)

with equality holding in the continuous case.
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Then,

σ2 := (2π)df (∗,m)(0)

= (2π)d

∫
y1,...,ym−1∈S

f(y1)f(y2 − y1)...f(ym−1 − ym−2)f(−ym−1)
m−1∏
i=1

μ(dyi) <∞. (4.12)

If, moreover, σ 	= 0, then the central limit theorem holds

T−d/2ST → N(0, σ2), T → ∞.

Remark 4.6. The discrete and continuous case may be unified here by asking for integrability at z = 1 − 1
m ,

since in the discrete case the extension to smaller values of z is immediate. In fact, it is always enough in the
discrete case to prove the result for the undominated boundary of the PCP polytope, which reduces here to one
point.

Proof. For an integer m ≥ 1, let rm(·) denote the mth power of r(·) and let

f (∗,m)(λ) =
∫

λ1,...,λm−1∈S

f(λ1)f(λ2)...f(λm−1)f(λ− λ1 − ...− λm−1)
m−1∏
i=1

μ(dλi)

=
∫

y1,...,ym−1∈S

f(y1)f(y2 − y1)...f(ym−1 − ym−2)f(λ− ym−1)
l−1∏
i=1

μ(dyi)

be the m-tuple convolution of f with itself, which is well defined if f(λ) ∈ Lp, z = 1
p ≤ 1− 1

m , (with equality in
the continuous case), by the Hölder-Young inequality, since (see Appendix C). Indeed, the dependence matrix
M with m columns has rank r(M) = m − 1, and hence the necessary condition z1 + . . . + zm ≤ m − 1, with
z1 = . . . = zm = z requires zm ≤ m− 1, or z ≤ m−1

m .
The idea of the proof (appearing already in [27] and [49], p. 54), consists in showing that a) for the

orthonormal Hermite polynomials H(m)(x) = P (m)(x), it holds that

T−dvar
∫

IT

H(m)(Xt)ν(dt) = T−d

∫
IT

∫
IT

rm(t− s)ν(dt)ν(ds) (4.13)

= T−d

∫
IT

∫
IT

∫
S

eiλ(t−s)f (∗,m)(λ) dλ ν(dt)ν(ds)

=
∫

S

T−dΔT (λ)ΔT (−λ)f (∗,m)(λ) μ(dλ) → (2π)df (∗,m)(0), T → ∞,

where the last limit follows from the kernel property, and that b) under the same hypothesis z ≤ m−1
m , similar

computations imply that the normalized higher order cumulants converge to 0.
We will review now these computations in more detail. By the multilinearity of cumulants (see Appendix B.2)

χk(T−d/2ST ) = T−kd/2cumk

(∫
IT

H(m)(Xt1)ν(dt1), . . . ,
∫

IT

H(m)(Xtk
)ν(dtk)

)
(4.14)

= T−kd/2

∫
IT

. . .

∫
IT

cumk

(
H(m)(Xt1), . . . , H

(m)(Xtk
)
)
ν(dt1)...ν(dtk).

By the diagram formula (see Appendix B)

cumk

(
H(m)(Xt1), . . . , H

(m)(Xtk
)
)

=
∑
P∈P

r(tu1 − tv1) . . . r(tumk/2 − tvmk/2),
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where P = (tu1 , tv1), . . . , (tumk/2 , tvmk/2) and P is the set of partitions in pairs of the table

t1 . . . t1 (m times)
...

. . .
...

tk . . . tk (m times)

such that each pair connects two distinct rows, and no subset of pairs has as its union a subset of rows strictly
included in {1, . . . , k}.

We note now that the set of partitions P intervening in the k’th cumulant of sums ST (4.14) (of the m’th
Appell polynomial of a Gaussian sequence) can be put in one-to-one correspondence with the set of connected
unoriented graphs with no loops Γ(m, k) with k vertices of degree m (one for each index ts, s = 1, . . . , k), by
representing each partition pair (tu, tv) as an edge between the vertices associated to tu, tv.

In conclusion, the cumulants (4.14) may be represented as sums of Fejér graph integrals:

χk(T−d/2ST ) = T−kd/2
∑

Γ∈Γ(m,k)

JT (Γ).

To conclude that the central limit theorem ST /T
d/2 → N(0, σ2), T → ∞, holds, it remains only to show that

the associated “base functions” (see (3.3)) intervening in the Fejér integrals satisfy integrability conditions which
imply the exponent inequalities αΓ(z) ≤ k

2 , for all Γ ∈ Γ(m, k), for z = zc := 1 − 1/m (cf. Rem. 4.4).
Note first that at zc, the lower bound implied by the total breaking of the k’th cumulant graph is k/2:

αk(zc) = V −
∑

e

(1 − zc) = k − km

2
(1 − zc) =

k

2
·

Let now
p(A) = co(E −A) −

∑
e∈A

(1 − ze)

denote the “profit” of a set of edges A.
We will show now that the unique “maximal with respect to inclusion optimal breaking” (MOB) A is the

total breaking.
Indeed, suppose that after applying a MOB, one vertex is still connected to another. Cutting now all edges

around this vertex, we obtain a new breaking, whose profit has increased by 1, at a cost of at most m/m,
contradicting thus that we had started with a MOB.

In conclusion, the cumulant exponents αk(zc) = k
2 , ensuring convergence of the variance for k = 2 and

negligibility of the cumulants for k ≥ 3 (since then αk > 1). �

Remark 4.7. A similar analysis holds in the case of cumulants of quadratic forms in Appell polynomials
Pm,n(Xt, Xs). Note that while the number of graphs intervening increases considerably, the number of extremal
points of the PCP is just 4 – see Figure 2.

The graphs intervening are – see Figure 1 – all the graphs belonging to the set Γ(m,n, k) of all connected
bipartite graphs with no loops whose vertex set consists of k pairs of vertices. The “left” vertex of each pair
arises out of the first m terms : Xt1 , ..., Xtm : in the diagram formula, and the “right” vertex of each pair arises
out of the last n terms : Xs1 , ..., Xsn : the edge set consists of:

(1) k “kernel edges” pairing each left vertex with a right vertex. The kernel edges will contribute below
terms involving the function b(λ).

(2) A set of “correlation edges”, always connecting vertices in different rows, and contributing below terms
involving the function f(λ)). They are arranged such that each left vertex connects to m and each right
vertex connects to n such edges, yielding a total of k(m+ n)/2 correlation edges.
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correlation edges 

with cost  1− z

kernel edges

with cost   1− z

m "1−z1" edges
n "1−z

1

1" edges

2

2 ’

kernel edges

   pairs of ’1−  z k

Figure 1. The graphs appearing in the expansion of cumulants of quadratic forms. Here
k = 4, m = 5, n = 4. The figure displays only some of the k(m+ n)/2 = 18 correlation edges.

Dm,n

(0,1/2)

z2

(1−1/m,1/2)

(1−1/n,m/(2n))

A(1−1/(m+n), 0)
z1

m z1

B

D
C

+ 2 z  = m2

Figure 2. The domain of the central limit theorem, discrete case.

Thus, the k “left vertices” are of degree m + 1, and the other k vertices are of degree n + 1. (The “costs
1 − z1, 1 − z2” mentioned in Fig. 1 refer to (4.6)).

The PCP domain in the discrete case (which is precisely the convergence domain of the integrals defining the
limiting variance), is indicated below, when m < n, in terms of the integrability indices z = (z1, z2) of f and b
(i.e. f ∈ Lp1 , b ∈ Lp2).

When m < n, there are only three segments on the undominated boundary of the PCP, connecting respec-
tively the extremal points (A,B), (B,C) and (C,D)(with coordinates A(1− 1/(m+n), 0), B(1− 1/n,m/(2n)),
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C(1 − 1/m, 1/2), D(0, 1/2)), and correspond respectively to the breakings indicated below:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

total breaking 2k − k(m+n)
2 (1 − z1) − k(1 − z2) ≤ k

2

⇔ 3
2 ≤ (m+n)

2 (1 − z1) + (1 − z2)
breaking all z2 and the left z1 edges maxk

k+1
k −m(1 − z1) − (1 − z2) ≤ 1

2

⇔ 1 ≤ m(1 − z1) + (1 − z2)
breaking all z2 edges maxk

2
k − (1 − z2) =≤ 1

2

⇔ 1
2 ≤ z2.

In the continuous case, the domain is just the lower segment between the points A and B in Figure 2.

4.3. Proof of Theorem 4.1

We turn now to the proof of Theorem 4.1, following the proofs of Theorem 2 and Corollary 1 of [11]. The
first step is to assume w.l.o.g. (by multiplicativity of the R.H.S) that co(M) = 1.

For part a), let us apply the Hölder-Young-Brascamp-Lieb inequality with optimally chosen integrability
parameters s−1

v :

|JT (M, f1, ..., fE)| ≤ K

V∏
v=1

‖ΔT ‖s−1
v

E∏
e=1

‖fe‖z−1
e

≤ cMT d
∑V

v=1(1−s−1
v )

E∏
e=1

‖fe‖z−1
e

(4.15)

under the constraint that (s1, ..., sV , z1, ..., zE) satisfy the power counting conditions, and where we used the
kernel estimate

‖ΔT (λ)‖s−1 ≤ CsT
d(1−s), ∀s ∈ [0, 1)

(see Appendix D), the monotonicity of Cs in s and the fact that the optimal sv may be all chosen so that
sv ≤ 1 − 1/V, by Lemma 2 of [11].

The optimization problem for sv in the discrete case:

min
s1,...,sV

d
V∑

v=1

(1 − s−1
v ), where (s1, ..., sV , z1, ..., zE) ∈ PCP,

has the same constraints as Lemma 2 in [11], except that the objective is multiplied by d. Hence, in the torus
case, the exponent is simply d times the one dimensional exponent of Theorem 1, [11].

In the continuous case S = R
d, we note first that when

∑
e ze ≤ C the result holds by applying the Hölder-

Young inequality with sv = 1−1/V , while in the other case
∑

e ze ≥ C, the extra constraint
∑

v sv = E−
∑

e ze

forces the one-dimensional exponent to be αM (z) = co(M) +
∑

e ze − C.
The proof of part b) of Theorem 4.1 is essentially identical with that given in [12] (see also [11] for the matroid

case), up to the modification of the integrability conditions. For completeness, we sketch now this proof, for a
connected graph.

Note first that in a connected graph there are only V − 1 independent rows of the incidence matrix M

(or independent variables uj), since the sum of all the rows is 0 (equivalently, uV = −
∑V −1

v=1 uv). Thus,
r(M) = V − 1, co(M) = 1, and the order of magnitude appearing in the normalization is just T d.

The main ideas behind the proof of Theorem 4.1 b) are a change of variables and applying the continuity of
graph convolutions:

(1) Change of variables. Fix a basis y1, ..., yC in the complement of the space generated by the uv’s,
v = 1, . . . , V , switch to the variables u1, ..., uV −1, y1, ..., yC and integrate in (3.4) first over the variables
yc’s, c = 1, . . . , C. This is more convenient in the graphic case, since, after fixing an arbitrary spanning
tree T in the graph, the complementary set of edges T c furnishes a maximal set of independent cycles
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(with cardinality C). Assume w.l.o.g. that in the list (λ1, ..., λE), the edges in T c are listed first,
namely (λe, e ∈ T c) = (λ1, ..., λC). We make the change of variables y1 = λ1, ..., yC = λC , and
(u1, ..., uV −1)′ = M̃(λ1, ..., λE)′, where M̃ denotes the first V − 1 rows of the incidence matrix M .
Thus,

(y1, ..., yC , u1, ..., uV −1)′ =
(
IC 0
M̃C M̃V

)
(λ1, ..., λE)′,

where the first rows are given by an identity matrix IC completed by zeroes and where M̃C , M̃V denote
the first C columns/ next V − 1 − C columns of the matrix M̃ , and where the unimodularity of M
ensures that det(M̃V ) = 1 and therefore the Jacobian of the transformation is 1.

Inverting the transformation above yields:

(λ1, ..., λE) = (y1, ..., yC , u1, ..., uV −1)

(
IC −M̃ ′

C M̃
−1
V

0 M̃−1
V

)
= (y1, ..., yC , u1, ..., uV −1)

(
M∗

N

)
, (4.16)

that is, it turns out that the first rows of the inverse matrix are precisely the dual matroid M∗.

Definition 4.8. The function

hM∗,N (u1, ..., ur(M)) =
∫

y1,...,yC∈S

f1(λ1)f2(λ2)...fE(λE)
C∏

c=1

dμ(yc), (4.17)

where λe are represented as linear combinations of y1, ..., yC , u1, ..., uV −1 via the linear transformation
(4.16) will be called a matroid/graph convolution depending on whether the matroid is graphic or not.

Note that the function hM∗,N is well defined as soon as we suppose integrability conditions (4.3) to
hold due to the Hölder-Brascamp-Lieb-Barthe inequality (see Appendix C and Lem. 4.9 below).

Thus, the change to the variables y1, ..., yC , u1, ..., uV −1 and integration over y1, ..., yC transforms the
Fejér graph integral into the integral of the product of a “graph convolution” and a Fejér kernel:

JT (M) =
∫

u1,...,uV −1∈S

hM∗,N (u1, ..., uV −1)
V∏

v=1

ΔT (uv)
V −1∏
v=1

dμ(uv)

= (2π)(n−1)d

∫
u1,...,uV −1∈S

hM∗,N(u1, ..., uV −1)Φ∗
T (u1, ..., uV −1)

V −1∏
v=1

dμ(uv).

(2) The continuity of the graph convolutions h(u1, ..., ur(M)) in the variables (u1, ..., ur(M)) continues to
hold here, with a proof essentially identical with that of Lemma 2.1 from the cycle case.

Lemma 4.9. The continuity of graph convolutions. The “graph convolution” function defined in
(4.17) is bounded and continuous if (3.3) holds with integrability indices satisfying the power counting
condition (4.3).

The proof of the above lemma is essentially the same as in the cycle case (see Lem. 2.1).

In conclusion, the convergence of the Fejér kernels to Lebesgue measure on the set u1 = ... = uV −1 = 0
(Lem. 1.1) implies, just as in the cycle case, the convergence of the scaled Fejér graph integral

JT (M, fe, e = 1..., E) to J (M∗, fe, e = 1..., E),

establishing Part b) of the theorem.
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For the proof of part c), we approximate our functions by continuous functions of bounded support, for
which conditions (3.3) of part b) hold. For these approximants, it follows from the convergence JT (M)

T d co(M) →
kM J (M∗, f1, ..., fE) that JT (M) = o(T d co(M)+a)), ∀a > 0. The result follows then for the functions from Lp

spaces, by the definition of these spaces. Note that in the discrete case, the same argument was applied based
on trigonometric polynomials – see [11], proof of Corollary 1.

Remark 4.10. In the spatial statistics papers [7,8], the continuity of the graph convolutions hM∗,N(u1, ..., uV −1)
was assumed to hold, and indeed checking whether this assumption may be relaxed was one of the outstanding
difficulties for the spatial extension.

Remark 4.11. It is immediate to extend this approach to the case of graphs with several components. One
would choose in each component independent cycle and vertex variables y1, ..., yr(M∗) and u1, ..., ur(M), note
the block structure of the matrices, with each block corresponding to a graph component, use the fact that
for graphs with several components, the rank of the graphic matroid is r(M) = V − co(G) and finally Euler’s
relation E − V = C − co(G), which ensures that

E =
(
V − co(G)

)
+ C = r(M) + r(M∗).

For further extension to the matroid setup, one would need to add to part b) the Jacobian kM of the linear
transformation, as sketched in Remark 4.15 below.

4.4. An open problem: refined asymptotics for Fejér matroid integrals

With the purpose of suggesting how to refine the asymptotics in the future, let us consider now the simplest
discrete case, with d = 1, I1 = [0, 1), co(M) = 1 and with fe being complex exponentials.

In this case, we have also the bonus of an immediate proof of the limit relation (4.4) in Lemma 4.12 below,
which implies immediately Theorem 4.1(b), by the multilinearity of J (M∗, f1, ..., fE) and T−1J(M, f1, ..., fE).

Lemma 4.12. For any matrix with r(M) = V − 1, any set of integers b = (be, e = 1, ..., E), and any functions
fe(λe) = e−iλebe , e = 1, ..., E, Theorem 4.1(b) holds, i.e.:

lim
T→∞

∫
SE e−i〈b,λ〉∏V

v=1 ΔT (uv)
∏E

e=1 μ(dλe)
T

=
∫

SC

e−i〈λ,b〉
C∏

c=1

μ(dyc),

where (λ1, ...λE) = (y1, ..., yC)M∗.

Remark 4.13. This lemma is related to the kernel Lemma 1.1; indeed, since converge of the Fourier coefficients
implies weak convergence, its statement is equivalent to the weak converge as T → ∞ of the measures on (S)E

given by the multiple Fejér kernels

T−1ΔT

(
−

V −1∑
v=1

λv

)
V −1∏
v=1

(ΔT (λv)ν(dλν))

to uniform measure on the subspace λ = yM∗ .
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Proof. It turns out that for complex exponential integrands, the stated integral appearing in the RHS is an
indicator: ∫

SC

e−i〈λ,b〉
C∏

c=1

μ(dyc) =
∫

SC

e−i〈y,M∗b〉
C∏

c=1

μ(dyc) = 1{M∗b=0} = 1{b∈R(M)},

where R(M) denotes the subspace generated by the rows of M .
Now the numerator of the LHS in (4.4), using the symmetric definition (3.5) for FMI’s, is:

∫
SE

e−i〈b,λ〉
∫

IV
T

ei〈sM,λ〉
V∏

v=1

ν(dsv)
E∏

e=1

μ(dλe) =
∫

IV
T

V∏
v=1

ν(dsv)

(∫
SE

ei〈sM−b,λ〉
E∏

e=1

μ(dλe)

)

=
∫

IV
T

V∏
v=1

ν(dsv)1{sM−b=0}

= ν(s : sM = b, s ∈ IT ) = #
(
s : sM = b, s ∈ IT , s ∈ N

V
)
.

Example 4.14. a) If b = 0, and M is the incidence matrix of a graph, an elementary computation yields the
function of interest #

(
s : sM = b, s ∈ IT , s ∈ N

V
)

= # (s : s = x(1, ..., 1), x ∈ [0, T ), x ∈ N) = T .
b) If M is the incidence matrix of a cycle graph, let sk =

∑k
i=1 bi, k = 1, ..., E − 1, sE = 0. An elementary

computation yields the function of interest #
(
s : sM = b, s ∈ IT , s ∈ N

V
)

= #(s : s = x(1, ..., 1), x ∈ N, x +
max[sk] < T, x+ min[sk] ≥ 0) = T − max[sk] + min[sk].

Returning to our lemma, we see that as T → ∞, the effect of b is negligible:

#
(
s : sM = b, s ∈ TI1, s ∈ N

V
)
=#

(
x : xM = b/T, x ∈ I1, x ∈ T−1

N
V
)
∼#

(
x : xM =0, x ∈ I1, x ∈ T−1

N
V
)
.

Thus, we may approximate our function by its particular value obtained when all the components of b are zero:

E(T ) = #
(
x : xM = 0, x ∈ I1, x ∈ T−1

N
V
)

= #
(
s : sM = 0, s ∈ TI1, s ∈ N

V
)
. �

Remark 4.15. Note that a lot is known about the function

φM (b, T ) := #
(
s : sM = b, s ∈ TI1, s ∈ N

V
)

for general integral matrices M and after including the translation by b. This is an “Ehrhart polynomial”
in T [65,67], which suggests the possibility of developing correction terms to Theorem 4.1 b).

The first modification is the appearance of an extra constant kM in the RHS of the limit result (4.4) of
Theorem 4.1, as indicated in [11]. Indeed, letting K,K denote the affine lattice defined by the set of all integral
points of the subspace ker(M) := {σ : sM = 0} (of dimension co(M)) and its fundamental parallelepiped, it
follows that:

#
(
s : sM = b, s ∈ TI1, s ∈ N

V
){= 0 if b /∈ R(M),

∼T co(M)μ̃(I1 ∩ ker(M)) if b ∈ R(M),

where μ̃ denotes “normalized Lebesgue measure” on the affine lattice K (normalized so that the fundamental
parallelepiped of this lattice has unit being the volume). Thus, the limit result will involve the extra constant

kM = μ̃(I1 ∩ ker(M)) =
μ(I1 ∩ ker(M))

μ(K)
· (4.18)

Note that μ(K) is the determinant of an arbitrary basis of K, which explains why it does not depend on the
change of variables of the previous section.
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5. Applications

5.1. Central limit theorems for bilinear forms of moving averages

We assume below that our stationary random field Xt, t ∈ I, admits a representation as a linear/moving
averages random field.

For discrete parameter it means that

Xt =
∑
u∈Zd

â(t− u)ξ(u),
∑
u∈Zd

â2(u) < ∞, t ∈ Z
d, (5.1)

where ξ(u), u ∈ Z
d, are independent random variables indexed by Z

d with Eξ(0) = 0 and such that E |ξ(0)|k ≤
ck <∞, k = 1, 2, . . . . In this case

ck(t1, ..., tk) = cumk{Xt1 , ..., Xtk
} = dk

∑
s∈Zd

k∏
j=1

â(tj − s), (5.2)

where dk is the k’th cumulant of ξ(0).
For continuous parameter we assume that

Xt =
∫

u∈Rd

â(t− u)ξ(du), t ∈ R
d, (5.3)

with a square-integrable kernel â(t), t ∈ I, with respect to a independently scattered random measure with finite
second moment, that is a homogeneous random measure ξ(A), A ⊂ R

d, with finite second moments and inde-
pendent values over disjoint sets (see, for instance, Rajput and Rosinski [59] or Kwapien and Woyczynski [51]).
That is, for each Borel A, ξ(A) is an infinitely divisible random variable whose cumulant function can be
written as

κ(z) = logEeizξ(A) = izm0(A) − 1
2
z2m1(A) +

∫
R

(
eizx − 1 − izτ(x)

)
Q(A, dx), (5.4)

where m0 is a signed measure, m1 is a positive measure, Q(A, dx) (for fixed A) is a measure on R
1 without

atoms at 0, such that
∫

R
min

{
1, |x|2

}
Q(A, dx) < ∞, and where τ(x) = x if |x| ≤ 1, and τ(x) = x/ |x| , if

|x| > 1.
For example, if I = R, then ξ(A) is a set indexed Lévy process with finite second moments and stationary

intensity proportional to the Lebesgue measure.
We also assume that Q factorizes as Q(A, dx) = M(A)W (dx), where M(A) is a σ-finite measure, and W is

some Lévy measure on R
1, such that for some ε > 0 and λ > 0∫

(−ε,ε)

eλuW (du) <∞.

This implies that ∫
R

|u|k W (du) <∞, k ≥ 2,

and that the cumulant function κ(z) is analytical in a neighborhood of 0.
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Necessary and sufficient conditions of existence of the integral (as limit in probability of integrals of simple
functions) ∫

A

f(s)dξ(s)

can be found in [59]. Note that, for d = 1, an integrals become integrals with respect to Lévy process L(t), t ∈ R
1,

and κ (z) = logEeizL(1).
For Lebesgue measures m0, m1 and Q, one can prove (by using product integration) that

logE exp {i(z1Xt1 + . . .+ zkXtk
} =

∫
Rd

κ

⎛⎝ k∑
j=1

zj â(tj − s)

⎞⎠ ds (5.5)

if â ∈ L1 ∩ L2. From (5.5) if can be seen that random field (5.3) is homogeneous in a strict sense.
We assume that m1 = 0, that is, Eξ(I1) = 0, then the last formula holds for â ∈ L2.
We obtain that

ck(t1, ..., tk) = cumk{Xt1 , ..., Xtk
} = dk

∫
Rd

k∏
j=1

â(tj − s)ds, (5.6)

where dk is the kth cumulant of ξ(I1) with I1 being the unit rectangle, that is dk = κk(0)/ik, k ≥ 2.
We assume from now on that Eξ(I1) = 0, and use the same notation for both discrete and continuous cases

Xt =
∫

u∈I

â(t− u)ξ(du), t ∈ I, (5.7)

where I = Z
d in the discrete case and I = R

d in the continuous case.
For various conditions which ensure that (5.7) is well-defined, see, for example, Anh et al. [5], p. 733, and

references therein.

Note. By choosing an appropriate “Green function” â(t), this very general class of processes includes the
solutions of many interesting differential equations with random noise ξ(du), like, for example, generalized
Ornstein-Uhlenbeck processes in R [5].

We will assume here that all moments for our stationary field Xt exist.
The advantage of the linear representation assumption (5.7) and (5.4), (5.5) is the explicit representation of

cumulants – see for example Theorem 2.1 of [5]:

ck(t1, ..., tk) = dk

∫
s∈I

k∏
j=1

â(tj − s) ν(ds), (5.8)

where dk is the kth cumulant of ξ(I1) with I1 being the unit rectangle in the continuous case and dk is the kth
cumulant of ξ(0) in the discrete case, that is, in particular,

d2 = Eξ(I1)2, d4 = E(ξ(I1)4) − 2[E(ξ(I1)2)]2 (5.9)

or

d2 = Eξ(0)2, d4 = E(ξ(0)4) − 2[E(ξ(0)2)]2 (5.10)

for the continuous and discrete cases respectively.
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In the spectral domain, we get

fk(λ1, ..., λk−1) = dk a

(
−

k−1∑
i=1

λi

)
k−1∏
i=1

a(λi) = dk

k∏
i=1

a(λi)δ

⎛⎝ k∑
j=1

λj

⎞⎠ . (5.11)

For k = 2, we will denote the spectral density by f(λ) = f2(λ) = d2a(λ)a(−λ).
We can formulate now a central limit theorems for quadratic functional of a linear field, which is a general-

ization of the results of Giraitis and Surgailis [36] and Giraitis and Taqqu [38] (see also references therein) for
discrete time processes. This next theorem follows from the results of Section 3 (the proof is almost identical to
the proof of Theorem 4 of Avram [11], the expression for the variance can be obtained by direct computations).

Theorem 5.1. Let Xt =
∫

u∈ I â(t− u)ξ(du), t ∈ I, be a linear random field with a square integrable kernel

â(t), t ∈ I, and a random measure ξ(du) admitting all moments and let QT = Q
(1,1)
T is defined by (2.1).

We assume that f(λ) = (2π)d |a(λ)|2 ∈ Lp and b(λ) ∈ Lq , and in the continuous case we assume also that
b(λ) ∈ Lq ∩ L1.

Assume that:
1
p

+
1
q
≤ 1

2
with equality holding in continuous case.

Then, the central limit theorem holds:

T−d/2QT → N(0, σ2), T → ∞,

where

σ2 := 2(2π)dd2
2

∫
S

b2(λ)f2(λ)dλ + (2π)dd4

(∫
S

b(λ)f(λ)dλ
)2

and d2 and d4 are defined by (5.9)–(5.10).

5.2. Minimum contrast estimation based on the Whittle contrast function

In what follows we will consider continuous time linear processes (d = 1) whose spectral densities of all orders
exist and admit the representation of the form (5.11).

The class of Whittle estimators is the most popular in applications (see Whittle [74], [75], Giraitis and
Surgailis [37], Fox and Taqqu [28], Heyde and Gay [43,44], Heyde [42], Gao et al. [31], Leonenko and Sakhno
[52], see also the references therein).

We begin with the following assumption.

A.I.. Let Xt, t ∈ IT =
[
−T

2 ,
T
2

]
, be an observation of a real-valued measurable stationary linear process Xt,

t ∈ R
1, with zero mean and the family of spectral densities (5.11). Let a (λ) = a

(
λ; θ(1)

)
, dk = dk

(
θ(2)

)
, that

is, f2(λ) = f (λ, θ) , λ ∈ R
1, θ =

(
θ(1), θ(2)

)
, θ ∈ Θ ⊂ R

m, where Θ is a compact set, and the true value of the
parameter θ0 ∈ intΘ, the interior of Θ. Suppose further that f (λ; θ1) 	≡ f (λ; θ2) for θ1 	= θ2, almost everywhere
in R

1 with respect to the Lebesgue measure.
Consider the Whittle contrast process (or objective function)

UT (θ) =
1
4π

∫
R1

(
log f (λ; θ) +

IT (λ)
f (λ; θ)

)
w (λ) dλ, (5.12)

where IT (λ) is the periodogram of the second order

IT (λ) =
1

2πT

∣∣∣∣∫
IT

Xte−itλdt

∣∣∣∣2 , λ ∈ R
1, (5.13)
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and w (λ) is a symmetric about λ = 0 function such that all considered integrals are well defined and which will
satisfy some conditions given below; in some cases we can choose w (λ) = 1

1+λ2 .
Introduce the Whittle contrast function

K (θ0; θ) =
1
4π

∫
R1

(
f (λ; θ0)
f (λ; θ)

− 1 − log
f (λ; θ0)
f (λ; θ)

)
w (λ) dλ. (5.14)

To state the result on consistency of the minimum contrast estimator based on the contrast process (5.12) we
will need the following conditions on the spectral density f (λ; θ) and the weight function w (λ) .

A.II.. f (λ; θ0)w (λ) 1
f(λ;θ) ∈ L1

(
R

1
)
∩ L2

(
R

1
)
, ∀θ ∈ Θ.

A.III.. There exists a function v (λ) , λ ∈ R
1, such that

(i) the function h (λ; θ) = v (λ) 1
f(λ;θ) is uniformly continuous in R

1 × Θ;

(ii) f (λ; θ0)
w(λ)
v(λ) ∈ L1

(
R

1
)
∩ L2

(
R

1
)
.

Theorem 5.2. Let the assumptions A.I to A.III be satisfied. Then the function K (θ0; θ) defined by (5.14) is
the contrast function for the contrast process UT (θ) defined by (5.12). The minimum contrast estimator θ̂T

defined as
θ̂T = arg min

θ∈Θ
UT (θ) (5.15)

is a consistent estimator of the parameter θ, that is, θ̂T → θ0 in P0-probability as T → ∞.

The above theorem can be obtained as a consequence of a more general result by Leonenko and Sakhno [52]
(Thm. 3), one needs just to rewrite for the case of linear processes the corresponding conditions on spectral
densities, which become of much simpler form.

Next set of assumptions (in addition to the above ones) is needed to state the result on asymptotic normality
of the estimator (5.15).

A.IV. The function 1
f(λ;θ) is twice differentiable in a neighborhood of the point θ0 and

(i) f (λ; θ0)w (λ) ∂2

∂θi∂θj

1
f(λ;θ) ∈ L1

(
R

1
)
∩ L2

(
R

1
)
, i, j = 1, ...,m, θ ∈ Θ;

(ii) f (λ; θ0) ∈ Lp

(
R

1
)
, w (λ) ∂

∂θi

1
f(λ;θ) ∈ Lq

(
R

1
)
∩ L1

(
R

1
)
, i = 1, ...,m, θ ∈ Θ,

for some p, q such that 1
p + 1

q ≤ 1
2 , with equality holding in continuous case;

(iii) T 1/2
∫

R1(EIT (λ) − f (λ; θ0))w (λ) ∂
∂θi

1
f(λ;θ) dλ→ 0 as T → ∞,

for all i = 1, ...,m, θ ∈ Θ;
(iv) the second order derivatives ∂2

∂θi∂θj

1
f(λ;θ) , i = 1, ...,m, are continuous in θ.

A.V. The matrices W1 (θ) =
(
w

(1)
ij (θ)

)
i,j=1,...,m

, W2 (θ) =
(
w

(2)
ij (θ)

)
i,j=1,...,m

, V (θ) = (vij (θ))i,j=1,...,m are

positive definite, where

w
(1)
ij (θ) =

1
4π

∫
R1
w (λ)

∂

∂θi
log f (λ; θ)

∂

∂θj
log f (λ; θ) dλ, (5.16)

w
(2)
ij (θ) =

1
4π

∫
R1
w2 (λ)

∂

∂θi
log f (λ; θ)

∂

∂θj
log f (λ; θ) dλ, (5.17)

vij (θ) =
1
8π

d4

d2
2

∫
R1
w (λ)

∂

∂θi
log f (λ; θ) dλ

∫
R1
w (λ)

∂

∂θj
log f (λ; θ) dλ. (5.18)
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Theorem 5.3. Let the assumptions A.I to A.V be satisfied. Then as T → ∞

T 1/2
(
θ̂T − θ0

)
→Nm

(
0,W−1

1 (θ0) (W2 (θ0) + V (θ0))W−1
1 (θ0)

)
,

where Nm (·, ·) denotes the m-dimensional Gaussian law.

Reasonings for the proof of Theorem 5.3 will be given in the next section.
Comparing the above theorem with a more general result stated in [52], one can see that the set of conditions

for the case of linear processes becomes of much simpler form, but the most important improvement is in
condition A.IV(ii), which was achieved due to the application of the Theorem 5.1 (see the proof). Note that
corresponding condition for the case of general processes, formulated in [52], unfortunately, is difficult to check
in general situation.

Remark 5.4. Condition A.IV(iii) will hold, e.g., if f (λ; θ) is differentiable with respect to λ and

∫
R1
f ′

λ (λ; θ0))w (λ)
∂

∂θi

1
f (λ; θ)

dλ <∞,

or under any conditions which assure

∫
R1

|f (λ+ h; θ0) − f (λ; θ0) |w (λ)
∂

∂θi

1
f (λ; θ)

dλ ≤ C|h|a,

for a > 1
2 and C being a constant.

Example. Estimation of fractional Riesz-Bessel motion (FRBM) (see Appendix E for details and definition of
FRBM in non-Gaussian case). Let Xt, t ∈ R

1, be a non-Gaussian Riesz-Bessel stationary motion, that is a
stationary linear process with the spectral density of the form

f (λ) = f (λ, θ) =
c

|λ|2α (1 + λ2)γ , λ ∈ R
1, (5.19)

where the unknown vector parameter θ = (γ, α, c)′ ∈ Θ, Θ being a compact subset of
[
1
2 ,∞

)
×
(
0, 1

2

)
× (0,∞) .

Note that the index α determines the long-range dependence of FRBM, and the parameter γ is another fractal
index connected to Hausdorff dimension of paths of the stochastic process. Note that procedure of discretization
leads to the loss of information of one parameter γ, which is important for applications in both turbulence and
finance theory. That is why a direct method of estimation of both parameters from continuous data looks
appropriate.

For this model we can choose the weight function w (λ) = 1
1+λ2 , λ ∈ R

1, to satisfy the conditions needed
for consistency of the estimator (5.15), that is, for Theorem 5.2 to hold. However, to satisfy all the conditions
needed for Theorem 5.3 we choose the weight function w (λ) = λ2b

(1+λ2)a , λ ∈ R
1, where a and b satisfy the

restrictions: {b > 1} ∧ {a > b+ 2} ∧ {a > A+ 2}, where we have denoted by A the length of the finite interval
carrying the admissible values of the parameter γ. With such a choice of the weight function we have the
convergence

T 1/2
(
θ̂T − θ0

)
→N3

(
0,W−1

1 (θ0) (W2 (θ0) + V (θ0))W−1
1 (θ0)

)
as T → ∞,
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where the elements of the matrices W1 and W2 are of the following form:

w
(1∨2)
11 =

1
4π

∫
R1
w1∨2 (λ)

(
ln
(
1 + λ2

))2
dλ;

w
(1∨2)
22 =

1
4π

∫
R1
w1∨2 (λ)

(
ln
(
λ2
))2

dλ;

w
(1∨2)
33 =

1
4π
c−2
0

∫
R1
w1∨2 (λ) dλ;

w
(1∨2)
12 = w

(1∨2)
21 =

1
4π

∫
R1
w1∨2 (λ) ln

(
1 + λ2

)
ln
(
λ2
)
dλ;

w
(1∨2)
13 = w

(1∨2)
31 = − 1

4π
c−1
0

∫
R1
w1∨2 (λ) ln

(
1 + λ2

)
dλ;

w
(1∨2)
23 = w

(1∨2)
32 = − 1

4π
c−1
0

∫
R1
w1∨2 (λ) ln

(
λ2
)
dλ;

v11 =
1
8π

d4

d2
2

(∫
R1
w (λ) ln

(
1 + λ2

)
dλ
)2

;

v22 =
1
8π

d4

d2
2

(∫
R1
w (λ) ln

(
λ2
)
dλ
)2

;

v33 =
1
8π

d4

d2
2

c−2
0

(∫
R1
w (λ) dλ

)2

;

v12 = v21 =
1
8π

d4

d2
2

∫
R1
w (λ) ln

(
1 + λ2

)
dλ
∫

R1
w (λ) ln

(
λ2
)
dλ;

v13 = v31 = − 1
8π

d4

d2
2

c−1
0

∫
R1
w (λ) ln

(
1 + λ2

)
dλ
∫

R1
w (λ) dλ;

v23 = v32 = − 1
8π

d4

d2
2

c−1
0

∫
R1
w (λ) ln

(
λ2
)
dλ
∫

R1
w (λ) dλ.

In the above formulae we mean that the weight function w (λ) is involved to the expressions for w(1)
ij in the 1st

power and to the expressions for w(2)
ij in the 2nd power. From the above formulae we see that the covariance

matrix of the limiting normal law has the charming feature that it appears not depending on the values α0

and γ0.

Remark 5.5. Continuous version of Gauss-Whittle objective function with the weight function w(λ) = 1
1+λ2

had been used in [31] for the estimation of the Gaussian processes in stationary and nonstationary cases respec-
tively.

5.3. Minimum contrast estimation based on the Ibragimov contrast function

We consider now the minimum contrast functional motivated by the paper of Ibragimov [48], see also Anh
et al. [8].

We assume condition A.I and introduce the following condition
B.I. There exists a nonnegative function w (λ) , λ ∈ R, such that

(i) w (λ) is symmetric about λ = 0 : w (λ) = w (−λ) ;
(ii) w (λ) f (λ; θ) is in L1 (R) for ∀θ ∈ Θ.

Under the condition B.I, we set

σ2 (θ) =
∫

R

f (λ; θ)w (λ) dλ
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and consider the factorization of the spectral density

f (λ; θ) = σ2 (θ)ψ (λ; θ) , λ ∈ R, θ ∈ Θ.

For the function ψ (λ, θ) , λ ∈ R, θ ∈ Θ, we have∫
R

ψ (λ; θ)w (λ) dλ = 1

and we additionally suppose
B.II. The derivatives ∇θψ (λ; θ) exist and

∇θ

∫
R

ψ (λ; θ)w (λ) dλ =
∫

R

∇θψ (λ; θ)w (λ) dλ = 0,

that is we can differentiate under the integral sign in the above integral.
Consider the following contrast process (or objective function):

UT (θ) = −
∫

R

IT (λ)w (λ) logψ (λ; θ) dλ, θ ∈ Θ. (5.20)

Define also the function

K (θ0; θ) =
∫

R

f (λ; θ0)w (λ) log
ψ (λ; θ0)
ψ (λ; θ)

dλ, θ0, θ ∈ Θ. (5.21)

B.III. f (λ; θ0)w (λ) logψ (λ; θ) ∈ L1

(
R

1
)
∩ L2

(
R

1
)
, ∀θ ∈ Θ.

B.IV. There exists a function v (λ) , λ ∈ R
1, such that

(i) the function h (λ; θ) = v (λ) logψ (λ; θ) is uniformly continuous in R
1 × Θ;

(ii) f (λ; θ0)
w(λ)
v(λ) ∈ L1

(
R

1
)
∩ L2

(
R

1
)
.

Theorem 5.6. Let conditions A.I, B.I–B.IV be satisfied. Then the function K (θ0; θ) defined by (5.21) is the
contrast function for the contrast process UT (θ) defined by (5.20). Moreover the minimum contrast estimator
θ̂T defined as

θ̂T = argmin
θ∈Θ

UT (θ) , (5.22)

is a consistent estimator of the parameter θ, that is, θ̂T → θ0 in P0-probability as T → ∞, and the estimator

σ̂2
T =

∫
Rn

IT (λ)w (λ) dλ

is a consistent estimator of the parameter σ2 (θ) , that is, σ̂2
T → σ2 (θ0) in P0-probability as T → ∞.

To formulate the result on the asymptotic distribution of the minimum contrast estimator (5.22) we need
some further conditions.
B.V. The function ψ (λ; θ) is twice differentiable in a neighborhood of the point θ0 and

(i) f (λ; θ)w (λ) ∂2

∂θi∂θj
logψ (λ, θ) ∈ L1 (R) ∩ L2 (R) , i, j = 1, ...,m, θ ∈ Θ;

(ii) f (λ; θ0) ∈ Lp

(
R

1
)
, w (λ) ∂

∂θi
logψ (λ, θ) ∈ Lq

(
R

1
)
∩ L1

(
R

1
)
, i = 1, ...,m, θ ∈ Θ,

for some p, q such that 1
p + 1

q ≤ 1
2 , with equality holding in continuous case;

(iii) T 1/2
∫

R1(EIT (λ) − f (λ; θ0))w (λ) ∂
∂θi

logψ (λ; θ) dλ→ 0 as T → ∞,
for all i = 1, ...,m, θ ∈ Θ;

(iv) the second order derivatives ∂2

∂θi∂θj
logψ (λ; θ) , i = 1, ...,m, are continuous in θ.
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B.VI. The matrices S (θ) = (sij (θ))i,j=1,...,m and A (θ) = (aij (θ))i,j=1,...,m are positive definite where

sij (θ) =
∫

R

f (λ; θ)w (λ)
∂2

∂θi∂θj
logψ (λ; θ) dλ

= σ2 (θ)
∫

R

w (λ)
[

∂2

∂θi∂θj
ψ (λ, θ) − 1

ψ (λ, θ)
∂

∂θi
ψ (λ, θ)

∂

∂θj
ψ (λ, θ)

]
dλ,

aij (θ) = 4π
∫

R1
f2 (λ; θ)w2 (λ)

∂

∂θi
logψ (λ; θ)

∂

∂θj
logψ (λ; θ) dλ

+2π
d4

d2
2

∫
R

w (λ) f (λ; θ)
ψ (λ; θ)

∂

∂θi
ψ (λ; θ) dλ

∫
R

w (λ) f (λ; θ)
ψ (λ; θ)

∂

∂θj
ψ (λ; θ) dλ

= 4π
(
σ2 (θ)

)2 ∫
R

w2 (λ)
∂

∂θi
ψ (λ; θ)

∂

∂θj
ψ (λ; θ) dλ

+2π
d4

d2
2

(
σ2 (θ)

)2 ∫
R

w (λ)
∂

∂θi
ψ (λ; θ) dλ

∫
R

w (λ)
∂

∂θj
ψ (λ; θ) dλ.

Theorem 5.7. Let the conditions A.I, B.I–B.VI be satisfied. Then as T −→ ∞

T 1/2
(
θ̂T − θ0

)
→Nm

(
0, S−1 (θ0)A (θ0)S−1 (θ0)

)
,

where Nm (·, ·) denotes the m-dimensional Gaussian law.

Proofs of Theorems 5.2, 5.3, 5.6, 5.7. The results on consistency of estimators (Thms. 5.2 and 5.6) are conse-
quences of corresponding theorems stated for the general case in [52] for the Whittle functional and in [8,9] for
the case of Ibragimov functional. We present here reasonings for the proofs of Theorems 5.3 and 5.7, which
make use of CLT for bilinear forms (Thm. 5.1 above). For the proofs the standard arguments based on Taylor’s
formula for ∇θUT

(
θ̂T

)
are used. Namely, we can write the relation

∇θUT

(
θ̂T

)
= ∇θUT (θ0) + ∇θ∇′

θUT (θ∗T )
(
θ̂T − θ0

)
,

where |θ∗T − θ0| <
∣∣∣θ̂T − θ0

∣∣∣ .
It follows from the definition of minimum contrast estimators that for sufficiently large T

∇θUT (θ0) = −∇θ∇′
θUT (θ∗T )

(
θ̂T − θ0

)
,

therefore, to state the asymptotic normality for the estimator θ̂T , by Slutsky’s arguments, one needs to deduce:
(1) limit in probability for ∇θ∇′

θUT (θ∗T ) and (2) limiting normal law for T 1/2∇θUT (θ0) .
For the 1st task we can use the same arguments as in the mentioned above papers, and to rewrite (simplify)

corresponding conditions for the case of linear processes.
However, for the step (2) we can appeal now to Theorem 5.1. We provide the details below.
Consider firstly the case of Whittle functional. Limit in P0-probability for ∇θ∇′

θUT (θ∗T ) is given by the
matrix W1 (θ0) .

Next, consider

∇θUT (θ0) =
1
4π

∫
R

(
∇θ log f (λ; θ)|θ=θ0

+ ∇θ

(
1

f (λ; θ)

)∣∣∣∣
θ=θ0

IT (λ)

)
w (λ) dλ,



240 F. AVRAM, N. LEONENKO AND L. SAKHNO

which can be written in the form

∇θUT (θ0) = (JT (ϕi) − J(ϕi))i=1,...,m

=
(∫

R

ϕi (λ; θ0) IT (λ) dλ−
∫

R

ϕi (λ; θ0) f (λ; θ0) dλ
)

i=1,...,m

where

ϕi = ϕi (λ; θ0) = − 1
4π

1
f2 (λ; θ0)

w (λ)
(
∂

∂θi
f (λ; θ)

)∣∣∣∣
θ=θ0

, i = 1, ...,m.

Under the assumptions of Theorem 5.3 (see A.IV(ii)) in view of Theorem 5.1 we have the convergence

T 1/2 (JT (ϕi) − EJT (ϕi))i=1,...,m →Nm (0,W2 (θ0) + V (θ0)) , (5.23)

where the the matrices W2 (θ0) and V (θ0) are defined in the assumption A.V.
Further, in view of the assumption A.IV(iii)

T 1/2 (EJT (ϕi) − J(ϕi)) → 0, as T → ∞

which, combined with (5.23), implies

T 1/2 (JT (ϕi) − J(ϕi))i=1,...,m = T 1/2∇θUT (θ0) → Nm (0,W2 (θ0) + V (θ0)) .

The case of Ibragimov functional is treated analogously. We have that ∇θ∇′
θUT (θ∗T ) converges in P0-probability

to the matrix S (θ0). Further,

∇θUT (θ0) = −
∫

R

IT (λ) ∇θ logψ (λ; θ)|θ=θ0
w (λ) dλ.

In view of B.II ∫
R

f (λ; θ0) ∇θ logψ (λ; θ)|θ=θ0
w (λ) dλ = 0,

and we can write

∇θUT (θ0) = (JT (ϕi) − J(ϕi))i=1,...,m

=
(∫

R

ϕi (λ; θ0) IT (λ) dλ−
∫

R

ϕi (λ; θ0) f (λ; θ0) dλ
)

i=1,...,m

,

where now

ϕi = ϕi (λ; θ0) = w (λ)
∂

∂θi
logψ (λ; θ)

∣∣∣∣
θ=θ0

, i = 1, ...,m.

Again in view of Theorem 5.1, under the assumption B.V(ii), we obtain the convergence

T 1/2 (J(ϕi) − EJT (ϕi)) → Nm (0, A (θ0)) , as T → ∞,

where the matrix A (θ0) is defined in B.VI. By assumption B.V(iii) the convergence T 1/2∇θUT (θ0) → Nm(0,
A(θ0)) follows. �
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Appendix A. Wick products and Appell polynomials

Let W be a finite set and Yi, i ∈W be a system of random variables. Let

YW =
∏
i∈W

Yi

denote the ordinary product, with Y ∅ = 1, let mW = E
∏

i∈W Yi be the (mixed) moment, and let

χ(Y W ) = χ(Yi, i ∈W )

denote the (mixed) cumulant of the variables Yi, i ∈ W , defined recursively as the solutions of the equations:

mW =
∑

{V }|−W

χ(Y V1) . . . χ(Y Vr), (A.1)

where the sum
∑

{V }|−W is over all partitions {V } = (V1, . . . , Vr), r ≥ 1 of the set W , and where χ(Y ∅) = 1.

Notes. 1) Equation (A.1) is the formal power series expression of the “exponential relation m = eχ” between
moments and cumulants, viewed as functions on the lattice of subsets [55].

2) The inverse of equation (A.1), the formal power series expression of the “logarithmic relation χ = log(m)”
may also be computed by:

χ(Y1, . . . , Yn) =
∂T

∂z1 . . . ∂zn
logE exp

(
T∑

i=1

zjYj

)∣∣∣
z1=...=zn=0

,

where the differentiation is interpreted formally if the moment generating function does not exist.

Definition A.1. The Wick products : Y W : are defined as the solutions of the recursion:

Y W =
∑

U⊂W

: Y U : E(Y W\U ) =
∑

U⊂W

: Y U :
∑

{V }|−W\U

χ(Y V1) . . . χ(Y Vr ),

where the sum
∑

U⊂W is taken over all subsets U ⊂ W, including U = ∅, the sum
∑

{V }|−W\U is over all
partitions {V } = (V1, . . . , Vr), r ≥ 1 of the set W\U , and the starting value is : Y ∅ := 1.

Notes. 1) Inverting the recursion yields [68] (Prop. 1):

: YW :=
∑

U⊂W

Y U
∑

{V }|−W\U

(−1)rχ(Y V1) . . . χ(Y Vr ),

as may be formally seen by replacing m−1 by e−χ.
2) When some variables appear repeatedly, it is convenient to use the notation

: Yt1 , . . . , Yt1︸ ︷︷ ︸
n1

, ..., Ytk
, . . . , Ytk︸ ︷︷ ︸

nk

:= Pn1,...,nk
(Yt1 , ..., Ytk

)

(the indices in P correspond to the number of times that the variables in “: :” are repeated). The resulting
multivariate polynomials Pn1,...,nk

are known as Appell polynomials. These polynomials are a generalization of
the Hermite polynomials, which are obtained if Yt are Gaussian, and like them they play an important role in
the limit theory of quadratic forms of dependent variables (cf. [14,36,68]).
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4) The Appell polynomials may also be directly defined by “power-type” recursions like:

∂

∂ xj
Pn1,...,nk

(x1, . . . , xk) = njPn1,...,nj−1,...,nk
(x1, . . . , xk), EPn1,...,nk

(X1, . . . , Xk) = 0

∀nj ≥ 0, j = 1, ..., k,
∑

j

nj ≥ 1,

P0,...,0(x1, . . . , xk) = 1.

For example, when m = n = 1, P1,1(Xt, Xs) = XtXs − EXtXs, and the bilinear form QT (P1,1) is a weighted
periodogram with its expectation removed.

Note that the multivariate Appell polynomials can be defined by using characteristic functions as well (see,
e.g., [69]).

Appendix B. The diagram formula and the moments/cumulants

of sums/bilinear forms of Wick products

B.1. The cumulants diagram representation

An important property of the Wick products is the existence of simple combinatorial rules for calculation
of the (mixed) cumulants, analogous to the familiar diagrammatic formalism for the mixed cumulants of the
Hermite polynomials with respect to a Gaussian measure [54]. Let us assume that W is a union of (disjoint)
subsets W1, . . . ,Wk. If (i, 1), (i, 2), . . . , (i, ni) represent the elements of the subset Wi, i = 1, . . . , k, then we can
represent W as a table consisting of rows W1, . . . ,Wk, as follows:⎛⎝ (1, 1), . . . , (1, n1)

. . . . . . . . .
(k, 1), . . . , (k, nk)

⎞⎠ = W. (B.1)

By a diagram γ we mean a partition γ = (V1, . . . , Vr), r = 1, 2, . . . of the table W into nonempty sets Vi (the
“edges” of the diagram) such that |Vi| ≥ 1. We shall call the edge Vi of the diagram γ flat, if it is contained
in one row of the table W ; and free, if it consists of one element, i.e. |Vi| = 1. We shall call the diagram
connected, if it does not split the rows of the table W into two or more disjoint subsets. We shall call the
diagram γ = (V1, . . . , Vr) Gaussian, if |V1| = . . . = |Vr| = 2. Suppose given a system of random variables Yi,j

indexed by (i, j) ∈W . Set for V ⊂W ,

Y V =
∏

(i,j)∈V

Yi,j , and : Y V : = : (Yi,j , (i, j) ∈ V ) : .

For each diagram γ = (V1, . . . , Vr) we define the number

Iγ =
r∏

j=1

χ(Y Vj ). (B.2)

Proposition B.1 (cf. [36,68])). Each of the numbers

(i) EYW = E(Y W1 . . . Y Wk),

(ii) E(: YW1 : . . . : YWk :),

(iii) χ(Y W1 , . . . , Y Wk),

(iv) χ(: Y W1 :, . . . , : YWk :)
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is equal to ∑
Iγ ,

where the sum is taken, respectively, over

(i) all diagrams;
(ii) all diagrams without flat edges;
(iii) all connected diagrams;
(iv) all connected diagrams without flat edges.

If EYi,j = 0 for all (i, j) ∈W , then the diagrams in (i)–(iv) have no singletons.

Notes. 1) Part (i) is just the exponential relation between moments and cumulants.
2) From part (ii) follows, for example, that E : YW := 0 (take W = W1, then W has only 1 row and all

diagrams have flat edges).

B.2. Multilinearity

An important property of Wick products and of cumulants is their multilinearity. For sums and bilinear
forms

ST = Sm
T =

∫
IT

Pm(Xt)ν(dt), QT = Qm,n
T =

∫
IT

∫
IT

b̂(t− s)Pm,n(Xt, Xs)ν(dt)ν(ds)

this implies that:

χk(ST , ..., ST ) =
∫

ti∈IT

χ(: Xt1,1 , . . . , Xt1,m :, . . . , : Xtk,1 , . . . , Xtk,m
:)

k∏
i=1

ν(dti),

where the cumulant in the integral is taken for a table W of k rows R1...., Rk, each containing the Wick product
of l variables identically equal to Xtk

;

χk(QT , ..., QT ) =
∫

ti,si∈IT

χ(: Xt1,1 , . . . , Xt1,m , Xs1,1 , . . . , Xs1,n :,

. . . , : Xtk,1 , . . . , Xtk,m
, Xsk,1 , . . . , Xsk,n

:)
k∏

i=1

b̂(ti − si)ν(dti)ν(dsi),

where the cumulant in the integral needs to be taken for a table W of k rows R1...., Rk, each containing the
Wick product of m variables identically equal to Xtk

and of n variables identically equal to Xsk
.

B.3. The cumulants of sums and quadratic forms of moving average tables

By part (iv) of Proposition B.1, applied to a table W of k rows R1...., Rk, with K = n1 + ...nk variables, and
by Definition (B.2) and of Iγ, we find the following formula for the cumulants of the Wick products of linear
variables (5.7):

χ(: Xt1,1 , . . . , Xt1,n1
:, . . . , : Xtk,1 , . . . , Xtk,nk

:) =
∑

γ∈Γ(n1,...,nk)

κγJγ(�t), (B.3)
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where Γ(n1, . . . , nk) denotes the set of all connected diagrams γ = (V1, . . . , Vr) without flat edges of the table W ,
κγ = χ|V1|(ξI1 ) . . . χ|Vr|(ξI1) and

Jγ(t1, ..., tK) =
r∏

j=1

JVj (tVj ) (B.4)

=
∫

s1,...,sr∈ I

k∏
j=1

[
â(tj,1 − sj,1)â(tj,n1 − sj,n1) . . .

. . . â(tk,1 − sk,1) . . . â(tk,nk
− sk,nk

)
]
ν(ds1), . . . , ν(dsr)

=
∫

λ1,...,λK

ei
∑K

j=1 tj λj

K∏
i=1

a(λi)
r∏

j=1

δ

⎛⎝∑
i∈Vj

λi

⎞⎠ K∏
i=1

μ(dλi)

=
∫

λ1,...,λK

ei
∑K

j=1 tj λj

r∏
j=1

⎛⎝f|Vj |(λj,1, ..., λj,|Vj |−1)δ

⎛⎝∑
i∈Vj

λi

⎞⎠⎞⎠ K∏
i=1

μ(dλi),

where sk,i ≡ sj if (k, i) ∈ Vj , j = 1, . . . , r and λj,i ≡ λi+
∑ j−1

l=1 |Vl| if (j, i) ∈ Vj , j = 1, . . . , r.

B.4. The cumulants of sums and quadratic forms of moving average processes

We will apply now the formula (B.4) to compute the cumulants of S(m)
T , Q

(m,n)
T . In this case, each row j

contains just one, respectively two random variables.
It is easy to check that the variance of S(2)

T is:

χ2(S
(2)
T ) = 2

∫
λ1,λ2∈S

f(λ1)f(λ2)ΔT (λ1 − λ2)ΔT (λ2 − λ1)
2∏

e=1

μ(dλe).

Note that there are only two possible diagrams on a table with two rows of size 2, and that they yield both a
graph on two vertices (corresponding to the rows), connected one to the other via two edges.

For another example, the third cumulant χ3(S
(2)
T ) is a sum of terms similar to:

22

∫
λ1,λ2,λ3∈S

f(λ1)f(λ2)f(λ3)ΔT (λ1 − λ2)ΔT (λ2 − λ3)ΔT (λ3 − λ1)
3∏

e=1

μ(dλe).

This term comes from the 22 diagrams in which the row 1 is connected to row 2, 2 to 3 and 3 to 1.
For quadratic forms, a further application of part (iv) of Proposition B.1 will decompose this as a sum of the

form ∑
γ∈Γ(n1,...,nk)

∫
ti,si∈IT

Rγ(ti, si)
k∏

i=1

b̂ti−sidtidsi,

where Γ(n1, . . . , nk) denotes the set of all connected diagrams γ = (V1, . . . , Vr) without flat edges of the table W
and Rγ(ti, si) denotes the product of the cumulants corresponding to the partition sets of γ. This easy to check
formula is also an illustration of the diagram formula.

When m = n = 1 and k = 2, besides the Gaussian diagrams we have also one diagram including all the four
terms, which makes intervene the fourth order cumulant of Xt.

When m = n = 1, the Gaussian diagrams are all products of correlations and the symmetry of b̂ implies
that all these 2k−1(k − 1)! terms are equal. We get thus the well-known formula for the cumulants of discrete
Gaussian bilinear forms.
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In general, we find decompositions as sums of certain “Fejér graph integrals”, associated to specific graph
structures.

The general structure of the intervening graphs for the cumulants of sums ST and quadratic forms QT have
been discussed in Section 3.2.

The following proposition is easy to check.

Proposition B.2. Let Xt, t ∈ IT denote a stationary linear process given by (5.7) with d = 1. Then, the
cumulants of the sums and quadratic forms defined in (B.4) are given respectively by:

χk,l = χk(S(m)
T , ..., S

(m)
T ) =

∑
γ∈Γ(m,k)

κγ σγ(T )

and
χk,m,n = χk(Q(m,n)

T , ..., Q
(m,n)
T ) =

∑
γ∈Γ(m,n,k)

κγ τγ(T ),

where ΔT (x) is the Fejér kernel, Γ(l, k), Γ(m,n, k) were defined above, and

σγ(T ) =
∫

�t∈Ik
T

Jγ(�t)dt (B.5)

=
∫

λ1,...,λK

k∏
j=1

ΔT

⎛⎝ m j∑
i=m(j−1)+1

λi

⎞⎠ K∏
i=1

a(λi)
r∏

j=1

δ

⎛⎝∑
i∈Vj

λi

⎞⎠ K∏
i=1

dλi,

τγ(T ) =
∫

μ1,...,μk,λ1,...,λK ,λ′
1,...,λ′

K′

k∏
j=1

⎡⎣ΔT

⎛⎝μj +
m j∑

i=m(j−1)+1

λi

⎞⎠ ΔT

⎛⎝−μj +
n j∑

i=n(j−1)+1

λ′i

⎞⎠ b(μj)

⎤⎦
×

K∏
i=1

a(λi)
K′∏
i=1

a(λ′i)
r∏

j=1

δ

⎛⎝∑
i∈Vj

λi +
∑
i∈Vj

λ′i

⎞⎠ K∏
i=1

dλi

K′∏
i=1

dλ′i
k∏

i=1

dμi.

These graph structures are simple enough to allow a quick evaluation of the orders of magnitude αM (z), via
the corresponding graph-breaking problems; for the case of bilinear forms we refer to Lemma 1 in [11].

For the case of sums, the domain of applicability of the CLT is 1 − z1 ≥ 1/m. We check now that at the
extremal point 1 − z1 = 1/m we have

αG(z1) = max
A

p(A)

= max
A

[
co(G −A) −

∑
e∈A

(1 − ze)

]
= max

A
[co(G−A) − |A|(1 − z1)]

≤ k/2, ∀G ∈ Gk,

where we interpret p(A) as a “profit”, equal to the “gain” co(G−A) minus the “cost”
∑

e∈A(1 − ze). We thus
need to show that at the extremal point 1 − z1 = 1/m,

co(G−A)] ≤ |A|/m+ k/2, ∀G ∈ Gk.

Indeed, this inequality holds with equality for the “total breaking” A = E (which contains (km)/2 edges). It
is also clear that no other set of edges A can achieve a bigger “profit” p(A) (defined in (B.6)) than the total
breaking, since for any other set A which leaves some vertex still attached to the others, the vertex could be
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detached from the others with an increase of the number of components by 1 and a cost no more than m 1
m ; thus

the profit is nondecreasing with respect to the number of vertices left unattached and thus the total breaking
achieves the maximum of p(A).

Appendix C. The homogeneous Hölder-Young-Brascamp-Lieb inequality

Subtle modifications of the conditions of the Hölder inequality must be made when the arguments of the
functions involved are restricted to some subspaces [30]. Starting with Brascamp and Lieb [23] and Lieb [53]
(who considered only the case S = R), and following with Ball [17], Barthe [18] and Carlen et al. [26], this
generalization of the classical inequalities of Hölder and Young seems to have attained now its definite form in
the work of Bennett et al. [19? ].

We review now a particular case of this result.
Let

x = (x1, . . . , xm) ∈ Sm,

where S may be either the multidimensional torus, integers or reals

S =

⎧⎪⎨⎪⎩
[−π, π]d

Z
d

R
d

endowed with the respective normalized Haar measure μ(dx).
When d = 1, the convergence of integrals of the form:∫

x∈Sm

μ(dx1)...μ(dxm)
l1(x)z1 ...lk(x)zk

(C.1)

where (l1, ..., lk) are linear transformations

lj : Sm → S, lj(x) = 〈αj , x〉, j = 1, ..., k

and where in the first two cases αj are supposed to have integer coefficients, is a fundamental question arising
in many applications.

Let M denote the matrix with columns αj , j = 1, ..., k. It was for long known to physicists that, when M is
fixed, convergence holds for z = (z1, ..., zk) belonging to a certain “power counting polytope” PCP (these are
relatively similar in all the three cases – see Theorem C.1 below).

It was first noticed in [12] and [15], in the easier case of unimodal matrices M , that under the same “power
counting conditions” on zj = p−1

j , a Hölder-type inequality

(GH)

∣∣∣∣∣∣
∫

Sm

k∏
j=1

fj(lj(x))μ(dx)

∣∣∣∣∣∣ ≤ K

k∏
j=1

‖fj‖pj

holds, with the powers in (C.1) being replaced by arbitrary functions satisfying integrability conditions fj ∈
Lpj , j = 1, ..., k, and with K = 1. Note that Brascamp and Lieb [23] had already studied the analog harder
inequality for general matrices (in the case S = R

d), but without pinpointing exactly the polytope; this was
done later by Barthe [18].

For an example, consider the integral

J =
∫

S

∫
S

f1(x1)f2(x2)f3(x1 + x2)f4(x1 − x2)dx1dx2



ON A SZEGÖ TYPE LIMIT THEOREM, THE HÖLDER-YOUNG-BRASCAMP-LIEB INEQUALITY... 247

where S = R. Here m = 2, k = 4 and the matrix

M =
(

1 0 1 1
0 1 1 −1

)
has rank r(M) = 2. The theorem below will ensure that

|J | ≤ ‖f1‖1/z1 ‖f2‖1/z2 ‖f3‖1/z3‖f4‖1/z4

for any z = (z1, z2, z3, z4) ∈ [0, 1]4 satisfying z1 + z2 + z3 + z4 = 2, e.g. if z = (0, 1, 1/2, 1/2), then

|J | ≤
(

sup
0≤x≤1

|f1(x)|
)(∫ 1

0

|f2(x)|dx
)(∫ 1

0

f2
3 (x)dx

)1/2(∫ 1

0

f2
4 (x)dx

)1/2

.

It is easy to check (and true in general) that the extremal points of the PCP have only 0 and 1 coordinates
(which may be exploited for establishing the result). Note also that the matrix M in this example is not
unimodal; as a consequence, the optimal constant K = K(z) is not 1 at all the extremal points, the exception
being (0, 0, 1, 1), where it is 2−1; also, the functions achieving equality must be Gaussian (which holds in general,
cf. Brascamp-Lieb [23]).

We will formulate now simultaneously the Hölder-Young-Brascamp-Lieb inequality in the three cases:
(C1) μ(dxj) is normalized Lebesgue measure on the torus [−π, π]d, and M has all its coefficients integers.
(C2) μ(dxj) is counting measure on Z

d, M has all its coefficients integers, and is unimodular, i.e. all its
non-singular minors of dimension m×m have determinant ±1.

(C3) μ(dxj) is Lebesgue measure on (−∞,+∞)d.
The result below specifies the domain of validity of Hölder’s inequality, called power counting polytope, in terms
of linear inequalities involving the rank r(A) of arbitrary subsets A of columns of the matrix M (including the
empty set ∅). It is also possible to express the inequalities in terms of the “dual rank” r∗(A) defined by a dual
matrix M∗ whose lines are orthogonal to those of M , by using the duality relation

r∗(A) = |A| − r(M) + r(Ac), ∀A

Theorem C.1 (Homogeneous Hölder-Young-Brascamp-Lieb inequality). Let lj(x) = xtαj , j = 1, ..., k be linear
functionals lj : Sm → S where the space S is either the torus [−π, π]d, Z

d, or R
d. Let M denote the matrix

with columns αj , j = 1, ..., k, and let r(A), r∗(A), denote the rank and dual rank of any set A of columns of M .
Let fj , j = 1, . . . , k be functions fj ∈ Lpj (μ(dx)), 1 ≤ pj ≤ ∞, defined on S, where μ(dx) is respectively

normalized Lebesgue measure, counting measure and Lebesgue measure.
Let zj = 1

pj
, j = 1, . . . , k, and z = (z1, ..., zk). The Hölder-Young-Brascamp-Lieb inequality (GH) will hold

(with K = K(z) <∞) throughout the “power counting polytopes” PCP defined respectively by:

(c1)
∑
j∈A

zj ≤ r(A), ∀A;

(c2)
∑
j∈A

zj ≥ r(M) − r(Ac), ⇔
∑
j∈A

(1 − zj) ≤ r∗(A) ∀A;

(c3)
k∑

j=1

zj = m, and one of the conditions (c1) or (c2) is satisfied.

Alternatively, the conditions (c1–c3) in the theorem are respectively equivalent to:
(1) z = (z1, . . . , zk) lies in the convex hull of the indicators of the sets of independent columns of M ,

including the void set.
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(2) z = (z1, . . . , zk) lies in the convex hull of the indicators of the sets of columns of M which span its
range.

(3) z = (z1, . . . , zk) lies in the convex hull of the indicators of the sets of columns of M which form a basis.
If, moreover, the matrix M is unimodal, then the Hölder-Young-Brascamp-Lieb inequality (GH) holds with
constant K = 1.

Notes. 1) Polytopes defined by the type of rank constraints appearing in cases (c1–c2) are called “polymatroids”
(associated to M and M∗) – see Welsh [72], 18.3, Theorem 1. The third polytope is the intersection of the first
two.

2) The first two cases of Theorem C.1 were obtained for unimodal matrices in [12] and [15], respectively.
3) Some further important issues, like the precise formula for K(z), and the nonhomogeneous extension where

lj may be linear operators with possibly different images, were resolved only recently – see Lieb [53], Bennett
et al. [19].

Proof sketch. By Edmonds theorem (see Welsh [72], 18.4, Thm. 1) the extremal points of the above polymatroids
have only 0 and 1 coordinates for any matrix M . This fact leads to an easy proof, since at the extremal points
the result is immediate. For example, in the first and third cases, the extremal points are in one to one
correspondence with the indicators of independent sets and bases A, respectively, and the constant at such a
point, by a change of variables, is seen to be:

KA =
√

det(AAt).

Since K(z) is finite at the extremal points, and Riesz-Thorin interpolation ensures the convexity of log(K(z)),
it follows that K(z) will remain finite throughout the polytope generated by the indicators 1A. �

Appendix D. Kernel estimates

Consider the Dirichlet type kernel

ΔT (λ) =
∫

t∈IT

eitλν(dt).

When d = 1 and I1 = [−1/2, 1/2] (IT = I1T ), one gets the classical discrete/continuous time Dirichlet kernels:

ΔT (λ) =
T/2∑
−T/2

eitλ =
sin((T + 1)λ/2)

sin(λ/2)
, ΔT (λ) =

∫ T/2

−T/2

eitλdt =
sin(Tλ/2)

λ/2
,

respectively. For general d and IT = [−T/2, T/2]d, putting λ = (λ1, .., λd), it follows that ΔT (λ) =
∏d

j=1 ΔT (λj).
Note that in the continuous case, by scaling, one finds

‖ΔT (λ)‖p = T 1−1/pCp, λ ∈ R, 1 < p <∞, (D.1)

‖ΔT (λ)‖p = T d(1−1/p)Cd
p , λ ∈ R

d, 1 < p <∞ (D.2)

with Cp = (2
∫

R
| sin(z)

z |pdz) 1
p . Note that Cp1 > Cp2 for p1 < p2.

In the discrete case, similar estimates may be obtained by using the inequality∣∣∣∣ sin((T + 1)λ/2)
sin(λ/2)

∣∣∣∣ ≤ C̃
T

1 + T ‖λ| , λ ∈ [−π, π).

We find then:

‖ΔT (λ)‖p ≤ T 1−1/p
p C̃

1
p

⎛⎝∫
R

dz
(1 + |z|p)

⎞⎠ 1
p

, λ ∈ [−π, π), 1 < p <∞,
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||ΔT (λ)||p ≤ T d(1−1/p)
p

⎡⎢⎣C̃ 1
p

⎛⎝∫
R

dz
(1 + |z|p)

⎞⎠
1
p

⎤⎥⎦
d

, λ = (λ1, .., λd) ∈ [−π, π)d, 1 < p <∞.

In the case of the Euclidean ball IT = BT = {t ∈ R
d : ‖t‖ ≤ T/2}, we find again by scaling in the continuous

case

ΔT (λ) =
∫

BT

eitλdt = (2π)
d
2 Jd/2

(
‖λ‖ T

2

)
/ ‖λ‖d/2

, λ ∈ R
d,

where Jν(z) is the Bessel function of the first kind and order ν. It is known that Jν(z) ≤ const./
√
z for a large

z, thus for the ball

‖ΔT (λ)‖p =

{
T (1− 1

p )Cp, d = 1, p > 1,
T d( 1

2− 1
p )C̄p, d ≥ 2, p > 2d

d+1 ,

C̄p = 2
d( 1

2 − 1
p

)

(2π)
d
2 |s(1)|

(∫ ∞

0

ρd−1

∣∣∣∣∣J d
2
(ρ)

ρd/2

∣∣∣∣∣
p)1/p

,

where |s(1)| is the surface area of the unit ball in R
d, d ≥ 2.

Similar estimates may be obtained for the Lp (1 < p ≤ ∞) norms of the discrete Dirichlet kernel.

Note. These results are particular cases of the so-called Hardy-Littlewood theorem (see, for instance,
Zygmund [76], V. II, XII, Sect. 6), which can be formulated as follows:

Theorem D.1. Let an ≥ an+1 ≥ . . . and an → 0. Consider the series

∞∑
n=1

an cosnλ (D.3)

and
∞∑

n=1

an sinnλ (D.4)

and define by f(λ) and g(λ) the sums of the series (D.3) and (D.4) respectively at the points where the series
converge. A necessary and sufficient condition that the function f (or g) belongs to Lp, 1 < p < ∞, is the
following

∞∑
n=1

ap
nn

p−2 < ∞.

Moreover,

‖f‖p
p �

∞∑
n=1

ap
nn

p−2.

Clearly, 1 = 1 = . . . = 1 > 0 = . . . is nonincreasing, and we arrive thus to the following estimate for Dirichlet
kernels: ∥∥∥∥∥

T∑
t=1

eitλ

∥∥∥∥∥
p

≤ C

(
T∑

t=1

1ptp−2

) 1
p

≤ CT
p−1

p , 1 < p <∞,

and ∫ 1

0

∣∣∣∣∣
T−1∑
t=0

e2πitλ

∣∣∣∣∣
p

dλ = T p−1 2
π

∫ ∞

0

∣∣∣∣sinuu
∣∣∣∣p du+Rp(T ),
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where the error term

Rp(T ) =

⎧⎨⎩ Op(T p−3), p > 3
O(log T ), p = 3
Op(1), 1 < p < 3,

where Op means that constants depend on p. (See, e.g., [1].)
Note that for p = 1 for the Lebesgue constant LT we have (see, Zygmund [76], p. 67):

LT =
∫ 1

0

∣∣∣∣∣
T−1∑
t=0

e2πitλ

∣∣∣∣∣ dλ � 4
π2

logT.

Appendix E. Fractional Riesz-Bessel motion

In this Appendix we mainly review a number results discussed in Gay and Heyde [32], Anh et al. [4], Anh
et al. [6], Anh and Leonenko [2], [3], Kelbert et al. [50] (see also references therein). Also we introduce a
not necessarily Gaussian Riesz-Bessel stationary process and formulate the central limit theorem for such a
processes as well as for quadratic forms of such a processes.

The fractional operators are natural mathematical objects to describe the singular phenomena of random
fields such as long range dependence or/and intermittency.

In particular Gay and Heyde [32] introduced a class of random fields as solutions of fractional Helmholtz
equation driven by white noise, contained the fractional operator (cI − Δ)α/2, c ≥ 0 (and its limit as
c → 0 (−Δ)α/2), where Δ is the d-dimensional Laplacian and I is the identity operator (see also [50] for
properties of such fields and possible generalization). Anh et al. [4] (see also [2,3,6] and references therein)
generalized the fractional stochastic equation of Gay and Heyde in which the fractional Helmholtz operator
(cI − Δ)α/2, c ≥ 0 or the d-dimensional Laplacian (c→ 0) is replaced by a fractional Laplace-type operator of
the form − (I − Δ)γ/2 (−Δ)α/2, α > 0, γ ≥ 0, where the operators − (I − Δ)γ/2

, γ ≥ 0, and (−Δ)α/2, α > 0,
are interpreted as inverses to the Bessel and Riesz potentials (see [66], pp. 134–138), that is integral operators,

whose kernels have a Fourier transforms (2π)−d/2
(
1 + ‖λ‖2

)−γ/2

, λ ∈ R
d, and (2π)−d/2 ‖λ‖−α

, λ ∈ R
d, re-

spectively. Then there exists a generalized random field ζ(x), x ∈ R
d, on fractional Sobolev space, which is

defined by the equation

(I − Δ)γ/2 (−Δ)α/2ζ(x) = e(x), x ∈ R
d, (E.1)

where
{
e(x), x ∈ R

d
}

is a Gaussian white noise or equivalently (in the sense of second-order moments) there
exists a random field with the spectral density

f(λ) =
c

‖λ‖2α
(
1 + ‖λ‖2

)γ , λ ∈ R
d, c > 0. (E.2)

These random fields were named the fractional Riesz-Bessel motion.
For the random fields with stationary increments we assume α ∈

(
d
2 ,

d
2 + 1

)
, γ ≥ 0. In particular, for d = 1,

there exists a Gaussian stochastic process with stationary increments and the spectral density (E.2), where
α ∈

(
1
2 ,

3
2

)
, γ ≥ 0. This fractional Riesz-Bessel motion (FRBM) is a generalization of the fractional Brownian

motion (FBM) (see, for instance, Samorodnitsky and Taqqu [63]). FBM is a limiting case of the Riesz-Bessel
(non-stationary) motion with γ = 0 (in terms of the Hurst parameter H ∈ (0, 1), the spectral density of the
FBM with long-range dependence (H ∈ (1

2 , 0)) is equal to 1
|λ|2H+1 ). The FRBM is not self-similar (unless when

γ = 0), but it is locally self-similar.
For d ≥ 1 the presence of the Bessel operator is essential for a study of homogeneous (and isotropic) solutions

of (E.1) with spectral density (E.2), which requires 0 ≤ α < d
2 , α + γ > d

2 ; that is the condition γ > 0 is
necessary for f(λ) ∈ L1(Rd). Thus the homogeneous isotropic FRBM can be defined as a Gaussian random field
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with zero mean and covariance function of the form

Bα,γ(x) =
∫
Rd

ei〈λ,x〉 c

‖λ‖2α
(
1 + ‖λ‖2

)γ dλ, x ∈ R
d, (E.3)

where 0 ≤ α < d
2 , α + γ > d

2 . Note that for α = 0, the covariance structure (E.3) belongs the Matérn class,
that is with

c =
Γ(γ)

πd/22d−1Γ
(

2γ−d
2

) ;

Bα,γ(x) =
1

2
2−d
2 Γ

(
2γ−d

2

) K 2γ−d
2

‖x‖
d−2γ

2

, x ∈ R
d, γ >

d

2
, (E.4)

where

Kν(z) =
1
2

∞∫
0

sν−1 exp
{
−1

2

(
s+

1
s

)
z

}
ds, z ≥ 0, ν ∈ R,

is the modified Bessel function of the third kind of order ν or Mc Donald’s function. Note that

Kν(z) = K−ν(z), Kν(z) ∼ Γ(ν)2ν−1z−ν ,

for ν > 0 as z → 0,

K 1
2
(z) =

√
π

2
e−z

√
z
·

Thus, we have Bα,γ(0) = 1.
Note that for d = 1, α = 0, γ = 1, the covariance structure (E.4) becomes B0,1(x) = e−x, x ≥ 0, that is

stationary Gaussian Riesz-Bessel motion is identical to the Gaussian Ornstein-Uhlenbeck process.

Remark E.1. These results can be generalized to the case when the above fractional operator is replaced by
the operator

H =
∂β

∂tβ
+ μ (I − Δ)γ/2 (−Δ)α/2, 0 ≤ β ≤ 2, α > 0, γ ≥ 0,

where ∂β

∂tβ is the regularized fractional derivative. In particular, the Green function of the fractional heat
equation: Hu(t, x) = 0, t > 0, x ∈ R

d, can be given as inverse Fourier transform of the function

Eβ

(
−μtβ ‖λ‖α (1 + ‖λ‖2)γ/2

)
, t > 0, λ ∈ R

d,

where

Eβ(z) =
∞∑

j=1

zj

Γ(βj + 1)
, z ∈ C, β > 0

is the Mittag-Leffler function (see [2,3] for details and references).

In order to introduce a Riesz-Bessel motion driven by Lévy noise, we restrict our attention to the stationary
case and d = 1 (replacing the space parameter x into t). For the function

a(λ) =
√
c

(iλ)α(1 + iλ)γ
, λ ∈ R, a+ γ > 1, α ≥ 0,
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we introduce the function

â(t) =
∫

R

eitλa(λ)dλ =
{ 2π

Γ(α+γ) t
α+γ−1e−1

1F1(γ, α+ γ; t), t ≥ 0,
0, t < 0,

(E.5)

where the confluent hypergeometric function

1F1(a, b; z) =
∞∑

n=0

(a)n

(b)n

zn

n!
, (c)n = c(c+ 1) . . . (c+ n− 1), (c)0 = 1.

The Riesz-Bessel motion driven by Lévy noise can be defined as the linear process

Xt =
∫

R

â(t− s)dξ(s), (E.6)

where ξ(t), t ∈ R is a Lévy process with cumulant function

κ(z) = logE exp {izξ(1)} ,

such that κ(k)(0) 	= 0, k ≥ 2, and â(.) is defined by (E.5). The kth order spectral densities of the Riesz-Bessel
motion driven by Lévy noise (E.6) take the form:

fk(λ1, . . . , λk−1) = (2π)−k+1i−kκ(k)(0)a(λ1) . . . a(λk−1)a(λ1 + . . .+ λk−1), (E.7)

which reduces to the second-order spectral density

f2(λ) =
c

|λ|2α (1 + λ2)γ
, (E.8)

c =
κ(2)(0)

2π
, 0 ≤ α <

1
2
, α+ γ >

1
2
, λ ∈ R

1.

For the Gaussian case, of course, κ(k)(0) = 0, k ≥ 3.
Note that for α = 0, γ = 1 we arrive to the Ornstein-Uhlenbeck process driven by Lévy noise ([5]).
As a consequence of the theorems of Sections 3 and 4 we obtain the following result for the linear process (E.6).

(Cf. also with Thm. 4.1.)

Theorem E.2. Consider the Riesz-Bessel stationary motion (E.6) and assume that all cumulants of Lévy
process are finite. Let

ST =
∫ T/2

−T/2

Xsds, QT =
∫ T/2

−T/2

∫ T/2

−T/2

b̂(t− s) [XtXs − EXtXs] dtds,

then:
i) if

α+ γ >
1
2
, α ≤ 0,

then the central limit theorem holds:

T−1/2ST → N(0, σ2), T → ∞,

where
σ2 = κ(2)(0);
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ii) if for some p > 1, q > 1, such that 1
p + 1

q ≤ 1
2 , with equality holding in continuous case, we have

b(λ) ∈ Lq ∩ L1, α+ γ >
1
2p
, α <

1
2p
,

then the central limit theorem holds:

T−1/2QT → N(0, σ2), T → ∞,

where

σ2 = 2κ(2)(0)
∫

R

b2(λ)
1

|λ|4α (1 + λ2)2γ
dλ+ κ(4)(0)

1
(2π)2

∫
R

b(λ)
1

|λ|2α (1 + λ2)γ dλ.

Remark E.3. The central limit theorem for a linear processes with continuous time of the form (E.6) can be
proved also by methods different from those presented in our paper, for instance, via truncation and using the
central limit theorem for m-dependent random fields, or by the method of characteristic functions.
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[52] N.N. Leonenko and L.M. Sakhno, On the Whittle estimators for some classes of continuous parameter random processes and

fields. Stat. Probab. Lett. 76 (2006) 781–795.
[53] E.H. Lieb, Gaussian kernels have only Gaussian maximizers. Invent. Math. 102 (1990) 179–208.
[54] V.A. Malyshev, Cluster expansions in lattice models of statistical physics and the quantum theory of fields. Russ. Math.

Surveys 35 (1980) 1–62.
[55] I. Niven, Formal power series. Amer. Math. Monthly 76 (1969) 871–889.
[56] D. Nualart and G. Peccati, Central limit theorems for sequences of multiple stochastic integrals. Ann. Probab. 33 (2005)

177–193.
[57] J.G. Oxley, Matroid Theory. Oxford University Press, New York (1992).
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