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Online Partial Conditional Plan Synthesis for

POMDPs with Safe-Reachability Objectives:

Methods and Experiments

Yue Wang*, Abdullah Al Redwan Newaz*, Juan David Hernández**,

Swarat Chaudhuri and Lydia E. Kavraki

Abstract—The framework of Partially Observable Markov De-
cision Processes (POMDPs) offers a standard approach to model
uncertainty in many robot tasks. Traditionally, POMDPs are
formulated with optimality objectives. Here we study a different
formulation of POMDPs with boolean objectives. For robotic
domains that require a correctness guarantee of accomplishing
tasks, boolean objectives are natural formulations. We investigate
the problem of POMDPs with a common boolean objective: safe-
reachability, requiring that the robot eventually reaches a goal
state with a probability above a threshold, while keeping the
probability of visiting unsafe states below a different threshold.
Our approach builds upon the previous work that represents
POMDPs with boolean objectives using symbolic constraints,
and employs an Satisfiability Modulo Theories (SMT) solver to
efficiently search for solutions, i.e., policies or conditional plans
that specify the action to take contingent on every possible event.
A full policy or conditional plan is generally expensive to compute.
To improve computational efficiency, we introduce the notion of
partial conditional plans that cover sampled events to approximate
a full conditional plan. Our approach constructs a partial
conditional plan parameterized by a replanning probability. We
prove that the failure rate of the constructed partial conditional
plan is bounded by the replanning probability. Our approach
allows users to specify an appropriate bound on the replanning
probability to balance efficiency and correctness. Moreover, we
update this bound properly to quickly detect if the current
partial conditional plan meets the bound and avoid unnecessary
computation. To further improve the efficiency, we cache partial
conditional plans for sampled belief states and reuse these
cached plans if possible. We validate our approach in several
robotic domains. The results show that our approach outperforms
a previous policy synthesis approach for POMDPs with safe-
reachability objectives in these domains.

Note to Practitioners—This paper was motivated by two obser-
vations. On one hand, in robotics applications where uncertainty
in sensing and actions is present, the solution to the classical
POMDP formulation is expensive to compute in general. On the
other hand, in certain practical scenarios, formulations other
than the classical POMDP make a lot of sense and can provide
flexibility in balancing efficiency and correctness. This paper
considers a modified POMDP formulation that includes a boolean
objective, namely safe-reachability. The paper uses the notion of
a partial conditional plan. Rather than explicitly enumerating
all possible observations to construct a full conditional plan, this
work samples a subset of all observations to ensure bounded re-
planning probability. Our theoretical and empirical results show
that the failure rate of the constructed partial conditional plan is
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Fig. 1: A robot with imperfect actuation and perception navigates
through an office to pick up the blue can on the table, while avoiding
collisions with uncertain obstacles such as floor signs and file cabinets.

bounded by the replanning probability. Moreover, these partial
conditional plans can be cached to further improve performance.
Our results suggest that for domains where replanning is easy,
increasing the replanning probability bound usually leads to
better scalability, and for domains where replanning is difficult or
impossible in some states, we can decrease the bound and allocate
more computation time to achieve a higher success rate. Hence,
in certain cases, the practitioner can take advantage of their
knowledge of the problem domain to scale to larger problems.
Preliminary physical experiments suggest that this approach is
applicable to real-world robotic domains but it requires a discrete
representation of the workspace. How to deal with continuous
workspace directly is an interesting future direction.

Index Terms—Robots, Uncertainty, Planning, POMDPs with
Boolean Objectives, Safe-Reachability

I. INTRODUCTION

PLANNING robust executions under uncertainty, e.g.,

uncertain effects from imperfect controllers and sensors,

is a fundamental concern in robotics. POMDPs [1] provide

a standard framework for modeling many robot tasks under

uncertainty. (e.g., [2]–[8]). The solutions to POMDPs are

policies [1] or conditional plans [9] that specify the actions to

take under all possible events during execution.

Traditionally, the goal of solving POMDPs is to find optimal

solutions with respect to a quantitative objective such as that

maximize (discounted) rewards [2], [3], [5], [9]–[14]. While this

purely quantitative formulation is suitable for many applications,
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some robotic settings demand synthesis concerning boolean

requirements. For example, consider a robot with imperfect

actuation and perception working in an office environment with

uncertain obstacles such as floor signs and furniture (Fig. 1).

Due to uncertainty, the locations of the robot and the obstacles

are partially observable, and the robot’s action effects and

observations are both probabilistic. In this probabilistic setting,

a reasonable task requirement for the robot is to eventually pick

up the target object with a probability above a threshold while

keeping the probability of collision below a different threshold.

This task requirement is naturally formulated as a boolean

objective written in a temporal logic. Moreover, formulating

boolean requirements implicitly as quantitative objectives by

assigning proper rewards for goal states and unsafe states

does not always yield good solutions for certain domains [15].

Therefore, POMDPs with explicit boolean objectives are better

formulations than quantitative POMDPs in these domains.

Policy synthesis for POMDPs with boolean objectives has

been studied in previous works [4], [16]–[18], where the goal

is to satisfy a temporal property with probability 1 (almost-sure

satisfaction). A more general policy synthesis for POMDPs

with boolean objectives is to synthesize policies that satisfy

a temporal property with a probability above a threshold. In

this work, we study this problem for the special case of safe-

reachability objectives, which require that with a probability

above a threshold, a goal state is eventually reached while

keeping the probability of visiting unsafe states below a

different threshold. Many robot tasks such as the one in Fig. 1

can be formulated as a safe-reachability objective.

Our previous work [6] has presented a method called

Bounded Policy Synthesis (BPS) for POMDPs with safe-

reachability objectives. BPS computes a valid policy over the

goal-constrained belief space rather than the entire belief space

to improve efficiency. The goal-constrained belief space only

contains beliefs visited by desired executions achieving the

safe-reachability objective and is generally much smaller than

the original belief space. BPS is an offline synthesis method

that computes a full policy before execution. Another category

of approaches to planning under uncertainty is online planning

that interleaves planning and execution [5], [13], [14], [19]–

[22]. Offline synthesis offers a strong correctness guarantee, but

it is difficult to scale. Online planning is much more scalable

and works well when replanning is likely to succeed, but it

often fails when replanning is difficult or infeasible in some

states, making it hard to ensure correctness.

In this work, our goal is to scale up our previous BPS

method further through online planning. Specifically, we present

a method called Online Partial Conditional Plan Synthe-

sis (OPCPS) for POMDPs with safe-reachability objectives.

OPCPS is based on the new notion of partial conditional plans,

which only contains a sampled subset of all possible events

and approximates a full policy. OPCPS computes a partial

conditional plan parameterized by a replanning probability,

i.e., the probability of encountering an event not covered by the

partial conditional plan, thus requiring replanning. We offer a

theoretical analysis of this framework, showing that the failure

rate of the constructed partial conditional plan is bounded by

the replanning probability. OPCPS allows users to specify an
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Fig. 2: A full conditional plan γk contains both solid and dotted
branches. a1, a

0
2, . . . are actions. o1 and o2 are observations. A partial

conditional plan γ
p

k contains only solid branches.

appropriate bound on the replanning probability to balance

efficiency and correctness: for domains where replanning is

likely to succeed, increasing the bound usually leads to better

scalability, and for domains where replanning is difficult or

impossible in some states, users can decrease the bound and

allocate more time to achieve a higher success rate.

To further improve performance, OPCPS updates the replan-

ning probability bound properly during the partial conditional

plan construction. This bound update enables quicker detection

of the current partial conditional plan meeting the bound and

avoids unnecessary computation. For a better safety guarantee,

OPCPS checks whether the successor belief of every uncovered

observation of the constructed partial conditional plan satisfies

the safety requirement. Thus OPCPS guarantees that the robot

still satisfies the safety requirement when replanning fails.

Section IV-B has more details on the bound update and the

safety guarantee of OPCPS. What is more, we cache partial

conditional plans for sampled belief states and reuse these plans

if possible to avoid repetitive computation. In certain cases as

we explain in Section IV-C, caching partial conditional plans

leads to increased computational efficiency.

We evaluate OPCPS in the kitchen domain presented in [6]

and the Tag domain [3]. We also validate OPCPS on a Fetch

robot for the domain shown in Fig. 1. The results demonstrate

that OPCPS scales better than BPS and can solve problems

that are beyond the capabilities of BPS within the time limit.

This paper is a significant extension of the preliminary find-

ings presented in [23]. First, we extend the OPCPS algorithm

presented in [23] with partial conditional plan caching. Second,

we show that OPCPS with caching greatly improves running

times in the experiments. Third, we conducted a physical

experiment to validate OPCPS with the new caching option on

a Fetch robot. Hence, the algorithms presented in this paper

can be regarded as improved versions of the algorithms in [23].

II. RELATED WORK

The analysis of POMDPs can be divided into three categories.

In the first category, the objective is to find optimal solutions

concerning quantitative rewards. Many previous POMDP algo-

rithms [3], [5], [9], [11]–[14] focus on maximizing (discounted)

rewards. In the second category, the objective combines the
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quantitative rewards of the traditional POMDPs with notions

of risk and cost. Recently, there has been a growing interest

in constrained POMDPs [15], [24]–[26], chance-constrained

POMDP [27], and risk-sensitive POMDPs [28], [29] that handle

cost/risk constraints explicitly. The third category consists of

POMDPs with high-level boolean requirements written in a

temporal logic. While several works [30], [31] propose different

types of reinforcement learning algorithms to address policy

synthesis problem for MDP, to the best of our knowledge

there are few works on reinforcement learning based policy

synthesis for POMDPs [32]. Recent work in [33], authors

present macro-action discovery from a low-level POMDP

model by chaining sequences of open-loop actions together

with the task-specific value of information. In [34], authors

proposed a reinforcement learning-based POMDP solver for

Autonomous Sequential Repair Problems. They use a neural

network classifier for approximating successive policies. In [35],

authors model adaptive grasping using tactile and visual sensors

as a POMDP problem and proposed a combination of model-

based POMDP planning and imitation learning to learn a robust

strategy to grasp previously unseen objects. Some works [4],

[16] have investigated almost-sure satisfaction of POMDPs

with temporal properties, where the goal is to check whether

a given temporal property can be satisfied with probability 1.

A more general policy synthesis problem of POMDPs with

safe-reachability objectives has been introduced in our previous

work [6]. It has been shown that for robotic domains that require

a correctness guarantee of accomplishing tasks, POMDPs

with safe-reachability provide a better guarantee of safety and

reachability than the quantitative POMDP formulations [6].

In this work, we focus on POMDPs with safe-reachability

objectives and evaluate our previous BPS approach [6]. While

BPS synthesizes a full policy (conditional plan) offline that

covers all possible events, our approach is an online method

that interleaves the computation of a partial conditional plan

and execution. Since a partial conditional plan only contains

a sampled subset of all possible events, our method achieves

better scalability than BPS and can solve problems that are

beyond the capabilities of BPS within the time limit.

The idea of partial conditional plans resembles the state-

of-the-art online POMDP algorithm based on Determinized

Sparse Partially Observable Tree (DESPOT) [5], [13]. Both

DESPOT and our partial conditional plans contain a subset

of all possible observations to improve efficiency. There are

two major differences between our method and DESPOT:

first, DESPOT handles POMDPs with (discounted) rewards

while our approach solves POMDPs with safe-reachability

objectives. Second, DESPOT contains all action branches while

our approach constructs partial conditional plans (Fig. 2) that

only contains one action per step, which is part of the desired

execution satisfying the safe-reachability objective.

III. PROBLEM FORMULATION

We follow the notation in [6] for POMDPs with safe-

reachability objectives.

A. Partially Observable Markov Decision Process

Definition 1 (POMDP [1]). A POMDP is a tuple P =
(S,A, T ,O,Z), where S is a finite set of states, A is a finite

set of actions, T is a probabilistic transition function, O is a

finite set of observations, and Z is a probabilistic observation

function. T (s, a, s′) = Pr(s′|s, a) specifies the probability of

moving to state s′ ∈ S after taking action a ∈ A in state s ∈ S .

Z(s′, a, o) = Pr(o|s′, a) specifies the probability of observing

o ∈ O after taking action a ∈ A and reaching s′ ∈ S .

Due to uncertainty, states are partially observable and

typically we maintain a probability distribution (belief ) over all

states b : S 7→ [0, 1] with
∑
s∈S

b(s) = 1. The set of all beliefs

B = {b : S 7→ [0, 1] |
∑
s∈S

b(s) = 1} is the belief space.

The belief space transition function TB : B ×A×O → B
is deterministic. boa = TB(b, a, o) is the successor belief

for a belief b ∈ B after taking an action a ∈ A and

receiving an observation o ∈ O, defined according to Bayes

rule: ∀ s′ ∈ S, boa(s
′) =

Z(s′,a,o)
∑

s∈S

T (s,a,s′)b(s)

Pr(o|b,a) , where

Pr(o|b, a) =
∑
s′∈S

Z(s′, a, o)
∑
s∈S

T (s, a, s′)b(s) is the proba-

bility of receiving the observation o after taking the action a

in the belief b.

Definition 2 (Plan). A k-step plan is a sequence σ =
(b0, a1, o1, . . . , ak, ok, bk) such that for all i ∈ (0, k], the

belief updates satisfy the transition function TB, i.e., bi =
TB(bi−1, ai, oi), where ai ∈ A is an action and oi ∈ O is an

observation.

B. Safe-Reachability Objective

In this work, we consider POMDPs with safe-reachability

objectives:

Definition 3 (Safe-Reachability Objective). A safe-reachability

objective is a tuple G = (Dest, Safe), where Safe = {b ∈
B |

∑
s violates safety

b(s) < δ2} is a set of safe beliefs and Dest =

{b ∈ Safe |
∑

s is a goal state

b(s) > 1− δ1} ⊆ Safe is a set of goal

beliefs. δ1 and δ2 are small values that represent tolerance.

A safe-reachability objective G compactly represents the set

ΩG of valid plans:

Definition 4 (Valid Plan). A k-step plan σ =
(b0, a1, o1, . . . , ak, ok, bk) is valid w.r.t. a safe-reachability

objective G = (Dest, Safe) if bk is a goal belief (bk ∈ Dest)

and all beliefs visited before step k are safe beliefs

(∀ i ∈ [0, k), bi ∈ Safe).

Note that the safety requirement in the safe-reachability

objective only states that for every step of the plan, the

probability of being in an unsafe state is within the threshold.

This safety requirement does not necessarily extend to the

safety of the whole plan, i.e., the probability of visiting an

unsafe state is within the same threshold when executing the

plan starting from the initial belief. To achieve the safety of

the whole plan, we should consider the chance-constraints
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presented in [27], which is beyond the scope of this paper and

a possible future extension of this work.

C. Solution to POMDPs with Safe-Reachability Objective

The solution to POMDPs with safe-reachability Objective

is a valid policy that specifies the action to take contingent on

all possible events:

Definition 5 (Valid Policy).

A valid policy π : B → A is a function that maps a belief

b ∈ B to an action a ∈ A. A policy π defines a set of plans

in belief space: Ωπ = {σ = (b0, a1, o1, . . . ) | ∀i > 0, ai =
π(bi−1) and oi ∈ O}. For each plan σ ∈ Ωπ , the action ai at

each step i is chosen by the policy π. For a valid policy, the

set Ωπ of plans defined by the policy π are all valid plans.

D. Partial Conditional Plan

Computing an exact policy over the entire belief space B
is intractable, due to the curse of dimensionality [36]: B is

a high-dimensional space with an infinite number of beliefs.

To make the problem tractable, we can exploit the reachable

belief space Bb0 [3], [11]. Bb0 only contains beliefs reachable

from the initial belief b0 and is generally much smaller than B.

Therefore, instead of computing a policy π : B 7→ A over the

entire belief space, we only compute a policy πBb0
: Bb0 7→ A

over the reachable belief space.

Our previous BPS work [6] has shown that the performance

of policy synthesis for POMDPs with safe-reachability ob-

jectives can be further improved based on the notion of a

goal-constrained belief space BG . BG combines the reachable

belief space Bb0 and the set ΩG of valid plans defined by

the safe-reachability objective G. BG only contains beliefs

reachable from the initial belief b0 under a valid plan σ ∈ ΩG

and is generally much smaller than the reachable belief space

Bb0 .

Previous results [37]–[39] have shown that the problem

of policy synthesis for POMDPs is generally undecidable.

However, when restricted to a bounded horizon, this problem

becomes PSPACE-complete [36], [40]. Therefore, BPS com-

putes a bounded policy π over the goal-constrained belief space

BG within a bounded horizon h, where the horizon (number of

steps) of the policy is less than a given bound h. This bounded

policy π is essentially a set of conditional plans [9]:

Definition 6 (Conditional Plan). A k-step conditional plan

γk ∈ Γk is a tuple γk = (b, a, νk), where b ∈ B is a belief,

a ∈ A is an action and νk : O 7→ Γk−1 is an observation

strategy that maps an observation o ∈ O to a (k − 1)-step

conditional plan γk−1 = (b′, a′, νk−1) ∈ Γk−1, where b′ =
TB(b, a, o) is the successor belief.

Fig. 2 shows an example k-step conditional plan γk =
(b0, a1, νk). γk defines a set Ωγk

of k-step plans σk =
(b0, a1, o1, . . . , ak, ok, bk). For each plan σk ∈ Ωγk

, the action

a1 at step 1 is chosen by the k-step conditional plan γk, the

action a2 at step 2 is chosen by the (k − 1)-step conditional

plan γk−1 = νk(o1), ..., and the action ak at step k is chosen

by the one-step conditional plan γ1 = ν2(ok−1).

Definition 7 (Valid Conditional Plan). A k-step conditional

plan γk is valid w.r.t. a safe-reachability objective G if every

plan in Ωγk
is valid (Ωγk

⊆ ΩG).

It is clear that the number of valid plans in a valid k-step

conditional plan γk grows exponentially as the horizon k

increases. To address this challenge, our method computes

partial conditional plans that only contains a small number of

valid plans to approximate full conditional plans:

Definition 8 (Partial Conditional Plan). A k-step partial

conditional plan is a tuple γ
p
k = (b, a,Op

k, ν
p
k), where b ∈ B

is a belief, a ∈ A is an action, Op
k ⊆ O is a subset of the

observation set O, and ν
p
k : Op

k 7→ Γp
k−1 is a partial observation

strategy that maps an observation o ∈ Op
k to a (k − 1)-step

partial conditional plan γ
p
k−1 = (b′, a′,Op

k−1, ν
p
k−1), where

b′ = TB(b, a, o) is the successor belief. When Op
k = O, the

partial conditional plan γ
p
k is a full conditional plan γk ∈ Γk.

For k = 1, the observation strategy of γ
p
1 is ν1 = ∅.

Similarly, a k-step partial conditional plan γ
p
k defines a set

Ωγ
p

k
of k-step plans σk in belief space, and we can define a

valid partial conditional plan:

Definition 9 (Valid Partial Conditional Plan). A k-step partial

conditional plan γ
p
k is valid w.r.t. a safe-reachability objective

G if every plan in Ωγ
p

k
is valid.

E. Replanning Probability

Since a partial conditional plan γ
p
k = (b, a,Op

k, ν
p
k) only

contains a subset of all observation branches at each step

(see Fig. 2), during online execution, it is possible that an

observation branch o ∈ O −Op
k that is not part of the partial

conditional plan is visited. In this case, we need to recursively

compute a new partial conditional plan for this new branch o.

However, since γ
p
k does not consider all possible observation

branches, it is possible that the action chosen by γ
p
k is invalid

for the new observation branch o, even for a valid partial

conditional plan. As a result, there are no partial conditional

plans for the new observation branch o and execution fails.

To preserve correctness, we would like to bound the failure

rate pfail(γ
p
k) = Pr(failure|γp

k) measured under a valid partial

conditional γ
p
k = (b, a,Op

k, ν
p
k). However, computing pfail

is costly because it requires checking whether the action a

chosen by γ
p
k is valid for every uncovered observation branch

o ∈ O − Op
k, which essentially computes a full conditional

plan. Alternatively, we can easily compute the replanning

probability preplan(γ
p
k) = Pr(replanning|γp

k) of reaching an

uncovered observation branch o ∈ O − Op
k and requiring

replanning:

preplan(γ
p
k) =

∑

o∈Op

k

Pr(o|b, a)preplan(ν
p
k(o))

+
∑

o∈O−Op

k

Pr(o|b, a) (1)

For the base case k = 1, preplan(γ
p
1 ) =

∑
o∈O−Op

1

Pr(o|b, a).

The following theorem states that for a valid partial con-

ditional plan γ
p
k , the failure rate pfail(γ

p
k) is bounded by the

replanning probability preplan(γ
p
k):
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Theorem 1. For any valid partial conditional plan γ
p
k ,

pfail(γ
p
k) ≤ preplan(γ

p
k).

Proof. We prove Theorem 1 by induction. First we define

δfail(b) : B 7→ {0, 1} as an indicator and when δfail(b) = 1,

there are no valid partial conditional plans for belief b and

exeution fails.

• Base case (k = 1): Since γ
p
1 = (b, a,Op

1 , ∅) is valid, for

every covered observation o ∈ Op
1 , b′ = TB(b, a, o) ∈

Dest is the terminal goal belief and thus δfail(b
′) = 0.

Therefore,

pfail(γ
p
1 ) =

∑

o∈O−Op

1

Pr(o|b, a)δfail(b
′)

≤
∑

o∈O−Op

1

Pr(o|b, a) = preplan(γ
p
1 )

since δfail(b
′) ≤ 1 where b′ = TB(b, a, o) is the successor

belief for the uncovered observation o ∈ O −Op
1 .

• Inductive case (k > 1): Since γ
p
k = (b, a,Op

k, ν
p
k) is valid,

for every covered observation o ∈ Op
k, the corresponding

(k − 1)-step partial conditional plan ν
p
k(o) is also valid.

Assume pfail(ν
p
k(o)) ≤ preplan(ν

p
k(o)), then

pfail(γ
p
k) =

∑

o∈Op

k

Pr(o|b, a)pfail(ν
p
k(o))

+
∑

o∈O−Op

k

Pr(o|b, a)δfail(b
′)

≤
∑

o∈Op

k

Pr(o|b, a)preplan(ν
p
k(o))

+
∑

o∈O−Op

k

Pr(o|b, a) = preplan(γ
p
k)

since δfail(b
′) ≤ 1 where b′ = TB(b, a, o) is the successor

belief for the uncovered observation o ∈ O −Op
k.

Therefore, For any k-step valid partial conditional plan γ
p
k =

(b, a,Op
k, ν

p
k), pfail(γ

p
k) ≤ preplan(γ

p
k).

F. Problem Statement

Given a POMDP P , an initial belief b0, a replanning

probability bound δpreplan
, a safe-reachability objective G and

a horizon bound h, our goal is to synthesize a valid k-step

(k ≤ h) partial conditional plan γ
p
k = (b0, a,O

p
k, ν

p
k) with a

replanning probability preplan(γ
p
k) ≤ δpreplan

.

Since the replanning probability preplan(γ
p
k) is bounded by

δpreplan
, by Theorem 1, γ

p
k guarantees achieving the given safe-

reachability objective with a probability at least 1−δpreplan
. Note

that when preplan(γ
p
k) = 0, γ

p
k is a full conditional plan.

IV. ONLINE PARTIAL CONDITIONAL PLAN SYNTHESIS

Fig. 3 shows the overall structure of OPCPS (Algorithm

1). OPCPS follows the typical online planning paradigm [41]

that interleaves synthesis of valid partial conditional plans

(line 1) and execution (lines 6, 7, 8). If there are no valid

partial conditional plans within the horizon bound, (line 2)

execution fails. Otherwise, OPCPS follows the generated partial

Algorithm 1: OPCPS

Input: POMDP P = (S,A, T ,O,Z), Initial Belief binit,
Replanning Probability Bound δpreplan

, Safe-Reachability
Objective G = (Dest, Safe), Horizon Bound h

Output: A boolean: true - success, false - failure
/* Generate partial conditional plan */

1 γ
p

k ← PartialContionalPlanSynthesis(P , binit, G, δpreplan
, h)

2 if γ
p

k = ∅ then
/* No partial conditional plan: failure */

3 return false

4 repeat
5 (a,Op

k, ν
p

k)← γ
p

k

6 Execute action a
7 Receive observation o
8 binit ← TB(binit, a, o) /* Update belief */

9 if binit ∈ Dest then
/* reach a goal belief: success */

10 return true

/* Get next partial conditional plan */

11 γ
p

k ← ν
p

k(o)
12 h← h− 1 /* Reduce horizon bound */

13 until γ
p

k = ∅
/* recursively perform OPCPS on new branch */

14 return OPCPS(P , binit, G, h)

conditional plan until a goal belief is reached (line 9: execution

succeeds) or a new observation o ∈ O−Op
k is received (line 4).

In the latter case, OPCPS recursively replans for the observation

o. Next we describe the partial conditional plan synthesis

algorithm (Fig. 4) used in OPCPS.

A. Partial Conditional Plan Synthesis

In partial conditional plan synthesis (Fig. 4 and Algorithm 2)

we replace the policy generation component in BPS [6] with

a new partial conditional plan generation (the green dashed

component). For completeness, we offer a brief summary of

the constraint generation and plan generation components in

BPS. See [6] for more details.

In constraint generation (Fig. 4), given a POMDP P , an ini-

tial belief b0 and a safe-reachability objective G = (Dest, Safe),
we first construct a constraint Φk to symbolically encode the

goal-constrained belief space over a bounded horizon k based

on the encoding from Bounded Model Checking [42] (line 37,

19, 21). Φk compactly represents the requirement of reaching a

goal belief b ∈ Dest safely in k steps. In constraint generation

(Fig. 4), we use the Bounded Model Checking [42] encoding

to construct Φk, which contains three parts:

1) start from the initial belief (line 15) : b0 = binit.

2) unfold the transition up to horizon k (line 19):
∧k

i=1(bi =
TB(bi−1, ai, oi)).

3) satisfy the objective G (line 21): G(σk,G, k) =∨k
i=0(bi ∈ Dest ∧ (

∧i−1
j=0(bj ∈ Safe))).

Then in plan generation (Fig. 4), we compute a valid plan

σk by checking the satisfiability of Φk (line 23) through an

SMT solver [43]. Note that the horizon k restricts the plan

length and thus the robot can only execute k actions before

reaching a goal belief b ∈ Dest.

If Φk is satisfiable, the SMT solver returns a valid plan

σk = (bσk

0 , aσk

1 , oσk

1 , . . . , bσk

k ). This valid plan σk only covers
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EXECUTION
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k
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k

observation
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k

Fig. 3: Overall structure of the OPCPS Algorithm

CONSTRAINT

GENERATION

reach horizon

bound: γ
p

k
= ∅

PLAN

GENERATION
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PLAN

GENERATION

valid partial

conditional

plan γ
p

k

constraint

Φk

no valid plan:

increase horizon k

valid plan

σk

additional constraint

φ

Fig. 4: The component of Partial conditional plan synthesis in Fig. 3

a particular observation oσk

i at step i. In partial conditional

plan generation (Fig. 4), we generate a valid partial conditional

plan γ
p
k with a replanning probability preplan(γ

p
k) ≤ δpreplan

(line

25) from this valid plan σk by sampling a subset Op
k ⊆ O

of observations (solid branches in Fig. 2) at each step, where

δpreplan
is the given replanning probability bound. If this partial

conditional plan generation fails, we construct an additional

constraint φ to block invalid plans (line 27) and force the SMT

solver to generate another better plan.

Our method constructs a partial conditional plan that covers

a sampled subset Op of all possible observations (solid

branches in Fig. 2) and satisfies the given replanning probability

bound δpreplan
to guarantee bounded failure chance. If this

partial conditional plan generation succeeds, we find a valid

partial conditional plan γ
p
k . Otherwise, we construct additional

constraint φ to block invalid plans (line 27) and force the

SMT solver to generate another plan. Note that φ is only valid

for current horizon k and when we increase the horizon, we

should pop the scope related to the additional constraints φ

from the stack of the SMT solver (line 31) so that we can revisit

σk with the increased horizon. The incremental SMT solver

can efficiently generate alternate valid plans by maintaining

a stack of scopes for the “knowledge” learned from previous

satisfiability checks [6], [43], [44].

If Φk is unsatisfiable and there is no valid plan for the current

horizon, we increase the horizon (line 32) and repeat the above

steps until a valid partial conditional plan is found (line 29) or

a given horizon bound is reached (line 17). Next we describe

the new partial conditional plan generation component.

B. Partial Conditional Plan Generation

In partial conditional plan generation (Algorithm 3), we

construct a valid partial conditional plan γ
p
k that satisfies the

given bound δpreplan
from a valid plan σk. For each step i, we first

recursively construct a next-step conditional plan γ
p
next for oσk

i

(line 38). If the replanning probability preplan(γ
p
k) is greater than

the bound δpreplan
(line 42), we add more observation branches

to γ
p
k by sampling a new observation o′ according to the

probability of occurrence (line 44) and recursively constructing

a next-step partial conditional plan γ
p
next for o′ (line 49). This

is another partial conditional plan synthesis problem with a

new initial belief b′ (line 45), and can be solved recursively

using Algorithm 2 using the algorithm shown in Fig. 4.

Algorithm 2: PartialConditionalPlanSynthesis

Input: POMDP P , Initial Belief binit, Replanning Probability
Bound δpreplan

, Safe-Reachability Objective
G = (Dest, Safe), Horizon Bound h

Output: Valid partial conditional plan γ
p

k with
preplan(binit, γ

p

k) ≤ δpreplan

/* Φk is the constraint to symbolically encode

the goal-constrained belief space */

15 Φk ← (b0 = binit) /* Start from initial belief */

16 k ← 0 /* k is the number of steps */

17 while k ≤ h do
/* Add transition at step k if k > 0 */

18 if k > 0 then
19 Φk ← Φk ∧ (bk = TB(bk−1, ak, ok))

20 push(Φk) /* Push scope */

/* Add goal constraints at step k */

21 Φk ← Φk ∧ G(σk,G, k)
22 repeat

/* Plan generation: checking the

satisfiability of Φk through an SMT

solver [43] */

23 σk ← IncrementalSMT(Φk)
24 if σk 6= ∅ then /* Find valid plan */

/* Generate partial conditional plan */

25 γ
p

k , φ = PartialConditionalPlanGeneration(P,
δpreplan

,G, σk, 1, k)
26 if ∅ = γ

p

k then /* Generation failed */

/* Blocking invalid plans */

27 Φk ← Φk ∧ φ
28 else
29 return γ

p

k

30 until σk = ∅
31 pop(Φk) /* Pop goal and φ at step k */

32 k ← k + 1 /* Increase horizon */

33 return ∅

If we successfully construct a valid γ
p
next for o′, we add o′

to γ
p
k (line 41 or 53). Otherwise, this input plan σk cannot be

an element of a valid partial conditional plan γ
p
k (σk 6∈ Ωγ

p

k
).

Therefore, the prefix (bσk

0 , aσk

1 , oσk

1 , . . . , bσk

i−1, a
σk

i ) of the input

plan σk is invalid for the current horizon k and we construct
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Algorithm 3: PartialConditionalPlanGeneration

Input: POMDP P = (S,A, T ,O,Z), Replanning Probability
Bound δpreplan

, Safe-Reachability Objective
G = (Dest, Safe), Valid k-Step Plan
σk = (b

σk
0 , a

σk
1 , o

σk
1 , . . . , b

σk

k ), Step i, Horizon Bound h
Output: Valid partial conditional plan γ

p

k with replanning
probability preplan(γ

p

k) ≤ δpreplan
, Constraint φ for

blocking invalid plans
34 if i > k then /* Reach the last step k */

/* Terminal belief: γ
p
k

specifies nothing */

35 γ
p

k ← (b
σk

k , ∅, ∅, ∅)
36 return γ

p

k , ∅

/* Initialize */

37 Op

k ← ∅, δ
′
preplan

← δpreplan
, b← b

σk
i−1, a← a

σk
i , o′ ← o

σk
i

/* Recursively process next step */

38 γ
p
next ←
PartialConditionalPlanGeneration(P, δ′preplan

,G, σk, i+ 1, h)
39 if γ

p
next = ∅ then /* Construction failed */

40 Construct φ using Formula 2, return ∅, φ

/* Add o′ to γ
p
k */

41 Op

k ← O
p

k ∪ {o
′}, νp

k(o
′)← γ

p
next, γ

p

k ← (b, a,Op

k, ν
p

k)
42 while preplan(γ

p

k) > δpreplan
do

/* Bound update */

43 δ′preplan
← δ′preplan

+
Pr(o′|b,a)(δ′preplan

−preplan(ν
p

k
(o′))

∑

o∈O−O
p
k
−{o′}

Pr(o|b,a)

44 o′ ← sampled observation in O −Op

k based on the
probability of occurrence

45 b′ ← TB(b, a, o
′) /* Get new initial belief */

46 if b′ ∈ M then /* Check the cache M */

47 γ
p
next ← M(b′)

48 else
/* Recursively construct a next-step

partial conditional plan */

49 γ
p
next ←
PartialConditionalPlanSynthesis(P, b′, δ′preplan

,G, i, h)
/* Update cache */

50 M(b′)← γ
p
next

51 if γ
p
next = ∅ then /* Construction failed */

52 Construct φ using Formula 2, return ∅, φ

53 Op

k ← O
p

k ∪ {o
′}, νp

k(o
′)← γ

p
next /* Add o′ to γ

p
k */

/* Final safety check */

54 foreach observation o ∈ O −Op

k do

55 b′ ← TB(b, a, o) /* Try observation o */

56 if b′ 6∈ Safe then /* Violates safety */

57 Construct φ using Formula 2, return ∅, φ

58 return γ
p

k , ∅

the following additional constraint φ to block invalid plans:

¬((b0 = bσk

0 ) ∧ (ai = aσk

i )

∧ (
i−1∧

m=1

(am = aσk
m ) ∧ (om = oσk

m ) ∧ (bm = bσk
m ))) (2)

φ blocks the invalid plans that have this prefix and avoids

unnecessary checks of these plans (checking σk has already

shown that these plans are invalid).

1) Updating Replanning Probability Bound: As we add

more observation branches to the current partial conditional

plan γ
p
k = (b, a,Op

k, ν
p
k), we update the replanning probability

bound δ′preplan
(line 43) for the remaining uncovered observation

branches O −Op
k to avoid unnecessary computation.

Initially, Op
k is empty and δ′preplan

is the input bound δpreplan
(line

37). δ′preplan
bounds the replanning probability preplan(ν

p
k(o)) of

the next-step partial conditional plan ν
p
k(o) for every remaining

uncovered observation o ∈ O − Op
k. δ′preplan

guarantees that

the replanning probability preplan(γ
p
k) satisfies the original

bound δpreplan
, i.e., preplan(γ

p
k) =

∑
o∈O

Pr(o|b, a)preplan(ν
p
k(o)) ≤

∑
o∈O

Pr(o|b, a)δ′preplan
≤ δ′preplan

= δpreplan
since preplan(ν

p
k(o)) ≤

δ′preplan
based on the definition of δ′preplan

.

During partial conditional plan generation, after adding

a new observation o′ ∈ O − Op
k to the partial conditional

plan γ
p
k (line 41 or 53), we update δ′preplan

to avoid un-

necessary computation. Suppose we construct a new next-

step partial conditional plan γ
p
next with the same replanning

probability α for every remaining uncovered observation

o ∈ O − Op
k − {o′}. Then the replanning probability of the

observation branches O − Op
k is Pr(o′|b, a)preplan(ν

p
k(o

′)) +
α

∑
o∈O−Op

k
−{o′}

Pr(o|b, a) ≤
∑

o∈O−Op

k

Pr(o|b, a)δ′preplan
. There-

fore α ≤ δ′preplan
+

Pr(o′|b,a)(δ′preplan
−preplan(ν

p

k
(o′))

∑

o∈O−O
p
k
−{o′}

Pr(o|b,a) . Then the new

bound for the remaining uncovered observation o ∈ O−Op
k −

{o′} should be δ′preplan
+

Pr(o′|b,a)(δ′preplan
−preplan(ν

p

k
(o′))

∑

o∈O−O
p
k
−{o′}

Pr(o|b,a) and this new

bound is at least δ′preplan
since preplan(ν

p
k(o

′)) ≤ δ′preplan
according

to the definition of δ′preplan
. When the replanning probability

bound becomes larger, computing a partial conditional plan

is usually less expensive. Therefore, updating the replanning

probability bound (line 43) usually improves efficiency and

still makes the current partial conditional plan γ
p
k satisfy the

original bound δpreplan
.

2) Safety Guarantee: After we construct a valid partial con-

ditional plan γ
p
k = (b, a,Op

k, ν
p
k), if the uncovered observation

set is not empty (O−Op
k 6= ∅), then the replanning probability

preplan(γ
p
k) > 0. Though this replanning probability is bounded

by the given bound δpreplan
and by Theorem 1, we know that

the execution failure rate pfail(γ
p
k) is also bounded by δpreplan

.

However, if preplan(γ
p
k) > 0, during execution the robot might

receive an uncovered observation o ∈ O −Op
k and there are

no valid partial conditional plans for this observation o. Then

execution fails due to unsuccessful replanning. In this case,

though we cannot achieve the safe-reachability objective, a

guarantee of the robot still satisfying the safety requirement is

preferable to the situation where the robot violates the safety

requirement. Our approach OPCPS can provide this safety

guarantee by checking whether the successor belief of every

uncovered observation o ∈ O −Op
k of the constructed partial

conditional plan γ
p
k is a safe belief (lines 54-57).

C. Caching

The algorithm we have discussed so far recursively constructs

a partial conditional plan for every sampled belief state. In

some cases, those sampled beliefs are revisited under similar k-

step plans starting from the initial belief. For instance, different

invalid k-step plans can lead to the same belief state that violates

our safety requirement. The original OPCPS presented in [23]

does not cache partial conditional plans for sampled belief
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states, resulting in repetitive computation of partial conditional

plans for revisited belief states. Computing partial conditional

plans requires invoking the incremental SMT solver, which

is typically quite expensive. Therefore, it is more efficient

to reuse previous computed partial conditional plans rather

than constructing a new one from scratch. Moreover, for

revisited belief states that violate the safety constraints and thus

correspond to the empty partial conditional plan φ, caching

also helps quickly invalidate the plans since we cached the

empty partial conditional plan φ for these invalid beliefs.

Algorithm 3 augments the corresponding procedure from

[23] with caching. For every sampled belief state, we first

check whether this belief state is in the cache (line 46). In

this work, we are focusing on discrete POMDPs and the belief

state specifies the probability for each discrete state, which can

be represented as a finite vector. When checking whether a

belief state is in the cache, we are checking whether the belief

state matches any belief state in the cache, i.e., we compare

finite vectors. If we find this belief state in the cache, we can

reuse the previous computed partial conditional plan (line 47).

Otherwise, we compute a partial conditional plan for this belief

state as in the previous OPCPS (line 49). Then we cache the

new partial conditional plans for this sampled belief state (line

50). One can argue that in a large belief space caching each

sampled belief might not be a feasible approach. However,

we are dealing with goal constrained belief space, which is

generally much smaller than the reachable belief space Bb0 .

In our case the lack of caching previously computed partial

conditional plan leads to a slower convergence rate. To provide

some intuitions, consider an invalid plan where there is a

constraint violation near the goal belief but far from the initial

belief. The incremental SMT solver dodges this violation by

slightly modifying the k-step plan. In this case, the new k-step

plan does not change drastically compared to previous invalid

plan. When not caching the previous solution conditional plans,

OPCPS will spend a lot of time to recursively compute a new

partial conditional plan at each planning step. It is reasonable to

recursively compute a partial conditional plan in very dynamic

or adversarial environments where one can observe constraint

violation in each planning step. However, in many applications

the environment is mostly static and it is more efficient to

reuse a previous solution rather than constructing a new one

from scratch.

D. Algorithm Complexity

In the worst case, OPCPS will generate a full conditional plan

(policy) and requires O(I|O|h) calls to the SMT solver similar

to BPS [6], where I is the number of interactions between

plan generation and partial conditional plan generation, |O| is

the size of observation set O respectively and h is the horizon

bound. In general cases, OPCPS can achieve a much better

practical performance compared to BPS, thanks to the carefully

designed partial conditional plan generation with replanning

probability bound update and caching.

V. EXPERIMENTS

We test OPCPS on the kitchen domain (horizon bound

h = 30) presented in [6] and the classic Tag domain [3]

Fig. 5: The kitchen domain [6]: a robot navigates through the kitchen
to pick up a green cup from the black storage area (reachability), while
avoiding collisions with uncertain obstacles (e.g., chairs) modeled as
cylinders placed in the yellow “shadow” region (safety).

(h = 100). We use Z3 [43] as our backend SMT solver. All

experiments were conducted on a 3.0 GHz Intel R© processor

with 32 GB of memory. We set the time-out to be 1800 seconds.

For all the tests of the kitchen and Tag domains, the results

are averaged over 50 independent runs.

In a kitchen domain [6] (Fig. 5), a robot needs to eventually

pick up a cup from the storage while avoiding collisions with

M uncertain obstacles. This kitchen domain is an example

scenario that requires a correctness guarantee of accomplishing

tasks, and POMDPs with safe-reachability objectives provide

a better correctness guarantee than the quantitative POMDP

formulations [6].

The kitchen environment is discretized into N = 36 regions.

The actuation and perception of the robot are imperfect,

modeled as ten uncertain robot actions: move and look in four

directions, pick-up using the left or right hand. We assume

that the robot starts at a known initial location. However,

due to the robot’s imperfect perception, the location of the

robot and the locations of obstacles are all partially observable

during execution. This kitchen domain has a large state space

|S| = C(N,M) · N , where C(N,M) is the number of M -

combinations from the set of N regions. In the largest test

(M = 7) there are more than 108 states. See [6] for more

details regarding the kitchen domain POMDP setup. We also

validate the presented approach on a Fetch robot [45].

A. Performance

We evaluate our previous BPS method [6] and OPCPS (with

the replanning probability bound δpreplan
ranging from 0.1 to 0.9)

in the kitchen domain with various numbers of obstacles. BPS

computes a full conditional plan that covers all observation

branches and is equivalent to OPCPS with δpreplan
= 0.

Fig. 6a, 6b, 6c and 6d show the average computation time of

one synthesis call, the average number of synthesis calls, the

average total computation time and the average computation

time per step as the bound δpreplan
increases, respectively. As

shown in from Fig. 6a (semi-log scale) and 6b, the computation

time of one synthesis call decreases very quickly while the

number of calls to partial conditional plan synthesis (Fig. 6b)

does not increase much as δpreplan
increases. Therefore, the total

computation time (Fig. 6c) keeps decreasing as δpreplan
increases.

Additionally, as we can see from Fig. 6c (semi-log scale), BPS

can only scale up to 4 obstacles within 1800 seconds while

OPCPS with replanning probability bound δpreplan
= 0.9 can

scale up to 7 obstacles. With a small bound δpreplan
= 0.1, we

observe a big performance gain compared to BPS: for the test

case with M = 4 obstacles, the speedup is around 5 times
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Fig. 6: Performance results for the kitchen domain as the bound δpreplan
increases. Different plots correspond to tests with different numbers

M of obstacles. Missing data points in a plot indicate time-out. The red dashed line is the plot of time = 1800 seconds (time-out). The blue
dashed line passes through the data points generated by BPS. All the results are averaged over 50 independent runs.

and for the test case with M = 5 obstacles, BPS times out

while OPCPS with δpreplan
= 0.1 can solve this test in around 9

minutes. Therefore, OPCPS achieves better performance than

BPS in the tests by computing partial conditional plans to

approximate full conditional plans. The results of the average

computation time per step (Fig. 6d) also show the same trend.

These results suggest that for domains where replanning is

easy, increasing the replanning probability bound usually leads

to better scalability.

B. Success Rate

For all the previous performance tests, the constructed partial

conditional plans by OPCPS with different bounds δpreplan
always

achieve the safe-reachability objective (success rate = 100%)

because the robot can move in four directions. When the robot

enters a region surrounded by obstacles in three directions,

the robot can always move back to its previous position,

which means replanning is always possible. However, in some

domains such as autonomous driving and robot chefs, when

the robot commits to an action and finds something wrong, it is

difficult or impossible to reverse the action effects and replan.

To evaluate how OPCPS performs in these scenarios, we test

OPCPS in the kitchen domain with different numbers M of

obstacles (M ≤ 4 since BPS times out for tests with more than

four obstacles), but we disable the robot’s move-north action.

Therefore, when the robot performs move-south and enters a

region surrounded by obstacles in three directions, replanning

fails. However, the robot still satisfies the safety requirement,

thanks to the safety guarantee of OPCPS.

Fig. 7 shows the success rate as the bound δpreplan
increases.

For all the tests, the success rate is always greater than

1.0−δpreplan
(all data points are above the plot of success rate =

1.0−δpreplan
). This matches Theorem 1: the failure rate of a valid

partial conditional plan is bounded by the replanning probability.

Moreover, as the bound δpreplan
decreases to 0, OPCPS produces

a valid full conditional plan with 100% success rate. These

results suggest that for some domains where we anticipate that

replanning is difficult, users can decrease the bound δpreplan
and

allocate computational resources for a high success rate.

Note that the replanning probability bound is a conservative

upper bound of the failure rate since it pessimistically assumes

all the uncovered observation branches that require replanning

will fail, which is a rare case in practice. As we can see

from Fig. 7, even with a high replanning probability bound

δpreplan
= 0.9, the failure rate is at most 30%, which is much

smaller than the given bound δpreplan
= 0.9.

C. Gains from Updating Replanning Probability Bound

As we discussed in Section IV-B, updating the replanning

probability bound during partial conditional plan generation is

important for avoiding unnecessary computation and improving

efficiency. To evaluate the gains from this bound update step,

we test OPCPS with and without bound update in the kitchen

domain with M = 4 obstacles.
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Fig. 8: Replanning probability and total computation time as the bound δpreplan
increases (M = 4). The green dotted line shows the plot of

replanning probability = δpreplan
. The blue dashed line passes through the data points generated by BPS.

Fig. 8a and 8b (semi-log scale) show the average replanning

probability of the constructed partial conditional plans and the

average total computation time as the bound δpreplan
increases,

respectively. As shown in Fig. 8a, with both settings (with and

without bound update) OPCPS constructs a partial conditional

plan with a replanning probability smaller than δpreplan
. However,

OPCPS without bound update constructs a partial conditional

plan with a lower replanning probability than that constructed

by OPCPS with bound update. Therefore, OPCPS without

bound update performs unnecessary computation and constructs

a partial conditional plan with more branches and thus spends

more time than OPCPS with bound update, as shown in Fig. 8b.

For the tests with δpreplan
= 0.1, 0.2, 0.3 that take more time to

solve than those with δpreplan
> 0.3, OPCPS with bound update

achieves a 2-5 times speedup.

D. Gains from Caching

To evaluate the gains from caching, we compare the

performance of OPCPS with caching against BPS and OPCPS

without caching in the kitchen domain. For the kitchen domain

with the number of obstacles ranging from 5 to 7, we compare

results from OPCPS with and without caching only since BPS

is not able to solve these problems within the time limit. We

evaluated OPCPS with or without caching in the kitchen domain

with different replanning probability thresholds. In Fig. 9, we

present a complete benchmark for performance evaluation of

OPCPS with replanning probability bound δpreplan
= 0.5. We can

see that OPCPS with caching performs much better compared

to BPS and OPCPS. In fact OPCPS with caching is 2.5 times

faster on average. Our experimental results demonstrated that

OPCPS with caching gains computational efficiency by reusing

previously computed conditional plans.

However, it is often a question whether or not the better

performance of OPCPS with caching holds with different

replanning probability bounds δpreplan
. Because of the huge

computational times involved (e.g., δpreplan
= 0.7 with 5, 6, 7

obstacles requires 72 − 96 CPU hours), we present a spot

check in Table I for assessing performance gains from caching

with different δpreplan
. From Table I, we observe similar trends

for different replanning probability thresholds e.g., δpreplan
=

0.9, 0.8, 0.7, 0.6. Even when we choose a higher replanning

probability, OPCPS with caching is 40% − 57% faster than

OPCPS without caching both in average and worst-case runs.

E. Physical Validation

We conducted several physical validations using the mobile

manipulator Fetch [45], which is equipped with a single 7-

DOF arm, as well as a base-mounted laser scanner and a

head-mounted 3D camera for perception. These validations

were initially attempted in simulation using Gazebo [46], where

the Fetch can be simulated over different environments. Both

the simulated and the real-world robots are fully controlled via

the Robot Operating System (ROS) [47]. The software control

architecture of the robot includes a simultaneous localization

and mapping (SLAM) system [48]. The SLAM utilizes the

laser information to incrementally create a 2D map of the

surroundings, which is used to provide a global localization of

the robot [49]. For navigation purposes, the robot is equipped
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Fig. 9: Performance comparison between BPS, OPCPS with and without caching.

δpreplan
Obstacle Average Runtime (sec) Worst-case Runtime (sec)

With Cache Without Cache With Cache Without Cache

0.9 1 14 24 15 25
0.8 2 9 22 16 43
0.7 5 446 1047 1246 2863
0.6 6 2209 4031 3476 6015
0.7 7 1090 2542 2744 6001

TABLE I: A spot check for assessing performance gains from caching with different δpreplan
. The results showed that the performance of

OPCPS is significantly improved with caching for both average and worst-case conditions. All results are averaged over 50 independent runs.

with a move action that takes the robot to a given position and

orientation with respect to a global reference.

We validate OPCPS on the Fetch for the domain shown in

Fig. 1. The setup is similar to the kitchen domain. The Fetch

needs to pick up a target object (the blue can on the table) while

avoiding collisions with uncertain obstacles such as floor signs

and file cabinets, which can be placed in different locations.

The POMDP’s state space consists of locations of the robot and

objects. We use the Vicon tracking system [50] to detect object

locations, which is often accurate but can still produce false

negative and false positive due to occlusion or inappropriate

Vicon marker configurations on objects. We estimate the false

negative and false positive probabilities by counting the false

negative and false positive events during 100 Vicon detections.

The POMDP’s probabilistic observation function is defined

based on the false negative and false positive probabilities.

To test the effects of different replanning probability bounds,

we only allow the Fetch to move in three directions (west, east

and south), similar to the setup of the success rate experiments.

Sometimes the Fetch may fail to move its base when given a

move action command and stay in the same place. We estimate

the failure probability of these move actions by counting

the failure events during 100 move action executions. The

POMDP’s probabilistic transition function is defined based on

this failure probability. Fig. 10a shows the initial state. There

are two uncertain obstacles (a wet-floor sign and a file cabinet).

We test OPCPS with two bounds δpreplan
= 0.9 and δpreplan

= 0.1.

With δpreplan
= 0.9, after observing no obstacle in the south

direction, the Fetch decides to move south (Fig. 10b) because

the partial conditional plan constructed with a high replanning

probability bound does not cover the case where the Fetch is

surrounded by obstacles and the wall. Then replanning fails

but the Fetch still satisfies the safety requirement as shown in

Fig. 10b, thanks to the safety guarantee provided by OPCPS.

However, with δpreplan
= 0.1, after observing no obstacles in

the south direction, the Fetch decides to move west (Fig. 10c)

because the partial conditional plan constructed with a low

replanning probability bound covers the case where the robot

is surrounded by obstacles. In order to avoid this situation,

the Fetch needs to move west and gather more information.

Then the Fetch observes an obstacle in the south direction

and decides to move west again (Fig. 10d). Next, the Fetch

observes no obstacle in the south direction, and now it can

move south. Unlike the case shown in Fig. 10b where the robot

is surrounded by two obstacles and the wall, in the situation

shown in Fig. 10d, if there is another obstacle in the south

direction, the Fetch can still move west since there are only

two obstacles. Finally, the Fetch moves to the table and picks

up the target object (Fig. 10e).

We also validate OPCPS with caching on a Fetch robot in

the same lab domain. The Fetch needs to reach a goal location

while avoiding collisions with uncertain obstacles such as file

cabinets. In this experiment, there are 2 uncertain obstacles

(white cabinets) in the lab domain. The executions of the policy

generated by OPCPS with caching are shown in Fig. 11a, 11b,

11c and 11d. As shown in the figures, the Fetch successfully

reached the goal location (near the table in Fig. 11d) following

the policy generated by OPCPS with caching. Our physical

experiments show that the assumptions made in this work can

correspond to realistic settings and that the behavior of the
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Fig. 10: Physical validation of OPCPS for the domain shown in Fig. 1.

(a) (b) (c) (d)

Fig. 11: Physical validation of OPCPS with caching for the lab domain. The Fetch requires to reach the table in (d) while avoiding white
cabinets. The red rectangle in (a) and the blue rectangle in (d) represent the target and the start locations, respectively. The black line is the
traversed path while following the policy generated by OPCPS with caching.

real robot is intuitive and correct.

F. Tag Domain

To further demonstrate the advantage of OPCPS over BPS,

we evaluate OPCPS on a classic POMDP domain [3]. The

task for the robot is to search for and tag a moving agent in a

grid with 29 locations. The agent follows a fixed strategy that

intentionally moves away from the robot. Both the robot and the

agent can move in four directions or stay. The robot’s location

is fully observable while the agent’s location is unobservable

unless the robot and the agent are in the same location.

This Tag domain is challenging for BPS because of a large

number of observations (|O| = 30) and more importantly, a

huge planning horizon for computing a full conditional plan.

However, computing a full conditional plan is unnecessary

since replanning is easy in this domain. Fig. 12a and 12b show

the average total computation time and the average computation

time per step for the Tag domain as the bound δpreplan
increases.

These results show a similar trend to the previous kitchen

domain tests: with a small bound δpreplan
= 0.1, we observe

a big performance gain compared to BPS. BPS cannot solve

this test within the 1800-second time limit while OPCPS with

δpreplan
= 0.1 can solve this test in around 40 seconds and the

computation time per step is less than 1 second. We also

perform a spot check for assessing performance gains from

caching in this domain as well. With δpreplan
= 0.4, we observe

a significant performance gain compared to OPCPS without

caching. In this setting, OPCPS without caching takes 658
seconds on average and 1541 seconds on worst cases whereas

OPCPS with caching takes 254 seconds on average and 611
seconds on worst case to solve this test.

VI. DISCUSSION

We presented a new approach, called OPCPS, to policy

synthesis for POMDPs with safe-reachability objectives. We

introduce the notion of a partial conditional plan to improve

computational efficiency. Rather than explicitly enumerating

all possible observations to construct a full conditional plan,

OPCPS samples a subset of all observations to ensure bounded

replanning probability. Our theoretical and empirical results

show that the failure rate of a valid partial conditional plan

is bounded by the replanning probability. Moreover, OPCPS

guarantees that the robot still satisfies the safety requirement

when replanning fails. Compared to our previous BPS method

[6], OPCPS with a proper replanning probability bound scales

better in the tested domains and can solve problems that are

beyond the capabilities of BPS within the time limit. The

results also suggest that for domains where replanning is

easy, increasing the replanning probability bound usually leads

to better scalability, and for domains where replanning is

difficult or impossible in some states, we can decrease the

replanning probability bound and allocate more computation

time to achieve a higher success rate. Our results also indicate

that by updating the replanning probability bound during

partial conditional plan generation, we can quickly detect if

the current partial conditional plan satisfies the bound and

avoid unnecessary computation. Moreover, compared to OPCPS

without caching, OPCPS with caching reuses constructed partial

conditional plans for sampled belief states and greatly improves

the computational efficiency as shown in the results.

In this work, we focus on discrete POMDPs. While many

robot applications can be modeled using this discrete represen-

tation, discretization often suffers from the curse of dimension-

ality. Investigating how to deal with continuous POMDPs [9],

[10], [12], [21] directly is a promising future direction. OPCPS

constructs partial conditional plans by sampling observations

according to the probability of occurrence (Algorithm 3, line

44), which does not consider the importance of observations

[14]. How to extend OPCPS to handle critical observations is

another important ongoing question.
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Fig. 12: Performance results for the Tag domain as the replanning probability bound δpreplan
increases. All the results are averaged over 50

independent runs. Fig. 12a shows the average total computation time and Fig. 12b shows the average total computation time per step.

ACKNOWLEDGMENTS

This work was supported in part by NSF CCF 1139011, NSF

CCF 1514372, NSF CCF 1162076 and NSF IIS 1317849. We

thank the reviewers for their insightful comments. We thank

Bryce Willey and Constantinos Chamzas for their assistance

in the physical experiments.

REFERENCES

[1] R. D. Smallwood and E. J. Sondik, “The optimal control of partially
observable Markov processes over a finite horizon,” Operations Research,
vol. 21, no. 5, pp. 1071–1088, 1973.

[2] L. P. Kaelbling, M. L. Littman, and A. R. Cassandra, “Planning and
acting in partially observable stochastic domains,” Artificial Intelligence,
vol. 101, no. 1-2, pp. 99–134, 1998.

[3] J. Pineau, G. Gordon, and S. Thrun, “Point-based value iteration: An
anytime algorithm for POMDPs,” in IJCAI, 2003, pp. 1025–1030.

[4] K. Chatterjee, M. Chmelı́k, R. Gupta, and A. Kanodia, “Qualitative
analysis of POMDPs with temporal logic specifications for robotics
applications,” in ICRA, 2015, pp. 325–330.

[5] P. Cai, Y. Luo, D. Hsu, and W. S. Lee, “HyP-DESPOT: A hybrid parallel
algorithm for online planning under uncertainty,” in RSS, 2018.

[6] Y. Wang, S. Chaudhuri, and L. E. Kavraki, “Bounded policy synthesis
for POMDPs with safe-reachability objectives,” in AAMAS, 2018, pp.
238–246.

[7] S. Kim, R. Thakker, and A. Agha-Mohammadi, “Bi-directional value
learning for risk-aware planning under uncertainty,” IEEE Robotics and

Automation Letters, vol. 4, no. 3, pp. 2493–2500, July 2019.
[8] A. A. R. Newaz, S. Chaudhuri, and L. E. Kavraki, “Monte-Carlo policy

synthesis in POMDPs with quantitative and qualitative objectives,” in
RSS, 2019.

[9] J. Hoey and P. Poupart, “Solving POMDPs with continuous or large
discrete observation spaces,” in IJCAI, 2005, pp. 1332–1338.

[10] J. M. Porta, N. Vlassis, M. T. J. Spaan, and P. Poupart, “Point-based
value iteration for continuous POMDPs,” Journal of Machine Learning

Research, vol. 7, pp. 2329–2367, 2006.
[11] H. Kurniawati, D. Hsu, and W. S. Lee, “SARSOP: Efficient point-based

POMDP planning by approximating optimally reachable belief spaces,”
in RSS, 2008.

[12] H. Bai, D. Hsu, and W. S. Lee, “Integrated perception and planning in
the continuous space: A POMDP approach,” International Journal of

Robotics Research, vol. 33, no. 9, pp. 1288–1302, 2014.
[13] A. Somani, N. Ye, D. Hsu, and W. S. Lee, “DESPOT: Online POMDP

planning with regularization,” in NIPS, 2013, pp. 1772–1780.
[14] Y. Luo, H. Bai, D. Hsu, and W. S. Lee, “Importance sampling for online

planning under uncertainty,” WAFR, 2016.
[15] A. Undurti and J. P. How, “An online algorithm for constrained POMDPs,”

in ICRA, 2010, pp. 3966–3973.
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