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ABSTRACT

The second LIGO–Virgo catalog of gravitational-wave transients has more than quadrupled the
observational sample of binary black holes. We analyze this catalog using a suite of five state-of-
the-art binary black hole population models covering a range of isolated and dynamical formation
channels, and infer branching fractions between channels as well as constraints on uncertain physical
processes that impact the observational properties of mergers. Given our set of formation models, we
find significant differences between branching fractions of the underlying and detectable population,
and that the diversity of detections suggests that multiple formation channels are at play. A mixture of
channels is strongly preferred over any single channel dominating the detected population: an individual
channel does not contribute to more than ≃ 70% of the observational sample of binary black holes. We
calculate the preference between the natal spin assumptions and common-envelope efficiencies in our
models, favoring natal spins of isolated black holes of. 0.1, and marginally preferring common-envelope

efficiencies of & 2.0 while strongly disfavoring highly inefficient common envelopes. We show that it is
essential to consider multiple channels when interpreting gravitational-wave catalogs, as inference on
branching fractions and physical prescriptions become biased when contributing formation scenarios
are not considered or incorrect physical prescriptions are assumed. Although our quantitative results
can be affected by uncertain assumptions in model predictions, our methodology is capable of including
models with updated theoretical considerations and additional formation channels.

1. INTRODUCTION

In less than five years the field of gravitational-wave
(GW) astrophysics has evolved from speculating about
the properties of compact binary coalescence events to

having a substantial population primed for astrophys-
ical inference. The recently released catalog of com-
pact binary coalescences (GWTC-2), accumulated by
the LIGO and Virgo GW detector network (Aasi et al.
2015; Acernese et al. 2015), has increased the num-
ber of confident detections reported by the LIGO Sci-

entific and Virgo Collaboration (LVC) to 50 (Abbott
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et al. 2020b). As the endpoint of massive-star evolution,
merging double compact objects can encode unique in-
formation about their progenitor systems, such as the
types of galactic environments they were born in and
their formation processes, the complex stellar evolution
that persisted throughout their lives, and the physics
of the supernovae that marked their deaths (Abbott
et al. 2016a; Mandel & Farmer 2018; Vitale 2020). From
this catalog, the rates of compact binary mergers in the
local universe have been significantly constrained, fea-
tures have been resolved in the binary black hole (BBH)

mass spectrum, and a non-negligible fraction of systems
have been found to have spins misaligned relative to
the pre-merger orbital angular momentum by more than
90◦ (Abbott et al. 2020c).
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Of the GWTC-2 observations, the vast majority (46)
are confidently identified as BBH mergers (Abbott et al.

2020b). BBHs have a disparate array of proposed forma-

tion channels. The simple picture of two canonical BBH

formation channels, isolated evolution of a massive-star

binary and dynamical assembly in a dense stellar en-

vironment, is now inadequate to capture the breadth of
theoretical models proposed for BBH mergers. Both the
isolated-evolution and dynamical-assembly paradigms

have multiple subchannels with differing predictions

for mass distributions, spin distributions, and redshift

evolution of BBH mergers, each with predicted local

merger rates consistent with the empirical rate measured

by the LVC of 15–40 Gpc−3 yr−1 (90% credible interval;
Abbott et al. 2020c).

On the isolated evolution side, the standard chan-

nel involves a phase of unstable mass transfer following

the formation of the first black hole (BH), initiating a

common envelope (CE) phase that hardens the binary

via drag forces (Paczyński 1976; van den Heuvel 1976;

Tutukov & Yungelson 1993) and leading to BBHs

that can merge in less than a Hubble time (e.g.,

Bethe & Brown 1998; Belczyński et al. 2002;

Dominik et al. 2012; Belczynski et al. 2016; El-

dridge & Stanway 2016; Stevenson et al. 2017b;

Giacobbo & Mapelli 2018). However, theoretical

models have shown that hardened BBH systems merging
within a Hubble time can also form through late-phase
stable mass transfer (van den Heuvel et al. 2017; Neijssel

et al. 2019). On the other hand, if the progenitor stars

are born in a very tight orbital configuration they may

proceed through chemically homogeneous evolution, in

which rapid rotation of the stars attained though tidal

interaction leads to strong mixing, replenishing the core
with elements for nuclear burning and never leading to
significant expansion of the progenitor stars (De Mink &

Mandel 2016; Mandel & De Mink 2016; Marchant et al.

2016). Extremely low-metallicity Population III stars in

binary systems have also been proposed for forming the
high-mass BBH mergers observed (Madau & Rees 2001;

Kinugawa et al. 2014; Inayoshi et al. 2017).
On the dynamical side, following the forma-

tion of BHs from massive stars in a dense stel-

lar environment such as a globular cluster (GC),

nuclear star cluster (NSC), or young open star

cluster, these BHs mass segregate to the core

of the cluster due to dynamical friction and cre-

ate a dense subsystem dominated by BH inter-

actions (Lightman & Shapiro 1978; Sigurdsson

& Hernquist 1993). Strong gravitational en-

counters between BH systems act to produce

hardened binaries, typically extracting orbital

energy from the more massive components of

the interaction by ejecting the lighter compo-

nents (McMillan et al. 1991; Hut et al. 1992;

Sigurdsson & Phinney 1993; Miller & Hamil-

ton 2002; Gültekin et al. 2006; Fregeau & Ra-

sio 2007) and leading to BBHs that can merge

within a Hubble time (e.g., Portegies Zwart &

McMillan 2000; O’Leary et al. 2006; Downing

et al. 2010; Ziosi et al. 2014; Samsing et al. 2014;

Rodriguez et al. 2015, 2016a; Antonini & Ra-

sio 2016; Askar et al. 2017; Samsing & Ramirez-

Ruiz 2017; Banerjee 2017). Different dynamical
environments have unique predictions for the properties

of merging BBHs, since stellar densities, escape veloci-
ties, and stellar mass budgets vary significantly between
these environments.

To further complicate matters, a slew of formation

scenarios for synthesizing BBHs have been proposed
that do not fit cleanly into the broad categorizations
of isolated binary evolution and dynamical assembly. A

significant number of massive stars form in high-order
multiples such as triples and quadruples (Sana et al.

2014; Moe & Di Stefano 2017). If a BBH is the in-

ner binary in a hierarchical system, eccentricity can

be imparted into the inner BBH through the Lidov–

Kozai mechanism (Lidov 1963; Kozai 1962). This pro-

cess will expedite the inspiral time of the bi-

nary, allowing systems to merge as GW sources

that would not typically merge within a Hub-

ble time (Wen 2003; Silsbee & Tremaine 2017;

Antonini et al. 2017; Fragione & Kocsis 2019;

Vigna-Gómez et al. 2020). Galactic nuclei are also

predicted to produce BBH mergers in a similar way, with
the supermassive BH as the outer perturber (Antonini &

Perets 2012). Another promising environment for facil-
itating BBH mergers are active galactic nuclei (AGNs);

BHs are predicted to get caught in resonance traps of

AGN disks, potentially proceeding through many hier-

archical mergers due to the high escape velocity in the

vicinity of the supermassive BH (McKernan et al. 2014;

Stone et al. 2017; Bartos et al. 2017). Stellar-mass

BBHs detected by LIGO–Virgo have also been

proposed to originate from the merger of cen-

tral BHs in extremely low mass ultradwarf galax-

ies that merge at z & 1 (Conselice et al. 2020).

Ultra-wide BH binaries and high-order systems

in the galactic field that are perturbed from stel-

lar flybys may also excite eccentricity in the BBH

system and cause it to merge within a Hubble

time (Michaely & Perets 2019, 2020). Finally,

primordially formed BHs have also been proposed as a

source of merging BBHs, and have been suggested as a
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candidate for dark matter (Bird et al. 2016; Sasaki et al.
2018; Clesse & Garcia-Bellido 2020).

Numerous attempts have been made to lever-

age GW observations for characterizing the

branching fractions between these channels or

constraining uncertain physical processes gov-

erning these channels (Stevenson et al. 2015;

Rodriguez et al. 2016b; Stevenson et al. 2017a;

Vitale et al. 2017; Mandel et al. 2017; Zevin

et al. 2017; Talbot & Thrane 2017; Farr et al.

2017a,b; Barrett et al. 2018; Taylor & Gerosa

2018; Wysocki et al. 2019; Fishbach & Holz 2019;

Roulet & Zaldarriaga 2019; Arca Sedda & Benac-

quista 2019; Powell et al. 2019; Arca Sedda et al.

2020; Baibhav et al. 2020; Safarzadeh 2020; Kim-

ball et al. 2020a; Farmer et al. 2020; Bouffanais

et al. 2020; Roulet et al. 2020; Hall et al. 2020;

Antonini & Gieles 2020a; Abbott et al. 2020c;

Bhagwat et al. 2020; Bavera et al. 2020a; Wong

et al. 2020b,a; Kimball et al. 2020b). However,
due to the high complexity and dimensionality of the

problem, these studies often restrict themselves to tar-

geting a single channel or a small subset of channels.

Though idealized model comparisons are enlightening,

the most robust and unbiased constraints will come from

considering many prominent BBH formation channels

and encompassing a wide range of prescriptions for un-

certain physical processes, which can affect BBH popu-

lation properties in highly degenerate ways.

Given the rapidly growing catalog of BBHs, we are

now at the stage where such high-dimensional, multi-

channel model selection endeavors can be informative.

We present a methodology for leveraging a suite of state-

of-the-art BBH formation models to perform hierarchi-
cal inference using the catalog of GW events. We simul-
taneously consider the predicted BBH parameter distri-

butions from five simulated populations, ensuring the

models are as self-consistent as possible, and vary two

uncertain physical parameters between these channels,

namely the natal spins of isolated BHs and the efficiency

of CE evolution. Though the models we consider do
not cover the entire array of proposed formation chan-
nels, the infrastructure presented in this work can be

expanded to include an arbitrary number of channels

and uncertain physical prescriptions. We find that the

current catalog of GWs strongly disfavors a single for-

mation channel, indicating a more complex landscape of
prominent channels for BBH formation.

In Section 2, we briefly overview the astrophysical

models considered in this work, as well as the physical

parameterizations we vary between these models. Sec-

tion 3 details our hierarchical modeling procedure. In

Section 4, we show the results of our analysis applied to
the current catalog of GW observations of BBH mergers.

We discuss the implications of our results and conclude

in Section 5.

2. FORMATION MODELS

We consider five astrophysical models for BBH merg-

ers, each with unique predictions for mass distributions,

spin distributions, and evolution of merger rate with red-

shift. Further details behind these models and assump-

tions regarding cosmological evolution can be found in

Appendix A.

2.1. Isolated Evolution

Three models are considered that fall under the broad

categorization of isolated evolution in the galactic field:

binaries that proceed through a late-phase CE (CE), bi-

naries that only have stable mass transfer between the

star and the already-formed BH (SMT), and chemically

homogeneous evolution (CHE).

The CE and SMT channels are modeled using the
POSYDON framework (Fragos et al. 2021; in preparation),

which, among other functionalities, stitches together dif-

ferent phases of binary evolution that are modeled using

rapid population synthesis (COSMIC; Breivik et al. 2020)

and detailed binary evolution calculations (MESA; Pax-

ton et al. 2011, 2013, 2015, 2018, 2019). These models

are described in detail in Bavera et al. (2020a) and the

key ingredients summarised in Appendix A.1.1. In this
channel, the more massive star leaves the main sequence

first and expands to become a super-giant star. At some

point the star overfills its Roche-lobe, typically leading

to a stable mass-transfer event where the primary loses

most of its hydrogen envelope before it undergoes core

collapse and forms a BH. During the subsequent evolu-

tion the secondary expands, leading to a second mass-
transfer episode. This can be either stable or unstable,
the latter leads to a CE phase which shrinks the or-
bit more efficiently. If the stripping of the secondary

is successful a BH–Wolf–Rayet system is formed which

can undergo a tidal spin-up phase. In general stable

mass transfer leads to wider orbits compared to CE and,

hence, the system will avoid tidal spin-up (Bavera et al.
2020a). Eventually the secondary collapses to form a

BH and energy dissipation due to GW radiation leads

to the merger.

CHE models are adapted from du Buisson et al. (2020),

who computed a large grid of simulations for binaries
undergoing this evolutionary process. Although not dis-

cussed in the work of du Buisson et al. (2020), the simu-
lations include predictions for the final spins of the BHs,

which arise from tidal synchronization during core hy-
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drogen burning. The final spin in these systems is de-
termined by wind mass loss which removes angular mo-

mentum and widens the binary. This leads to BBHs at

wider separations and lower spins with increasing metal-

licity (Marchant et al. 2016).

2.2. Dynamical Assembly

We also consider two models for BBH mergers syn-

thesized via dynamical assembly in dense stellar envi-

ronments: formation in old, metal-poor GCs (GC) and

formation in NSCs (NSC).
GC simulations are taken from a grid of 96 N -body

models of collisional star clusters described in Rodriguez

et al. (2019). The models were created using the Hénon-

style Cluster Monte Carlo code CMC (Hénon 1971a,b;

Joshi et al. 2000; Pattabiraman et al. 2013). The 96
models consist of four independent grids of 24 models,

each with different initial spins for BHs born from stel-
lar collapse (χb = 0, 0.1, 0.2, and 0.5). Within each

24 model subgrid, the clusters span a range of realistic

initial masses, metallicities, and half-mass radii consis-

tent with observations of GCs in the Milky Way and

nearby galaxies. The cluster birth times are taken from

a cosmological model for GC formation (El-Badry et al.

2019), where we take into account the correlation be-
tween cluster metallicitiy and formation redshift (Ro-

driguez & Loeb 2018; Rodriguez et al. 2018a).

NSC models are adapted from Antonini et al. (2018).

For the evolution of the clusters we need the initial clus-

ter mass M , half-mass radius rh, and BH masses. Since

the formation history and evolution of NSCs is uncer-

tain (Neumayer et al. 2020), we proceed with a num-
ber of simplifying assumptions. We assume that the

properties of nuclear clusters today are representative

of their properties at formation. Accordingly, M and rh
are sampled directly from the 151 NSCs in Georgiev &

Böker (2014) with well determined properties. For each

cluster we use COSMIC to generate the BH masses from a

single stellar population with metallicity 0.01Z⊙, 0.1Z⊙,
or 1Z⊙. We then evolve the clusters and their BHs us-

ing the semi-analytical approach described in Antonini
et al. (2018). Finally, the BBH merger rate, masses and

component spins, and redshift evolution are obtained

by assuming that the formation epoch and metallicity

of nuclear clusters evolve as their galactic hosts, using
Madau & Fragos (2017). This procedure is repeated for
four values of the initial BH spins, χb = 0, 0.1, 0.2 and

0.5.

2.3. Physical Prescriptions

The physical prescription we vary across all models

above is the natal spin magnitude χb of BHs that are

born in isolation or in systems where binary interactions

prior to the collapse of the helium core do not cause sig-

nificant spin-up. Variations in the natal spin magnitudes

act as a proxy for the efficiency of angular momentum

transport in massive stars; if angular momentum is ef-

ficiently transported from the core to the envelope, the

birth spins of BHs are predicted to be low (e.g., Fuller &

Ma 2019). We use four models for the natal dimension-
less spin magnitudes of isolated BHs in each chan-

nel: χb ∈ [0.0, 0.1, 0.2, 0.5]. These discrete values

for χb were chosen to match the natal spins as-

sumed for the GC simulations in Rodriguez et al.

(2019). However, this does not mean that all compo-

nents of BBHs in these models are spinning at precisely
these prescribed values.

In the field channels, tidal spin-up of the pre-collapse

helium core or mass transfer following the birth of the

primary BH can cause BHs to be born with or attain

spin. For the CE channel, the helium core progenitor of
the second-born BH can be spun up through tidal inter-

actions with the already-born BH. The degree at which
the second-born BH is spinning depends on the post-CE
separation, and thus the CE efficiency; lower CE efficien-

cies will lead to tighter post-CE binaries, increasing the

effect of tides and therefore increasing the natal spin of

the second-born BH (Zaldarriaga et al. 2018; Qin et al.
2018; Bavera et al. 2020a). The spin of the first-born

BH can grow through stable mass transfer, though this
is sensitive to assumptions regarding the maximum rate
of accretion. Since we consider Eddington-limited ac-

cretion efficiency, the amount of spin-up that first-born

BHs can acquire via accretion is minimal (Thorne 1974),

and systems can not tighten enough through this highly
non-conservative mass transfer for tidal effects to be ef-

fective at spinning up the progenitor of the second-born
BH (Bavera et al. 2020a). BBHs evolving through chem-

ically homogeneous evolution are near-contact at birth,

and strong tidal interaction between the stars leads to

high rotations and substantial chemical mixing in both

stars. This inhibits significant expansion of the stars,

preventing efficient loss of angular momentum via ac-

cretion or loss of their envelopes. The natal spins of

all BHs in our simulations self-consistently account for

these effects, and for all three field channels considered,

components spinning at χ < χb at BBH formation are

given spins of χb. Thus, unless binary interactions

such as tidal effects or mass transfer are efficient

at spinning up the BH components, their spin

magnitudes are assumed to be those that they

would attain in isolation solely from the collapse

of the stellar core.
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Figure 1. Marginalized detection-weighted distributions of BBH parameters for our five formation channels with varying natal
spin prescriptions. The CE efficiency is fixed at αCE = 1.0 for all models in this figure. Black ticks mark the median value
of the posterior distribution for all confident BBHs in GWTC-2; GW190521, which is excluded from our analysis, is instead
marked with a red tick. The dashed black line shows an example mixture model synthesized for the five channels, assuming
equal detectable branching fractions and a true model with the values χb = 0.0 and αCE = 1.0.

For the dynamical channels, the natal spins of BHs

play an important role in the evolution of the BBH

subsystem in the cluster as a whole. In particular, the

fraction of BBH merger products retained in a cluster

is highly sensitive to the spins of the BHs in the na-

tal population (Rodriguez et al. 2019; Gerosa & Berti

2019; Kimball et al. 2020a); as spin magnitudes increase,
the higher degree of asymmetry in the merger

leads to larger relativistic recoil kicks due to the

anisotropic emission of GWs at merger (Peres

1962; Bekenstein 1973; Wiseman 1992; Favata

et al. 2004; Baker et al. 2006; Pollney et al. 2007;

Koppitz et al. 2007; Holley-Bockelmann et al.

2008; Lousto et al. 2010; Blanchet 2014; Sper-

hake 2015). Thus, BBH merger products from spin-

ning BHs components are more efficiently kicked out of

their host environments, preventing them from proceed-

ing in subsequent hierarchical mergers (e.g., Rodriguez

et al. 2019; Banerjee 2020; Fragione & Silk 2020). With
higher natal spins, the mass spectrum of BBHs will

thus be quenched at large values by the limitations of

massive-star evolution, though the retention rate and

frequency of hierarchical mergers is sensitive to the mass

and escape velocities of the cluster in question (Antonini

& Rasio 2016; Antonini et al. 2018; Gerosa & Berti 2019;
Mapelli et al. 2020; Kimball et al. 2020a,b). Suites
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of cluster models with varying cluster properties and
metallicities are thus run for the GC and NSC channels for

all spin magnitude models considered. Though all BHs
start with the prescribed spin magnitude, higher spins in
BBH components can be attained through hierarchical
mergers, which impart a spin on the newly-formed BH

of χ ∼ 0.7 for near equal-mass binary mergers with non-
spinning components (Pretorius 2005; González et al.

2007; Buonanno et al. 2008).

In addition, we also consider five assumptions for the

efficiency of CEs: αCE ∈ [0.2, 0.5, 1.0, 2.0, 5.0]. Values of

αCE > 1.0 (i.e. efficient CE evolution) mean that there
is an energy source in addition to the orbital energy of

the binary acting to remove the envelope (e.g., Ivanova

et al. 2013; Nandez & Ivanova 2016), or that some of

the envelope material remains bound to the stellar core

after the successful ejection of the CE (e.g., Fragos et al.

2019). These variations are only assumed to affect the
CE channel, since the other field channels by definition

do not proceed through late phases of unstable mass
transfer and BBHs from dynamical channels are typi-
cally assembled after BHs form from isolated progeni-
tor stars. The value of αCE in the CE channel impacts

the resultant spin distribution significantly, since tighter
post-CE binaries (lower αCE) lead to more efficient tidal
spin-up of the second-born BH.

We use a four-dimensional parameter distribution of
source-frame chirp mass Mc, mass ratio q = m2/m1,

effective inspiral spin χeff , and redshift of merger z in

constructing our likelihoods of the population models

given the GW observations. Marginalized detection-

weighted distributions for our population models are

shown in Figure 1. From these distributions, a va-

riety of features from our population models can

be seen. In the chirp mass and mass ratio dis-

tributions, varying assumptions for χb primar-

ily affect dynamical channels (GC and NSC); in-

creasing χb suppresses the high-mass bump in

the chirp mass distribution and the asymmet-

ric peak near q ∼ 0.5, which are populated by

hierarchical merger events that require lower re-

coil kicks and therefore lower component spins in

the first-generation population. The asymmetric

peak and high-mass bump are more pronounced

in the NSC population compared to the GC popula-

tion since the potential well is deeper and merger

products are more readily retained in the cluster.

All formation channels show diversity in the χeff

distributions with varying χb. As χb increases,

we see broader distributions for χeff in the GC

and NSC models coming from their isotropically-

oriented spins. The CE and SMT channels are

strongly peaked at the prescribed value of χb,

with tails extending to higher χeff in the CE chan-

nel due to systems that proceed through efficient

tidal spin-up. The CHE channel typically has com-

ponent spins greater than χb and is therefore

only affected in our most extreme spin scenario

(χb = 0.5). The redshift distributions peak at

slightly larger values and broaden with increas-

ing χb for the CE and SMT channels since higher

aligned spins spend more time in-band and and

are preferentially detected.

3. POPULATION INFERENCE

Given our astrophysical models, we now establish how

we place constraints on branching fractions and physi-

cal prescriptions using the current catalog of BBH ob-

servations. We use posterior and prior samples from

the GWTC-1 (Abbott et al. 2019a) and GWTC-2 (Ab-

bott et al. 2020b) analyses, publicly-available from

the Gravitational Wave Open Science Center (Abbott
et al. 2019c). For GWTC-1 and GWTC-2, we use the

Combined and PublicationSamples posterior samples,

respectively, which combine posterior samples from dif-

ferent waveform approximants to marginalize over un-

certainties in waveform modeling (Abbott et al. 2016b).

The choice of prior on the event parameters are irrel-

evant since they are divided out during the inference.

Detection probabilities for each sample in our popula-

tions are calculated assuming a detector network con-

sisting of LIGO Hanford, LIGO Livingston, and Virgo

operating at midhighlatelow sensitivity (Abbott et al.

2018) and assuming a network signal-to-noise ratio

(SNR) threshold of ρthresh = 10 (see Appendix B);
these detection probabilities are used to construct the

detection-weighted distributions in Figure 1. We only
consider high-confidence GW events that are definitively

mergers of two BHs, thus excluding GW170817 (Ab-

bott et al. 2017), GW190425 (Abbott et al. 2020a),

GW190426 (Abbott et al. 2020b), and GW190814 (Ab-

bott et al. 2020d). We also exclude GW190521 (Abbott
et al. 2020e) from our analysis as it has vanishing sup-

port across our models and picks up on minute fluctua-
tions in the kernel density estimates (KDEs) for certain
population models. This event is either not explainable

by our set of channels or requires updated physical pre-

scriptions for our set of channels. For each event, we

randomly draw 102 samples from its posterior distribu-
tion to evaluate in the population model KDEs, which

are parameterized by χb, αCE, and formation channel.
We provide additional details for our KDE generation

in Appendix C.
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We perform hierarchical modeling to place con-
straints on the parameters influencing our population

models using a methodology similar to Zevin et al.

(2017). Since we are only interested in the shape of

the populations and not the merger rate, we implic-
itly marginalize over the expected number of detec-

tions (e.g., Fishbach et al. 2018). The hyperparam-
eters we wish to infer are the underlying branching

fractions, ~β = [βCE, βCHE, βGC, βNSC, βSMT], and the physi-

cal prescriptions assumed in each model, ~λ = [χb, αCE].

We assume an uninformative prior across ~β, given by a

Dirichlet distribution with equal concentration param-

eters and dimensions equal to the number of formation
channels, and impose the constraints (0 ≤ βi ≤ 1) ∀ i

and
∑

i βi = 1. Alternatively, this prior could be pro-

portional to the predicted local merger rates for these

channels; however, given the large uncertainties in pre-

dicted merger rates we choose an uninformative prior for

this work. We assume a uniform prior across the phys-

ical prescription parameters ~λ.1 Since the χb and αCE

models are not mixed across formation channels (i.e. the

CE channel cannot have χb = 0.0 while the GC channels

has χb = 0.1), this results in Nchannel + 1 hyperparam-

eters in our modeling: two physical prescriptions and

(Nchannel − 1) branching fractions, since one branching
fraction is inferred given the constraint that the branch-

ing fractions sum to unity.
Given our model hyperparameters ~Λ = [~λ, ~β] and pos-

terior samples of event parameters ~θ = [Mc, q, χeff , z],

our hyperlikelihood p(~θ|~Λ) is given by a mixture model

of channels:

p(~θ|~Λ) =
∑

j

βjp(~θ|µ
χ,α
j ), (1)

where µχ,α
j is the (underlying) population model associ-

ated with βj , parameterized by a particular natal spin

magnitude and CE efficiency. Using the discrete pos-

terior samples for each event, the likelihood of the ob-

served GW data x = {~xi}
Nobs

i given our model hyper-
parameters is

p(x|~Λ) ∝

Nobs
∏

i=1

1

Siξ̃χ,α

∑

j

βj

Si
∑

k=1

p(~θki |µ
χ,α
j )

π(~θki )
, (2)

where Nobs is the number of GW events, Si are the

posterior samples used for event i, π(~θk) is the prior
weight for each posterior sample in the LVC analysis,

and ξ̃χ,α ≡
∑

j βj
∫

Pdet(~θ)p(~θ|µ
χ,α
j ) d~θ is the detection

1 In practice, we use a continuous dummy parameter to

evaluate the discrete model space, see Appendix D.

efficiency of each hypermodel (e.g., Mandel et al. 2019).
The hyperposterior is thus given by

p(~Λ|x) = p(x|~Λ)π(~Λ), (3)

where π(~Λ) is the prior on our hyperparameters.

In practice, the likelihood of Eq. (2) is evaluated

by first moving in the (discrete) physical prescription

parameter ~λ space, then moving in the (continuous)

branching fraction ~β space, and evaluating if the jump
proposal is accepted. Thus, Eq. (2) consists of evalua-

tions from a mixture model of the underlying popula-
tion KDEs for the given values of χb, αCE, and ~β at

a particular step in the sampler. We use the ensemble

sampler from emcee (Foreman-Mackey et al. 2013) to

sample this distribution, and perform 102 realizations

of this inference with different random samplings from
the event posteriors, creating a combined posterior dis-

tribution across these realizations. Further details can

be found in Appendix D, and results from a mock in-

jection study using this methodology can be found in

Appendix E.

4. APPLICATION TO GWTC-2

4.1. Two-channel example

We first consider a simplified picture to build intuition

for the full analysis, assuming that the BBH population

comes from only the CE and GC channels. The poste-

rior distributions for the underlying branching fractions

β are shown in Figure 2, with colored lines showing the
contribution of various χb models to the full posteriors

for ~β. In this simplified case, we already see some no-

table features. The Bayes factors B between models are

given by the number of samples in one physical prescrip-

tion model compared to another (i.e. the relative area

under the colored curves in the top panels of Figure 2).

We find a preference for our smallest natal spin model
(χb = 0.0) relative to the higher χb models considered.

Compared to the highest natal spin model (χb = 0.5),
the χb = 0.0 model is preferred by a Bayes factor of

Bχb = 0.0
χb = 0.5 ≃ 40. However, once natal spin magnitudes

are decreased to lower values, the preference becomes

more marginal, Bχb = 0.0
χb = 0.2 ≃ 7 and Bχb = 0.0

χb = 0.1 ≃ 4, respec-

tively. This is consistent with the populations analysis
associated with GWTC-2, which pushes to low compo-

nent spins for the BBH population (Abbott et al. 2020c).
When marginalizing over all values of χb and αCE, the

median and symmetric 90% credible interval of the pos-

terior distributions for βCE and βGC are 0.89+0.07
−0.22 and

0.11+0.22
−0.07, respectively. The branching fractions are

sensitive to the value of χb; we find a significant increase
(decrease) in βGC (βCE) for models with χb ≥ 0.1. If we

take our most extreme natal spin model, χb = 0.5, the
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Figure 2. Top row : Branching fractions between CE and GC

channels, under the assumption that only these two channels
contribute to the BBH catalog. Black dashed lines show the
posterior on the detected branching fractions β, marginalized
over χb and αCE models. Colored lines show the contribu-
tions to the full β posterior from various χb models. Bottom
row : posterior distribution on βmax = max(~β). The gray line
shows the prior distribution for βmax; vertical lines mark the
symmetric 90% credible interval for the fully-marginalized
posterior and prior distributions.

inferred branching fractions reverse: βCE = 0.26+0.38
−0.23

and βGC = 0.74+0.23
−0.38. However, this model is strongly

disfavored by the data. In the bottom panel of Figure 2,
we also gauge the preference for a mixture of channels

in the underlying population by evaluating the posterior

distribution for βmax, defined as the largest value of β

across all channels. We find βmax . 0.95 (0.97) at the

90% (99%) credible level when all spin models are con-

sidered. For this simplified case, if natal spins for BHs

born in isolation are low, which is favored by the data,

the CE channel dominates the underlying BBH popu-

lation, though some contribution from the GC channel

is still necessary. These results are for the underlying

population of BBHs; we discuss the conversion to the

detectable population in the following section.

4.2. Five-channel analysis

We now perform the same analysis, but use all of

our five formation models. In this case, we also con-

sider the branching fractions for the detectable popu-

lation ~βdet which encodes the breakdown of formation

channels to the population detected by LIGO–Virgo.

To transform to such detectable branching fractions,

we rescale the recovered underlying branching fractions

by the detection efficiency of each population model,

ξχ,αj =
∫

Pdet(~θ)p(~θ|µ
χ,α
j ) d~θ:

~βdet =

[

~β ⊙ ~ξ

ξ̃

]

χ,α

, (4)

where ~ξ is a vector of detection efficiencies for all for-

mation models j given a particular submodel χ, α and
~β⊙ ~ξ is the element-wise product of ~β and ~ξ for samples

in the submodel χ, α. Posterior distributions for the un-
derlying and detectable branching fractions are shown in

Figures 3 and 4, respectively, with the top row breaking
down the contribution from the various χb models and

the bottom row breaking down the contribution from

the various αCE models.

Even when considering all five channels, the under-
lying populations may be dominated by the CE chan-

nel, though there is significant support for lower values

of βCE and a non-negligible contribution from the other

channels (see Figure 3). The median and 90% credi-

ble interval for the underlying branching fraction pos-

teriors ~β = [βCE, βCHE, βGC, βNSC, βSMT] are [0.708+0.193
−0.604,

0.023+0.058
−0.018, 0.114+0.298

−0.091, 0.024+0.105
−0.021, 0.100+0.365

−0.090].
This corresponds to relative measurement uncertainties

on the underlying branching fractions of ∼ 80%–430%
(90% credibility). Though most of the distributions are

broad, the CE channel has the least support at β = 0; at

least 2.4% of the underlying population is from the CE

channel at 99% credibility.

As expected, we also find notably different inferred
branching fractions and model preferences between the

two-channel case and the five-channel case. For exam-
ple, compared to the two-channel analysis, in the five-
channel analysis the median branching fraction for the
CE channel decreases by 21% while the median branch-

ing fraction for the GC channel increases by 5%, and the

χb = 0.1 model is increasingly favored by a factor

of B5−channel
χb = 0.1 /B2−channel

χb = 0.1 ≃ 2.2.

In certain formation channels, we see the branch-
ing fractions converge to different values when differ-
ent physical prescriptions are assumed. The branch-

ing fractions for dynamical (isolated) channels push to

larger (smaller) values with increasing χb; moving from

χb = 0.0 to χb = 0.5 leads to an increase in the median
recovered branching fraction of 0.51 for the GC chan-

nel. This is due to the effective inspiral spin distribu-

tion for the BBHs in the LVC catalog, which is near-

symmetric about zero although slightly skewed towards

positive values (Abbott et al. 2020c). As natal spins in-

crease, the isotropic spin orientations in dynamical en-

vironments lead to broader and symmetric effective in-

spiral spin distributions, whereas the relatively aligned

spins from isolated evolution channels lead to a strong
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Figure 3. Branching fractions for all five channels inferred using the GWTC-2 BBHs. Colored lines show contributions from
various χb models marginalized over αCE models (top row), and various αCE models marginalized over χb models (bottom row).
Black dashed lines show the full posterior on the branching fractions, marginalized over both χb and αCE models.

peak in the effective inspiral spin distributions at posi-

tive values (see Figure 1). Thus, under the assumption

of non-zero natal spins, the inferred relative branching

fraction between channels will change, increasing the rel-

ative contribution from dynamical formation channels.

Systematic shifts in the inferred branching fractions are
also apparent for variations in the CE efficiency; for the
CE channel, changing αCE by an order of magnitude from

0.2 to 2.0 increases the median βCE by 0.63.

Posterior distributions on detectable branching frac-

tions are shown in Figure 4. The median and 90% cred-
ible interval for the detectable branching fraction pos-

teriors ~βdet = [βdet
CE
, βdet

CHE
, βdet

GC
, βdet

NSC
, βdet

SMT
] are [0.08+0.18

−0.07,
0.11+0.12

−0.08, 0.30+0.26
−0.22, 0.19+0.26

−0.16, 0.26+0.27
−0.24]. The de-

tectable branching fractions for all channels other than

CE increase relative to the underlying branching frac-

tions, since the CE channel typically produces BBHs

with lower masses. This is due to the mass spectrum of
these channels pushing to larger values, particularly

for the favored χb = 0 model, and thus their de-
tection efficiency increasing. Given our astrophysical
models, the GC channel contributes to the bulk

of the detected population, making up > 2.6% of

the observed population at 99% credibility. The

most significant increases when converting to de-

tectable branching fractions are in the channels

whose mass spectra push to the largest values;

given our set of formation models, the median

detectable branching fraction for the NSC chan-

nel is almost an order of magnitude larger than

the median underlying branching fraction.

Once again, the detectable branching fraction for iso-

lated channels rises with decreasing natal spin magni-

tude. For example, the median value for βdet
SMT

increases

by 24% when considering the χb = 0.0 model relative
to the fully marginalized models.

To further gauge whether a single channel or multiple

channels are favored by the BBH population, we again

show the posterior distribution on βmax in Figure 5, now

with all five formation channels included. In this higher

dimensional case, the prior on βmax has a more compli-
cated morphology; the prior volume near β = 1 for any

one channel drops precipitously. However, we still see

that the posterior on βmax significantly deviates from

the prior, pushing to larger values of βmax and favoring

one channel dominating the underlying population. For

the underlying branching fractions, we find that βmax is

constrained to be below 0.88 (0.93) at the 90% (99%)
credible level, compared to 0.62 (0.79) for the prior.

Conversely, we find a mixture of channels contributing

to the detected population to be strongly preferred. For

the detectable population, βdet
max < 0.56 (0.69) at 90%

(99%) credibility compared to 0.75 (0.89) for the

prior.

Another metric we can consider is the number of chan-
nels that dominate the branching fractions. We gauge
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Figure 4. Same as Figure 3, but with detectable branching fractions instead of branching fractions for the underlying population.

this by examining the posterior distribution on the num-

ber of branching fractions that are simultaneously above

a threshold value. Setting the threshold to β = 0.1 and

marginalizing over all χb and αCE models, we find that

≃ 26% of the posterior for the underlying branching

fractions supports a single model contributing to more

than 10% of the underlying population, and > 95%

of the posterior having a significant contribution from

three or fewer channels. Though our CE model is fa-

vored, this indicates that there may still be appreciable

contribution from a couple of other formation channels

to the underlying BBH population. This picture changes
drastically for the detectable population. We find that
there is a > 99.8% probability that more than one chan-

nel contributes at least 10% of the detected population,

with the bulk of the posterior support (≃ 79%) suggest-

ing that 3–4 channels significantly contribute. Thus,

given our astrophysical models, the detected catalog of

BBHs come from a diverse array of formation scenarios.
Bayes factors between the physical prescriptions ~λ =

[χb, αCE] are given in Table 1, analogous to the fully

integrated colored curves in Figure 3. As with the two-

channel case, we find moderate to strong preference for

low natal spins of χb . 0.1 relative to larger natal spins,
in agreement with other work investigating natal spin

distributions using the catalog of BBH events (Farr
et al. 2017b; Miller et al. 2020; Abbott et al. 2020c;

Kimball et al. 2020b). Spins of χb . 0.1 are favored

relative to models with χb & 0.2 by a Bayes factor

of B ≃ 12.9. The marginal preference for the no-spin

χb = 0.0 model compared to the low-spin χb = 0.1

model (Bχb=0.0
χb=0.1 ≃ 1.9) indicates no strong discriminat-

ing power between the two.

We also marginally prefer large CE efficiencies of
αCE ≃ 5.0, which have Bayes factors of B ≃ 5 relative

to the αCE = 1.0 model. Values of αCE = 1.0 and
αCE = 0.5 show near equal preference, and highly inef-

ficient CEs with αCE = 0.2 are disfavored relative to

the most highly-favored model (αCE = 5.0) by a Bayes

factor of & 10. Though we use the CE and SMT models

from Bavera et al. (2020a) in this work, we find opposite
results in terms of the inferred CE efficiency. In Bavera

et al. (2020a), low CE efficiencies preferentially form

more massive BBHs. Since only the CE and SMT

channels are considered in Bavera et al. (2020a),

the preference for low CE efficiencies comes from

the necessity to produce these more massive sys-

tems to match the properties of the events in

GWTC-2, whereas in this work such systems can

be explained by alternative formation channels.

We tested this hypothesis by considering two-channel

inference which included only the CE and SMT channels,

and also found a strong preference for CE efficiencies of

αCE ≃ 0.5, with no samples in the efficient (αCE > 1.0)

CE models.

5. DISCUSSION & CONCLUSIONS

We analyze the recently-bolstered catalog of BBH

mergers using a suite of state-of-the-art models for astro-

physical formation channels of BBHs. Our main findings

are:
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Figure 5. Posterior distribution for the maximum branch-
ing fractions of the underlying population βmax (top row) and
detectable population βdet

max (bottom row) when considering
all five formation channel models. The black dashed line
shows the fully marginalized posterior distribution, with col-
ored lines showing the contribution to the posterior from the
different χb models marginalized over all αCE models. We

also show the prior distributions for βmax and βdet
max

with gray lines; vertical black dashed lines and gray

lines mark the symmetric 90% credible interval for

the fully marginalized posterior and prior, respec-

tively. There is a clear difference between the branching
ratios in the detectable population and the underlying pop-
ulation. Since higher mass binaries are more likely to be
detected, the sub-populations that contribute to these chan-
nels are enhanced, making the detectable population much
more diverse.

• Though the CE channel dominates the underly-

ing BBH population in our models, a contribution

from various formation channels is preferred over

one channel dominating the detected population of

BBH mergers. From the formation channels con-
sidered in this work, we find that no single chan-
nel contributes to more than 70% of the detectable

BBH population at 99% credibility, and the prob-

ability that 3–4 channels each contribute to more

than 10% of the detected BBH population is 79%.

• Small natal spins (χb . 0.1) for BHs born in iso-
lation or without significant tidal influence from a

binary partner are favored over larger natal spins

Table 1. Bayes factors log
10
(B) across χb models (columns)

and αCE models (rows). Bayes factors are normalized against
αCE = 1.0 and χb = 0.0 in the general case, against χb = 0.0
when marginalizing over αCE, and against αCE = 1.0 when
marginalizing over χb. The bottom row provides the Bayes
factors for χb models marginalized over all αCE models, and
the rightmost column provides the Bayes factors for αCE

models marginalized over all χb models.

χb

0.0 0.1 0.2 0.5

αCE

0.2 −0.63 −0.56 −1.24 −1.71 −0.35

0.5 −0.06 −0.58 −0.96 −1.11 0.00

1.0 ≡ 0 −0.77 −1.02 −1.29 ≡ 0

2.0 0.34 0.05 −1.19 −1.15 0.42

5.0 0.56 0.39 −0.54 −0.87 0.70

≡ 0 −0.27 −1.11 −1.35

(χb & 0.2) by a Bayes factor of ≃ 12.9, indicating

efficient angular momentum transport in massive

stars.

• The CE efficiency, which scales roughly linearly

with the post-CE separation, shows marginal pref-

erence for larger values (αCE ≃ 5.0) relative

to αCE ≈ 1.0 by a Bayes factor of ≈ 5, and

stronger preference relative to highly inefficient
CEs (αCE ≃ 0.2) by a Bayes factor & 10. This

preference for efficient CE ejection may indicate
that other energy sources are at play when eject-
ing CEs rather than solely the orbital energy of

the binary (Ivanova et al. 2013).

• When incorrect physical prescriptions are assumed

or formation channels contributing to the BBH

population are not considered, estimates for the

values of branching fractions and variables in phys-

ical parameterizations can be significantly biased.

Numerous studies have investigated how populations
of compact object mergers can help inform uncertain-

ties in binary stellar evolution and compact object for-

mation. This is typically done with either phenomeno-

logical models or predictions from population models,

though in the case of the latter, usually under the as-

sumption that a single population model is exclusively

contributing to the entire population. However, several

studies have considered the relative contribution and

population properties expected from dynamical channels

versus isolated binary evolution (e.g., Rodriguez et al.

2016b; Vitale et al. 2017; Zevin et al. 2017; Stevenson
et al. 2017a; Farr et al. 2017b; Bouffanais et al. 2019;

Arca Sedda et al. 2020; Santoliquido et al. 2020a; Sa-

farzadeh et al. 2020; Wong et al. 2020a). For example,



12 Zevin et al.

when considering BBH mergers formed in isolation or
dynamically in young stellar clusters, Bouffanais et al.

(2019) find that branching fractions can be constrained

to the ∼ 10% level with O(100) detections. With only

∼ 50 observations in GWTC-2 and the inclusion of addi-
tional formation channels, we see broader constraints on

the precise values of branching fractions; investigating
the convergence on branching fraction estimates when
considering more channels will be investigated in future

work. Wong et al. (2020a) also analyzed the BBH pop-

ulation from GWTC-2 using models for the GC and

CE channel. We find opposite results for the under-

lying branching fractions when we consider the simpli-

fied picture of only the CE and GC channels (see Fig-

ure 2); we find the majority of the underlying population

(∼ 90%) to come from the CE channel whereas Wong

et al. (2020a) find ∼ 80% of the underlying population

to come from the GC channel. However, our detectable
distributions are in better agreement with the branching

fractions presented in Wong et al. (2020a); incorporating
detectablility increases the detectable branching fraction

of GCs in the two-channel example to ∼ 70%. We also

find a slight preference for efficient CEs and a stronger

preference against highly-inefficient CEs (αCE ≃ 0.2),

whereas the constraints for αCE in Wong et al. (2020a)
are broad but slightly favor inefficiency CEs. The dif-

ference in our analyses may be due to our inclu-

sion of spin information, since the CE efficiency

has a stronger impact on the spin distributions

of the CE channel compared to the mass spec-

trum. This emphasizes the importance of considering

all observational information when constraining models.
Though we consider five distinct BBH formation mod-

els in this analysis, we can also investigate the broad
two-channel categorization of formation in the galac-
tic field and dynamical assembly in dense stellar en-

vironments. In Figure 6, we combine the branching

fractions for field channels (CE, CHE, SMT) against dy-

namical channels (GC, NSC). With low spins (χb . 0.1),
we find a strong preference for field channels compris-

ing the majority of the underlying distribution. The
field channels are dominated by CE channel, which

makes up the majority of the underlying population (see

Figure 3). Marginalizing over all χb and αCE mod-

els, the underlying branching fractions for field chan-

nels and dynamical channels are βfield = 0.86+0.11
−0.36 and

βdynamical = 0.14+0.36
−0.11, respectively (90% credibility).

The contribution from dynamical channels increases as

natal spins increase due to the behavior of the effec-

tive inspiral spin distributions, since effective inspiral

spins of the BBH events in GWTC-2 are near-symmetric

about zero (Abbott et al. 2020c) and incompatible with

a highly-spinning, aligned-spin population. At χb = 0.5,
which is disfavored relative to χb = 0 by a Bayes fac-

tor of ≃ 27, the underlying branching fractions are

βfield = 0.18+0.27
−0.12 and βdynamical = 0.82+0.12

−0.27. In the

bottom panel of Figure 6, we again use Eq. (4) to convert

underlying branching fractions to detectable branching

fractions. In the detectable population, the con-

tribution from dynamical channels is amplified.

Marginalizing over all χb and αCE values, we find the in-

ferred branching fractions of the detected populations to

be βdet
field = 0.50+0.25

−0.30 and βdet
dynamical = 0.50+0.30

−0.25. Thus,

given the formation models considered in this work, dy-
namical and field channels contribute similar numbers

to the detected BBH population.
Our analysis favors low natal spins for BHs born in iso-

lation or without significant tidal spin-up. Analyses us-

ing phenomenological representations for the spin mag-

nitude distribution show a preference for low spins (Farr

et al. 2017b; Abbott et al. 2019b; Miller et al. 2020; Ab-
bott et al. 2020c; Kimball et al. 2020b), in agreement

with the preference for low natal spins in this work.
Low spins in the natal population will increase the rate
of hierarchical mergers in dynamical environments (Ro-

driguez et al. 2019; Banerjee 2020; Fragione & Silk 2020;

Kimball et al. 2020a; Fragione & Loeb 2020), pushing

the BH mass spectrum to larger values, imparting large
spin on the merger products, and accentuating the mass

asymmetry of mergers in those populations.

Figure 6. Branching fractions recovered for the com-
bined field and dynamical channels. Colored lines show the
contribution to the posterior from the different χb models
marginalized over all αCE models. In the top row we show
the distribution for underlying branching fractions as in Fig-
ure 3, and in the bottom row we show the distribution for
underlying branching fractions as in Figure 4.
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We find a mild preference for efficient CEs in our mod-
eling, and strongly disfavor highly-inefficient CEs with

αCE ≃ 0.2. Inferred values for the CE efficiency αCE

have more diversity than natal spins across the litera-

ture, from population modeling (e.g., Santoliquido et al.
2020b; Bavera et al. 2020a; Zevin et al. 2020), hydrody-

namical simulations (e.g., Fragos et al. 2019), and the-
oretical considerations (e.g., Ivanova et al. 2013). Our

results, which mildly favor high CE efficiencies, are in

agreement with Santoliquido et al. (2020b), who find

high CE efficiencies are necessary to match the merger

rate of binary neutron stars in their population mod-

els, and Fragos et al. (2019), who model the spiral-in
phase of CE evolution using hydrodynamic simulations

and find a non-negligible fraction of the envelope re-

mains bound to the core after the CE is successfully

ejected. Though these results for αCE contrast with

those from Bavera et al. (2020a), we find that these
conflicting results arise from the consideration of more

formation channels in this work; when considering

contributions from only the CE and SMT channels,

we also favor low CE efficiencies of αCE ≃ 0.5. We

also find similar detectable branching fractions for the

CE and SMT channels, in agreement with Bavera et al.

(2020a) who find the channels have comparable BBH
detection rates in the local universe.

We have shown multiple times that failing to account
for the broad array of formation channels or assuming

incorrect physical prescriptions can severely bias infer-

ences. For example, when only considering the CE and

SMT channels in our inference, we find a preference for

low CE efficiencies compared to the preference for high
CE efficiencies when considering all five channels. When

considering only the CE and GC channels, the recov-
ered branching fractions differ significantly compared to

when we consider all five channels (see Figures 2 and 3).

Even when including our full array of formation chan-

nels, differing assumptions for physical prescriptions al-

ter the recovered branching fractions (see Section 4.2).
While we consider more formation channels in this

analysis than has been done before, the astrophysical
models used in this work only comprise a subset of
the proposed formation channels for BBHs2 and each

channel is subject to a number of additional

theoretical uncertainties that are not accounted

for in this work. Therefore, as with any such

model selection endeavor that is reliant on pop-

ulation modeling predictions, there are a number

of inherent caveats associated with assumptions

2 We welcome additional models that could be included in this

framework.

made for uncertain physical prescriptions. To

list a few examples of such caveats: (a) since

a massive-star binary in a CE phase has never

been observed, the modeling of this phase is en-

tirely theoretical and the α–λ energy balance for-

malism with a fixed CE efficiency αCE across all

stellar regimes may not be valid; (b) BH natal

kick magnitudes and orientations relative to the

spin axis of the exploding star are uncertain due

to the limited observational sample of BH bi-

naries with well-measured proper motions, and

choosing a natal kick prescription other than the

standard bimodal Maxwellian distribution with

fallback-modulated kicks can affect both popula-

tion properties and rates; (c) using a fixed natal

spin for isolated BHs, which is a proxy for the

efficiency of angular momentum transport, may

instead be better described by a distribution of

natal spins dependent on the properties of the

collapsing star; (d) in clusters, changes in the

assumed binarity of the primordial population,

cluster rotation, triaxiality, and the dynamical

effect that would be caused by the presence of

a massive BH may all have an impact on the

properties of BBH mergers. This list of caveats

is not exhaustive, but provides a sense of the

complexity of this model selection problem, espe-

cially when considering contributions from mul-

tiple formation scenarios which have both shared

and independent physical uncertainties. Though

our quantitative results may change with the inclusion

of additional formation models or updated prescriptions

for binary stellar evolution and compact object forma-

tion, given the diversity of BBH detections to date we

anticipate that the necessity for multiple channels sig-

nificantly contributing the detected BBH population to

be robust. Since the local BBH merger rate continues to

become more constrained as the catalog of BBHs grow,

predicted merger rates will also be crucial to include in

these types of analyses, and can be incorporated into

branching fraction priors.
As statistical uncertainties get smaller, systematics

become more important (Barrett et al. 2018), and failing

to consider a more complete and comprehensive picture

for the diversity of possible BBH formation channels will

become increasingly dangerous. As the detected popula-

tion of BBHs grows, our methodology can be expanded

to include additional formation channels and uncertain
physical prescriptions, which will lead to a more unbi-
ased and complete understanding of the relative contri-

bution from various astrophysical channels to the ob-

served population of compact binary mergers. Only
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through these comprehensive analyses will we be able
to accurately infer crucial aspects of BBH origins.

Population models and posterior samples from the hi-

erarchical inference in this work are available on Zen-
odo (Zevin 2020). The codebase developed for this

analysis, Astrophysical Model Analysis and Evi-

dence Evaluation (AMAZE), is available on Github

along with notebooks for generating the numbers

and figures in this paper.
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Matplotlib (Hunter 2007); NumPy (Oliphant 2006;

Van Der Walt et al. 2011); Pandas (McKinney 2010);

PyCBC (Nitz et al. 2019); SciPy (Virtanen et al. 2020);

AMAZE (this work).



Constraining Origins of BBHs with GWTC-2 15

APPENDIX

A. POPULATION MODELS

In this section, we provide further details for the population modeling in this work. In Appendix A.1, we discuss the
formation channels used in our inference and assumptions that were made to provide more self-consistency between

models. In Appendix A.2, we discuss the distribution of systems across cosmic time for our five formation channels,

as well the assumed distribution of metallicities as a function of redshift.

A.1. Formation Channels

A.1.1. Isolated Evolution through Common Envelope and Stable Mass Transfer

CE and SMT models are simulated with the POSYDON framework (Fragos et al. 2021; in preparation) which was
used to combine the rapid population synthesis code COSMIC (Breivik et al. 2020) with MESA detailed binary evolution

calculations (Paxton et al. 2011, 2013, 2015, 2018, 2019) as in Bavera et al. (2020a). COSMIC was used to rapidly evolve

binaries from the zero-age main sequence until the end of the second mass-transfer episode. For the last phase of the

binary evolution (BH–Wolf–Rayet), which determines the second-born BH spin (Qin et al. 2018; Bavera et al. 2020b),

we used detailed stellar and binary simulations from MESA. These simulations take into account differential stellar
rotation, tidal interaction, stellar winds, and the evolution of the Wolf–Rayet stellar structure, therefore allowing us

to carefully model the tidal spin-up phase until the core collapse of the secondary.
These models assume the first-born BH is formed with a negligible spin χb ≃ 0 because of the assumed efficient

angular momentum transport (Qin et al. 2018; Fuller & Ma 2019) and Eddington-limited accretion efficiency onto

compact objects; this leads to small first-born BH spins also for the SMT channel because the mass accreted onto BHs

during the second mass-transfer is negligible (Thorne 1974). In this work we artificially varied the first assumption

changing the birth spins in post-processing. Assumptions for the efficiency of accretion onto BHs may affect the natal
spins of the first-born BH in the SMT channel if highly super-Eddington, though Bavera et al. (2020a) showed that

highly super-Eddington accretion efficiency leads to the extinction of BBH mergers in the SMT channel and thus we do
not consider variations in its value.

These simulations were designed as much as possible to match the same stellar and binary physical assumptions

made in the CHE models; in fact, the MESA model is entirely self-consistent with that used in du Buisson et al. (2020).

Consistency in the initial binary distributions was also a priority. For example, we assumed that log-initial orbital

period distributions follow a Sana et al. (2012) power law in the range [100.15, 105.5] days, and extends down to

0.4 days assuming a flat-in-log distribution in order to sample the parameter space leading to chemically homogeneous
evolution (du Buisson et al. 2020). Finally, analogous to the CHE and NSC models, we used the same prescriptions for

distributing the synthetic BBH populations across cosmic history (see Appendix A.2). To translate the underlying BBH

population to the detected population in all channels, Bavera et al. (2020a) assumed detection probabilities

as detailed in Appendix B but with a higher network SNR threshold of ρthresh = 12. The estimated rate

densities for the CE channel are in the range 17–113 Gpc−3 yr−1 depending on αCE (the smallest value corresponds
to the model with αCE = 5.0 while the largest value corresponds to αCE = 0.2), and 25 Gpc−3 yr−1 for the SMT

channel (Bavera et al. 2020a). For a detector network with midhighlatelow sensitivity and network detection threshold
of ρthresh = 12, these values translate to a detection rate of 15–412 yr−1 and 86 yr−1 for CE and SMT, respectively.

A.1.2. Chemically Homogeneous Evolution

CHE models are adopted from du Buisson et al. (2020) who computed a large grid of detailed MESA stellar and

binary simulations undergoing this evolutionary process. For consistency with the other models, we restrict primary

masses to the range [0.01, 150]M⊙ meaning that, compared to the original study, we ignore systems forming BBHs

with components above the pair instability mass gap (e.g., Woosley 2017; Farmer et al. 2019; Marchant et al. 2019).
The core collapse of the stars’ profiles is done self consistently in CE and SMT models using POSYDON

(see Appendix D of Bavera et al. 2020a). The applied prescription takes into account disk formation

during the collapse of highly spinning stars, mass loss through neutrinos, (pulsational) pair instability

supernovae according to the fits of the detailed simulation of Marchant et al. (2019), and two Blaauw

kicks (Blaauw 1961; Kalogera 1996) where we assume circularization after the first supernova (cf.
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du Buisson et al. 2020). The synthetic population of BBHs was distributed across the Universe cosmic history
assuming the same initial binary distributions as in the CE and SMT models.

Since we have a regular grid of MESA simulations covering the initial binary distributions instead of sampling them

with a Monte Carlo approach, we can directly calculate their phase space volume. Given a binary k with initial primary

mass m1,k, mass ratio qk, and period pk, the relative contribution of that system to the total population Pk is

Pk ≡ p(m1,k, qk, pk) = pIMF(m1,k, qk, pk)× pIQF(m1,k, qk, pk)× pIPF(m1,k, qk, pk), (A1)

where IMF, IQF, and IPF designate initial mass, mass ratio and period functions. These probabilities are obtained by

integrating the assumed initial distribution probability densities independently; for simplicity, we assume that initial
binary properties are independent from each other as well as from metallicity. For the initial mass function, we assume

a Kroupa (2001) power law in the range [0.01, 150]M⊙; for initial mass ratios, a flat distribution in the range [0, 1];

for initial periods, an extended Sana et al. (2012) log-power law as in Eq. (A.1) of Bavera et al. (2020a). For each

binary the integration is performed around the initial values m1,k, qk, pk assuming a volume corresponding to the grid’s

resolution, namely, ∆ log10(m1,k/M⊙) = 0.025, ∆qk = 0.2, and ∆(pk/days) = 0.025. Even though the simulations
for the CHE channel were carried out at a fixed mass ratio value of q = 1, here we assume that they are representative

of resultant BBH mass ratios between [0.8, 1], and artificially smear the BBH mass ratios uniformly across this range

while keeping the total mass of the binary fixed. This assumption is justified by the findings of Marchant et al. (2016).

Similar to Eq. (7) of Bavera et al. (2020a), the BBH merger rate density is calculated in finite time bins of ∆ti =
100 Myr and log-metallicity bins ∆Zj where each binary k is placed at the center of each time bin corresponding to

the redshift of formation zf,i and merging at zm,i,k. Therefore,

RBBHs(zi) =
∑

∆Zj

∑

k

Pi,j,k fbin
fSFR(zf,i)

m̄⋆

4πcD2
c (zm,i,k)

∆Vc(zi)
∆ti Gpc−3 yr−1, (A2)

where fbin = 0.7 (Sana et al. 2012) is the binary fraction, m̄⋆ = 0.518M⊙ is the average system mass (computed as

in Eq. (A.2) of Bavera et al. 2020b), fSFR is the star formation rate (SFR) per metallicity range ∆Zj , Dc(z) the

comoving distance, and ∆Vc the comoving volume corresponding to ∆ti. Using a network detection threshold

of ρthresh = 12, we find a merger rate density of 32.9 Gpc−3 yr−1 and a detection rate for a detector network with
midhighlatelow sensitivity of 360 yr−1. The rate found here is larger than the one found by du Buisson et al. (2020),

5.8 Gpc−3 yr−1, for two reasons: (i) the original study assumed a flat in log-orbital period distribution over the range
[0.4, 365.25] days compared to the extended log-power law assumed here for consistency with the CE and SMT channels;

when we assume the original distribution over the range [0.4, 105.5] days the rate density decreases to 10.6 Gpc−3 yr−1;

(ii) du Buisson et al. (2020) assume a SFR and metallicity distribution from the cosmological simulations of Taylor &

Kobayashi (2015), which predicts less stellar mass formed at low metallicities compared to Madau & Fragos (2017),

assuming metallicities follow a truncated log-normal distribution around the empirical mean of Madau & Fragos

(2017) and a standard deviation of 0.5 dex.

A.1.3. Globular Clusters

GC models are simulated using the Hénon-style Cluster Monte Carlo code CMC (Hénon 1971a,b; Joshi et al. 2000;

Pattabiraman et al. 2013). CMC has been shown to reproduce both the global cluster properties and BBH populations
found in direct N -body cluster models in a fraction of the time (Rodriguez et al. 2016b). Each cluster model contains

all of the necessary physics to describe the dynamical formation of BBHs. Each star and binary in the cluster is
evolved with the Binary Stellar Evolution (BSE) package of Hurley et al. (2000, 2002) with updated prescriptions for

stellar winds, compact-object masses, supernova natal kicks, and pulsational-pair instability physics consistent with

COSMIC (Chatterjee et al. 2010; Rodriguez et al. 2016a, 2018b, and references therein). The three-body interactions

between single stars that produce many BBHs are treated probabilistically using prescriptions from Morscher et al.

(2013), which have been well-tuned to direct N -body integrations. Furthermore, stars and binaries are allowed to inter-

act through strong three- and four-body encounters, whose outcomes are directly integrated with Fewbody (Fregeau

& Rasio 2007), a small N dynamical integrator with relativistic corrections (Antognini et al. 2014; Amaro-Seoane
& Chen 2016; Rodriguez et al. 2018b). BBHs which merge inside the cluster, either as isolated systems or due to

prompt GW emission during three-body encounters, are given new masses, spins, and GW recoil velocities taken from

numerical relativity-based fitting formulae (Rodriguez et al. 2018b, Appendix A).
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As the natal spins of BHs are set at the start of the simulations, no post-processing is necessary across our χb models.
We do not consider differing αCE values in our GC models for two reasons: (i) most BBHs that go on to merge are

processed dynamically and go through partner swaps throughout their evolution in the cluster and do not merge with

their original partner, thus the post-CE separation has a minimal impact on the rates and properties of BBH mergers,

and (ii) of the BHs in the cluster originally in a BBH system that formed from a massive-star binary progenitor, we
find only a percent-level number that were at tight enough orbital configurations during the BH–Wolf–Rayet phase

for tidal spin-up to be relevant. We therefore set the CE efficiency to our fiducial value of αCE = 1 in the

GC model.

The GC model is the only model that does not follow the standard star formation and metallicity evolution described

in Appendix A.2, since cluster formation does not mimic the star formation history of their host galaxies. We instead

follow the prescriptions in Rodriguez & Loeb (2018), which rely on detailed modeling of GC formation across cosmic

time (El-Badry et al. 2019), and weight GCs of differing metallicities by the metallicity distribution of GCs observed
in the Milky Way (Harris 2010).

A.1.4. Nuclear Star Clusters

The evolution of NSC models is determined using the semi-analytical approach of Antonini et al. (2018). In this

method, we assume that the energy generated by the BH binaries in the cluster core is regulated by the process of
two-body relaxation in the bulk of the system (Breen & Heggie 2013). This principle of balanced evolution (Hénon

1961) is used to compute the hardening and the merger rate of the core binaries. Moreover, we neglect mass loss

from stellar evolution and the escape of BHs and stars, i.e. we assume a constant cluster mass (see Antonini & Gieles

2020b for caveats in this assumption). Each BBH formed dynamically in the cluster core is then evolved until it either

merges inside the cluster or it is ejected from it. If the merger remnant is retained inside the cluster we compute its

spin and mass using the prescriptions in Rezzolla et al. (2008). We evolve the cluster until either all BHs have been

ejected, or until a time of 13 Gyr has passed.
As with the GCmodel, we do not consider differing αCE values for the NSCmodel and assume the population properties

are the same across all values of αCE (see discussion in Appendix A.1.3). Contrary to the GC model, we assume that

star formation and metallicity evolution follow the same prescriptions as the CE, CHE, and SMT models (i.e. trace the

evolution of the host galaxy as a whole). There are arguments that the star formation histories of nuclear clusters

are different from those of their galactic hosts (Neumayer et al. 2020). Given the uncertainties, however, we continue

with the assumption above and sample from the three metallicity models (0.01Z⊙, 0.1Z⊙, and 1Z⊙) according to the

prescriptions described in Appendix A.2.

A.2. Formation Rate and Metallicity Evolution

All formation channels provide raw samples of BBH mergers for a given χb, αCE, and metallicity. For all models

other than GC (see Appendix A.1.3), we distribute the synthetic BBH populations across the Universe cosmic history

assuming a SFR as in Madau & Fragos (2017):

ψ(z) = 10−2 (1 + z)2.6

1 + [(1 + z)/3.2]
6.2

M⊙ yr−1 Mpc−3. (A3)

This determines the birth redshift of the BBH progenitor. For the CE, CHE, and SMT models, the merger redshift is then

calculated using the BBH formation time (tbirth − tBBH) and inspiral time (tinsp), the latter of which is determined
using the orbital properties of the binary following the birth of the second BH (Peters 1964). Thus, the merger redshift

is

zmerge = T (tbirth − tBBH − tinsp), (A4)

where T is the transformation function between lookback time and redshift. For the NSC model, delay times (tdelay =

tBBH + tinsp) are computed directly from the model and used to determine the merger redshift. For all models, we

assume a ΛCDM cosmology with the Planck 2015 cosmological parameters of H0 = 68 km s−1 Mpc−1, Ωm = 0.31, and
ΩΛ = 0.69 (Ade et al. 2016).

Each formation channel model is simulated across a range of metallicities. At a given redshift, metallicities are
distributed following a truncated log-normal metallicity distribution around the empirical median metallicity from

Madau & Fragos (2017) assuming a standard deviation of 0.5 dex (Bavera et al. 2020a, Section 2.2):

log10 〈Z/Z⊙〉 = 0.153− 0.074z1.34, (A5)
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with a solar metallicity of Z⊙ = 0.017 (Grevesse & Sauval 1998). We use the SFR density, Eq. (A3), and metallic-
ity distribution, Eq. (A5), to construct a full cosmological population for each submodel of the formation channels

(parameterized by χb and αCE).

B. DETECTION PROBABILITIES

In our inference, detection probabilities are a key component of the detection efficiency ξ in the hyperlikelihood.

From the cosmological populations of each channel, we calculate detection probabilities numerically. Though more

computationally intensive than using analytical scaling relations that approximate the sensitive spacetime volume to

leading order (e.g., Fishbach & Holz 2017), we choose to calculate detection probabilities numerically to better capture
the influence that total mass, mass ratio, and spins have on selection effects.

Each system is characterized by their (source-frame) component masses, 3-dimensional component spin vectors, and

redshift of merger. For every system in each population model, we first calculate the optimal SNR ρopt for LIGO–

Hanford, LIGO–Livingston and Virgo operating at midhighlatelow sensitivity (Abbott et al. 2018) by assuming

the system is directly overhead with a face-on inclination. We use the IMRPhenomPv2 waveform approximant

(Hannam et al. 2014; Khan et al. 2016) for determining SNRs, and detector response functions are constructed using
the PyCBC package (Nitz et al. 2019). We approximate an optimal network SNR as the quadrature sum of the optimal

SNRs from the three detectors,

ρnet, opt .

√

∑

i

(ρ2i, opt), (B6)

which will give us a conservative over-estimate of the true optimal SNR of the network. We choose a network

SNR threshold of ρthresh = 10, consistent with the false-alarm-rate threshold of two per year which is

used as a criteria for events in GWTC-2 (Abbott et al. 2018; Nitz et al. 2020; Abbott et al. 2020b).

If ρnet, opt < ρthresh, we set the detection probability of the system to P̃det = 0. Otherwise, we consider the source

potentially detectable, and perform 103 Monte Carlo realizations of the extrinsic parameters, namely the right ascen-

sion, declination, inclination, and polarization angle. The detection probability of the system marginalized over the

extrinsic parameters is then given by

P̃det =
1

N

N
∑

j=1

H





√

∑

i

(ρi(ψj))2 − ρthresh



 , (B7)

where N is the number of Monte Carlo realizations, i indexes over detectors, ψj are the extrinsic parameters drawn
for the Monte Carlo sample j, and H is the Heaviside step function. These detection weights are used to construct

the weighted KDE models in Figure 1.

C. KERNEL DENSITY ESTIMATES OF MODELS

We use an adaptation of the gaussian kde class of SciPy to construct KDEs for each population models, which

are 4-dimensional over the parameters ~θ. Our gaussian kde class handles reflection over physical boundaries in the

parameter space (i.e. 0 < q ≤ 1). To ensure an adequate choice of KDE bandwidth for our population models, we

perform a hold-out analysis where we construct the KDE using a subset of samples from the full population, draw

samples from the KDE, and compare the 1D marginalizations of the parameters ~θ drawn from the KDE with another
subset of samples. We find a bandwidth of ≈ 0.01 consistently matches the true distribution of parameters, whereas

values lower and higher tend to overfit and underfit the data, respectively.

D. POPULATION INFERENCE

Our goal is to recover the posterior for our set of hyperparameters, ~β = [βCE, βCHE, βGC, βNSC, βSMT] and ~λ = [χb, αCE],

given the set of (independent) GW observations of BBHs from GWTC-2, x = {~xi}
Nobs

i . In the following, we are only

interested in the shape of the populations and not the rate, and implicitly marginalize out the rate term by assuming

a p(N) ∝ 1/N prior on the number of detections (Fishbach et al. 2018).

Starting from the ground up, the probability of detecting a set of event parameters θ = {~θi} given the model

hyperparameters ~Λ = [~β,~λ] from independent observations is

p(θ|~Λ) =

Nobs
∏

i=1

p(~θi|~Λ)
∫

p(~θ|~Λ)Pdet(~θ) d~θ
, (D8)
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where Pdet(~θ) is the detection probability for an event with parameters ~θ (Chennamangalam et al. 2013; Farr et al.
2015; Mandel et al. 2019). Marginalizing over event parameters, the probability of observing the data for event ~xi
given our hyperparameters ~Λ is

p(~xi|~Λ) =

∫

p(~xi|~θ)p(~θ|~Λ) d~θ. (D9)

By applying Bayes’ theorem, we replace p(~xi|~θ) with p(~θ|~xi)p(~xi)/π(~θ). Assuming independent observations, we get

p(x|~Λ) =

Nobs
∏

i=1

p(~xi)
∫

p(~θ|~Λ)Pdet(~θ) d~θ

∫

p(~θi|~xi)p(~θi|~Λ)

π(~θi)
d~θ, (D10)

where π(~θ) is the prior on the parameters ~θ = [Mc, q, χeff , z] assumed in the original inference of ~θ, which is provided

alongside the LVC posterior samples. We evaluate π(~θ) at each point ~θi in a 4-dimensional prior KDE

constructed using the LVC prior samples. Since we use Si posterior samples to approximate p(~θi|~xi), we can

rewrite this integral as a discrete sum over posterior samples:

p(x|~Λ) =

Nobs
∏

i=1

p(~xi)

Si

∫

p(~θ|~Λ)Pdet(~θ) d~θ

Si
∑

k=1

p(~θki |
~Λ)

π(~θki )
. (D11)

The hyperlikelihood p(~θki |
~Λ) is evaluated as a mixture model of the underlying KDEs in the current χb and αCE

model,

p(~θki |
~Λ) =

∑

j

βjp(~θ
k
i |µ

χ,α
j ), (D12)

where the summation is over the formation channels, and µχ,α
j is the χb and αCE model that the sampler is in at a

given step in the chain. Thus, our hyperlikelihood from Eq. (D11) becomes

p(x|~Λ) =

Nobs
∏

i=1

p(~xi)

Siξ̃χ,α

∑

j

βj

Si
∑

k=1

p(~θki |µ
χ,α
j )

π(~θki )
, (D13)

where for convenience we define ξ̃χ,α ≡
∑

j βjξ
χ,α
j where

ξχ,αj =

∫

p(~θ|µχ,α
j )Pdet(~θ) d~θ (D14)

is the detection efficiency for each formation channel model with natal spin χ and CE efficiency α. The channel-

dependent detection efficiency ξχ,αj is evaluated using a Monte Carlo approach, since detection probabilities are already

calculated for each sample in the population models. Finally, the posterior distribution on the hyperparameters,

p(~Λ|x) = p(x|~Λ)π(~Λ)/p(x), is

p(~Λ|x) = π(~Λ)

Nobs
∏

i=1

1

Siξ̃χ,α

∑

j

βj

Si
∑

k=1

p(~θki |µ
χ,α
j )

π(~θki )
, (D15)

where π(~Λ) is the prior on the hyperparameters.

For priors, we use a Dirichlet distribution with equal concentration parameters and dimensions equal to the number

of formation channels as a prior for the branching fractions ~β, imposing the constraints (0 ≤ βi ≤ 1) ∀ i and
∑

i βi = 1.

In practice, the discrete χb and αCE models are sampled using dummy index parameters that are defined on the range

[0, Nλ,m], where Nλ,m is the number of m = χb or n = αCE models, with a flat prior across this range and no support

outside this range. The ~λ model considered at each step is given by the floor of the dummy parameter values that

correspond to χb and αCE.

E. TESTING WITH MOCK OBSERVATIONS

In addition to examining constraints on the GW population, we can test our methodology using mock draws from the
underlying population distributions. In Figures 7 and 8, we show the convergence on detectable branching fractions
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and physical prescriptions as the number of observations increases. In this mock sample, we set the true physi-
cal prescriptions to be χb = 0.0 and αCE = 1.0, and the detectable branching fractions between channels to be

[βdet
CE
, βdet

CHE
, βdet

GC
, βdet

NSC
, βdet

SMT
] = [0.3, 0.1, 0.3, 0.1, 0.2]. We draw systems from the underlying distributions of the vari-

ous populations until Nobsβ
det
j detectable samples are drawn from channel j, where Nobs is the number of observed

events for a particular mock realization. Figure 7 shows the contribution to branching fraction posteriors for different

χb models, marginalized over αCE models, and Figure 8 shows the contribution to branching fraction posteriors for

different αCE models, marginalized over χb models. For demonstration purposes, in these examples we assume no

measurement uncertainty; in actuality the inclusion of mock measurement uncertainty will lead to less precise mea-

surements. In this simplified example, we find our analysis to recover the injected model, with increasing Bayes factors

for the correct physical prescription and increasing precision in the branching fraction measurement as the number

of observations increases. As with our analysis using the GW observations, we see strong biases in the recovered
branching fractions when the incorrect physical prescriptions are considered. A more investigative analysis with the

inclusion of SNR-dependent measurement uncertainty will be explored in future work.
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Vigna-Gómez, A., Toonen, S., Ramirez-Ruiz, E., et al.

2020, arXiv e-prints. https://arxiv.org/abs/2010.13669

Virtanen, P., Gommers, R., Oliphant, T. E., et al. 2020,

Nature Methods, 17, 261, doi: 10.1038/s41592-019-0686-2

Vitale, S. 2020, arXiv e-prints.

https://arxiv.org/abs/2011.03563

Vitale, S., Lynch, R., Sturani, R., & Graff, P. 2017,

Classical and Quantum Gravity, 34, 03LT01,

doi: 10.1088/1361-6382/aa552e

Wen, L. 2003, The Astrophysical Journal, 598, 419,

doi: 10.1086/378794

Wiseman, A. G. 1992, Physical Review D, 46, 1517,

doi: 10.1103/PhysRevD.46.1517

Wong, K. W. K., Breivik, K., Kremer, K., & Callister,

T. A. 2020a, arXiv e-prints

Wong, K. W. K., Franciolini, G., De Luca, V., et al. 2020b,

arXiv e-prints. https://arxiv.org/abs/2011.01865



Constraining Origins of BBHs with GWTC-2 27

Woosley, S. E. 2017, The Astrophysical Journal, 836, 244,

doi: 10.3847/1538-4357/836/2/244

Wysocki, D., Lange, J., & O’Shaughnessy, R. 2019,

Physical Review D, 100, 43012,

doi: 10.1103/PhysRevD.100.043012

Zaldarriaga, M., Kushnir, D., & Kollmeier, J. A. 2018,

Monthly Notices of the Royal Astronomical Society, 473,

4174, doi: 10.1093/mnras/stx2577

Zevin, M. 2020, Constraining the Origins of Binary Black

Holes using Multiple Formation Pathways, Zenodo,

doi: 10.5281/zenodo.4277620

Zevin, M., Pankow, C., Rodriguez, C. L., et al. 2017, The

Astrophysical Journal, 846, 82,

doi: 10.3847/1538-4357/aa8408

Zevin, M., Spera, M., Berry, C. P. L., & Kalogera, V. 2020,

The Astrophysical Journal, 899, L1,

doi: 10.3847/2041-8213/aba74e

Ziosi, B. M., Mapelli, M., Branchesi, M., & Tormen, G.

2014, Monthly Notices of the Royal Astronomical

Society, 441, 3703, doi: 10.1093/mnras/stu824


	Introduction
	Formation Models
	Isolated Evolution
	Dynamical Assembly
	Physical Prescriptions

	Population Inference
	Application to GWTC-2
	Two-channel example
	Five-channel analysis

	Discussion & Conclusions
	Population Models
	Formation Channels
	Isolated Evolution through Common Envelope and Stable Mass Transfer
	Chemically Homogeneous Evolution
	Globular Clusters
	Nuclear Star Clusters

	Formation Rate and Metallicity Evolution

	Detection Probabilities
	Kernel Density Estimates of Models
	Population Inference
	Testing with Mock Observations

