
Exact and Evolutionary Algorithms for

the Score-Constrained Packing Problem

Asyl Liyakat Hawa

School of Mathematics
Cardiff University

A thesis submitted for the degree of
Doctor of Philosophy

September 2020

Summary

This thesis concerns the Score-Constrained Packing Problem (SCPP), a combinato-

rial optimisation problem related to the one-dimensional bin packing problem. The

aim of the SCPP is to pack a set of rectangular items from left to right into the

fewest number of bins such that no bin is overfilled; however, the order and orienta-

tion of the items in each bin affects the feasibility of the overall solution. The SCPP

has applications in the packaging industry, and obtaining high quality solutions for

instances of the SCPP has the ability to reduce the amount of waste material, costs,

and time, which motivates the study in this thesis.

The minimal existing research on the SCPP leads us to explore a wide range of

approaches to the problem in this thesis, implementing ideas from related problems

in literature as well as bespoke methods. To begin, we present an exact algorithm

that can produce a feasible configuration of a subset of items in a single bin in

polynomial-time. We then introduce a range of methods for the SCPP including

heuristics, an evolutionary algorithm framework comprising a local search procedure

and a choice of three distinct recombination operators, and two algorithms combining

metaheuristics with an exact procedure. Each method is investigated to gain more

insight into the characteristics that benefit or hinder the improvement of solutions,

both theoretically and computationally, using a large number of problem instances

with varying parameters. This allows us to determine the specific methods and

properties that produce superior solutions depending on the type of problem instance.

iii

Declarations

This work has not been submitted in substance for any other degree or award at this

or any other university or place of learning, nor is it being submitted concurrently

in candidature for any degree or other award.

Signed . (candidate) Date

Statement 1

This thesis is being submitted in partial fulfillment of the requirements for the degree

of PhD.

Signed . (candidate) Date

Statement 2

This thesis is the result of my own independent work/investigation, except where

otherwise stated, and the thesis has not been edited by a third party beyond what

is permitted by Cardiff University’s Policy on the Use of Third Party Editors by

Research Degree Students. Other sources are acknowledged by explicit references.

The views expressed are my own.

Signed . (candidate) Date

Statement 3

I hereby give consent for my thesis, if accepted, to be available online in the Uni-

versity’s Open Access repository and for inter-library loan, and for the title and

summary to be made available to outside organisations.

Signed . (candidate) Date

v

vii

Acknowledgements

Firstly, I would like to thank my supervisors, Rhyd and Jonathan, for their unwa-

vering support over the past four years. Thank you both for your words of encour-

agement, your patience, and for allowing me to pursue my own ideas.

I would also like to extend my gratitude to EPSRC for their financial support

and the School of Mathematics for providing me with the resources required for this

research. In addition, to all the members of staff and my fellow PhD students at

Cardiff University School of Mathematics, thank you for making this an enjoyable

experience full of wonderful memories.

Finally, I would like to thank my family. Mum and Dad, thank you for all of the

sacrifices you have made over the past 30 years for your children. I don’t know if I

would have had the opportunity to go to university let alone do a PhD without you.

Thank you for always listening and for your unconditional love. Isra, thank you for

taking me away when I’ve needed a break and for keeping me grounded, and Hamza,

thank you for your ridiculous jokes and for being there when I’ve needed someone

to talk to about work. To my nephew Faris, thank you for always putting a smile

on my face when I’m with you. I love you all very much.

ix

Contents

List of Figures xv

List of Tables xxi

List of Algorithms xxiii

1 Introduction 1

1.1 Definitions . 1

1.2 Research Aims . 4

1.3 Contributions of the Thesis . 5

1.4 Outline of the Thesis . 6

1.5 Academic Publications . 7

2 Literature Review 9

2.1 Computational Complexity . 9

2.2 Grouping Problems . 11

2.3 The One-Dimensional Bin Packing Problem 13

2.3.1 Computational Complexity of the Bin Packing Problem . . . 15

2.4 Heuristics for the Bin Packing Problem 15

2.5 Metaheuristics for the Bin Packing Problem 17

2.6 Exact Algorithms for the Bin Packing Problem 19

2.7 Variations of the Bin Packing Problem 19

2.7.1 The Knapsack Problem . 21

2.7.2 The Cutting Stock Problem 22

2.7.3 The Strip Packing Problem 23

2.8 The Score-Constrained Packing Problem 25

2.9 Summary . 28

3 The Score-Constrained Packing Sub-Problem 31

3.1 Introduction . 31

3.2 Modelling the sub-SCPP . 33

xi

CONTENTS

3.2.1 Hamiltonian Cycles . 35

3.2.2 Approaching the Constrained Ordering Problem 37

3.3 The Alternating Hamiltonian Construction Algorithm 39

3.3.1 The Maximum Cardinality Matching Algorithm 40

3.3.2 The Bridge-Cover Recognition Algorithm 44

3.4 Summary . 49

4 Heuristics for the Score-Constrained Packing Problem 51

4.1 The Modified First-Fit Decreasing Heuristic 52

4.2 The Pair-Smallest Heuristic . 54

4.3 The Modified First-Fit Decreasing with AHC Heuristic 55

4.4 Computational Results . 57

4.4.1 Problem Instances . 57

4.4.2 Analysis of Results . 58

4.5 Summary . 61

5 Evolutionary Methods for the Score-Constrained Packing

Problem 63

5.1 Representation . 64

5.2 Recombination . 64

5.2.1 The Grouping Genetic Algorithm Crossover 66

5.2.2 The Alternating Grouping Crossover Using Bin Fullness . . . 68

5.2.3 The Alternating Grouping Crossover Using Bin Cardinality . 69

5.2.4 Repair Operator . 71

5.3 Local Search . 71

5.4 Mutation . 74

5.5 Solution Fitness . 75

5.6 The Evolutionary Algorithm Framework 76

5.7 Computational Results . 77

5.8 Summary . 80

6 Combining Metaheuristics and Exact Methods for the Score-

Constrained Packing Problem 83

6.1 Introduction . 83

6.2 An Exact Cover Formulation for the SCPP 87

6.3 The Generate and Solve Framework 89

6.4 The Construct, Merge, Solve & Adapt Algorithm 91

6.4.1 CMSA with Mutation . 93

6.4.2 CMSA with EA . 93

xii

CONTENTS

6.5 Computational Results . 94

6.6 Summary . 100

7 An Alternative Version of the Score-Constrained Packing

Problem 101

7.1 Definitions . 102

7.2 The sub-MSCPP . 104

7.2.1 An Algorithm for the sub-MSCPP 105

7.3 A Heuristic for the MSCPP . 111

7.4 Computational Results . 112

7.5 Summary . 114

8 Conclusions and Future Research 117

8.1 Summary of Findings . 117

8.1.1 Research Aim 1 . 117

8.1.2 Research Aim 2 . 118

8.1.3 Research Aim 3 . 119

8.1.4 Research Aim 4 . 120

8.2 Future Research . 120

8.2.1 Lower Bounds . 121

8.2.2 Alternative Heuristics . 121

8.2.3 Evolutionary Algorithm Operators and Metaheuristics 121

8.2.4 Combining Techniques . 122

8.2.5 The MSCPP . 122

8.3 Final Remarks . 122

8.4 Summary of Available Resources . 123

Bibliography 125

xiii

List of Figures

1.1 The dimensions of an item i with height H, width wi, and score widths

ai and bi. The dashed lines on the item indicate the vertical score lines. 2

1.2 Examples of infeasible and feasible arrangements of four items to be

scored by pairs of knives. (a) The red score lines show where the vic-

inal sum constraint (1.1) is violated between items B and C; and (b)

rotating item C results in a feasible arrangement. Here, τ = 70. 3

1.3 (a) An example instance I of the SCPP comprising 10 items; and (b) a

feasible solution for the instance using four bins of capacity W = 1000.

The remaining space in each bin in shaded in grey. Here, τ = 70. 4

2.1 A diagram showing the relationship between the complexity classes P,

NP, NP-hard, and NP-complete under the assumption that P 6=NP. . . . 11

2.2 (a) An example instance of the exam scheduling problem, where the table

shows for each pair of subjects the number of students sitting both exams;

and (b) the graph G depicting the scheduling problem. Solving the GCP

on G shows that four timeslots are required, with the vertex colours

indicating the exams that should be assigned to the same timeslot. . . . 12

2.3 (a) An example instance I of the BPP comprising 10 items; and (b) a

feasible solution for the instance using three bins of capacity W = 1000.

The remaining space in each bin is shaded in grey. As the theoretical

minimum t = 3, the solution is optimal. 14

2.4 (a) An orthogonal packing, where only four items of equal size can be

packed; and (b) a non-orthongonal packing where a fifth item can be

packed into the centre of the bin. 20

2.5 Two feasible alignments for a set of five trapezoids, where the lined areas

are the triangular inter-item waste and the remaining unused space at

the ends of the bins are shaded in grey. 21

xv

LIST OF FIGURES

2.6 An example instance and solution for the CSP-SDCL showing the widths

wi and demand di for each item type i and the cut losses matrix. The

solution comprises three pieces of stock, where the lined areas are the cut

losses and the remaining space on the end of each stock is shaded in grey.

Here, W = 10. 24

2.7 Feasible solutions for an example instance of the SPP comprising 6 items.

In (a) the items are packed in their given orientations, whilst in (b) the

items can be rotated by 90◦, resulting in a better packing. 25

2.8 Examples of (a) a guillotineable packing; and (b) a non-guillotineable

packing. 25

2.9 A comparison of solutions for the BPP and SCPP using the same problem

instance for the SCPP, where the red score lines on the BPP solution

show the vicinal sum constraint violations. Here, |I| = 10, τ = 70, and

W = 1000. 28

3.1 The sub-SCPP modelled as a travelling politician problem, with red and

blue vertices representing each item in their regular and rotated orienta-

tions respectively. 32

3.2 An example model of the sub-SCPP as generalised TSP suggested by

Lewis et al. (2011), where a tour of length −n has been found. 33

3.3 An instance I of the sub-SCPP comprising eight items. This instance is

equivalent to the COP instanceM = {{4, 21}, {9, 53}, {13, 26}, {17, 29}, {32, 39},
{35, 41}, {44, 57}, {48, 61}}. 34

3.4 The graph G = (V,B ∪ R) modelling our example instance M of the

COP. Here, thicker blue edges are in B and thinner red edges are in R,

with the vertices’ weights stated in parentheses. 35

3.5 (a) A subset of edges from R and the edge set B on G with vertices in

non-decreasing order of weight; and (b) by rearranging the vertices, it

can be seen that the edges form an alternating Hamiltonian cycle in G,

which corresponds to a feasible solution T for the instanceM of the COP. 38

3.6 The alternating path corresponding to a solution T obtained by removing

the universal vertices. 39

3.7 The corresponding feasible alignment of items for the equivalent sub-

SCPP instance. 39

3.8 (a) The graph G modelling our example instance M; (b) the subgraph

G′ = (V,B ∪ R′) with edge set R′ ⊆ R produced by MCM; and (c) a

planar embedding of G′ showing z = 4 components. 43

xvi

LIST OF FIGURES

3.9 BCR creates a collectionR′′ = {R′′1 , R′′2} of edges in R′ that when replaced

by bridges from R\R′ connects the components of G′ into a single alter-

nating Hamiltonian cycle. Dashed green edges and dotted orange edges

are the bridges from R′′1 and R′′2 respectively. The resulting alternating

path corresponds to a solution T . 46

3.10 The issue caused using the initially proposed procedure to find suitable

edge sets, where the collection R′′ covers all components of G′ but the

bridges obtained from the edge sets in R′′ form two components, as op-

posed to a single alternating Hamiltonian cycle. 47

4.1 (a) An instance I for the SCPP comprising 15 items; and (b) an infeasible

solution produced using the FFD heuristic, where the red dashed score

lines indicate the vicinal sum constraint violations in three of the bins.

In this scenario, W = 1000 and τ = 70. 52

4.2 A feasible solution comprising k = 7 bins created using MFFD for the

instance I in Figure 4.1a, where W = 1000, τ = 70, and t = 6. 54

4.3 A feasible solution produced by PS for the instance I in Figure 4.1a,

where W = 1000, τ = 70, and t = 6. The solution is optimal as k = 6. . 56

4.4 A feasible solution obtained using MFFD+ for the instance I in Fig-

ure 4.1a, where W = 1000, τ = 70, and t = 6. As k = 6, this solution is

optimal. 57

5.1 Parent solutions S1 and S2 from a population of solutions for the instance

I of the SCPP shown in Figure 4.1a, where |I| = 15, W = 1000, and

τ = 70. 65

5.2 Two infeasible offspring solutions produced by swapping the locations of

items C, E, H, and O between the parent solutions S1 and S2 in the

previous figure, where both offspring comprise bins which are overfilled

and that violate the vicinal sum constraint. 66

5.3 The partial offspring S created using the GGA recombination operator,

where bins S2, S3, and S4 have been copied from parent S2 and bins S4
and S5 have been copied from parent S1. As a result, three items remain

unpacked. 67

5.4 The partial offspring S created using the AGX recombination operator,

where parent solution S1 is the starting solution as it contains the fullest

bin (S1). Bins S1, S2, and S4 have been inserted from parent S1 and bins

S4 and S5 have been inserted from parent S2, resulting in four unpacked

items. 69

xvii

LIST OF FIGURES

5.5 The partial offspring S created using the AGX′ recombination operator,

where parent solution S1 is the starting solution as it contains the bin

with the most items (S6). Bins S6 and S1 have been inserted from parent

S1 and bins S1 and S4 have been inserted from parent S2, resulting in

four unpacked items. 70

5.6 Stage (i) of the local search procedure applied to partial solutions from

the GGA output in Figure 5.3, where MFFD+ has been used on the

missing items to produce S ′. It can be seen that after the exchange the

bin in S is fuller. 73

6.1 An example showing a solution for an instance of our generalised VRP

that translates to a solution for the corresponding SCPP instance. Here,

the number of customers n = 20 and therefore |I| = 10, the maximum

route distance/bin capacity W = 1000, and τ = 70. 85

6.2 A collection B of feasible bins for an instance I of the SCPP, and a

minimum cardinality exact cover S∗ ⊂ B comprising four bins. Here,

|I| = 10, W = 1000, and τ = 70. 89

6.3 A diagram depicting the Generate and Solve framework, showing the

relationship between the GRI and SRI modules. 90

7.1 An example showing two items whose adjacent score widths do not total

the minimum scoring distance, τ = 70. By separating the items to create

a space, indicated by the lined area, the distance between the neighbour-

ing score lines of the items increases, allowing the knives to score along

the items in the correct locations. 101

7.2 A comparison of solutions for the SCPP and MSCPP using the same

instance I where, due to the modified vicinal sum constraint, the solution

for the MSCPP comprises fewer bins. The lined area between items in

the MSCPP solution indicate the inter-item widths. Here, |I| = 10,

W = 1000, and τ = 70. 102

7.3 A set I ′ of four items packed into two bins of capacity W = 1000 in

different arrangements, where A(I ′) = 941 and τ = 70. In bin S1 the total

inter-item width, f(S2) = 96, causes the bin to be overfilled, whilst the

alignment of items in bins S2 has smaller total inter-item width f(S2) =

48 and so can be packed into the bin feasibly. The red vertical dashed

line on bin S1 indicates the end of the bin. 103

xviii

LIST OF FIGURES

7.4 (a) An instance I of the sub-MSPP comprising eight items; and (b) the

graph G = (V,B ∪ R) modelling the instance I, where the thicker blue

edges are in B and the thinner red edges are in R, with the vertices’

weights stated in parentheses. In this instance, A(I) = w(B) = 1856 and

τ = 70. Note that due to the number of edges on G the edge weights are

not labelled. 107

7.5 The subgraph G′ = (V,B ∪ R) using the edge set R′ produced using

MCM, where in planar form it can be seen that G′ comprises z = 4 cyclic

components. The total sum of edge weights in R′ is w(R′) = 139; thus

the length of G′ is w(B) + w(R′) = 1995. 107

7.6 The BCR′ procedure operating on our example instance of the sub-

MSCPP, where subsets R′′1 , . . . , R′′12 have been created from the list L
of edges from R′. The collection R′′4 produces a modified set R′M of the

same total weight as R′; thus R′′4 is used to obtain edges from R\R′. . . 110

7.7 (a) The graph G′ = (V,B∪R′) comprising four cyclic components; (b) the

graph G′ using the modified set R′ shown in Figure 7.6 which connects

the components into a single alternating Hamiltonian cycle; and (c) the

corresponding alignment of the eight items in I. 111

xix

List of Tables

4.1 Results obtained using the MFFD, PS, and MFFD+ heuristics for δ =

0.25. Figures in bold indicate the best results for each instance class.

Asterisks indicate statistical significance at ≤ 0.05(∗) and ≤ 0.01(∗∗) ac-

cording to a two-tailed paired t-test and two-tailed McNemar’s test for

the |S| and %t columns respectively. 59

4.2 Results obtained using the MFFD, PS, and MFFD+ heuristics for δ = 0.5.

Figures in bold and asterisks should be interpreted as in Table 4.1. . . . 60

4.3 Results obtained using the MFFD, PS, and MFFD+ heuristics for δ =

0.75. Figures in bold and asterisks should be interpreted as in Table 4.1. 61

5.1 Best solutions obtained from the EA using the GGA, AGX, and AGX′

recombination operators for δ = 0.25. Figures in bold indicate the best

results for each instance class. Asterisks indicate statistical significance

at ≤ 0.05(∗) and ≤ 0.01(∗∗) according to a two-tailed paired t-test and

two-tailed McNemar’s test for the |S| and %t columns respectively. . . . 78

5.2 Best solutions obtained from the EA using the GGA, AGX, and AGX′

recombination operators for δ = 0.5. Figures in bold and asterisks should

be interpreted as in Table 5.1. 79

5.3 Best solutions obtained from the EA using the GGA, AGX, and AGX′

recombination operators for δ = 0.75. Figures in bold and asterisks should

be interpreted as in Table 5.1. 79

6.1 Best solutions obtained from the CMSA-M and CMSA-EA algorithms for

δ = 0.25. Figures in bold indicate the best results for each instance class.

Asterisks indicate statistical significance at ≤ 0.05(∗) and ≤ 0.01(∗∗) ac-

cording to a two-tailed paired t-test and two-tailed McNemar’s test for

the |S| and #t columns respectively. 96

6.2 Best solutions obtained from the CMSA-M and CMSA-EA algorithms for

δ = 0.5. Figures in bold and asterisks should be interpreted as in Table 6.1. 97

xxi

LIST OF TABLES

6.3 Best solutions obtained from the CMSA-M and CMSA-EA algorithms

for δ = 0.75. Figures in bold and asterisks should be interpreted as in

Table 6.1. 98

7.1 Results obtained using the MFFD+′ and MFFD+ heuristics for the MSCPP

and the SCPP respectively for δ = 0.25. 113

7.2 Results obtained using the MFFD+′ and MFFD+ heuristics for the MSCPP

and the SCPP respectively for δ = 0.5. 113

7.3 Results obtained using the MFFD+′ and MFFD+ heuristics for the MSCPP

and the SCPP respectively for δ = 0.75. 114

xxii

List of Algorithms

1 FF(I) . 16

2 MCM (G = (V,B ∪R)) . 41

3 AHC (G = (V,B ∪R)) . 49

4 MFFD(I) . 53

5 PS(I) . 55

6 MFFD+(I) . 56

7 GGA (S1, S2) . 67

8 AGX (S1, S2) . 68

9 AGX′ (S1, S2) . 70

10 LocalSearch (S, S ′) . 72

11 EA(I) . 76

12 CMSA (I, q, agemax) . 91

13 CMSA-M: ConstructSolution(I, Sbsf) 93

14 CMSA-EA: ConstructSolution(P) 94

15 BCR′ (G′ = (V,B ∪R′)) . 109

16 MFFD+′(I) . 112

xxiii

Chapter 1

Introduction

From sorting belongings into boxes when moving house to loading goods into delivery

vans, packing problems occur frequently – yet often unknowingly – in our everyday

lives. Naturally, in order to reduce costs and prevent waste, the aim of the majority

of such problems is to pack all of the “items” efficiently into the “bins” so as to make

use of all of the space provided, whilst also attempting to minimise the number of

bins required. In some cases this also has an environmental benefit, reducing vehicle

emissions and the demand for materials. The conditions for each packing problem

can vary. For example, when moving house it is often desirable to pack items from the

same room or category into the same set of boxes, whereas supermarkets may choose

to organise goods into vehicles in the order they are to be delivered to customers.

In this thesis, we focus on a specific packing problem with conditions involving

the order and orientation of the items in the bins: the Score-Constrained Packing

Problem (SCPP).

1.1 Definitions

The main problem we address in this thesis is based on an issue that first emerged

in the packaging industry, where boxes are to be produced from strips of corru-

gated cardboard. The first stage of production involves cutting flat sheets from the

cardboard so as to minimise waste material, and has been widely researched as the

cutting stock problem (see Chapter 2). The second stage consists in a combinato-

rial problem presented by Goulimis in 2004, and requires scoring the flat sheets in

specific locations to make it easier to fold the cardboard into boxes.

Consider a set I of n rectangular items of fixed height H, where each item i ∈ I
has width wi ∈ Z+. In addition, each item is marked with two vertical score lines in

predetermined places. The distance between each score line and the nearest edge of

the item are the score widths, ai, bi ∈ Z+ (where without loss of generality ai ≤ bi).

1

1. INTRODUCTION

An example of an item i with these dimensions is provided in Figure 1.1.

i

wi

ai bi

H

Figure 1.1: The dimensions of an item i with height H, width wi, and score widths ai and bi. The
dashed lines on the item indicate the vertical score lines.

The machine used to score the items consists of pairs of knives secured to a bar.

Each pair of knives simultaneously cut along the score lines of two adjacent items,

which allows the cardboard to be folded with ease at a later stage. However, due to

the manner in which the machine is designed the knives in each pair must maintain

a set distance from one another, a so-called “minimum scoring distance” τ ∈ Z+,

which is approximately 70mm in industry. Therefore, in order for the knives to score

the items in the correct locations, the distance between the score lines of adjacent

items must be equal to or exceed the minimum scoring distance. Hence, the following

vicinal sum constraint must be fulfilled:

r(i) + l(i+ 1) ≥ τ ∀ i ∈ {1, 2, . . . , n− 1}, (1.1)

where l(i) and r(i) denote the left- and right-hand score widths of the ith item in

the alignment. Each item i ∈ I can be placed in one of two orientations: regular,

denoted (ai, bi), where the smaller score width ai is on the left-hand side of item i,

or rotated, denoted (bi, ai), where the larger score width bi is on the left-hand side.

Note that the outermost score widths in the alignment are not included in the above

constraint as they are not adjacent to any other items, and the outermost score lines

are cut individually. Obviously, if the vicinal sum constraint is satisfied the distance

between the adjacent score lines will be sufficient for the knives to be able to operate

correctly.

Figure 1.2 shows how adjacent items are scored simultaneously by pairs of knives

mounted on a bar. In Figure 1.2a, each item has been placed in a regular orientation,

and although the vicinal sum constraint is satisfied between items A and B and items

C and D the full arrangement of all four items is infeasible as the sum of the adjacent

score widths of items B and C is less than the minimum scoring distance τ ; thus the

knives are unable to move close enough together to score the items along the marked

lines. A feasible alignment of the four items can be obtained by placing item C in a

rotated orientation, as shown in Figure 1.2b.

In practice, if an arrangement violates the vicinal sum constraint a “double run”

process can be utilised. This process involves scoring the items individually at a much

2

1.1. DEFINITIONS

slower speed, incurring additional costs. Therefore, in this work, any arrangement

of items in which the vicinal sum constraint is not fulfilled is considered infeasible.

A B C D

8 54 16 21 43 60 27 31

≥ τ < τ ≥ τ

(a) A infeasible alignment of four items which have been placed in regular orientations

A B C D

8 54 16 21 60 43 27 31

≥ τ ≥ τ ≥ τ

(b) A feasible alignment of four items obtained by placing item C in a rotated orientation

Figure 1.2: Examples of infeasible and feasible arrangements of four items to be scored by pairs
of knives. (a) The red score lines show where the vicinal sum constraint (1.1) is violated between
items B and C; and (b) rotating item C results in a feasible arrangement. Here, τ = 70.

There are 2n−1n! distinct configurations of n items excluding symmetry, and so

for large n a naive algorithm relying on complete enumeration can quickly lead to

a combinatorial explosion – even for just 10 items, there are almost two billion

arrangements. Consequently, other methods are required to find feasible orderings

within a reasonable amount of time.

Recall that the items are to be cut and scored from flat sheets of cardboard. As we

have seen in Goulimis’ proposed problem above, the items’ widths are disregarded as

the aim is to simply find a feasible arrangement of the given items onto a single strip

of cardboard of seemingly infinite width. However, in industrial application sheets

of material are often provided in fixed, finite widths. Thus, given large problem

instances, multiple strips may be required to accommodate all of the items.

Note that the problems studied in this thesis can be classified as variants of the

bin packing problem (see Chapter 2) according to Wäscher et al. (2007); thus for

simplicity in the remainder of this thesis we will refer to items being “packed” into

“bins” as opposed to being “cut” from “strips”.

Let us now formally define the main problem of this thesis:

Definition 1.1 Let I be a set of n rectangular items of height H > 0 with varying

widths wi ∈ Z+ and score widths ai, bi ∈ Z+ for all i ∈ I. Given a minimum scoring

distance τ ∈ Z+, the Score-Constrained Packing Problem (SCPP) involves packing

the items from left to right into the fewest number of H×W bins such that the vicinal

sum constraint is satisifed in each bin and no bin is overfilled.

3

1. INTRODUCTION

Figure 1.3 shows an instance I of the SCPP consisting of 10 items and a correspond-

ing feasible solution, where four bins are required to accommodate the items whilst

fulfilling the vicinal sum constraint in each bin.

154
J

5 34

532
A

2 27

278
E

16 39

171
H

21 32

346
D

11 28

393
C

4 31

215
F

19 37

449
B

9 43

209
G

42 50

163
I

20 55

(a)

215
F

19 37

154
J

34 5

346
D

11 28

209
G

42 50

171
H

32 21

393
C

4 31

278
E

39 16

163
I

55 20

532
A

2 27

449
B

43 9

(b)

Figure 1.3: (a) An example instance I of the SCPP comprising 10 items; and (b) a feasible solution
for the instance using four bins of capacity W = 1000. The remaining space in each bin in shaded
in grey. Here, τ = 70.

For the SCPP, the set F (defined in Chapter 2) is the set of all item subsets that can

be feasibly packed into a single bin such that the vicinal sum constraint is fulfilled.

Therefore, the SCPP not only involves deciding which items should be packed into

which bin, but also how the items should be packed – that is, determining the order

and orientation of items within each bin. Thus, there exists a sub-packing problem

within each bin, defined as follows:

Definition 1.2 Let I ′ ⊆ I be a subset of rectangular items whose total width is

less than or equal to the bin capacity, i.e. A(I ′) =
∑

i∈I′ wi ≤ W . Then, given

a minimum scoring distance τ ∈ Z+, the Score-Constrained Packing Sub-Problem

(sub-SCPP) consists in finding an ordering and orientation of the items in I ′ such
that the vicinal sum constraint is satisfied.

1.2 Research Aims

The main aims of the research in this thesis are as follows:

1. To compare several heuristics for the SCPP and identify characteristics that

make the heuristics suitable for particular problem instance types.

4

1.3. CONTRIBUTIONS OF THE THESIS

2. To investigate the effects of different recombination operators within an evo-

lutionary algorithm framework on the quality of solutions and determine the

desirable attributes of each operator.

3. To explore the combination of exact methods with metaheuristics and assess

the associated advantages and disadvantages.

4. To determine whether improved solutions can be found by relaxing elements

of the SCPP, namely by allowing spaces between items in each bin.

1.3 Contributions of the Thesis

The contributions of this thesis are as follows:

• In Chapter 3, we present the Alternating Hamiltonian Construction (AHC)

algorithm, an exact polynomial-time algorithm for solving the sub-SCPP. This

algorithm is an improved, extended version of a procedure proposed by Becker

(2010), however this previous procedure merely provided a simple statement

of feasibility or infeasibility. Our AHC algorithm not only determines the

existence of a solution for any given instance of the sub-SCPP, but also has the

ability to provide the order and orientation of the items in a feasible solution,

which is extremely beneficial in industrial applications. Furthermore, we also

highlighted and rectified an issue within the previous procedure which produced

invalid solutions to feasible problem instances.

• In Chapter 4, three novel heuristics developed for the SCPP are introduced

which, at the time of writing, are the only known heuristics for the prob-

lem. Two of the heuristics, MFFD and MFFD+, are based on the well-known

FFD heuristics for the bin packing problem, where MFFD+ incorporates the

AHC algorithm from the previous chapter, whilst the final heuristic, PS, fo-

cuses on packing individual bins in turn. Experimental results show that PS

and MFFD+ produce superior solutions depending on the proportions of score

widths in the given problem instance that meet the vicinal sum constraint.

• In Chapter 5, we describe an evolutionary algorithm (EA) framework compris-

ing three custom recombination operators for the SCPP which ensure solution

feasibility, as well as a local search procedure to improve solution quality in

each iteration. By comparing the performance of the distinct recombination

operators, we are able to determine the two most desirable features of the oper-

ators that produce high quality solutions: collecting high quality groups of bins

5

1. INTRODUCTION

to propagate throughout the whole population, and prioritising the selection

of bins containing a larger number of items.

• In Chapter 6, the Minimum Cardinality Exact Cover Problem (MXCP) is de-

fined and its relation to the SCPP is explored. From this, we design two

algorithms for the SCPP combining an exact solver for the MXCP with dif-

ferent evolutionary operators from our evolutionary algorithm framework in

the previous chapter. Experimental results show the advantages of obtaining

and utilising feedback from solutions for subsequent iterations, a characteristic

not present in our EA, and the disadvantages of implementing an exact solver

within a procedure.

• In Chapter 7, we present the Modified Score-Constrained Packing Problem

(MSCPP) and associated sub-problem, an novel alternative version of the

SCPP in which “gaps” are permitted between adjacent items in bins in or-

der to fulfil the vicinal sum constraint. An adaptation of the AHC algorithm

is proposed for the sub-problem, along with an MFFD+-based heuristic for the

MSCPP. A comparison of the two problems shows that although solutions to

the MSCPP will clearly comprise fewer bins, it may not be possible to develop

an exact polynomial-time algorithm for the sub-problem as with the AHC al-

gorithm for the sub-SCPP.

1.4 Outline of the Thesis

The thesis is dedicated to the development of algorithms and heuristics for the SCPP.

The next chapter provides an overview into existing literature on packing and group-

ing problems and describes the unique properties of the SCPP. Chapter 3 focuses

on the sub-SCPP, first discussing the possible ways of modelling the problem before

detailing an exact polynomial-time algorithm for solving the sub-SCPP. In Chapter 4

we begin our approach to the SCPP and compare the performance of heuristics devel-

oped specifically for the SCPP. An evolutionary approach to the SCPP is presented

in Chapter 5, which includes a local search procedure and a comparison of three

distinct recombination operators. Chapter 6 introduces two algorithms combining

metaheuristics and an exact procedure involving a recursive backtracking algorithm,

and provides an ILP formulation for the SCPP. In Chapter 7 we briefly introduce

an alternative version of the SCPP and examine the differences in solutions for each

problem. Finally, Chapter 8 gives concluding remarks and discusses outcomes and

possible directions for further work.

6

1.5. ACADEMIC PUBLICATIONS

1.5 Academic Publications

The following academic articles have been produced from the research in this thesis:

• Hawa, A.L., Lewis, R. and Thompson, J.M. (2018). Heuristics for the Score-

Constrained Strip-Packing Problem. In International Conference on Combi-

natorial Optimization and Applications (pages 449–462). Springer.

• Hawa, A.L., Lewis, R. and Thompson, J.M. (2020). Exact and Approximate

Methods for the Score-Constrained Packing Problem. Under second review

with the European Journal of Operational Research.

7

Chapter 2

Literature Review

In this chapter, we start by providing a brief overview to computational complex-

ity, which allows us to assess the difficulty of various combinatorial optimisation

problems. We then introduce the one-dimensional bin packing problem (BPP) and

discuss the methods that have been used to solve the problem by reviewing relevant

literature, before exploring alternative packing problems related to the BPP. The

Score-Constrained Packing Problem (SCPP) is also examined and compared to the

various packing problems highlighted throughout the chapter.

2.1 Computational Complexity

To begin, let us distinguish between two types of problem.

Definition 2.1 A decision problem is a problem in which the answer is either “yes”

or “no”, depending on the input. An optimisation problem is a problem where an

optimal solution is to be found from all feasible solutions, with respect to some given

objective function.

Note that an optimisation problem can in some cases be infeasible - that is, no

feasible solution exists for the given problem. Observe that optimisation problems

can be transformed into decision problems and vice versa. Consider, for example,

the travelling salesman problem (TSP). The optimisation variant of the problem is:

“find the tour with the shortest length”, whilst the decision variant is: “for each value

D, does there exist a tour with length less than D?”. It can be seen that if the

decision problem is asked and answered repeatedly, the length of the shortest tour

can be determined.

The field of computational complexity theory concentrates on classifying prob-

lems into distinct complexity classes, which allows us to compare the difficulty of

different problems. The classification of a problem is determined by the number

9

2. LITERATURE REVIEW

of machine operations, or running time, needed by an algorithm to find or verify a

solution to the problem relative to the input size.

An algorithm is said to be of polynomial-time if its running time is upper-bounded

by a polynomial expression in terms of the input size for the algorithm. Such al-

gorithm are considered to be efficient algorithms (Edmonds, 1965; Cobham, 1965).

Consequently, a problem is said to be polynomial if there exists a polynomial-time

algorithm for finding a solution for any instance of the problem. The complexity

class P contains all polynomial decision problems. One other way of describing P is

that the decision problems in P can be solved by a deterministic Turing machine.

There are many problems for which no polynomial-time algorithms for finding

solutions have yet been found. Unfortunately, it has also not been determined that

there do not exist polynomial-time algorithms for such problems. For some of these

problems, however, it is possible to verify a solution in a reasonable amount of time.

A problem is said to be non-deterministic polynomial if there exists a polynomial-

time algorithm that is able to verify any given solution to the problem (Cook, 1971).

The complexity class NP contains all non-deterministic polynomial decision prob-

lems. Again, NP can be described as the set of decision problems for which a given

solution can be verified in polynomial-time by a deterministic Turing machine, or

that is solvable by a non-deterministic Turing machine in polynomial-time. Clearly,

as non-deterministic Turing machines are theoretical, it is thought that problems

in NP will always be intractable to solve with our regular (deterministic) machines;

thus, is it widely assumed that P6=NP.

A problem is said to be NP-hard if every problem in NP can be reduced by a

polynomial-time algorithm into that problem. Note, however, that NP-hard prob-

lems do not have to be in NP and may not even be decision problems – they can

also be optimisation or search problems. On the other hand, a problem is said to be

NP-complete if it is NP-hard and is an element of NP. NP-complete problems are

considered to be the hardest problems in NP, whilst NP-hard problems are at least

as hard as the problems in NP-complete. Therefore, if there exists a polynomial-

time algorithm that can solve an NP-hard problem it would then be possible to

solve all problems in NP in polynomial-time, and so P=NP. Figure 2.1 illustrates

the relationship between these complexity classes assuming P6=NP.

Many surveys, articles, and books covering computational complexity theory are

readily available, including overviews on the topic (Cook, 1983), pioneering work on

NP-completeness (Karp, 1972), discussions into the importance of considering the

equality of P and NP (Cook, 2006), as well as general books exploring various aspects

of the field (Garey and Johnson, 1979; Papadimitriou, 2003). In addition, further

information on Turing machines can be found in the notable works of Petzold (2008)

10

2.2. GROUPING PROBLEMS

and Jongen et al. (2007).

NP

P

NP-complete

NP-hard

co
m
pl
ex
it
y

Figure 2.1: A diagram showing the relationship between the complexity classes P, NP, NP-hard,
and NP-complete under the assumption that P 6=NP.

2.2 Grouping Problems

Many combinatorial optimisation problems involve the grouping or partitioning of el-

ements into subsets. These types of problems can be seen in areas such as scheduling

(Thompson and Dowsland, 1998; Carter et al., 1996), frequency assignment (Aardal

et al., 2007), graph colouring (Lewis et al., 2012; Malaguti et al., 2008), and load

balancing (Rekiek et al., 1999), as well as in practical problems in computer science

such as table formatting, prepaging, and file allocation (Garey et al., 1972). Formally,

given a set I of n elements, the aim is to produce a set of groups S = {S1, S2, . . . , Sk}
such that: ⋃k

j=1
Sj = I, (2.1a)

Si ∩ Sj = ∅ i, j = 1, 2, . . . , k, i 6= j, (2.1b)

Sj ∈ F j = 1, 2, . . . , k. (2.1c)

Conditions (2.1a) and (2.1b) enforce the requirement that every element in I must

be in exactly one of the k groups in S, whilst Condition (2.1c) specifies that each

group Sj ∈ S must be feasible. Here, we introduce the set F , which denotes the set

of all feasible subsets of elements in I. The notion of feasibility is dependent on the

particular constraints of the given problem.

The graph colouring problem (GCP) involves assigning colours to vertices on a

graph G such that no two adjacent vertices are of the same colours, with the objective

of minimising the total number of colours used. The chromatic number of a graph

11

2. LITERATURE REVIEW

G, denoted χ(G), is the minimum number of colours required to colour G. The

GCP is one example of a grouping problem, where the vertices of the graph must be

grouped into the fewest non-overlapping subsets (i.e. colour classes) such that each

subset is an independent set. For this problem, F contains all possible independent

sets of vertices on the graph. Figure 2.2b illustrates an example solution of the GCP

on a graph G comprising eight vertices, where χ(G) = 4 colours have been used to

colour the vertices feasibly. For a deeper introduction to graph colouring, the reader

is directed to the work of Lewis (2015b).

Another example of a grouping problem occurs when scheduling exams in schools

and universities. In its simplest form, the problem involves sorting exams into a

limited number of timeslots whereby no student is scheduled to sit more than one

exam per timeslot. In practice, however, many other factors must be considered such

as the exam locations, the capacity of each location, and restrictions on the order of

specific exams. For this problem, each timeslot can be considered as a group; thus

F contains all possible groups of exams where each student is attending at most one

exam.

It is interesting to note that the exam scheduling problem can in fact be reformu-

lated as a graph colouring problem. Suppose each exam i is represented by a vertex

vi on a graph G, and for each pair of exams i and j there exists an edge {vi, vj} on
G if at least one student is required to sit both exams. Then, the resulting graph

G = (V,E) depicts the exams than can and cannot be scheduled into the same

timeslot. By finding a solution to the GCP with respect to G, the fewest number of

timeslots for which all exams can be scheduled without clashes can be determined.

Figure 2.2a shows the number of students required to sit each pair of exams for

the subjects Algebra, Analysis, Calculus, Geometry, Mechanics, Number Theory,

Optimisation, and Statistics. The colours of the vertices on the graph G, shown in

Figure 2.2b, indicate the exams that should be scheduled into the same timeslots.

Al
An
C
G
M
N
O
S

Al

–

12
35
26
0
44
0
19

An

12
–

0
0
31
40
0
0

C

35
0
–

52
29
0
16
37

G

26
0
52
–

0
0
0
46

M

0
31
29
0
–

0
54
0

N

44
40
0
0
0
–

0
0

O

0
0
16
0
54
0
–

38

S

19
0
37
46
0
0
38
–

(a)

An M

N Al C O

G S

(b)

Figure 2.2: (a) An example instance of the exam scheduling problem, where the table shows for
each pair of subjects the number of students sitting both exams; and (b) the graph G depicting the
scheduling problem. Solving the GCP on G shows that four timeslots are required, with the vertex
colours indicating the exams that should be assigned to the same timeslot.

12

2.3. THE ONE-DIMENSIONAL BIN PACKING PROBLEM

A grouping problem will often have one of two objectives regarding the number of

groups k in a solution S. One objective involves determining whether a solution S
exists that contains exactly k groups, where k has been explicity specified. Grouping

problems with this type of objective are decision problems. The other objective is

to find a solution comprising the fewest number of groups k; these types of grouping

problems are optimisation problems. This latter class of problems, identified by

Lewis (2009) as Minimum Grouping Problems (MGPs), can be separated into two

sub-classes: Order Dependent Minimum Grouping Problems (ODMGPs), where the

order of the groups affects the feasibility and/or quality of the solution – for example,

the exam scheduling problem with an additional condition preventing students from

sitting exams in consecutive timeslots – and Order Independent Minimum Grouping

Problems (OIMGPs), in which the order of the groups within a solution is irrelevant.

2.3 The One-Dimensional Bin Packing Problem

One particular class of grouping problem with applications in the material and con-

struction industries are cutting and packing problems. These problems involve cut-

ting items from stock material or packing items into bins subject to specific con-

straints. Perhaps the most well-known of these problems is the one-dimensional bin

packing problem (BPP).

Definition 2.2 Given a set I of n rectangular items of varying widths wi ∈ Z+ and

equal height H > 0 for all items i ∈ I, the one-dimensional bin packing problem

(BPP) involves packing all items in I into the fewest number of H ×W bins such

that no bin is overfilled.

The one-dimensional bin packing problem is a classical combinatorial optimisation

problem originating back to the 1930s (Kantorovich, 1960). The problem requires

the items in I to be grouped into subsets S = {S1, . . . , Sk} of bins with the aim

of minimising the number of bins k. For this problem, a bin Sj is feasible if the

total widths of all the items in Sj does not exceed the bin capacity W ; that is,

A(Sj) =
∑

i∈Sj
wi ≤ W . A basic lower bound for the fewest number of bins k in a

solution is the theoretical minimum, which can be calculated in O(n) time (Martello

and Toth, 1990b):

t =

⌈∑n
i=1wi
W

⌉
. (2.2)

Figure 2.3 depicts an example instance I of 10 items for the BPP to be packed into

bins of capacity W = 1000 along with a feasible solution comprising three bins. As

13

2. LITERATURE REVIEW

the theoretical minimum for this problem instance is t = 3, the solution is in fact

optimal.

278
E

532
A

171
H

163
I

393
C

215
F

154
J

346
D

209
G

449
B

(a) I

278
E

209
G

171
H

163
I

154
J

393
C

346
D

215
F

532
A

449
B

(b) Solution for I

Figure 2.3: (a) An example instance I of the BPP comprising 10 items; and (b) a feasible solution
for the instance using three bins of capacity W = 1000. The remaining space in each bin is shaded
in grey. As the theoretical minimum t = 3, the solution is optimal.

Derived from the one-dimensional bin packing problem are the two-dimensional (Lodi

et al., 2002) and three-dimensional (Martello et al., 2000) bin packing problems.

The BPP has a variety of real world applications, such as assigning advertisements

to programme breaks in television broadcasting (Brown, 1971), allocating memory

in computer network designs (Chandra et al., 1978), scheduling tasks on multiple

processors (Coffman et al., 1978; van de Vel and Shijie, 1991), and packing items

into containers with size or weight capacity constraints (Eilon and Christofides, 1971;

Hung and Brown, 1978).

The BPP can be formulated as the following integer linear program:

minimise
n∑
j=1

yj (2.3a)

subject to
n∑
i=1

wixij ≤Wyj j = 1, . . . , n (2.3b)

n∑
j=1

xij = 1 i = 1, . . . , n (2.3c)

yj ∈ {0, 1} j = 1, . . . , n (2.3d)

xij ∈ {0, 1} i, j = 1, . . . , n (2.3e)

yj =

1 if bin j is used

0 otherwise
xij =

1 if item i is packed into bin j

0 otherwise.

The objective 2.3a is to minimise the number of bins of capacity W used to pack the

items. Constraint 2.3b ensures that the bins used in the solution are not overfilled,

whilst Constraint 2.3c states that each item must be packed into exactly one of the

bins in the solution. The final two constraints restrict the variables xij and yj to the

integers 0 and 1.

14

2.4. HEURISTICS FOR THE BIN PACKING PROBLEM

2.3.1 Computational Complexity of the Bin Packing Problem

The partition problem asks the question: “given a set S of positive integers, can S

be partitioned into two subsets S1 and S2 such that the sum of the elements in S1
is equal to the sum of the elements in S2?” This decision problem is known to be

NP-complete, and is in fact one of Karp’s original 21 NP-complete problems (1972).

As discussed in Section 2.1, by reducing the partition problem to the BPP we are

able to show that the BPP is also NP-complete.

Theorem 2.3 Given an instance I of the BPP, the problem of deciding whether

there exists a solution to I comprising two bins is NP-complete.

Proof. We reduce the partition problem, which we know to be NP-complete, to the

above bin packing problem. Given an instance S = {s1, . . . , sn} of the partition

problem, consider the instance I = {w1, . . . , wn} of the BPP, where

wi =
2si∑n
j=1 sj

∀ i = 1, . . . , n.

Clearly, there exists a solution for the BPP using two bins if and only if there exists

a subset S1 ⊆ {1, . . . , n} such that
∑

i∈S1
si =

∑
i/∈S1

si.

As the decision variant of the BPP is NP-complete, it follows that the optimisation

variant of the BPP, provided in Definition 2.2, is NP-hard (Garey and Johnson, 1978,

1979).

2.4 Heuristics for the Bin Packing Problem

As the BPP is NP-hard, under the generally accepted assumption that P6=NP we

cannot hope to find an optimal solution in polynomial-time for all instances of the

BPP. Consequently, much research has been devoted to developing algorithms that

run in polynomial-time that produce near-optimal solutions, such as heuristics and

approximation algorithms. Heuristics aim to produce feasible solutions by trading

optimality, accuracy, or precision for speed; thus solutions created by heuristics are

not guaranteed to be optimal. Approximation algorithms are heuristics that have

the advantage of producing solutions that are provably close to the optimal solution,

which makes them much more desirable in theory. It is important to note, however,

that the worst-case bounds obtained from approximation algorithms cover all in-

stances of a problem including unusual instances that would not appear in practice,

and so it tends to be that heuristics derived from approximation algorithms produce

solutions that are much closer to the optimal than suggested by the bounds of the

approximation algorithm (Williamson and Shmoys, 2011).

15

2. LITERATURE REVIEW

Let A(I) denote the number of bins in a solution for an instance I produced

using an approximation algorithm A, and let OPT(I) denote the number of bins in

the optimal solution for the instance I. Then, A has an approximation ratio c > 1 if

for any instance I, A(I) ≤ cOPT(I)+ b, where b is a positive constant. Clearly, the

goal is to obtain an approximation ratio c that is as close to 1 as possible. However,

Vazirani (2003) has shown that there cannot exist an approximation algorithm with

c < 3
2 for the BPP unless P=NP.

One of the most well-known heuristics for the BPP is First-Fit (FF), a greedy

online algorithm that packs each item, given in some arbitrary order, into the lowest-

indexed bin that can feasibly accommodate the item and opening a new bin when

required, as shown in Algorithm 1. It is known that there always exists at least one

ordering of the items such that FF produces an optimal solution (Lewis, 2009).

Algorithm 1 FF(I)
1: A(Sj)← 0 ∀ j = 1, . . . , |I| . All bins are initially empty
2: S ← ∅
3: for i← 1 to |I| do
4: j ← 1
5: packed ← false
6: while not packed do
7: if Sj ∈ S then
8: if A(Sj) + wi ≤W then
9: Sj ← Sj ∪ {i}
10: A(Sj)← A(Sj) + wi
11: packed ← true
12: else j ← j + 1

13: else if Sj /∈ S then
14: Sj ← Sj ∪ {i}
15: A(Sj)← A(Sj) + wi
16: S ← S ∪ {Sj}
17: packed ← true
18: return S

It was first shown by Ullman (1971) that for any instance I, FF(I) ≤ 17
10OPT(I)+3.

This was then improved twice by Garey et al. (1972, 1976), before Xia and Tan pre-

sented the upper bound of FF(I) ≤ 17
10OPT(I)+ 7

10 in 2010. The most recent bound

was proven by Dósa and Sgall (2013) to be exactly 17
10OPT(I), concluding that the

bound is tight. A number of related heuristics were presented in Johnson’s seminal

thesis in 1973 including the Best-Fit (BF) heuristic, which operates by packing each

item into the bin with the least amount of remaining space. BF has been shown to

have similar bounds to the FF heuristic (Dósa and Sgall, 2014).

An enhancement on the FF and BF heuristics yields their offline counterparts,

First-Fit Decreasing (FFD) and Best-Fit Decreasing (BFD), where the items are

16

2.5. METAHEURISTICS FOR THE BIN PACKING PROBLEM

packed in non-increasing order of size (Johnson et al., 1974). In his thesis, Johnson

(1973) provided the initial bound FFD(I) ≤ 11
9 OPT(I) + 4. Later, a simpler proof

by Baker (1985) showed that the additive constant is no more than 3, whilst Yue

(1991) improved the bound to FFD(I) ≤ 11
9 OPT(I) + 1. Dósa (2007) then proved

that FFD requires at most 11
9 OPT(I) + 6

9 bins, and that this bound is tight (Dósa

et al., 2013). Due to the initial sorting of the items, the time complexity of both

FFD and BFD is O(n log n).

Although seemingly simple and straightforward, heuristics such as FF and FFD

form the basis for the development of more complex heuristics. For example, the

Refined First-Fit (RFF) algorithm proposed by Yao (1980) has an improved bound

of 5
3OPT(I)+5 on the FF heuristic. Lee and Lee (1985) then presented HarmonicM ,

which operates by partitioning the items into M subsets, and the Refined-Harmonic

algorithm comprising characteristics from both RFF and HarmonicM . A variety

of heuristics based on HarmonicM were later designed, including the Harmonic++

algorithm of Seiden (2002).

Further advanced heuristics for the BPP have been developed with positive re-

sults, such as the Minimum Bin Slack (MBS) heuristic (Gupta and Ho, 1999), which

focuses on packing each bin in turn rather than each item, and modifications of MBS

such as the Perturbation-MBS′ heuristic of Fleszar and Hindi (2002). A comprehen-

sive overview of these heuristics and related methods can be seen in Johnson (1973,

1974), Johnson et al. (1974), Garey et al. (1972), and Coffman et al. (1984, 1996,

1999, 2013).

2.5 Metaheuristics for the Bin Packing Problem

A metaheuristic is a high-level problem-independent framework designed to develop

heuristic optimisation algorithms, with the aim of finding the best solution from

all possible feasible solutions. This is done by evaluating and iteratively making

changes to potential solutions in order to obtain new, superior solutions (Sörensen

and Glover, 2013). Metaheuristics are therefore a suitable approach to the BPP as

the set F of feasible bins will be too large to enumerate in all but the most trivial

of instances. In this thesis, we focus on one particular class of metaheuristics known

as evolutionary algorithms, which operate on a population of solutions for a given

problem instance.

Natural selection, also known as “survival of the fittest”, is defined as the “preser-

vation of favourable individual differences and variations, and the destruction of

those that are injurious” (Darwin, 1875). In biological evolution, features that make

an individual suitable for the environment tend to be preserved, whilst features that

17

2. LITERATURE REVIEW

make the individual weaker are eliminated. Consequently, the fittest individuals are

provided more opportunity to breed over the generations, and the superior features

of these individuals are transmitted to their offspring during sexual reproduction.

In the 1960s, the notion of natural selection was exploited for use in learning

and optimisation problems and led to the development of evolutionary algorithms

(EAs), where the biological evolution process is simulated in a computer (Bäck,

1996; Bäck et al., 1997). Within EAs there are three main paradigms: evolution

strategies (Schwefel, 1981), genetic algorithms (Holland, 1962a,b, 1975; Goldberg,

1989), and evolutionary programming (Fogel et al., 1966; Fogel, 1995), each created

independently with distinct aims. Other types of evolutionary algorithms include

genetic programming (Smith, 1980), gene expression programming (Ferreira, 2001),

and differential evolution (Storn and Price, 1997).

In general, an evolutionary algorithm is a metaheuristic optimisation algorithm

inspired by the natural evolutionary process. Candidate solutions to the problem

form the initial population, and procedures emulating selection, reproduction, re-

combination and mutation are used to create the next generation of solutions (see

Chapter 5). This iterative process results in the evolution of the population. Each

solution is evaluated based on a specific critera in the form of a fitness function that

creates the environment, and solutions which are deemed fitter are provided more

opportunity to breed while those which are less so are eliminated.

EAs have been constructed for the one-dimensional bin packing problem in a

variety of ways, such as combining EAs with heuristics like FF and MBS′ (Iima and

Yakawa, 2003), controlling the characteristics of each solution to be modified or used

to form a new solution (Rohlfshagen and Bullinaria, 2007; Quiroz-Castellanos et al.,

2015), and randomly partitioning bins in solutions (Falkenauer, 1996). Improved

EAs for the BPP have also been addressed: Fan et al. (2020) propose a replacement

insertion method designed to enhance the mutation operator, whilst Cardoso Silva

and Hasenclever Borges (2019) incorporate heuristics to decode mapped solutions to

ensure solution feasibility. In addition, several studies focus on the execution time

of the EA, including dividing the population into semi-isolated sub-populations for

parallel processing in each iteration (Kucukyilmaz and Kiziloz, 2018), and exploiting

the power of the GPU to enable more effective exploraton of the solution space

(Ozcan et al., 2016). Beyond the BPP, a wide range of grouping problems have also

been tackled using EAs with positive results, including graph colouring (Galinier and

Hao, 1999), finding maximum independent sets in graphs (Hifi, 1997), scheduling

problems (Kammarti et al., 2013), and other packing problems related to the BPP

(Bortfeldt, 2006; Kröger, 1995; Lewis and Holborn, 2017).

In addition to EAs, numerous metaheuristics have been and are continuing to

18

2.6. EXACT ALGORITHMS FOR THE BIN PACKING PROBLEM

be developed and applied to various combinatorial optimisation problems. Some of

the most famous and influential metaheuristics include tabu search (Glover, 1986),

simulated annealing (Kirkpatrick et al., 1983), iterated local search (Lourenço et al.,

2003), GRASP (Feo and Resende, 1995), variable neighbourhood search (Mladen-

ović and Hansen, 1997), ant colony optimisation (Dorigo, 1992), and particle swarm

optimisation (Kennedy and Eberhart, 1995). An abundance of literature on meta-

heuristics is available, with notable works by Bianchi et al. (2009), Blum and Roli

(2003), Glover and Kochenberger (2003), Mitchell (1996), Sörensen et al. (2017), and

Talbi (2009).

2.6 Exact Algorithms for the Bin Packing Problem

Exact algorithms, whilst being able to produce optimal solutions for problem in-

stances, require a substantial amount of time and computational effort which only

increases as the size of the problem instance increases. Nevertheless, there have been

many developments into exact algorithms for the BPP.

In 1971, Eilon and Christofides proposed the first exact algorithm using an in-

teger linear programming (ILP) formulation to be solved by the Balas’ Additive

Algorithm of Balas (1965), a general enumerative scheme for solving linear programs

with binary variables. Martello and Toth (1990a) then introduced MTP (Martello-

Toth Procedure), a powerful exact algorithm of running time O(n2) which makes use

of the dominance criterion of Martello and Toth (1990b) (discussed in Chapter 5),

and also includes heuristics such as FFD. Features of MTP were then exploited for

the creation of new exact algorithms. For example, the BISON algorithm of Scholl

et al. (1997) combined characteristics from MTP and metaheuristic techniques such

as tabu search, whilst Schwerin and Wäscher (1999) used MTP along with new lower

bounds obtained from the column generation method of Gilmore and Gomory (1961,

1963). The Bin Completion algorithm, an alternative to MTP, was then presented by

Korf (2002, 2003) and later improved by Schreiber and Korf (2013) to be up to five

times faster than the original version for problem instances comprising 100 items. A

deeper review into these methods and other exact algorithms for the BPP can be

found by Delorme et al. (2016).

2.7 Variations of the Bin Packing Problem

Firstly, we note that the majority of the literature on rectangular packing problems

are restricted to orthogonal packings, where the edges of the rectangular items must

be parallel to the sides of the bin. Although this constraint is necessary for many

applications of the BPP, orthogonal packings are not always optimal as can be seen

19

2. LITERATURE REVIEW

in Figure 2.4, where an orthogonal packing only permits four of the items to be

packed, whilst a non-orthogonal packing accommodates five items.

(a) (b)

Figure 2.4: (a) An orthogonal packing, where only four items of equal size can be packed; and (b)
a non-orthongonal packing where a fifth item can be packed into the centre of the bin.

The BPP forms the basis of many packing problems involving additional constraints

on the items and bins: Haouari and Serairi (2009) addressed the variable-sized BPP

using bins of unequal capacities, whilst Zhou et al. (2009) extended the problem

where, in addition to variable-sized bins, items and bins are assigned types, and

items can only be packed into bins of the same type. Lodi et al. (1999) presented

approximation algorithms for a two-dimensional BPP in which the items cannot be

rotated and must be packed in their given orientation. There also exists a dual

version of the BPP which, given a positive constant C, involves packing items into a

maximum number of bins of capacity W such that the total width of items in each

bin is at least C (Csirik and Totik, 1988). Furthermore, problems can consist of

non-rectangular items and non-rectangular bins. For example, in Akeb et al. (2009),

a set of non-identical circular items are to be packed into a larger circle such that

the radius of the circle is minimised.

One particular problem involving non-rectangular items is the Trapezoid Packing

Problem (TPP) initially investigated by Lewis et al. (2011), where trapezoid-shaped

items are to be packed into bins so as to minimise the number of bins required

whilst also attempting to reduce the amount of triangular waste between adjacent

trapezoids. Although the TPP itself is NP-hard, the problem of determining a

feasible arrangement of trapezoids into a single bin has been shown to be solvable in

polynomial-time (Lewis and Holborn, 2017). Figure 2.5 shows two possible feasible

arrangements of five trapezoids in a single bin.

There are also special cases of the BPP with characteristics that allow for a

solution to be obtained in polynomial-time. The most trivial type of problem involves

packing items of equal size into bins of equal capacity, where a heuristic such as FF

will yield an optimal solution. Coffman et al. (1987) studied sets of items with

divisible items sizes, showing that not only is FFD optimal for such instances, but

even FF can produce optimal solutions if the largest item size in the set divides the

20

2.7. VARIATIONS OF THE BIN PACKING PROBLEM

A B C D E

E B D A C

W

Figure 2.5: Two feasible alignments for a set of five trapezoids, where the lined areas are the
triangular inter-item waste and the remaining unused space at the ends of the bins are shaded in
grey.

bin capacity. Moreover, Fernandez de la Vega and Lueker (1981) proved that there

exists a polynomial-time algorithm for solving instances of the BPP in which there

are at most l different sizes of items and at most m items can be packed into a single

bin.

There are a number of well-known problems related to the BPP that have par-

ticular applications in various industries, such as the knapsack problem, the cutting

stock problem, and the strip packing problem. A comprehensive classification of one-

and multi-dimensional cutting and packing problems can be found by Wäscher et al.

(2007).

2.7.1 The Knapsack Problem

The knapsack problem can be viewed as a single-bin version of the BPP, where the

objective is to be maximised rather than minimised. Given a set I of n items of

varying weights wi ∈ Z+ and values vi ∈ Z+ for all i ∈ I, and a knapsack of weight

capacity W , the problem involves finding a subset of items I ′ ⊆ I such that the

total weight of the items in I ′ does not exceed the knapsack capacity W and the

total value of the items in I ′ is maximised (Martello and Toth, 1990a).

maximise
n∑
i=1

vixi (2.4a)

subject to
n∑
i=1

wixi ≤W (2.4b)

xi ∈ {0, 1} i = 1, . . . , n. (2.4c)

The objective (2.4a) is to maximise the value of the items in the knapsack. Con-

straint (2.4b) ensures the total weight of the items in the knapsack does not exceed

the capacity W , and Constraint (2.4c) states that the variables must be binary, i.e.

each item in I is either chosen to be in the knapsack once or is not chosen at all.

21

2. LITERATURE REVIEW

The knapsack problem, which can be traced back to Mathews (1896), has appli-

cations in resource allocation and security as well as investment. For example, when

faced with a set of projects, each with varying amounts of initial costs and potential

profits, an investor with a fixed amount of capital must decide which projects to

invest in to procure the largest profit. As with the BPP, the knapsack problem is

NP-hard.

2.7.2 The Cutting Stock Problem

The cutting stock problem (CSP) is as follows: an order consists of m items types,

each with size wi ∈ Z+ and demand di ∈ Z+ for i = 1, . . . ,m. An unlimited number

of stocks are available of equal size W and some cost. The task involves cutting di
copies of each item type i from the fewest number of stocks, thus fulfilling the order

at the least cost.

minimise
n∑
j=1

yj (2.5a)

subject to
m∑
i=1

wixij ≤Wyj j = 1, . . . , n (2.5b)

n∑
j=1

xij = di i = 1, . . . ,m (2.5c)

yj ∈ {0, 1} j = 1, . . . , n (2.5d)

xij ≥ 0, integer i = 1, . . . ,m, j = 1, . . . , n. (2.5e)

Here, the variable xij denotes the number of items of type i that are cut from stock

j. Similarly to the BPP, the objective (2.5a) is to use the fewest number of stocks

j = 1, . . . , n (where n is some large number), and Constraint (2.5b) ensures that

for each stock the total size of the items does not exceed the size of the stock.

Constraint (2.5c) imposes the condition that all demands for each item are satisfied,

and Constraints (2.5d) and (2.5e) state the variable requirements.

The BPP is a special case of the CSP where the demand of each item type di = 1

for all item types i = 1, . . . ,m. It can be seen then that the CSP mainly differs from

the BPP in that the items tend to be weakly heterogeneous – that is, many items

have the same dimensions. Consequently, the problem typically involves producing

“patterns”, possible arrangements of items on a single piece of stock. A solution

then comprises a set of patterns repeated over multiple pieces of stock. The most

notable work on the CSP is that of Gilmore and Gomory (1961, 1963), showing that a

column generation approach can be used in place of calculating all possible patterns,

and is guaranteed to converge to an optimal solution. There exists an abundance

22

2.7. VARIATIONS OF THE BIN PACKING PROBLEM

of literature investigating the CSP with alternative constraints, such as generating

solutions that produce useable leftover material (Coelho et al., 2017; do Nascimento

et al., 2020), and incorporating leftover material in new solutions (Cui et al., 2017),

which have a desirable environmental impact, and finding solutions using a minimal

number of patterns so as to reduce setup costs (Wu and Yan, 2016; Ma et al., 2019),

as well as dealing with multiple stock lengths (Belov and Scheithauer, 2002; Poldi

and Arenales, 2009). In particular, the two-dimensional CSP involving irregular-

shaped items has been well documented, using approaches such as column generation

and sequential heuristic procedures (Song and Bennell, 2014), branch and bound

(Alvarez-Valdes et al., 2013), and the “no-fit polygon” concept (Bennell et al., 2001).

An interesting extension of the CSP described by Garraffa et al. (2016) considers

sequence-dependent cut losses (SDCL). Here, the type of machine used results in

additional material loss, known as a “cut loss”, cij between items i and j during the

cutting process. The amount of loss can vary between different items and is also

dependent on the order of the items: a cut loss between two adjacent items A and B

with A packed first may not necessarily be equal to the cut loss that arises when B is

packed first. There are also cut losses c0i and ci0 that occur before the first item and

after the last item than must be taken into account. Hence, the CSP-SDCL involves

arranging the items onto the fewest pieces of stock such that the sum of the item

widths and the sum of the cut losses between all adjacent items does not exceed the

stock widthW . Figure 2.6 shows an instance of the CSP-SDCL comprising four item

types with their respective widths wi and demand di, the corresponding cut losses

matrix, and a feasible solution consisting of three pieces of stock material. Observe

that this problem can also be viewed as a vehicle routing problem, where the vehicles

represent the stock material, the cities represent the items, and the cut losses matrix

shows the distances between each pair of cities.

2.7.3 The Strip Packing Problem

The strip packing problem (SPP) is a two-dimensional packing problem classified as

an open-dimensional problem byWäscher et al. (2007). Given a set I of n rectangular

items of varying heights hi ∈ Z+ and widths wi ∈ Z+ for all i ∈ I, and a strip of

fixed width W and infinite height H, the problem involves packing the items onto

the strip such that no items overlap and the height H of the items on the strip is

minimised.

Consider the bottom-left corner of the strip as the origin of the xy-plane, where

the width of the strip is along the x-axis and the height of the strip is along the y-

axis. Then, the coordinates (xi, yi) represent the location of the bottom-left corner

23

2. LITERATURE REVIEW

4
D

2.5
A

1.2 0.5 0.7

3
B

2
C

0.4 2 1.1

2
C

2.5
A

3
B

0.3 1 0.6 0.4

Figure 2.6: An example instance and solution for the CSP-SDCL showing the widths wi and demand
di for each item type i and the cut losses matrix. The solution comprises three pieces of stock,
where the lined areas are the cut losses and the remaining space on the end of each stock is shaded
in grey. Here, W = 10.

of each item i ∈ I on the strip. From this, we can formulate the SPP as follows:

minimise H (2.6a)

subject to xi + wi ≤W i = 1, . . . , n (2.6b)

yi + hi ≤ H i = 1, . . . , n (2.6c)

xi + wi ≤ xj or xj + wj ≤ xi or

yi + hi ≤ yj or yj + hj ≤ yi i, j = 1, . . . , n, i 6= j (2.6d)

xi, yi ≥ 0 i = 1, . . . , n. (2.6e)

Clearly, the objective (2.6a) is to reduce the overall height on the packing on the

strip. Constraints (2.6b), (2.6c), and (2.6e) impose the requirement for all items to

be packed within the bounds H ×W of the strip. Constraint (2.6d) ensures that no

items overlap (Kenmochi et al., 2009).

The SPP is a generalisation of the BPP, where in the BPP all heights are equal;

thus concluding that the SPP is also NP-hard. From the original problem, introduced

by Baker et al. (1980), stems an abundance of adaptations developed for a variety

of applications. One additional constraint to the SPP involves packing the items in

their given orientations (Ntene and van Vuuren, 2008), whilst much literature exists

for the SPP in which the rectangular items can be rotated 90◦ – see, for example, the

works of Jansen and van Stee (2005), Kenmochi et al. (2009), Cui et al. (2013), and

He et al. (2013). An example of two solutions for an instance of the SPP with and

without item rotations is provided in Figure 2.7, showing that the ability to rotate

the items can reduce the height of the packing.

24

2.8. THE SCORE-CONSTRAINED PACKING PROBLEM

W

HH

A

B

C
D

E

F

(a)

W

HH

A

B
C

D

E

F

(b)

Figure 2.7: Feasible solutions for an example instance of the SPP comprising 6 items. In (a) the
items are packed in their given orientations, whilst in (b) the items can be rotated by 90◦, resulting
in a better packing.

Further constraints have been added to SPPs such as the “guillotineable” require-

ment, where items are to be packed onto the strip such that, at specific locations, a

straight-line cut can be made across the width of the strip without cutting through

an item as shown in Figure 2.8 (Kröger, 1995; Hifi, 1998). Other related problems

include shelf divisions, in which items must be packed into subsections on the strip

(Xavier and Miyazawa, 2008), and unloading constraints where the feasibility of the

solution is dependent on the order of the items on the strip (da Silveira et al., 2013).

(a) (b)

Figure 2.8: Examples of (a) a guillotineable packing; and (b) a non-guillotineable packing.

2.8 The Score-Constrained Packing Problem

We now turn our attention to the Score-Constrained Packing Problem (SCPP). Let I
be an instance of the SCPP, which contains |I| = n rectangular items of fixed height

H > 0 and varying widths wi and score widths ai, bi for each item i ∈ I, as described
in Definition 1.1. Then, given a minimum scoring distance τ ∈ Z+, a feasible solution

for an instance I of the SCPP is represented by the set S = {S1, S2, . . . , Sk} such

25

2. LITERATURE REVIEW

that: ⋃k

j=1
Sj = I, (2.7a)

Si ∩ Sj = ∅ i, j = 1, 2, . . . , k, i 6= j, (2.7b)

A(Sj) =

|Sj |∑
i=1

wi ≤W j = 1, 2, . . . , k, (2.7c)

r(i) + l(i+ 1) ≥ τ i = 1, 2, . . . , |Sj | − 1, j = 1, 2, . . . , k. (2.7d)

In other words, the solution S must contain all items in I (2.7a), each item in I must

be packed into exactly one of the bins in S (2.7b), the total width of the items in

each bin cannot exceed the bin’s capacity W (2.7c), and the items must be arranged

such that the vicinal sum constraint (1.1) is fulfilled in each bin (2.7d). Here, a bin

Sj ∈ F if and only if Constraints (2.7c) and (2.7d) are satisfied. An optimal solution

for the SCPP is a solution comprising the fewest number of bins required to feasibly

pack all items in I; thus the aim is to minimise the number of bins k. Observe that

the BPP can be seen as a special case of the SCPP where τ = 0, as the vicinal sum

constraint will always be satisifed. As a result, the SCPP is also NP-hard.

As previously mentioned, there exists a basic lower bound t (2.2) for the number

of bins k in a solution for an instance of the BPP. However, this lower bound does

not perform as accurately for the SCPP on account of the vicinal sum constraint.

Consider an instance I of n items in which the largest score width of all 2n score

widths is less than τ/2. Evidently, none of the items can be placed next to one

another as there are no pairs of score widths that comply with the vicinal sum

constraint. Under these circumstances, each item must be packed into individual

bins; thus k = n. The theoretical minimum t for the BPP does not take into

consideration the effect of the minimum scoring distance τ on the feasibility of the

solution. Therefore, a solution for an instance of the SCPP comprising more than

t bins could in fact be optimal, however as there is currently no appropriate lower

bound for the SCPP it would be difficult to determine the optimality of a solution

for large instances in a reasonable amount of time. Nevertheless, if a solution for an

instance of the SCPP comprises exactly t bins then the solution is guaranteed to be

optimal.

In addition to the lower bound, the vicinal sum constraint also gives rise to further

differences in solutions for the BPP and SCPP. Obviously, the main distinction

involves the ordering and orienation of the items in the bins: inconsequential in the

BPP, yet crucial for the feasibility of a solution for the SCPP. This subsequently

introduces a disparity when amending solutions. A solution to the BPP remains

feasible when an item is removed from a bin or when an item is added to a bin,

26

2.8. THE SCORE-CONSTRAINED PACKING PROBLEM

provided the bin can accommodate the item. In contrast, this may render a solution

for the SCPP infeasible as the new adjacent score widths may not satisfy the vicinal

sum constraint.

In essence, the SCPP involves deciding (a) which items should be packed into

which bins and (b) the order and orientation of each item within each bin. This

problem characteristic also occurs in two of the problems discussed in the previous

section, namely the TPP and the CSP-SDCL. One particular difference, however,

between these problems and the SCPP concerns the feasibility of individual bins. For

example, in the TPP it is still possible to pack trapezoids with opposite angles, i.e.

‘\’ and ‘/’, alongside one another, despite the unnecessarily large inter-item waste.

Similarly, in the CSP-SDCL two items with a large cut loss between them can still

be packed alongside one another if required. Both of these packing problems permit

any order and orientation of items provided the bins are not overfilled. Conversely,

the SCPP possesses the strong vicinal sum constraint, which if violated immediately

causes an alignment of items in a bin to be invalid, rendering the entire solution

infeasible.

To illustrate the differences between the BPP and the SCPP, suppose we use

items for an instance I of the SCPP in the previous BPP solution in Figure 2.3,

as shown in Figure 2.9.1 Note that the BPP solution is actually produced using

the FFD heuristic described in Section 2.4. As the vicinal sum constraint is not a

factor in the BPP and the FFD heuristic does not have the ability to rotate items,

all the items are packed into the bins in regular orientations (i.e. with the smallest

score width on the left-hand side of the item). Despite using fewer bins, the solution

produced for the BPP is not feasible for the SCPP; the vicinal sum constraint is

violated at least once in every bin. Furthermore, the theoretical minimum for the

instance I is t = 3 which is attainable for the conditions of the BPP (for example,

if τ = 0) however, for the SCPP it is known that for this particular instance an

optimal solution comprises four bins.

Evidently, basic methods designed for the BPP cannot be used for the SCPP

as there is no guarantee that the final solution will be feasible. The disparities

between the BPP and SCPP leads us to adapt existing methods and seek new unique

approaches capable of producing feasible solutions that adhere to the constraints of

the SCPP.

1Note that the SCPP instance I used in Figure 2.9 is the instance depicted in Figure 1.3a in
Chapter 1, which is equivalent to the BPP instance in Figure 2.3a with added score widths.

27

2. LITERATURE REVIEW

278
E

16 39

209
G

42 50

171
H

21 32

163
I

20 55

154
J

5 34

393
C

4 31

346
D

11 28

215
F

19 37

532
A

2 27

449
B

9 43

(a) BPP

215
F

19 37

154
J

34 5

346
D

11 28

209
G

42 50

171
H

32 21

393
C

4 31

278
E

39 16

163
I

55 20

532
A

2 27

449
B

43 9

(b) SCPP

Figure 2.9: A comparison of solutions for the BPP and SCPP using the same problem instance for
the SCPP, where the red score lines on the BPP solution show the vicinal sum constraint violations.
Here, |I| = 10, τ = 70, and W = 1000.

2.9 Summary

In this chapter, we introduced grouping problems and focused on a particular class

of such problems known as cutting and packing problems. The one-dimensional bin

packing problem (BPP) was presented and shown to be NP-hard, implying that

finding optimal solutions for larger problem instances can take an infeasible amount

of time. From this, we discussed various approaches to the BPP such as heuristics and

metaheuristics which find near-optimal solutions in a more practical time period, as

well as a few exact methods that are suitable for smaller, more manageable problem

instances. The BPP was also shown to give rise to numerous alternative cutting and

packing problems that have been adapted to suit a range of applications.

By reviewing the BPP, we were able to observe the similarities and differences

between the BPP and the Score-Constrained Packing Problem (SCPP), and deduce

that the SCPP is also NP-hard. The most notable contrast is the ordering and

orientation implications associated with the SCPP, indicating that methods available

for the BPP are incompatible with the SCPP. Consequently, the remainder of this

thesis is devoted to constructing algorithms for the SCPP that yield high quality

feasible solutions.

Recall that for the TPP – another packing problem involving the ordering and ori-

28

2.9. SUMMARY

entation of items (see Section 2.7) – the authors developed an exact polynomial-time

algorithm for determining a feasible alignment of items in a single bin. Following on

in a similar manner, the next chapter presents an algorithm for the Score-Constrained

Packing Sub-Problem (sub-SCPP) introduced in Definition 1.2.

29

Chapter 3

The Score-Constrained Packing

Sub-Problem

3.1 Introduction

As described in Definition 1.2, the Score-Constrained Packing Sub-Problem (sub-

SCPP) involves packing a subset I ′ ⊆ I of items into a single bin such that the

vicinal sum constraint (1.1) is fulfilled. Given n cities and distances between each pair

of cities, the travelling salesman problem (TSP) involves determining the shortest

route that visits each city exactly once and returns to the origin city. In previous

literature, the sub-SCPP has been modelled as a generalised TSP in various ways.

Goulimis (2004) suggested considering the sub-SCPP as a generalised TSP known

as the travelling politician problem (TPP), in which a politician must visit exactly

one of two cities in every state. However, rather than attempting to find the shortest

tour, the aim is to determine whether such a tour exists.

This approach can be formalised as follows (Becker, 2010): given a set of n

items, each item is assigned two vertices on a graph G. These vertices denote the

two different orientations of the item, where in the set V = {v1, v2, . . . , v2n} the

odd-indexed vertices represent each item in a regular orientation, whilst the even-

indexed vertices represent each item in a rotated orientation. Let w1(vi) and w2(vi)

be the left and right score widths of regular items for all odd-indexed vertices i =

1, 3, . . . , 2n−1, and let w1(vi) and w2(vi) be the right and left score widths of rotated

items for all even-indexed vertices i = 2, 4, . . . , 2n. Then, w1(v2k−1) = w2(v2k) and

w2(v2k−1) = w1(v2k) for all k = 1, 2, . . . , n.

Given a minimum scoring distance τ ∈ Z+, the vicinal sum constraint is satisfied

for two vertices vi, vj ∈ V that do not represent the same item if and only if w1(vi)+

w2(vj) ≥ τ or w2(vi) + w1(vj) ≥ τ . Two constraints are required to account for the

different orderings of the items, i.e. whether the item represented by vi comes before

31

3. THE SCORE-CONSTRAINED PACKING SUB-PROBLEM

or after the item represented by vj when packing from left to right. As each vertex

on G has two weights, we need to ensure that each weight is only used once in the

final cycle. That is, if a vertex vi is adjacent to the previous vertex in the cycle vi−1
by its weight w1(vi), then vi must be adjacent to the next vertex vi+1 by its weight

w2(vi), or vice versa. Therefore, a record must be kept of which weights are being

used for adjacency between every pair of vertices. To do this, we add a directed edge

set E to G:

E = {(vi, vj) : w2(vi) + w1(vj) ≥ τ, i = 2k − 1 ∧ j 6= 2k

∨ i = 2k ∧ j 6= 2k − 1 ∀ k = 1, 2, . . . , n}.

A dummy vertex is added to the graph which represents the “base city” from which

the tour will begin and end. An example of this model is shown in Figure 3.1, where

the pair of vertices for each item can be seen as two cities in each state.

Figure 3.1: The sub-SCPP modelled as a travelling politician problem, with red and blue vertices
representing each item in their regular and rotated orientations respectively.

For the TPP, the task is to find a tour in which the politician visits exactly one city

in each state before returning to the base city. In other words, given the graph G,

the problem involves deciding whether there exists a cycle in G that contains exactly

one vertex out of each of the vertex subsets {2k − 1, 2k} ∀ k = 1, 2, . . . , n. Using

this model requires two vicinal sum constraints to be assessed as each orientation of

every item is represented by an individual vertex, however the final solution to the

problem will comprise just half of the vertices on the graph. Note also that for every

directed cycle in G there is corresponding directed cycle in the opposite direction

due to symmetry, i.e. a tour in which the cities are visited in reverse order using the

other vertex in each subset. As the TPP is a generalisation of the TSP, it follows

that this problem is NP-hard.

An alternative to the TPP model was presented by Lewis et al. (2011). Again,

each of the n items are assigned two vertices, however these vertices correspond

to the score widths of the item rather than the item’s orientations. The graph G,

which also includes a dummy vertex, is a complete graph; thus every pair of vertices

32

3.2. MODELLING THE SUB-SCPP

is connected by an edge. Edges between vertices that represent score widths on the

same item have weight -1, and edges between vertices that represent score widths

on different items with total width less than or equal to τ have weight ∞. All other

edges have weight 0. Thus, the problem can be seen as a TSP, where starting from

the origin city (the dummy vertex) a tour must be found that has distance exactly

−n. Figure 3.2 depicts an example of this model.

16 52

1
31 43

2

25 64

3

(a) n = 3 items

0

-1

0
-1

0

-1

0
v0

a1

b1

a2 b2

b3

a3

(b) A valid tour

Figure 3.2: An example model of the sub-SCPP as generalised TSP suggested by Lewis et al. (2011),
where a tour of length −n has been found.

This model has an advantage over Goulimis’ TPP model in that all the vertices

on the graph will be used, and fewer edge calculations are required as there are

no duplicate edges between vertices. A more intuitive model introduced by Becker

(2010) further simplifies the above model by maintaining two distinct edge sets. It

is this version that we will use to model instances of the sub-SCPP.

3.2 Modelling the sub-SCPP

Firstly, consider the following sequencing problem originally presented by Hawa et al.

(2018):

Definition 3.1 Let M be a multiset of unordered pairs of integers M = {{a1, b1},
{a2, b2}, . . . , {an, bn}}, and let T be a sequence of the elements of M in which each

pair is a tuple. Given a fixed value τ ∈ Z+, the Constrained Ordering Problem

(COP) consists in finding a solution T such that the sum of adjacent values from

different tuples is greater than or equal to τ .

For example, given the instance M = {{4, 21}, {9, 53}, {13, 26}, {17, 29}, {32, 39},
{35, 41}, {44, 57}, {48, 61}} and τ = 70, one possible feasible solution is T = 〈(4, 21),
(53, 9), (61, 48), (26, 13), (57, 44), (32, 39), (35, 41), (29, 17)〉.

By viewing each pair in M as an item i represented by its score widths ai, bi,

we see that the COP is in fact equivalent to the sub-SCPP. Then, the requirement

for the sum of adjacent values to exceed τ corresponds to the vicinal sum constraint

33

3. THE SCORE-CONSTRAINED PACKING SUB-PROBLEM

(1.1), where τ is the minimum scoring distance. Figure 3.3 shows an instance of the

sub-SCPP which is equal to the example problem instance M of the COP stated

above. In the sub-SCPP, the provided set of items I ′ ⊆ I has total width that is able

to fit into a single bin, i.e. A(I ′) ≤ W , and so the items’ individual widths do not

need to be taken into consideration when seeking a feasible alignment. Thus, any

instance of the sub-SCPP can be simplified by being transformed into an instance

of the COP. In the following, we shall be focusing solely on the COP.

4 21

A
312

9 53

B
188

13 26

C
261

17 29

D
239

32 39

E
247

35 41

F
253

44 57

G
196

48 61

H
304

Figure 3.3: An instance I of the sub-SCPP comprising eight items. This instance is equivalent to
the COP instanceM = {{4, 21}, {9, 53}, {13, 26}, {17, 29}, {32, 39}, {35, 41}, {44, 57}, {48, 61}}.

As with Goulimis’ and Lewis’ approaches, it is useful to model an instanceM of the

COP graphically (Hawa et al., 2018; Becker, 2010). For every pair {ai, bi} ∈ M, two

vertices u, v with weights w(u) = ai, w(v) = bi are formed, together with a “blue”

edge {u, v}. Such vertices created from a pair in M and connected by a blue edge

are referred to as partners. This gives a vertex-weighted graph G with 2n vertices

and n edges. Without loss of generality, we assume that the vertices {v1, . . . , v2n}
are labelled in weight order such that w(vi) ≤ w(vi+1). An extra pair of partner

vertices, v2n+1, v2n+2, with weights w(v2n+1) = w(v2n+2) = τ is also added to G,

along with a blue edge {v2n+1, v2n+2}. The edge set B contains all blue edges between

partners. By denoting the partner of a vertex vi as p(vi), the set B can be defined

as {{vi, p(vi)} : vi ∈ V }. Figure 3.4a shows the graph G = (V,B) comprising n+ 1

components based on the above example instanceM of the COP.

A second set of edges, R, is added to G, which contains “red” edges between

vertices that are not partners and whose combined weight equals or exceeds τ ; that

is, R = {{vi, vj} : w(vi) + w(vj) ≥ τ ∧ p(vi) 6= vj ∀ vi, vj ∈ V, vi 6= vj}. It follows

that B and R are disjoint edge sets, i.e. B ∩R = ∅. Figure 3.4b shows the resulting

graph G = (V,B ∪ R) modelling our example instanceM. The additional vertices,

v2n+1 and v2n+2, are in fact universal vertices with deg(v2n+1) = deg(v2n+2) = 2n+1,

as they are adjacent to every other vertex via an edge in R due to their large weights.

Observe the pattern on the graph G, with deg(vi) ≤ deg(vi+1) as the vertices are in

weight-ascending order.

Consider the following definition for graphs with a specific structure (Chvátal

and Hammer, 1977):

34

3.2. MODELLING THE SUB-SCPP

v1(4)

v2(9)

v3(13)

v4(17)

v5(21)

v6(26)

v7(29)

v8(32)
v9(35)

v10(39)

v11(41)

v12(44)

v13(48)

v14(53)

v15(57)

v16(61)

v17(70)
v18(70)

(a) G = (V,B)

v1(4)

v2(9)

v3(13)

v4(17)

v5(21)

v6(26)

v7(29)

v8(32)
v9(35)

v10(39)

v11(41)

v12(44)

v13(48)

v14(53)

v15(57)

v16(61)

v17(70)
v18(70)

(b) G = (V,B ∪R)

Figure 3.4: The graph G = (V,B∪R) modelling our example instanceM of the COP. Here, thicker
blue edges are in B and thinner red edges are in R, with the vertices’ weights stated in parentheses.

Definition 3.2 Let G = (V,E) be a simple, undirected graph with a weight function

w : V → Z+ such that each vertex has weight w(vi) ∀ vi ∈ V , and let τ ∈ Z+ be a

“threshold” value. Then, G is a threshold graph if

E = {{vi, vj} : w(vi) + w(vj) ≥ τ ∀ vi, vj ∈ V, vi 6= vj}, (3.1)

that is, an edge exists between two distinct vertices if the sum of their weights is

greater than or equal to the threshold value.

Threshold graphs, initially defined by Chvátal and Hammer (1973), have been widely

studied due to their unique structure, most notably the degree sequence of the graphs

(Koren, 1973) as well as the split graph property where the vertex set can be par-

titioned into a stable set and a clique. This has led to many useful applications of

threshold graphs for problems such as parallel processing and scheduling (Ecker and

Zaks, 1977; Henderson and Zalcstein, 1977). A comprehensive overview of threshold

graphs is provided by Mahadev and Peled (1995), and further research is available in

addition to the above literature by Golumbic (2004), Orlin (1977), and Brandstadt

et al. (1999).

From this, it can be seen that our graph G = (V,B ∪ R) is a type of modi-

fied threshold graph, where R contains edges between vertices whose total weight

meets the threshold value τ provided the vertices are not partners. This underlying

threshold graph characteristic will be useful in our approach to solving the COP.

3.2.1 Hamiltonian Cycles

Definition 3.3 A Hamiltonian cycle in a graph G is a cycle that visits every vertex

of G exactly once. A graph containing a Hamiltonian cycle is said to be Hamiltonian.

35

3. THE SCORE-CONSTRAINED PACKING SUB-PROBLEM

The Hamiltonian cycle problem (HCP), determining whether a given graph is Hamil-

tonian, is NP-complete for both undirected and directed graphs (Karp, 1972), whilst

the problem of actually finding a Hamiltonian cycle is NP-hard. There are n! se-

quences of vertices in an n-vertex graph that could form a Hamiltonian cycle; given

large graphs it would not be possible to assess all sequences in a realistic time period.

The difficulty of the HCP has led to much research into characteristics of Hamiltonian

graphs and criertia for the existence of Hamiltonian cycles (Gould, 1991, 2003) as

well as methods of solving the HCP. Notable methods include an exact enumerative

algorithm (Martello, 1983), a search procedure using partial paths (Rubin, 1974), a

Monte Carlo algorithm involving cycle covers and the inclusion-exclusion principle

(Bjorklund, 2014), and dynamic programming approaches (Bellman, 1961; Held and

Karp, 1962).

The HCP on a graph G = (V,E) is a special case of the TSP, where the TSP

has a set C of cities identical to V (where |V | = n). Then, for every pair of cities

vi, vj ∈ C, vi 6= vj , the distance d(vi, vj) between the two cities is 1 if {vi, vj} ∈ E
and 2 if {vi, vj} /∈ E. Then, G contains a Hamiltonian cycle if and only if there

exists a tour in the equivalent TSP that has length n, otherwise the tour will be

longer (Garey and Johnson, 1979).

As the values inM must form a single sequence in the final solution, it follows

that all vertices on our graph G modelling the instance of the COP must be in a

single cycle that represents a feasible solution; thus, we require a Hamiltonian cycle.

Although the order of values within each pair in M can be rearranged the values

themselves cannot be modified, and so every pair of values in M must remain as

a pair in the solution T . Therefore, we need to find a Hamiltonian cycle in which

each vertex is preceeded by or succeeded by its partner in the cycle. From this, we

introduce a specific type of Hamiltonian cycle:

Definition 3.4 Let G = (V,B ∪R) be a simple, undirected graph where each edge is

a member of one of two sets, B or R. G contains an alternating Hamiltonian cycle

if there exists a Hamiltonian cycle whose successive edges alternate between sets B

and R.

Such graphs containing two distinct edges sets can be considered as edge-coloured

graphs, and so successive edges in an alternating cycle would be of different colours.

General alternating cycles have been widely explored in a variety of graphs: Daykin

(1976) studied the length of such cycles in complete graphs, whilst Bang-Jensen and

Gutin (1998) focused on determining the longest cycle in complete multigraphs.

Specifically considering alternating Hamiltonian cycles in graphs, Bankfalvi and

Bankfalvi (1968) provided a criterion for the existence of an alternating Hamilto-

36

3.2. MODELLING THE SUB-SCPP

nian cycle in a 2-edge coloured graph with an even vertex set. In addition, Bollobás

and Erdös (1976) describe how the colours of edges incident to each vertex determines

the alternating Hamiltonicity of a complete graph, which Chen and Daykin (1976)

extended to complete bipartite graphs. Further research includes, for example, that

of Grossman and Häggkvist (1983) showing that an alternating Hamiltonian cycle

exists if the edges of the graph can be partitioned into two sets such that every vertex

on the graph is incident to an edge in both sets, perfect matchings incorporated into

alternating Hamiltonian cycles (Häggkvist, 1977; Yang, 1999), as well as a deeper

investigation into graphs comprising more than two edge colours (Hilton, 1992). A

survey on the abundance of literature on alternating cycles in graphs is provided by

Bang-Jensen and Gutin (1997).

3.2.2 Approaching the Constrained Ordering Problem

Recall that, on our graph G, the set B of blue edges between partners represents

each pair of values inM, and the red edges in R show all values from different pairs

that meet the vicinal sum constraint. Thus, an alternating Hamiltonian cycle in G

corresponds to a feasible solution T for an instanceM of the COP, as explained in

the following theorem:

Theorem 3.5 Let G = (V,B∪R) be a simple, undirected graph modelling an instance

M of the COP. Then, a feasible solution T for the given instance M exists if and

only if G contains an alternating Hamiltonian cycle.

Proof. Let G contain an alternating Hamiltonian cycle. Then, the alternating Hamil-

tonian cycle corresponds to a legal sequence of the elements in M, as the edges in

B in the cycle represent each pair of values inM, and the edges from R in the cycle

depict the values from different pairs that meet the vicinal sum constraint and can

be ordered so that they are adjacent to one another. Alternatively, let T be a feasible

solution for an instance M of the COP. It is clear that the vertices corresponding

to the pairs of values in T will be connected by blue edges on G, and the vertices

representing neighbouring values from different tuples in T will be connected by red

edges as they meet the vicinal sum constraint. The two universal vertices on G will

be adjacent to the vertices representing the outermost values of the sequence T .
Therefore, G will contain an alternating Hamiltonian cycle.

Figure 3.5 shows an alternating Hamiltonian cycle in the graph G corresponding to

a feasible solution T .
A matching in a graph G is a set of pairwise non-adjacent edges, i.e. no two

edges share a common vertex. A matching is said to be maximum if it contains the

largest possible number of edges. A perfect matching is a matching in which every

37

3. THE SCORE-CONSTRAINED PACKING SUB-PROBLEM

v1(4)

v2(9)

v3(13)

v4(17)

v5(21)

v6(26)

v7(29)

v8(32)
v9(35)

v10(39)

v11(41)

v12(44)

v13(48)

v14(53)

v15(57)

v16(61)

v17(70)
v18(70)

(a)

v1(4)

v5(21)

v14(53)

v2(9)

v16(61)

v13(48)

v6(26)

v3(13)
v15(57)

v12(44)

v8(32)

v10(39)

v9(35)

v11(41)

v7(29)

v4(17)

v17(70)
v18(70)

(b)

Figure 3.5: (a) A subset of edges from R and the edge set B on G with vertices in non-decreasing
order of weight; and (b) by rearranging the vertices, it can be seen that the edges form an alternating
Hamiltonian cycle in G, which corresponds to a feasible solution T for the instanceM of the COP.

vertex of the graph is incident to exactly one edge, and therefore contains |V |2 edges.

A perfect matching can only exist in graphs comprising an even number of vertices.

Note that the edge set B has cardinality n + 1; thus B is a perfect matching in G.

The solution T must contain all pairs of values from the problem instanceM, thus

it follows that all n + 1 edges in B must be present in the alternating Hamiltonian

cycle. Finally, we are now able to formulate our approach to solving the COP.

Corollary 3.6 Let G = (V,B ∪ R) be a simple, undirected graph modelling an in-

stanceM of the COP. Then, finding a solution T involves finding a perfect matching

R′ ⊆ R that, together with the perfect matching B, forms an alternating Hamiltonian

cycle in G.

Proof. All edges in B are required in the final cycle as they represent all pairs of

values inM, thus if a subset of n + 1 red edges R′ ⊆ R exists that is able to form

an alternating Hamiltonian cycle in G with the edges in B it follows directly from

Theorem 3.5 that this cycle corresponds to a solution T .

In a final solution T for an instance of the COP the outermost values in the sequence

are not required to fulfil the vicinal sum constraint, as these values are not adjacent

to any other values. This is also true for the outermost score widths in a feasible

alignment of items for the sub-SCPP. In this model for the COP, the universal

vertices aid the construction of the alternating Hamiltonian cycle as they are able

to connect to the vertices that correspond to the two values that will appear in the

outermost positions in T . Once an alternating Hamiltonian cycle has been found the

universal vertices and any incident edges are removed, resulting in an alternating path

corresponding to a feasible sequence T . Figure 3.6 shows the final alternating path

38

3.3. THE ALTERNATING HAMILTONIAN CONSTRUCTION ALGORITHM

found in the graph G (see Figure 3.4b), representing the solution T . The equivalent

sub-SCPP solution using the instance in Figure 3.3 is provided in Figure 3.7.

v1 v5 v14 v2 v16 v13 v6 v3 v15 v12 v8 v10 v9 v11 v7 v4

4 21 53 9 61 48 26 13 57 44 32 39 35 41 29 17, , , , , , , ,() () () () () () () ()〈 〉T =

Figure 3.6: The alternating path corresponding to a solution T obtained by removing the universal
vertices.

A
312

4 21

B
188

53 9

H
304

61 48

C
261

26 13

G
196

57 44

E
247

32 39

F
253

35 41

D
239

29 17

Figure 3.7: The corresponding feasible alignment of items for the equivalent sub-SCPP instance.

Although Goulimis’ model and our model both use two vertices to represent each

item, the graph in the former model comprises twice as many edges. This is because

each vertex has two weights, and so if there exists an edge between two vertices in

different vertex subsets (i.e. from two different items) then there also exists an edge

between the other two vertices in the vertex subsets in the opposite direction due to

symmetry. We also see that in the TPP model only half of the vertices on the graph

will be used in a solution. However, in our approach as each vertex is assigned a

single weight there is no need for a directed edge set, and so a feasible solution will

include every vertex. Moreover, the TPP approach requires all vertices to be indexed

in a particular manner, with the regular and rotated orientations of each item being

represented by an odd- and even-indexed vertex respectively in lexicographical order.

This is no longer necessary in our edge-coloured graph G, as partner vertices from

the same pair in M are connected by a blue edge in the set B, and so we are able

to index the vertices in weight order without disrupting the structure of G.

The problem of finding an alternating Hamiltonian cycle in a graph with two edge

sets is NP-hard as it is a generalisation of the Hamiltonian cycle problem (Häggkvist,

1977). Despite this, due to the manner in which graphs are modelled from instances

of the COP and the requirement that all edges in B must be included, we are able to

find an alternating Hamiltonian cycle in a graph G, if one exists, in polynomial-time

(Hawa et al., 2018).

3.3 The Alternating Hamiltonian Construction

Algorithm

In this section we present the Alternating Hamiltonian Construction (AHC) algo-

rithm, designed to seek alternating Hamitonian cycles within graphs modelling COP

instances. As explained, the graph G = (V,B∪R) comprises two edge sets B and R,

39

3. THE SCORE-CONSTRAINED PACKING SUB-PROBLEM

where B is a perfect matching of cardinality n+1. The aim is to find a suitable subset

R′ of edges in R which is able to form an alternating Hamiltonian cycle in G with the

edges in B (see Theorem 3.5 and Corollary 3.6). Thus, an alternating Hamiltonian

cycle will comprise two perfect matchings, B and R′, such that B ∩R′ = ∅.
Firstly, we perform basic preliminary checks to prevent executing AHC unnec-

essarily. Here, we assess the 2n vertices corresponding to the values in the COP

instance M. Of these vertices, suppose the two smallest vertices, v1 and v2, are

placed in the outermost positions in the sequence. It is clear then that if the vertices

v3 and v2n do not fulfil the vicinal sum constraint, i.e. w(v3) + w(v2n) < τ , there

cannot exist a feasible sequence of all the pairs of values in M. Furthermore, if v1
and v2 are a pair in M, that is, p(v1) = v2, and w(v2) + w(v2n) < τ , it is also not

possible to form a feasible ordering of all elements in M. Note, however, that a

positive outcome from these tests does not necessarily imply that a feasible solution

exists for the given instance, but a negative outcome does confirm the non-existence

of a solution.

Once these tests have been completed successfully for a given instance, we can

then initiate the Alternating Hamiltonian Construction algorithm. AHC consists of

two subprocedures: one to form an initial matching R′ ⊆ R, and another to alter R′

such that it contains suitable edges that form an alternating Hamiltonian cycle in G

along with the fixed edges in B.

3.3.1 The Maximum Cardinality Matching Algorithm

The first subprocedure of AHC is the Maximum Cardinality Matching (MCM) al-

gorithm, which is used to find a maximum matching R′ from R. Clearly, the aim is

to find a maximum matching that is a perfect matching, i.e. with cardinality n+ 1.

Although there are standard matching processes for general graphs such as the Blos-

som algorithm (Edmonds, 1965), the special structure of G allows us to achieve a

matching via a more efficient procedure (Mahadev and Peled, 1994; Becker, 2010).

The pseudocode for MCM is provided in Algorithm 2. MCM considers the ver-

tices v1, v2, . . . , v2n+2 in turn, and matches each vertex with the highest-indexed

unmatched vertex adjacent in R (Lines 3–8). As the vertices are labelled in weight-

ascending order, this results in the lower-weighted vertices being matched with the

higher-weighted vertices. The match of a vertex vi is denoted asm(vi). Then, the set

R′ contains all edges from R between matched vertices – that is, R′ = {{vi,m(vi)} :
vi ∈ V }. Note that there are two cases in which a vertex is not matched with the

highest-indexed unmatched vertex. The first occurs when the highest-indexed un-

matched vertex is the current vertex vi’s partner, and so vi must be matched with

the next highest-indexed vertex. However, a second scenario arises when vi is not

40

3.3. THE ALTERNATING HAMILTONIAN CONSTRUCTION ALGORITHM

Algorithm 2 MCM (G = (V,B ∪R))
1: R′ ← ∅
2: m(vi)← null ∀ vi ∈ V
3: for i← 1 to 2n+ 2 : m(vi) = null do
4: for j ← 2n+ 2 to i+ 1 : m(vj) = null do
5: if {vi, vj} ∈ R then
6: m(vi)← vj , m(vj)← vi
7: R′ ← R′ ∪ {{vi, vj}}
8: break
9: if m(vi) = null and i 6= 1 and m(vi−1) 6= null

and m(p(vi)) = null and {vi−1, p(vi)} ∈ R then
10: R′ ← R′\{{vi−1,m(vi−1)}}
11: m(vi)← m(vi−1), m(m(vi))← vi
12: m(vi−1)← p(vi), m(p(vi))← vi−1
13: R′ ← R′ ∪ {{vi−1, p(vi)}} ∪ {{vi,m(vi)}}
14: return R′

adjacent to any other unmatched vertex except its partner, p(vi). In this case, MCM

is able to rematch vi using the previous vertex, vi−1, provided:

(i) i 6= 1 (the current vertex vi is not the first vertex);

(ii) {vi−1,m(vi−1)} ∈ R′ (the previous vertex vi−1 has been matched); and

(iii) {vi−1, p(vi)} ∈ R (the previous vertex vi−1 is adjacent to the current vertex’s

partner, p(vi)).

Then, we simply match vi with the vertex matched with vi−1, and rematch vi−1 with

vi’s partner, p(vi) (Lines 9–13).

The underlying algorithm excludes the rematching procedure and is designed

to produce a maximum matching on threshold graphs (Mahadev and Peled, 1995).

However, recall that our graph G is a modified threshold graph; vertices that meet

the vicinal sum constraint can only be connected by an edge in R if they are not

partners, even if their combined weight equals or exceeds τ . As the goal is to find a

matching R′ ⊆ R, edges in B cannot be considered for the matching. Therefore, it

must be shown that the addition of the rematching procedure to the algorithm is a

suitable approach to manage the modification to the graph and produce a maximum

cardinality matching, as described in the following theorem attributed to Becker

(2010).

Theorem 3.7 Let G = (V,B ∪R) be a graph modelling an instanceM of the COP.

Then, MCM returns a maximum cardinality matching R′.

Proof. The MCM algorithm is based on the algorithm of Mahadev and Peled (1995)

which finds maximum matchings on threshold graphs and does not include the re-

matching procedure. Throughout MCM, if the current vertex vi is adjacent to at

41

3. THE SCORE-CONSTRAINED PACKING SUB-PROBLEM

least one other unmatched vertex in R, then MCM performs in the same manner as

the original algorithm. However, if vi is not adjacent to any other unmatched vertex

except its partner p(vi), then MCM checks Conditions (i)–(iii) above to determine

if a rematching can occur. Clearly, if i > 1, a successful rematching increases the

cardinality of the matching R′. We now show that rematching is a suitable proce-

dure for producing a maximum cardinality matching R′ when excluding edges in B,

and that the cardinality of R′ cannot be increased in any other way if vi cannot be

rematched and is left unmatched.

Recall that the vertices on the graph G are labelled in non-decreasing order

of weight, and therefore form a non-decreasing degree sequence, i.e. deg(vi+1) ≥
deg(vi), although we note that a higher weight does not necessarily imply a higher

degree. For example, on the graph G in Figure 3.4b, w(v4) = 17 and w(v5) = 21,

so w(v5) > w(v4); however deg(v4) = deg(v5) = 6. Now, consider the following

observations:

1. When matching a vertex vi, MCM only has to attempt a rematching with one

other vertex because the cardinality of the matching R′ is not affected by the

particular vertices already matched.

2. It is not possible to rematch vi using an unmatched vertex vj of a higher degree as

vi will not be adjacent to any unmatched vertices that are adjacent to vj except

p(vi).

3. It is not possible to rematch vi using an unmatched vertex vj of the same degree

as vi and vj will be adjacent to the same vertices; thus the only unmatched vertex

adjacent to vj is p(vi).

4. If vi is unable to be rematched using vertex vi−1, then it is not possible to rematch

vi using a matched vertex of lower degree than vi−1.

5. If vi is able to be rematched using vertex vi−1, then it is also possible to rematch

vi using a matched vertex of the same degree as vi−1.

6. If vi−1 is not matched then deg(vi−1) < deg(vi), otherwise vi−1 would have been

matched with p(vi). Thus, it would not be possible to rematch vi with any vertices

of the same or lower degree than vi−1.

Therefore vi−1 is the most suitable vertex for a rematching and there is no other

way of improving the cardinality of the matching if a rematching with vi−1 is not

possible.

On completion of MCM, the maximum matching R′ is evaluated. If R′ does not

contain n + 1 edges, then it is not a perfect matching and there are an insufficient

number of edges in R′ to form a cycle with the edges in B. Thus, no feasible solution

can exist and AHC is terminated. Otherwise, if |R′| = n+ 1, MCM has successfully

42

3.3. THE ALTERNATING HAMILTONIAN CONSTRUCTION ALGORITHM

produced a perfect matching. Then, the spanning subgraph G′ = (V,B ∪R′) is a 2-

regular graph consisting of cyclic components C1, C2, . . . , Cz, in which every vertex

vi ∈ V is adjacent to its partner p(vi) via a blue edge in B and its match m(vi)

via a red edge in R′. Evidently, if G′ comprises a single cyclic component (i.e. if

z = 1) then G′ is an alternating Hamiltonian cycle and a solution has been found.

On the other hand, if G′ is formed of multiple cycles then AHC must find a way

of connecting these components together to create a single alternating Hamiltonian

cycle. Figure 3.8b shows the MCM process on the instance M of the COP stated

in Section 3.2, showing the red edges of R′ connecting the lowest-indexed vertices to

the highest-indexed vertices in turn. In this example, no rematching was necessary.

The cyclic components of G′ are clearly visible by depicting G′ in planar form as in

Figure 3.8c, where G′ comprises z = 4 components.

v1(4)

v2(9)

v3(13)

v4(17)

v5(21)

v6(26)

v7(29)

v8(32)
v9(35)

v10(39)

v11(41)

v12(44)

v13(48)

v14(53)

v15(57)

v16(61)

v17(70)
v18(70)

(a) G = (V,B ∪R)

v1(4)

v2(9)

v3(13)

v4(17)

v5(21)

v6(26)

v7(29)

v8(32)
v9(35)

v10(39)

v11(41)

v12(44)

v13(48)

v14(53)

v15(57)

v16(61)

v17(70)
v18(70)

(b) G′ = (V,B ∪R′)

v2 v17

v14 v18

v5 v1

v13 v6

v16 v3

v12 v7

v15 v4

v10 v9

v8 v11

C1

C2 C3

C4

(c) G′ in planar form

Figure 3.8: (a) The graph G modelling our example instanceM; (b) the subgraph G′ = (V,B∪R′)
with edge set R′ ⊆ R produced by MCM; and (c) a planar embedding of G′ showing z = 4
components.

43

3. THE SCORE-CONSTRAINED PACKING SUB-PROBLEM

In order to merge the components together, edges in R′ must be replaced with new

edges from R\R′ that connect vertices from different components. Now, the task

involves deciding which particular edges to remove from R′ and which edges from

R\R′ to add to R′.

3.3.2 The Bridge-Cover Recognition Algorithm

Recall that an edge on a graph is a bridge if removing the edge increases the number

of components of the graph; the addition of a bridge decreases the number of com-

ponents. To combine the components of G′ into a single component AHC calls upon

a second subprocedure, the Bridge-Cover Recognition (BCR) algorithm, an iterative

procedure based on a method by Becker (2010). BCR is designed to identify subsets

of red edges in different components of G′ that will be removed from R′. Subse-

quently, these edge subsets will also be used to identify the new edges from R\R′ to
be added to R′ that will function as bridges, connecting the components of G′ into a

single component. BCR forms a collection R′′ of these edge subsets. The collection

R′′ is said to cover a component Cj of G′ if there exists a subset in R′′ that contains
an edge in Cj . BCR aims to create a collection R′′ that covers all z components of

G′.

To begin, the edges in R′ are sorted into a list L such that the lower-indexed

vertices of the edges are in increasing order and the higher-indexed vertices are in

decreasing order. Any edges that did not connect a vertex to the highest-indexed

unmatched vertex in MCM cannot be sorted in this manner are removed from the

list. An example of this list L can be seen in Figure 3.9a. During each iteration,

BCR searches from the beginning of L to find two or more successive edges that

meet the following conditions:

(i) the lower-indexed vertex of each edge is adjacent to the higher-indexed vertex

of the next edge in L;

(ii) each edge is in a different component of G′; and

(iii) only one of the edges is in a component already covered by R′′, and all other

edges are in components not yet covered by R′′.

These edges form a subset R′′i which BCR adds to R′′ before continuing through the

list in search of another suitable succession of edges.1 After the penultimate edge in

the list has been assessed, edges in R′′ are removed from L and the next iteration

begins. OnceR′′ covers all components ofG′, BCR ends the search. If no new sets are

created during an iteration and R′′ does not cover all components, then no more sets
1When searching for edges to produce the first subset, R′′1 , only Conditions (i) and (ii) are

required as R′′ = ∅.

44

3.3. THE ALTERNATING HAMILTONIAN CONSTRUCTION ALGORITHM

exist and BCR terminates. Furthermore, if fewer than two edges remain in L after

an iteration, then no more sets can be produced as at least two edges are required

to form a new set. In both of these cases, it can be said with absolute certainty that

no feasible solution exists for the given instance M of the COP. Figure 3.9a shows

how BCR forms the collection R′′ on our example instance, where R′′ comprises

the subsets R′′1 = {{v2, v17}, {v3, v16}, {v4, v15}} and R′′2 = {{v7, v12}, {v8, v11}} of

successive edges in L that meet the required conditions. As R′′ = {R′′1 , R′′2} covers
all four components of G′, no futher subsets are required.

If a feasible collection R′′ covering all z components of G′ has been created

successfully, then there exists an alternating Hamiltonian cycle in G. The collection

R′′ contains the exact edges to be removed from R′, which in turn indicate the

replacement edges from R\R′ that form bridges between the components.

To procure the bridges, BCR operates on each subset R′′i ⊂ R′′ as follows: for

each edge in R′′i in turn, the edge from R\R′ connecting the lower-indexed vertex

of the edge to the higher-indexed vertex of the next edge is added to R′. Due to

the order of the edges in L, the lower-indexed vertex of the last edge in each subset

R′′i will be adjacent to the higher-indexed vertex of the first edge in the subset

via an edge in R\R′, as the weight of the higher-indexed vertex of the first edge

will be greater than or equal to the weight of the higher-indexed vertex of the last

edge (see Figure 3.9a). These edges are bridges, connecting vertices from different

components, as can be seen in Figure 3.9b. The edges in R′′ are then removed from

R′ so that R′ is maintained as a perfect matching of cardinality n+1. This modified

matching R′ is able to form an alternating Hamiltonian cycle in G′ with the edge set

B. Removing the universal vertices yields an alternating path which corresponds to

a feasible solution T (Figure 3.9d).

In the initial version of the algorithm (Becker, 2010), a procedure is used that

searches through L just once to find edge sets for the collection R′′. For some

instances, although R′′ covers all components of G′, the components are unable to

be connected into a single alternating Hamiltonian cycle. The issue stems from the

requirements for edges to create a set, where in this previous procedure new subsets

that are formed can contain edges in multiple components of G′ already covered

by R′′. This causes additional bridges to be added between components that have

already been connected, preventing the formation of a single cycle. By introducing

Condition (iii) and only permitting one edge in a new set R′′i to be in a component

that R′′ covers, we prevent unnecessary edges being added to G′ and ensure that

components are linked to produce a single cycle. Figure 3.10 shows the formation of

R′′ using the initial version of the procedure where the set R′′2 contains edges in two

components that R′′ already covers. Although R′′ = {R′′1 , R′′2} covers all components

45

3. THE SCORE-CONSTRAINED PACKING SUB-PROBLEM

v18 v17 v16 v15 v14 v13 v12 v11 v10

v1 v2 v3 v4 v5 v6 v7 v8 v9

C1 C1 C2 C3 C1 C2 C3 C4 C4

R′′1 R′′2

R′′1 : C1, C2, C3

R′′2 : C3, C4

v17 v16 v15

v2 v3 v4

v12 v11

v7 v8

v18 v16 v15 v17 v14 v13 v11 v12 v10

v1 v2 v3 v4 v5 v6 v7 v8 v9

(a)

v2 v17

v14 v18

v5 v1

v13 v6

v16 v3

v12 v7

v15 v4

v10 v9

v8 v11

C1

C2 C3

C4

(b)

v2 v17

v14 v18

v5 v1

v13 v6

v16 v3

v12 v7

v15 v4

v10 v9

v8 v11

(c)

v1 v5 v14 v2 v16 v13 v6 v3 v15 v12 v8 v10 v9 v11 v7 v4

4 21 53 9 61 48 26 13 57 44 32 39 35 41 29 17, , , , , , , ,() () () () () () () ()〈 〉T =

(d)

Figure 3.9: BCR creates a collection R′′ = {R′′1 , R′′2} of edges in R′ that when replaced by bridges
from R\R′ connects the components of G′ into a single alternating Hamiltonian cycle. Dashed
green edges and dotted orange edges are the bridges from R′′1 and R′′2 respectively. The resulting
alternating path corresponds to a solution T .

of G′, the bridges obtained from these sets link C2 and C3 twice, connecting the four

components into two different components. An additional procedure is implemented

by Hawa et al. (2018) that recitifies this issue, but we found that the combination

of both procedures is unnecessary. Therefore, we replaced the two procedures with

a single algorithm, BCR, that produces the same results in a more efficient manner.

46

3.3. THE ALTERNATING HAMILTONIAN CONSTRUCTION ALGORITHM

v18 v17 v16 v15 v14 v13 v12 v11 v10

v1 v2 v3 v4 v5 v6 v7 v8 v9

C1 C1 C2 C3 C1 C2 C3 C4 C4

R′′1 R′′2

R′′1 : C1, C2, C3

R′′2 : C2, C3, C4

v17 v16 v15

v2 v3 v4

v13 v12 v11

v6 v7 v8

v18 v16 v15 v17 v14 v12 v11 v13 v10

v1 v2 v3 v4 v5 v6 v7 v8 v9

(a)

v2 v17

v14 v18

v5 v1

v13 v6

v16 v3

v12 v7

v15 v4

v10 v9

v8 v11

C1

C2 C3

C4

(b)

v2 v17

v14 v18

v5 v1

v13 v6

v16 v3

v12 v7

v15 v4

v10 v9

v8 v11

(c)

Figure 3.10: The issue caused using the initially proposed procedure to find suitable edge sets,
where the collection R′′ covers all components of G′ but the bridges obtained from the edge sets in
R′′ form two components, as opposed to a single alternating Hamiltonian cycle.

Theorem 3.8 Let G′ = (V,B ∪ R′) be a graph consisting of z distinct cyclic com-

ponents. Then, if BCR produces a collection R′′ that covers all components of G′

subject to Conditions (i)–(iii), there exists an alternating Hamiltonian cycle in G.

Proof. As explained previously, a feasible collectionR′′ leads to an alternating Hamil-

tonian cycle by removing the selected edges and adding new edges from R\R′. We

must now show that, without a feasible collection R′′, the components of G′ cannot

be combined into a single cycle.

1. If the adjacency condition does not hold, then there is no edge from R\R′ that
can connect the vertices between two different components. Hence, specific edges

47

3. THE SCORE-CONSTRAINED PACKING SUB-PROBLEM

are removed from the list L prior to the execution of BCR. This ensures that the

adjacency condition holds; that is, for two successive edges (u1, v1) and (u2, v2)

in L, if (u1, v2) ∈ R\R′, then (u2, v1) ∈ R\R′, due to the manner in which the

edges in R′ are obtained in MCM.

2. If BCR terminates with a collection R′′ = ∅, then clearly no suitable edges have

been found that can form bridges between any of the components. It follows that

no alternating Hamiltonian cycle exists.

3. If BCR terminates with a collection R′′ that does not cover all components of G′,

then the components that are not covered would not be able to be connected to

the components that are covered by R′′, resulting in multiple components that

cannot form an alternating Hamiltonian cycle.

4. If BCR terminates with a collection R′′ that covers all components but contains

subsets that do not have a common component, then although the individual

subsets in R′′ will be able to merge components together, it would not be possible

to connect the resulting components to one another, and so a single alternating

Hamiltonian cycle cannot be formed.

Therefore, it is clear that a feasible collection R′′ is required to connect the multiple

cyclic components of G′ into a single alternating Hamiltonian cycle.

This concludes the Alternating Hamiltonian Construction (AHC) algorithm. The

pseudocode for the entire procedure is provided in Algorithm 3 which returns, for any

graph G = (V,B∪R) formed as described in Section 3.2, an alternating Hamiltonian

cycle in G if one exists.

The AHC algorithm is able to determine the existence of a solution and produce

a solution if one exists in quadratic time, as stated in the following theorem:

Theorem 3.9 Let G = (V,B ∪ R) be a graph modelled from an instance M of

cardinality n of the COP. Then, AHC terminates in at most O(n2) time.

Proof. The first subprocedure, MCM, produces an initial matching R′ ⊆ R in at most

O(n2) time. Sorting the n+ 1 edges of R′ into a list L for the second subprocedure,

BCR, requires O(n log n) time. As G′ comprises a maximum of
⌊
n+1
2

⌋
components

and each subset R′′i created in BCR must contain at least two edges from R′, it

follows that the number of subsets in R′′ required to cover all components of G′

is bounded by
⌊
n+1
2

⌋
− 1. At least one new subset R′′i is created in each iteration

of BCR, and removing edges from L can be performed in constant time, meaning

that the task of producing the collection of subsets R′′ is of quadratic complexity

O(n2). Up to n + 1 edges in R′ may be replaced with edges from R\R′, which can

be executed in O(n) time. Consequently, AHC has an overall worst case complexity

of O(n2).

48

3.4. SUMMARY

Algorithm 3 AHC (G = (V,B ∪R))
1: run preliminary tests on V \{v2n+1, v2n+2}
2: if preliminary tests failed then
3: infeasible, end
4: R′ ← MCM(G = (V,B ∪R))
5: if |R′| < n+ 1 then
6: infeasible, end
7: G′ = (V,B ∪R′) comprises z cyclic components
8: if z = 1 then
9: G′ is an alternating Hamiltonian cycle

10: feasible, end
11: R′′ ← BCR(G′ = (V,B ∪R′))
12: if R′′ covers all z components of G′ then
13: edges in R′′ are removed from R′ and replaced with edges from R\R′
14: G′ is an alternating Hamiltonian cycle
15: feasible, end
16: else infeasible, end
17: return either alternating Hamiltonian cycle G′ or statement of infeasibility

3.4 Summary

In this chapter we focused on the Score-Constrained Packing Sub-Problem (sub-

SCPP) for packing items into a single bin. After discussing previous methods of

modelling the problem we introduced a sequencing problem known as the Con-

strained Ordering Problem (COP) and explained how any given instance of the

sub-SCPP can be simplified as an instance of the COP. We then modelled the COP

graphically, showing that the problem is equivalent to a variant of the Hamiltonian

cycle problem in which the task is to find a Hamiltonian cycle whereby successive

edges alternate between distinct edge sets. From this, we detailed the Alternating

Hamiltonian Construction (AHC) algorithm, an exact algorithm that exploits the

underlying structure of the graphical model to find a solution to the COP instance

in polynomial-time, and thus a solution for the corresponding sub-SCPP instance.

Our AHC algorithm is an improved, more efficient version of a procedure pro-

posed by Becker (2010), which has the ability to provide solutions to problem in-

stances rather than just a simple statement of feasibility or infeasibility, as with

Becker’s method. Having the actual order and orientation of the items in the feasi-

ble alignment is far more beneficial in industry than simply knowing that a solution

exists, especially when considering the number of possible configurations of a given

set of items. In addition, we also addressed and rectified an issue within the previous

procedure that results in invalid solutions being produced for problem instances that

in fact possess feasible solutions.

The AHC algorithm is a powerful algorithm which is guaranteed to produce

49

3. THE SCORE-CONSTRAINED PACKING SUB-PROBLEM

a feasible solution if one exists, and will prove to be extremely beneficial for the

multiple bin problem. Now, given any set of items, we are able to find a feasible

alignment of the items and pack them in the correct order and orientation into a

bin. Without the AHC algorithm, there is a risk of not being able to identify a

feasible configuration of items within a realistic time period. Therefore, it is only

natural that we utilise AHC within algorithms and heuristics for the SCPP, as we

will discover in subsequent chapters of this thesis.

50

Chapter 4

Heuristics for the

Score-Constrained Packing

Problem

We now turn our attention to the Score-Constrained Packing Problem (SCPP), the

multi-bin version of the sub-SCPP where a set of items are to be packed into the

fewest number of bins subject to the vicinal sum constraint (see Definition 1.1). In

this chapter, we focus on the most straightforward methods for solving the SCPP in

the form of constructive heuristics.

In Chapter 2 it was noted that the SCPP differs from the BPP in that the order

and orientation of the items in each bin have a direct effect on the feasibility of the

solution due to the vicinal sum constraint (1.1). Therefore, the use of heuristics

designed for the BPP to obtain solutions for the SCPP may result in infeasible

solutions. This issue is demonstrated in Figure 4.1, where the FFD heuristic for

the BPP has been used to produce a solution for an instance I of the SCPP. The

theoretical minimum (2.2) for this instance is t = 6, but despite the fact that the

resulting solution comprises six bins and is optimal for the BPP (i.e. when τ = 0)

the solution is infeasible for the SCPP as the vicinal sum constraint is not satisfied

in three of the bins.

Consequently, the author of this thesis developed three heuristics designed specif-

ically for the SCPP: a simple FFD-based heuristic with a minor alteration; a bin-

focused heuristic that selects specific score widths; and an advanced adaptation of

FFD that integrates the AHC algorithm described in the previous chapter (Hawa

et al., 2018). This chapter explores each of these heuristics and their associated char-

acteristics before providing experimental results and comparing the performance of

each method.

Recall that an instance I of the SCPP comprises n items, each with width wi

51

4. HEURISTICS FOR THE SCPP

631
A

48 68

615
B

4 55

561
C

48 63

525
D

3 42

359
E

26 37

336
F

43 47

328
G

16 31

327
H

17 44

321
I

13 47

305
J

12 51

211
K

23 33

207
L

48 69

200
M

14 18

192
N

22 68

150
O

8 22

(a) An instance I of the SCPP

631 359
A E

48 68 26 37

615 336
B F

4 54 43 47

561 328
C G

48 63 16 31

525 327
D H

3 42 17 44

321 305 211 150
I J K O

13 47 12 51 23 33 8 22

207 200 192
L M N

48 49 14 1822 68

(b) An infeasible solution for I using FFD

Figure 4.1: (a) An instance I for the SCPP comprising 15 items; and (b) an infeasible solution pro-
duced using the FFD heuristic, where the red dashed score lines indicate the vicinal sum constraint
violations in three of the bins. In this scenario, W = 1000 and τ = 70.

and score widths ai, bi for all items i ∈ I. A solution for an instance I of the SCPP

is represented by S = {S1, . . . , Sk} where the bins Sj ∈ S have equal capacity W ,

and A(Sj) denotes the total width of all items in bin Sj . The set F contains all

subsets of items than can be packed into a single bin feasibly.

4.1 The Modified First-Fit Decreasing Heuristic

Our first heuristic for the SCPP is the Modified First-Fit Decreasing (MFFD) heuris-

tic. MFFD acts in the same manner as the original FFD heuristic for the BPP, pack-

ing each item in non-increasing order of width into the lowest-indexed bin. However,

due to the vicinal sum constraint an additional step is required to ensure feasibility.

Once the lowest-indexed bin Sj that can accommodate the current item i has been

found, MFFD checks if the vicinal sum constraint is met between the right-most score

width in the bin, rj , and one of the two score widths of i, starting with the smallest

score width ai (Lines 10 and 14 of Algorithm 4). If the constraint is satisfied with

one of the score widths, i is packed into Sj in the appropriate orientation, otherwise

52

4.1. THE MODIFIED FIRST-FIT DECREASING HEURISTIC

MFFD moves on to assess the next bin Sj+1. In the event that i cannot be packed

into any of the bins in S, MFFD packs i into a new bin in a regular orientation and

adds this new bin to the solution S (Lines 19–23). As with the FFD heuristic for

the BPP, the time complexity of MFFD is O(n log n), because the additional step

of checking the score widths meet the vicinal sum constraint can be performed in

constant time. Figure 4.2 shows a feasible solution comprising seven bins produced

using the MFFD heuristic for the instance I of the SCPP provided in Figure 4.1a.

Algorithm 4 MFFD(I)
1: sort items in I in order of non-increasing widths wi

2: let rj denote the right-most score width in bin Sj

3: A(Sj)← 0 ∀ j = 1, . . . , |I| . All bins are initially empty
4: S ← ∅
5: for i← 1 to |I| do
6: j ← 1
7: packed ← false
8: while not packed do
9: if Sj ∈ S and A(Sj) + wi ≤W then

10: if rj + ai ≥ τ then
11: Sj ← Sj ∪ (ai, bi) . Item i packed in regular orientation
12: A(Sj)← A(Sj) + wi

13: packed ← true
14: else if rj + bi ≥ τ then
15: Sj ← Sj ∪ (bi, ai) . Item i packed in rotated orientation
16: A(Sj)← A(Sj) + wi

17: packed ← true
18: else j ← j + 1

19: else if Sj /∈ S then
20: Sj ← Sj ∪ (ai, bi) . Item i packed into a new bin
21: A(Sj)← A(Sj) + wi

22: S ← S ∪ Sj

23: packed ← true
24: return S

This basic adaptation of the FFD heuristic takes into account the vicinal sum con-

straint and ensures the feasibility of the solution S. However, we see that MFFD is

restricted to only packing items into the ends of the bins. So, although an item i

may not be able to be packed into the end of a bin, there could perhaps be another

location in the bin that i could be placed into feasibly. Instead, MFFD must pack i

into a different bin and may potentially have to open a new bin; thus increasing the

number of bins in the final solution. An example of this can be seen in Figure 4.2.

Although item K would have been able to fit into bin S5 (which would have only

contained items I and J), neither of the score widths on item K fulfil the vicinal sum

constraint with the right-most score width, r5 = 12, and so item K is packed into

a new bin. Observe, however, that item K could have in fact been placed between

items I and J and the vicinal sum constraint would have been satisfied, preventing

53

4. HEURISTICS FOR THE SCPP

the addition of a new bin.

631 359
A E

48 68 26 37

615 336
B F

4 54 43 47

561 328
C G

48 63 16 31

525 327
D H

3 42 44 17

321 305 207 150
I J L O

13 47 51 12 69 48 22 8

211 192
K N

23 33 68 22

200
M

14 18

Figure 4.2: A feasible solution comprising k = 7 bins created using MFFD for the instance I in
Figure 4.1a, where W = 1000, τ = 70, and t = 6.

4.2 The Pair-Smallest Heuristic

The Pair-Smallest (PS) heuristic is an extension of an approximate method defined

by Lewis et al. (2011). Rather than packing each item in turn, PS focuses on packing

each bin individually. To begin, the score widths of all items in I are put into a list

a1, . . . , a2|I| in non-decreasing order. Each item in I comprises two score widths;

thus for each score width ai we denote the opposite score width on the same item as

ai by p(ai). Therefore, the item that possesses the score width ai can be described by

its score widths (ai, p(ai)), with width w(ai,p(ai)). A bin Sj is initialised by selecting

the item from I with the smallest score width that has not yet been packed and

then placing it into Sj in a regular orientation (Lines 17–21 of Algorithm 5). PS

then proceeds through the list of score widths to find the smallest score width of an

unpacked item that is able to meet the vicinal sum constraint with the right-most

score width rj in the current bin Sj , breaking ties by choosing the score width that

has the largest opposite score width (Line 12). If the width of the item does not

cause the bin Sj to overfill, then the item is packed into the bin (Lines 13–16); else

PS continues on to assess the next score width in the list. Once there are no items

suitable for packing into the current bin, either because there are no score widths

that can satisfy the vicinal sum constraint with rj or because all of the remaining

unpacked items are unable to fit into the bin, PS closes the current bin and the

process is repeated with a new bin (Line 22). As PS searches repeatedly through the

54

4.3. THE MODIFIED FIRST-FIT DECREASING WITH AHC HEURISTIC

list of score widths, it follows that the worse-case time complexity for PS is O(n2).

Algorithm 5 PS(I)
1: sort all score widths a1, a2, . . . , a2|I| in non-decreasing order
2: let p(ai) denote the opposite score width on the same item as ai
3: let rj denote the right-most score width in bin Sj

4: A(Sj)← 0 ∀ j = 1, . . . , |I| . All bins are initially empty
5: S ← ∅
6: I ′ ← ∅ . Set containing score widths of items that have been packed
7: j ← 1
8: while |I ′| < 2|I| do
9: for i← 1 to 2|I| do

10: if ai ∈ I ′ then continue . Item with score width ai is already packed
11: if Sj ∈ S then
12: if rj + ai ≥ τ and A(Sj) + w(ai,p(ai)) ≤W then
13: Sj ← Sj ∪ (ai, p(ai))
14: A(Sj)← A(Sj) + w(ai,p(ai))

15: I ′ ← I ′ ∪ {ai} ∪ {p(ai)}
16: i← 1
17: else if Sj /∈ S then
18: Sj ← Sj ∪ (ai, p(ai))
19: A(Sj)← A(Sj) + w(ai,p(ai))

20: I ′ ← I ′ ∪ {ai} ∪ {p(ai)}
21: i← 1
22: j ← j + 1

23: return S

PS aligns score widths such that their combined width does not greatly exceed τ .

This eliminates the possibility of packing larger score widths together unnecessarily,

instead reserving the largest score widths for placing alongside the smallest score

widths. Unlike MFFD, PS prioritises the vicinal sum constraint, choosing to fulfil

this constraint first by searching through the score widths rather than considering

the items’ widths. A feasible solution created using the PS heuristic for the instance

I of the SCPP in Figure 4.1a is provided in Figure 4.3. Note that in this case the

solution produced by PS is an optimal solution, comprising k = 6 bins.

4.3 The Modified First-Fit Decreasing with AHC

Heuristic

Our final heuristic, the Modified First-Fit Decreasing with AHC (MFFD+), features

the Alternating Hamiltonian Construction (AHC) algorithm described in Chapter 3.

MFFD+, like MFFD, initially performs in a similar fashion to the FFD heuristic for

the BPP by attempting to pack each item i ∈ I in non-increasing order of width

into the lowest-indexed bin Sj . Again, an extra step is required due to the vicinal

sum constraint, however rather than attempting to pack an item i into the end of

the bin Sj , MFFD+ calls upon AHC to determine a feasible arrangement of all the

55

4. HEURISTICS FOR THE SCPP

525 328
D G

3 42 31 16

615 327
B H

4 54 17 44

150 207 305 192
O L J N

8 22 48 69 12 51 22 68

321 211 359
I K E

13 47 23 33 37 26

200 561
M C

14 18 63 48

336 631
F A

43 47 48 68

Figure 4.3: A feasible solution produced by PS for the instance I in Figure 4.1a, where W = 1000,
τ = 70, and t = 6. The solution is optimal as k = 6.

items in Sj and the current item i (Line 9 of Algorithm 6). If AHC returns a feasible

solution the items are placed in the bin in the order of the solution which includes

the current item i, otherwise MFFD+ continues on to the next bin (Line 14). As

with MFFD, an item i that cannot be placed in any of the bins in S is packed into

a new bin in a regular orientation, which is then inserted into the solution S (Lines

15–19).

Algorithm 6 MFFD+(I)
1: sort items in I in order of non-increasing widths wi

2: A(Sj)← 0 ∀ j = 1, . . . , |I| . All bins are initially empty
3: S ← ∅
4: for i← 1 to |I| do
5: j ← 1
6: packed ← false
7: while not packed do
8: if Sj ∈ S and A(Sj) + wi ≤W then
9: S′ ← AHC(Sj ,i)

10: if S′ ∈ F then
11: Sj ← S′

12: A(Sj)← A(Sj) + wi

13: packed ← true
14: else j ← j + 1

15: else if Sj /∈ S then
16: Sj ← Sj ∪ (ai, bi) . Item i packed into a new bin
17: A(Sj)← A(Sj) + wi

18: S ← S ∪ Sj

19: packed ← true
20: return S

Incorporating AHC to solve instances of the sub-SCPP and determine the member-

ship of F guarantees that a feasible configuration of items will be found if one exists,

preventing the unnecessary opening of new bins. Figure 4.4 shows a feasible solution

56

4.4. COMPUTATIONAL RESULTS

for the instance in Figure 4.1a produced by MFFD+. Here, in contrast with MFFD,

the addition of AHC has allowed a feasible alignment of items I, J, and K in S5 to

be found, which results in fewer bins in the final solution. As with the PS heuristic,

MFFD+ has also produced an optimal solution consisting of k = 6 bins. Due to the

repeated applications of AHC, MFFD+ terminates in at most O(n3) time.

359 631
E A

26 37 68 48

615 336
B F

4 54 47 43

328 561
G C

16 31 63 48

525 327
D H

3 42 44 17

305 211 321
J K I

12 51 23 33 47 13

150 192 207 200
O N L M

8 22 68 22 48 69 18 14

Figure 4.4: A feasible solution obtained using MFFD+ for the instance I in Figure 4.1a, where
W = 1000, τ = 70, and t = 6. As k = 6, this solution is optimal.

4.4 Computational Results

In this section we provide computational results for the three heuristics we have

created for the SCPP: the Modified Fist-Fit Decreasing (MFFD) heuristic, the Pair-

Smallest (PS) heuristic, and the Modified First-Fit Decreasing with AHC (MFFD+)

heuristic. All heuristics were implemented in C++ and executed on Windows ma-

chines with Intel Core i5-6500 3.20GHz processors and 8GB of RAM. The results

obtained from our experiments can be found online along with all of our source code

(Hawa, 2020f).

4.4.1 Problem Instances

Benchmark instances do not exist as of yet for the SCPP, and so for our experiments

we used a set of problem instances for the SCPP produced by a problem instance gen-

erator developed by the author of this thesis which is available online (Hawa, 2020g).

The set contains two types of problem instances: “artificial”, in which the items are

strongly heterogeneous (the items have varying widths and score widths), and “real”,

where items are weakly hetergeneous (many items have the same dimensions). Each

type contains three subsets of 1000 instances for 100, 500, and 1000 items, giving a

total of 6000 problem instances. All items have widths wi ∈ [150, 1000] and score

57

4. HEURISTICS FOR THE SCPP

widths ai, bi ∈ [1, 70] selected uniform randomly, and equal height H = 1. For the

real instances, the number of item types was chosen uniform randomly between 10

and 30, and the number of items within each group also assigned uniform randomly.

Three different bin sizes, W = 1250, 2500, and 5000 (also of height H = 1) were

used in the experiments in order to help alter the number of items per bin. The

different combinations of parameters gives rise to 18 different instance classes. We

also introduced an additional parameter, δ, which denotes the proportion of pairs of

score widths from different items that meet the vicinal sum constraint, i.e. whose

combined width equals or exceeds τ . Clearly, when δ = 0.0 none of the items can

be packed alongside one another and so the solution will comprise |I| = n bins (one

bin for each item in I), whereas if δ = 1.0 then all possible pairings of score widths

will satisfy the constraint and the problem becomes equivalent to the BPP. Here, we

determined three values of δ – 0.25, 0.5, and 0.75 – by changing the value of τ .

4.4.2 Analysis of Results

Tables 4.1 to 4.3 contain the results from the experiments using δ = 0.25, 0.5, and

0.75 respectively. All instances were completed in under 262ms. It is worthwhile

mentioning that numerous lower bounds exist in the literature for the BPP (see, for

example, Martello and Toth (1990b) and Chan et al. (1998)); however, due to the

novelty of the SCPP, we have opted for the basic theoretical minimum t (2.2) to

compare results from these experiments (see Section 2.8 of Chapter 2). Note that

using a different lower bound would not alter the interpretation of the strengths and

weaknesses of different algorithms for the SCPP.

A clear pattern can be seen throughout the results. In Table 4.1, when δ = 0.25,

the average number of bins |S| is higher and the difference between |S| and the

theoretical minimum t is large. When moving up to δ = 0.75, in Table 4.3, the

average number of bins |S| is much lower, and so there is a much smaller difference

between |S| and t. This is a result of the changes in δ: when δ = 0.25, a lower

proportion of score widths meet the vicinal sum constraint, and so it follows that

fewer items can be packed into a single bin together as an increase in items means

an increase in the number of adjacent score widths that need to fulfil the vicinal sum

constraint. As a result, solutions will tend to consist of many bins containing few

items. On the other hand, as δ increases a higher proportion of score widths are able

to satisfy the vicinal sum constraint and many items can be packed into each bin

feasibly; thus solutions will comprise fewer, well-packed bins overall.

We also observe that the coefficient of variation is considerably higher for real

instances than for artificial instances. It is clear that t will be less accurate for real

instances due to the lack of item diversity and so, unlike with artificial instances, for

58

4.4. COMPUTATIONAL RESULTS

Table 4.1: Results obtained using the MFFD, PS, and MFFD+ heuristics for δ = 0.25. Figures in
bold indicate the best results for each instance class. Asterisks indicate statistical significance at
≤ 0.05(∗) and ≤ 0.01(∗∗) according to a two-tailed paired t-test and two-tailed McNemar’s test for
the |S| and %t columns respectively.

δ = 0.25 MFFD PS MFFD+

Type, W |I| ta |S|b %tc |S| %t |S| %t

a, 1250 100 46.13 59.64± 5.3 0.0 59.73± 5.8 0.0 ∗59.50± 5.4 0.0
500 229.37 289.80± 2.3 0.0 291.12± 2.6 0.0 289.84± 2.3 0.0
1000 458.37 ∗∗573.74± 1.7 0.0 578.53± 1.9 0.0 574.26± 1.7 0.0

a, 2500 100 23.32 47.49± 7.7 0.0 ∗∗38.91± 9.9 0.0 46.27± 8.6 0.0
500 114.94 221.92± 3.8 0.0 ∗∗186.10± 5.3 0.0 220.87± 4.1 0.0
1000 229.44 435.27± 2.9 0.0 ∗∗374.51± 4.2 0.0 435.81± 3.1 0.0

a, 5000 100 11.92 44.84± 8.9 0.0 ∗∗35.43± 12.5 0.0 42.70± 10.4 0.0
500 57.72 207.22± 4.5 0.0 ∗∗168.35± 6.1 0.0 203.56± 4.9 0.0
1000 114.97 405.41± 3.5 0.0 ∗∗335.79± 4.8 0.0 402.3± 3.8 0.0

r, 1250 100 46.44 65.80± 13.7 0.0 65.49± 14.2 0.0 65.52± 14.1 0.0
500 229.97 324.77± 13.1 0.0 322.97± 13.6 0.0 332.46± 13.4 0.0

1000 459.38 649.09± 13.1 0.0 645.41± 13.6 0.0 646.49± 13.4 0.0

r, 2500 100 23.47 53.87± 17.9 0.0 ∗∗45.67± 22.3 0.0 51.93± 19.6 0.0
500 115.24 267.71± 16.7 0.0 ∗∗223.45± 21.3 0.0 257.99± 18.4 0.0

1000 229.95 535.67± 16.7 0.0 ∗∗446.36± 21.3 0.0 516.00± 18.4 0.0

r, 5000 100 11.98 51.96± 20.2 0.0 ∗∗42.35± 27.5 0.0 49.35± 22.3 0.0
500 57.87 259.80± 18.6 0.0 ∗∗207.45± 26.2 0.0 246.96± 20.7 0.0

1000 115.23 519.95± 18.6 0.0 ∗∗414.52± 26.1 0.0 494.44± 20.7 0.0

a t = d
∑n

i=1 wi/We (mean from 1000 instances).
b Number of bins per solution (mean from 1000 instances plus or minus the coefficient of variation (%)).
c Percentage of instances in which the solution comprises t bins.

each individual real problem instance the number of bins in the final solution may

differ drastically from one another, resulting in a larger variation.

Looking at Table 4.1 when δ = 0.25, PS produces solutions using fewer bins on

average for 15 of the 18 instance classes. In 12 of these 15 cases, namely the six

instance classes from both artificial and real instance types when W = 2500 and

W = 5000, these differences are statistically significant. This is to be expected of

PS, which prioritises the vicinal sum constraint. As δ = 0.25, fewer score widths

from different items will be able to be paired together and meet the constraint. A

use of PS ensures that the constraint will be fulfilled, else a new bin will be opened.

This is in contrast with MFFD and MFFD+ where the items must be packed in the

order they are given. As a result of the small value of δ it can be seen that none of

the heuristics are able to produce a solution comprising t bins in any of the instance

classes, however it may be that some of the solutions produced are in fact optimal.

Moving on to Table 4.2, when δ = 0.5, PS is still generating solutions using the

fewest bins on average for both artificial and real instances when W = 2500 and

W = 5000. However, MFFD+ now produces the best solutions on average for both

artificial and real instance types when W = 1250 (i.e. when the average number of

items per bin is smallest), and these differences are also statistically significant. In

59

4. HEURISTICS FOR THE SCPP

Table 4.2: Results obtained using the MFFD, PS, and MFFD+ heuristics for δ = 0.5. Figures in
bold and asterisks should be interpreted as in Table 4.1.

δ = 0.5 MFFD PS MFFD+

Type, W |I| t |S| %t |S| %t |S| %t

a, 1250 100 46.13 50.04± 5.4 0.3 53.80± 6.6 0.0 ∗∗49.73± 5.7 0.8
500 229.37 240.40± 2.2 0.0 262.69± 3.0 0.0 ∗∗239.15± 2.3 0.0

1000 458.37 474.60± 1.5 0.0 520.38± 2.2 0.0 ∗∗472.35± 1.6 0.0

a, 2500 100 23.32 30.75± 9.2 0.0 ∗∗24.32± 5.0 ∗∗12.3 28.46± 10.4 2.6
500 114.94 140.21± 4.6 0.0 ∗∗118.52± 2.0 0.0 132.65± 4.9 0.0

1000 229.44 271.92± 3.3 0.0 ∗∗236.00± 1.4 0.0 258.39± 3.5 0.0

a, 5000 100 11.92 23.58± 14.8 0.0 ∗∗12.87± 14.7 ∗∗61.2 19.88± 18.3 0.7
500 57.72 103.21± 7.7 0.0 ∗∗58.66± 2.6 ∗∗21.8 89.54± 9.3 0.0

1000 114.97 198.33± 5.8 0.0 ∗∗116.51± 1.8 0.0 172.61± 7.1 0.0

r, 1250 100 46.44 56.76± 15.5 0.0 58.12± 16.1 0.0 ∗∗56.51± 15.9 0.0
500 229.97 279.55± 14.6 0.0 287.10± 15.2 0.0 ∗∗278.39± 14.9 0.0

1000 459.38 558.71± 14.6 0.0 573.64± 15.1 0.0 ∗∗556.37± 14.8 0.0

r, 2500 100 23.47 37.07± 21.8 0.5 ∗∗28.19± 22.1 2.6 35.42± 23.1 1.6
500 115.24 184.11± 20.2 0.0 ∗∗136.35± 20.5 0.0 177.25± 21.2 0.0

1000 229.95 368.45± 20.2 0.0 ∗∗272.19± 20.4 0.0 355.04± 21.2 0.0

r, 5000 100 11.98 32.35± 29.4 0.1 ∗∗19.04± 45.6 ∗∗24.0 29.61± 32.7 0.5
500 57.87 163.82± 26.5 0.0 ∗∗89.43± 44.8 ∗∗0.9 153.42± 28.9 0.0

1000 115.23 328.62± 26.4 0.0 ∗∗178.27± 44.8 0.1 308.64± 28.7 0.0

fact, PS produces solutions that use the most bins on average of the three heuristics

for these instance classes. It can also be seen that, as a larger proportion of score

widths can be placed alongside one another, the heuristics are able to find solutions

comprising t bins in some cases.

Finally, increasing δ to 0.75 (see Table 4.3), we see that not only does MFFD+

produce solutions using the fewest number of bins on average for artificial and real

instance classes when W = 1250 (as with δ = 0.5) but also for the three artificial

instance classes when W = 2500, as well as the artificial instance classes when

|I| = 1000 and W = 5000. In addition, although PS produces the best solutions on

average for artificial instances with |I| = 500 andW = 5000, as well as real instances

with |I| = 100 and W = 2500, MFFD+ produces the most solutions comprising t

bins in both cases, with the difference being statistically significant. Furthermore, we

see that when |I| = 1000 and W = 5000 for both artificial and real instance classes,

both MFFD and MFFD+ are able to find solutions comprising t bins; however PS

is unable to find a single solution containing t bins.

This clear trend can be attributed to the mechanisms of the heuristics. When δ

is smaller, fewer score widths can be aligned feasibily next to one another, and so

focusing on selecting items whose score widths will meet the vicinal sum constraint,

as with PS, will produce better solutions in comparison to the other methods which

are not capable of selecting specific items and must pack the items in the order they

are given.

However, the larger value of δ allows for a higher proportion of score widths to be

60

4.5. SUMMARY

Table 4.3: Results obtained using the MFFD, PS, and MFFD+ heuristics for δ = 0.75. Figures in
bold and asterisks should be interpreted as in Table 4.1.

δ = 0.75 MFFD PS MFFD+

Type, W |I| t |S| %t |S| %t |S| %t

a, 1250 100 46.13 47.87± 6.0 8.0 52.28± 6.8 0.0 ∗∗47.76± 6.1 ∗∗10.4
500 229.37 232.46± 2.1 0.0 251.32± 3.1 0.0 ∗∗232.04± 2.1 0.0
1000 458.37 462.56± 1.4 0.0 496.42± 2.3 0.0 ∗∗462.06± 1.4 0.0

a, 2500 100 23.32 24.66± 6.1 24.3 24.13± 4.8 21.3 ∗∗23.94± 5.5 ∗∗55.7
500 114.94 117.74± 2.4 3.2 118.03± 2.0 0.0 ∗∗116.09± 2.1 ∗∗21.3
1000 229.44 233.24± 1.6 0.0 235.13± 1.4 0.0 ∗∗231.16± 1.4 0.0

a, 5000 100 11.92 14.14± 11.9 12.2 ∗∗12.08± 4.9 ∗∗83.8 12.48± 8.7 63.6
500 57.72 62.88± 4.8 1.2 ∗∗58.43± 2.0 29.4 58.56± 2.7 ∗∗50.9
1000 114.97 122.16± 3.2 0.3 116.32± 1.4 0.0 ∗∗115.91± 1.6 ∗∗37.8

r, 1250 100 46.44 53.50± 17.0 0.0 56.69± 16.4 0.0 ∗∗53.39± 17.2 0.0
500 229.97 263.42± 16.1 0.0 280.24± 15.4 0.0 ∗∗263.03± 16.2 0.0

1000 459.38 526.32± 16.0 0.0 559.99± 15.4 0.0 ∗∗525.60± 16.1 0.0

r, 2500 100 23.47 28.34± 18.5 13.4 ∗∗25.08± 13.0 4.7 27.69± 18.4 ∗∗17.9
500 115.24 140.51± 17.2 0.0 ∗∗123.36± 12.5 0.0 138.56± 17.0 0.0

1000 229.95 281.23± 17.2 0.0 ∗∗246.29± 12.5 0.0 277.84± 17.1 0.0

r, 5000 100 11.98 19.91± 33.7 9.9 ∗∗12.56± 17.5 ∗∗68.0 18.28± 34.8 19.2
500 57.87 100.87± 31.1 1.3 ∗∗60.39± 16.2 3.0 96.73± 31.5 1.9

1000 115.23 202.55± 31.1 0.3 ∗∗120.27± 16.3 0.0 195.60± 31.4 0.3

placed alongside one another legally; a method such as PS is not always necessary

as for each score width rj on the end of a bin Sj there will be a greater number

of score widths from unpacked items that can fulfil the vicinal sum constraint. PS

selects the unpacked item with the smallest score width that meets the constraint

with rj without considering the effect of the item’s width on the packing, which could

then cause the number of bins in the final solution to increase. Instead, especially

for smaller bin sizes, MFFD+ excels because the large value of δ means that the

problem instances are closer to instances of the BPP, for which we have seen FFD

performs well.

4.5 Summary

In this chapter we embarked on our first and simplest approach to the SCPP in

the form of constructive heuristics. We presented three heuristic methods explicitly

crafted for the SCPP: the Modified First-Fit Decreasing (MFFD) heuristic, a basic

upgrade from the FFD algorithm for the BPP; the Pair-Smallest (PS) heuristic,

which packs individual bins in turn; and the Modified First-Fit Decreasing with AHC

(MFFD+) heuristic, which features the AHC algorithm from the previous chapter to

solve instances of the sub-SCPP. Results obtained from thorough experiments using

a variety of problem instances classes, bin sizes, and proportions of score widths that

meet the vicinal sum constraint were then provided and reviewed, clearly showing

the different types of instances for which specific heuristics obtain superior solutions.

The obvious disadvantage to these heuristic methods is the inability to move

61

4. HEURISTICS FOR THE SCPP

items once they have been packed into a bin. Although in MFFD+ the items can

be rearranged within each bin, none of the heuristics permit the movement of items

between bins. Essentially, these heuristics comprise a single iteration with no pos-

sibility of further amendment. It is this downside that leads us to explore further

methods that allow solutions to be adapted and modified.

62

Chapter 5

Evolutionary Methods for the

Score-Constrained Packing

Problem

Recall from Chapter 2 that an evolutionary algorithm (EA) is a population-based

metaheuristic that emulates natural evolution. In general, EAs implement processes

inspired by reproduction, recombination, and mutation to iteratively generate new

solutions from existing candidate solutions, helping to evolve and improve the popu-

lation. Using a fitness function to evaluate the quality of the solutions with respect to

the problem at hand, EAs aim to preserve higher quality solutions in the population

whilst eliminating lower quality solutions throughout the generations.

EAs have previously been implemented for a variety of grouping problems such

as vehicle routing (Pankratz, 2005), graph colouring (Lewis, 2015a) and timetabling

and scheduling (Falkenauer and Bouffouix, 1991; Lewis and Paechter, 2007), as well

as cutting and packing problems (Reeves, 1996; Hinterding and Khan, 1994; Burke

et al., 2006; Junkermeier, 2015; Lewis and Holborn, 2017). As with the BPP, EAs

are a suitable approach for the SCPP since it is NP-hard; the set of all possible

feasible solutions for any given non-trivial problem instance will usually be too large

to completely enumerate.

In this chapter we introduce an EA framework for the SCPP and explain the

various stages of the algorithm, which include a local search method and three alter-

native recombination operators. The AHC algorithm presented in Chapter 3 is also

integrated to solve instances of the sub-SCPP that arise within the EA. Finally, we

provide results from extensive testing and analyse the effect of each recombination

operator on different classes of problem instances.

63

5. EVOLUTIONARY METHODS FOR THE SCPP

5.1 Representation

Within EAs, candidate solutions to the optimisation problem at hand are often

represented or “encoded” using strings of characters or binary values referred to as

chromosomes, corresponding to the terminology used in natural genetics. The genes

of each chromosome relate to the individual components of the solution.

For grouping problems, the most straightforward encoding involves assigning one

gene per element. For example, the chromosome (2,1,3,1,2,4) would represent the

solution where the second and fourth elements are in group 1, the first and fifth

elements are in group 2, the third element is in group 3, and the sixth element is

in group 4. The main problem, however, with this type of solution encoding is that

it contradicts the Principle of Minimal Redundancy (Radcliffe et al., 1991), which

states that each member of the search space (i.e. the set of all possible feasible

solutions) should be represented by the fewest number of distinct chromosomes so as

to reduce the overall size of the search space. Observe that the solution represented

by the above chromosome can also be encoded using another distinct chromosome

by simply relabelling the groups, for instance (1,3,4,3,2,1). In fact, a candidate

solution comprising k groups can be represented by k! different chromosomes using

this encoding scheme.

Falkenauer (1993), recognising the issues with standard representations for group-

ing problems, presented a novel encoding scheme where the standard encoding is

combined with a group-based encoding part to create a full chromosome. However,

for the SCPP it is also necessary to know the ordering and orientation of the individ-

ual items within the bins of a solution. Therefore, in our EA framework we continue

to use the description of a solution S for an instance I of the SCPP as stated in

Section 2.8 of Chapter 2.

5.2 Recombination

Recombination, also referred to as “crossover”, is used in EAs to generate new solu-

tions by taking existing parent solutions and combining parts of them to yield one

or more offspring solutions. The recombination operator determines which elements

from each parent should be inherited by the offspring with the aim of retaining

the best characteristics of each parent such that superior offspring are produced.

Examples of basic recombination operators include the single-point and two-point

crossovers where groups of genes between randomly selected positions on two parents

chromosomes are swapped to create two new offspring, and uniform crossover where

genes are chosen from two parent chromosomes with equal probability to produce two

offspring (Syswerda, 1989). These classical operators are typically used on binary,

64

5.2. RECOMBINATION

integer, and string encodings.

Note, however, that these operators often result in infeasible offspring for group-

ing problems. Consider the two parents solutions S1 and S2 in Figure 5.1 for an

instance I of the SCPP. Swapping the two central bins between the parent solutions

would result in two offspring solutions that not only contain duplicate items, but

will also be missing items from the instance I.

359 631
E A

26 37 68 48

615 336
B F

4 54 47 43

328 561
G C

16 31 63 48

525 327
D H

3 42 44 17

305 211 321
J K I

12 51 23 33 47 13

150 192 207 200
O N L M

8 22 68 22 48 69 18 14

(a) S1

327 336 211
H F K

17 4 43 47 33 23

200 615
M B

14 18 54 4

150 631 207
O A L

8 22 68 48 48 69

328 561
G C

16 31 48 63

305 192 321
J N I

12 51 22 68 47 13

525 359
D E

3 42 37 26

(b) S2

Figure 5.1: Parent solutions S1 and S2 from a population of solutions for the instance I of the
SCPP shown in Figure 4.1a, where |I| = 15, W = 1000, and τ = 70.

Furthermore, for the SCPP it is preferable to copy entire bins from parents to off-

spring rather than individual items. The reason for this is two-fold: firstly, the total

width of the new subset of items may exceed the bin capacity; and secondly, even if

the items do not cause the bin to overfill there may not exist a feasible configuration

of the items such that the vicinal sum constraint (1.1) is satisfied. An example of

this scenario is depicted in Figure 5.2, where the location of the items C, E, H, and O

have been swapped between the parent solutions to produce two new offspring – that

is, the items have been removed from their respective bins in the parent solutions

and moved into the same bin in the other parent solution. Each offspring solution

contains an overfilled bin and a bin where the new adjacent score widths do not fulfil

the vicinal sum constraint; thus both offspring are infeasible. Observe that in this

case, no feasible alignments of the items exist for either of the two bins that do not

meet the vicinal sum constraint. Note also that this method is only applicable to

solutions containing an equal number of bins. Consequently, standard recombination

operators are not suitable for the SCPP and alternative operators for our EA must

be sought to obtain feasible solutions.

In this section we present three different recombination operators which start with

a single empty offspring solution S = ∅ and employ two distinct parent solutions,

S1 and S2, to build the full offspring solution. These recombination operators have

65

5. EVOLUTIONARY METHODS FOR THE SCPP

327 631
H A

17 44 48 68

615 336
B F

4 54 47 43

150 328
O G

8 22 31 16

525 561
D C

3 42 63 48

305 211 321
J K I

12 51 23 33 47 13

200 207 192 359
M L N E

14 18 69 48 22 68 37 26

211 336 359
K F E

23 33 43 47 37 26

200 615
M B

14 18 54 4

631 561 207
A C L

48 68 48 63 69 48

328 327
G H

16 31 44 17

305 192 321
J N I

12 51 22 68 47 13

150 525
O D

8 22 42 3

Figure 5.2: Two infeasible offspring solutions produced by swapping the locations of items C, E, H,
and O between the parent solutions S1 and S2 in the previous figure, where both offspring comprise
bins which are overfilled and that violate the vicinal sum constraint.

been designed specifically for the SCPP in that the vicinal sum constraint and the

bin capacity constraint will always be satisfied, ensuring all bins in the offspring are

feasible; however this may result in a partial offspring solution. In such cases, a repair

operator (described below) is called upon to re-establish a full solution S. Examples

of how each operator performs will be demonstrated using the parent solutions S1
and S2 shown in Figure 5.1. Note that the parent solution S1 and S2 used in each

of the following three recombination operators are in fact copies, so that the original

parent solutions in the population are not modified.

5.2.1 The Grouping Genetic Algorithm Crossover

Our first recombination operator is based on the grouping genetic algorithm of Falke-

nauer and Delchambre (1992) which, as the name suggests, is designed for grouping

and partitioning problems. The pseudocode for this operator, abbreviated to GGA,

is provided in Algorithm 7. To begin, the bins of the second parent solution S2 are

randomly permuted and two bins Sx and Sy from S2 are randomly selected (where

1 ≤ x < y ≤ |S2|). All bins between and including Sx and Sy are then copied into the

offspring solution S (Line 4). Then, GGA searches through the first parent solution

S1 to find bins that do not contain any items that are already in S (Lines 5–10).

If such a bin is found, GGA adds this bin to S (Lines 11–12). Note that the bins

selected from S2 cannot be the outermost bins – that is, GGA cannot choose both

x = 1 and y = |S2| as doing so would result in the offspring S inheriting all bins

from S2, preventing the opportunity for S to inherit bins from S1.1

Figure 5.3 shows the resulting partial offspring solution S produced using GGA

on the parent solutions S1 and S2 from Figure 5.1. Here, x = 2 and y = 4 have been

1Although GGA cannot select the outermost bins in S2 there is still no guarantee that bins
from S1 will be added to the offspring S, as it may be that every bin in S1 contains an item that
is in S.

66

5.2. RECOMBINATION

Algorithm 7 GGA (S1, S2)
1: S ← ∅
2: permute the bins of parent S2
3: randomly select bins Sx and Sy from S2 such that 1 ≤ x < y ≤ |S2|
4: S ← S ∪ {Sx} ∪ · · · ∪ {Sy}
5: for j ← 1 to |S1| do
6: duplicate ← false
7: for i← 1 to |Sj | do
8: if i is in a bin in S then
9: duplicate ← true

10: break
11: if not duplicate then
12: S ← S ∪ {Sj}
13: return S

chosen, so bins S2, S3 and S4 are added to S from S2. GGA then adds bins S4 and

S5 from S1 to S as they are the only bins that do not contain duplicate items. On

completion, there are three items that have not been packed into S.

200 615
M B

14 18 54 4

150 631 207
O A L

8 22 68 48 48 69

328 561
G C

16 31 48 63

525 327
D H

3 42 44 17

305 211 321
J K I

12 51 23 33 47 13

S

192
N

22 68

336
F

43 47

359
E

26 37

Figure 5.3: The partial offspring S created using the GGA recombination operator, where bins S2,
S3, and S4 have been copied from parent S2 and bins S4 and S5 have been copied from parent S1.
As a result, three items remain unpacked.

The main goal of GGA is to transfer promising bins from parent solutions to off-

spring. Thus, if a bin S is consistently superior to other bins (in that solutions in

the population containing S are of consistently higher quality than solutions that

do not contain S), GGA will aid the promotion and transfer of S throughout the

population. Therefore, the probability of selecting a parent solution containing S for

recombination will increase with each iteration of the EA.

67

5. EVOLUTIONARY METHODS FOR THE SCPP

5.2.2 The Alternating Grouping Crossover Using Bin Fullness

The next recombination operator is the alternating grouping crossover using bin

fullness (AGX), which is comparable to that proposed for the one-dimensional BPP

by Quiroz-Castellanos et al. (2015). Starting with the parent solution containing

the fullest bin (breaking ties randomly), AGX transfers this fullest bin into the

offspring solution S (Line 6 of Algorithm 8). Any bins containing items in S are

then removed from the other parent solution (Lines 7–13). AGX then inserts the

fullest bin from this modified parent solution into S and removes bins from the first

parent solution. This process continues, alternating between parent solutions and

selecting the fullest bin maxSj∈Sk(A(Sj)) (where Sk is the parent solution under

consideration, k ∈ {1, 2}) until at most min(|S1|, |S2|)− 1 bins (calculated using the

initial unmodified parent solutions) have been added to the offspring solution, or the

parent solution under consideration is empty (Line 5).

Algorithm 8 AGX (S1, S2)
1: S ← ∅
2: k ← 0
3: q ← min(|S1|, |S2|)− 1
4: let Sk be the parent solution containing the fullest bin
5: while |S| < q or Sk = ∅ do
6: S ← S ∪maxS∈Sk(A(S)) . Add the fullest bin in Sk to S
7: if k = 1 then k ← 2
8: else if k = 2 then k ← 1
9: for j ← 1 to |Sk| do
10: for i← 1 to |Sj | do
11: if i is in a bin in S then
12: Sk ← Sk\{Sj}
13: break
14: return S

Figure 5.4 shows the result of the AGX operator on our two example parent solutions.

Here, S1 is the initial parent solution as it contains the fullest bin of both parent

solutions (bin S1). The resultant partial offspring S contains five bins, and four

items remain unpacked.

It is evident that if the bins of a solution are well-packed then fewer bins will be

required overall to pack all of the items. These bins are the ones that contribute to

the fitness of the solution, and therefore AGX aims to preserve the most well-filled

bins by prioritising them in the selection of bins from each parent solution.

From another perspective, our AGX operator can be considered similar to the

GPX operator of Galinier and Hao (1999), which was proposed for the graph colour-

ing problem; however in the latter only the duplicate elements themselves are re-

moved from the groups. As we have seen, removing individual items from bins in

68

5.2. RECOMBINATION

359 631
E A

26 37 68 48

328 561
G C

16 31 48 63

615 336
B F

4 54 47 43

305 192 321
J N I

12 51 22 68 47 13

525 327
D H

3 42 44 17

S

150
O

8 22

200
M

26 37

207
L

48 69

211
K

23 33

Figure 5.4: The partial offspring S created using the AGX recombination operator, where parent
solution S1 is the starting solution as it contains the fullest bin (S1). Bins S1, S2, and S4 have been
inserted from parent S1 and bins S4 and S5 have been inserted from parent S2, resulting in four
unpacked items.

the SCPP may render the bins infeasible as the remaining subset of items may not

be able to satisfy the vicinal sum constraint. Therefore, we opt to remove entire bins

to ensure the bins remain feasible.

5.2.3 The Alternating Grouping Crossover Using Bin Cardinality

Our final operator, the alternating grouping crossover using bin cardinality (AGX′),

performs in a similar manner to AGX; however rather than choosing the fullest bin

to insert into the offspring solution, AGX′ selects bins containing the most items,

maxSj∈Sk(|Sj |) (where Sk is the parent solution under consideration, k ∈ {1, 2}).
This method has the ability to preserve bins containing items that may be seen

as harder to pack alongside other items. The pseudocode for AGX′ is provided in

Algorithm 9, where Lines 4 and 6 differ from the previous algorithm in that the

highest cardinality bin is selected. If the cardinality of the best bin from each parent

is equal, the fuller bin of the two is chosen, breaking ties randomly.

The resulting offspring solution produced using AGX′ on our example parent so-

lutions is shown in Figure 5.5. Again, S1 is chosen as the starting parent solution as

it contains the bin with the most items in both parent solutions (bin S6). This oper-

ator creates a partial offspring comprising just four bins, unlike the partial offspring

produced by GGA and AGX, and leaves four items unpacked.

Again, similar to the AGX operator, the premise of AGX′ lies in the idea that if

more items are packed into each bin then fewer bins will be required in a solution to

69

5. EVOLUTIONARY METHODS FOR THE SCPP

Algorithm 9 AGX′ (S1, S2)
1: S ← ∅
2: k ← 0
3: q ← min(|S1|, |S2|)− 1
4: let Sk be the parent solution containing the bin with the most items
5: while |S| < q or Sk = ∅ do
6: S ← S ∪maxS∈Sk(|S|) . Add the highest cardinality bin in Sk to S
7: if k = 1 then k ← 2
8: else if k = 2 then k ← 1
9: for j ← 1 to |Sk| do
10: for i← 1 to |Sj | do
11: if i is in a bin in S then
12: Sk ← Sk\{Sj}
13: break
14: return S

150 192 207 200
O N L M

8 22 68 22 48 69 18 14

327 336 211
H F K

17 4 43 47 33 23

359 631
E A

26 37 68 48

328 561
G C

16 31 48 63

S

305
J

12 51

321
I

13 47

525
D

3 42

615
B

4 54

Figure 5.5: The partial offspring S created using the AGX′ recombination operator, where parent
solution S1 is the starting solution as it contains the bin with the most items (S6). Bins S6 and S1

have been inserted from parent S1 and bins S1 and S4 have been inserted from parent S2, resulting
in four unpacked items.

pack all items. For the SCPP, it can be more difficult to pack a larger number of items

into a single bin in comparison to the classical BPP, as this increases the number of

adjacent score widths that have to fulfil the vicinal sum constraint. Therefore, the

aim of AGX′ is to protect bins that contain feasible configurations of many items.

Note that for a bin to contain more items, the items will usually be of a smaller

width so as not to exceed the bin capacity. Consequently, the remaining unpacked

items will tend to be of larger widths.

70

5.3. LOCAL SEARCH

5.2.4 Repair Operator

As previously explained, removing individual items from bins may cause a violation

of the vicinal sum constraint; thus to ensure offspring feasibility our recombination

operators need to disregard entire bins that contain duplicate items in the parent

solutions (i.e. items that have already been added to the offspring solution S).
However, these bins may also possess items that are not yet present in S, and so on

completion of the recombination the offspring solution may not contain all items in

I. To repair these partial solutions, the following operator is implemented. First, the

MFFD+ heuristic presented in Chapter 4 is applied using just the unpacked items

to form a second partial solution S ′. The partial solutions S and S ′ are then used

as input into a local search procedure, described in the following section, to create a

full feasible offspring solution.

5.3 Local Search

Local search is a method used to improve a solution by iteratively making small

changes to the solution in search of a better quality neighbouring solution; thus,

local search methods have the ability to move between solutions in the search space.

Eventually, a solution will hopefully be found that is of higher quality than all

neighbouring solutions – a so-called local optimum. As the three recombination

operators detailed in the previous section yield partial offspring solutions comprising

entire bins inherited from parent solutions, it is worthwhile incorporating a local

search procedure for a more fine-grained search on individual solutions.

Our local search procedure uses two partial solutions, S and S ′, containing bins

that together make up a full solution comprising all items in I. The procedure

operates by strategically shuffling items between the bins of S and S ′. This method

is based on the dominance criterion of Martello and Toth (1990b) used for the BPP:

if a bin Sx dominates a bin Sy, then a solution containing Sx will have no more

bins than a solution containing Sy. In particular, the aim is to move larger items

into S such that the fullness A(S) of the bins S ∈ S increases, whilst the number

of items per bin is maintained or decreases, improving the quality of these bins.

Simultaneously, this causes smaller items to be moved into bins in S ′, which will

potentially be easier to repack into bins in S at a later stage.

The local search procedure, shown in Algorithm 10, takes two feasible partial

solutions, S and S ′, permutes the bins of both, and then attempts to move items

between the two partial solutions in four stages:

(i) swapping a pair of items from a bin in S with a pair of items from a bin in S ′

(Lines 4–13);

71

5. EVOLUTIONARY METHODS FOR THE SCPP

(ii) swapping a pair of items from a bin in S with an individual item from a bin

in S ′ (Lines 14–23);

(iii) swapping individual items from bins in S and S ′ (Lines 24–33); and

(iv) moving an item from a bin in S ′ to a bin in S (Lines 34–43).

Algorithm 10 LocalSearch (S, S ′)
1: permute the bins of each partial solution S and S′
2: repeat
3: changed ← false
4: for x← 1 to |S| do . Stage (i)
5: for each pair of items i, j in bin Sx in S do
6: for y ← 1 to |S′| do
7: for each pair of items k, l in bin Sy in S′ do
8: if wi + wj < wk + wl and A(Sx)− (wi + wj) + (wk + wl) ≤W then
9: S′x ← AHC(Sx, k, l), S′y ← AHC(Sy , i, j)
10: if S′x ∈ F and S′y ∈ F then
11: Sx ← S′x, Sy ← S′y
12: changed ← true
13: go to Line 14
14: for x← 1 to |S| do . Stage (ii)
15: for each pair of items i, j in bin Sx in S do
16: for y ← 1 to |S′| do
17: for each item k in bin Sy in S′ do
18: if wi + wj < wk and A(Sx)− (wi + wj) + wk ≤W then
19: S′x ← AHC(Sx, k), S′y ← AHC(Sy , i, j)
20: if S′x ∈ F and S′y ∈ F then
21: Sx ← S′x, Sy ← S′y
22: changed ← true
23: go to Line 24
24: for x← 1 to |S| do . Stage (iii)
25: for each item i in bin Sx in S do
26: for y ← 1 to |S′| do
27: for each item k in bin Sy in S′ do
28: if wi < wk and A(Sx)− wi + wk ≤W then
29: S′x ← AHC(Sx, k), S′y ← AHC(Sy , i)
30: if S′x ∈ F and S′y ∈ F then
31: Sx ← S′x, Sy ← S′y
32: changed ← true
33: go to Line 34
34: for y ← 1 to |S′| do . Stage (iv)
35: for each item k in bin Sy in S′ do
36: for x← 1 to |S| do
37: if A(Sx) + wk ≤W then
38: S′x ← AHC(Sx, k), S′y ← AHC(Sy\{k})
39: if S′x ∈ F and S′y ∈ F then
40: Sx ← S′x, Sy ← S′y
41: if Sy = ∅ then S′ ← S′\{Sy}
42: changed ← true
43: go to Line 44
44: until not changed or S′ = ∅
45: if S′ 6= ∅ then
46: S′′ ← MFFD+(S′)
47: if |S′′| ≤ |S′| then
48: S ← S ∪ S′′
49: else S ← S ∪ S′
50: return S

During Stages (i)–(iii), the total width of the item(s) selected from S ′ must exceed

the total width of the item(s) selected from S. AHC is then used to determine

whether the new bins are members of F . If AHC returns a feasible configuration for

both of the modified bins then the swap or move is performed; else the next set of

72

5.3. LOCAL SEARCH

items are assessed. As shown, once an exchange occurs the procedure immediately

proceeds to the next stage. This process is repeated until all four stages have been

executed in succession with no changes to S or S ′, or until no items remain in S ′

(Line 44). At this point, any items that remain in S ′ are copied and MFFD+ is

executed to generate a new feasible partial solution S ′′ (Line 46). Then, S ′ and S ′′

are compared and the partial solution comprising the fewest bins is copied into S to

form a full, feasible solution (Lines 47–49). Therefore, this procedure cannot increase

the number of bins in a solution as no new bins are opened; however it does have

the potential to decrease the number of bins.

Figure 5.6 shows an example of Stage (i) of our local search procedure as part of

the repair operator on the GGA output from Figure 5.3. Here, MFFD+ has beeen

applied to the unpacked items to produce the partial solution S ′, and the bins of S
have been permuted. Local search has then found a pair of items in S, K and I, and

a pair of items in S ′, F and E, where the total width of the items in S ′ exceeds the
total width of the items in S. Since AHC is able to find a feasible configuration for

305 211 321
J K I

12 51 23 33 47 13

525 327
D H

3 42 44 17

200 615
M B

14 18 54 4

328 561
G C

16 31 48 63

150 631 207
O A L

8 22 68 48 48 69

S

192 336 359
N F E

22 68 43 47 37 26

S ′
(a) Partial solutions S and S ′ produced using GGA and MFFD+, where the pairs of items to be
exchanged are highlighted.

305 336 359
J F E

12 51 43 47 37 26

525 327
D H

3 42 44 17

200 615
M B

14 18 54 4

328 561
G C

16 31 48 63

150 631 207
O A L

8 22 68 48 48 69

S

321 211 192
I K N

13 47 33 23 68 22

S ′
(b) Partial solutions S and S ′ after the pairs of items have been exchanged.

Figure 5.6: Stage (i) of the local search procedure applied to partial solutions from the GGA output
in Figure 5.3, where MFFD+ has been used on the missing items to produce S ′. It can be seen
that after the exchange the bin in S is fuller.

73

5. EVOLUTIONARY METHODS FOR THE SCPP

the new subsets of items in each bin, the items can be exchanged successfully. As a

result the bin in S is now fuller, using the entire capacity of the bin, whilst S ′ now
contains smaller items which the local search procedure will attempt to move into S
in subsequent iterations.

The total running time of our local search procesure is O(n6), including instances

of AHC. However, this is a very conservative bound, as in many cases AHC will not

need to be executed. Furthermore, the value of n here in fact refers to the number

of items in a single bin, as opposed to the total number of items in I, which is of

course significantly higher.

Variations of this method for the BPP can be seen in Lewis (2009), Lewis and

Holborn (2017), Falkenauer (1996), and Levine and Ducatelle (2004); however the

addition of the vicinal sum constraint results in fewer changes than seen in these pre-

vious implementations. By iterating through the different stages, numerous distinct

subsets of items in the bins are produced, generating more possibilities for feasible

orderings of items.

5.4 Mutation

The purpose of mutation is to allow the introduction of new bin packings to the

population, maintaining genetic diversity and assuring that the entire search space

is connected, thus preventing the premature convergence of the population (Buckles

and Petry, 1992). The mutation of a solution S in our EA consists of permuting the

bins and inserting 1 < r < |S| bins selected randomly from S into a set S ′. Local

search is then executed using these two partial solutions to produce a full feasible

solution S. In our case, this mutation operator also has the ability to improve

the fitness value of a solution and even potentially reduce the number of bins in a

solution.

Similar mutation operators proposed for the BPP make use of values of r between

three and five (Falkenauer, 1998; Levine and Ducatelle, 2004; Singh and Gupta,

2007) and it has also been suggested that r should be a random variable calculated

relative to the number of bins |S| and the number of bins that are not completely full

(Quiroz-Castellanos et al., 2015). These authors also favour selecting emptier bins,

however it may be beneficial to separate items within fuller bins, and there is also

the potential for an emptier bin to obtain a high quality packing with the addition

of other items. Lewis and Holborn (2017) therefore opted for a value for r according

to the distribution R ∼ 1 + B(|S|, 3/|S|). Due to the novelty of the SCPP, for our

mutation operator we decided on simply selecting r uniform randomly to prevent

bias whilst also ensuring that each partial solution comprises at least one bin, which

74

5.5. SOLUTION FITNESS

we have found generated high quality solutions.

5.5 Solution Fitness

In EAs, fitness functions are used to measure the quality of each individual candidate

solution. For the classical one-dimensional BPP, a tailored function can be used to

determine the fitness of a solution as opposed to simply relying on the number of

bins within a solution. The reason for this is two-fold: firstly, given two solutions

with an equal number of bins, it is impossible to determine the fitter solution based

on the number of bins alone. Secondly, we note that the fitness of a solution not

only depends on the number of bins used, but also how the items are packed into

the bins. It is clear that if the bins’ capacities are utilised more fully, fewer bins will

be needed to pack all items. A solution comprising fuller bins may also contain bins

that are nearly empty, which is beneficial as it allows further items to be packed, or

for the residual material to be used for other means.

Falkenauer and Delchambre (1992) make use of the following function to calculate

the fitness of a solution S of the BPP:

f(S) =
∑

Sj∈S(A(Sj)/W)2

|S|
, (5.1)

which assigns higher values to fitter solutions. Note also that under certain circum-

stances, it can be guaranteed with the BPP that if |S1| < |S2| then f(S1) > f(S2).
Hence, a global optimum for this fitness function is associated with the optimal so-

lution containing the fewest number of bins. Specifically, this condition holds when

it can be guaranteed that the solution has at most one bin that is less than half-full.

This is easy to ensure in the BPP, for example, by using the FF heuristic or a similar

variant, as the contents of two less than half-full bins can be combined into a single

bin. This is not the case for the SCPP, however, as the items of two half-full bins

may not be able to form a single feasible packing due to the vicinal sum constraint.

Hence, solutions for the SCPP may well contain multiple bins that are less than half-

full. As a result, we have observed a number of cases of the SCPP where although

|S1| < |S2|, the corresponding fitness values do not conform to f(S1) > f(S2). Con-
sequently, we cannot rely on the fitness function alone to guide us towards an optimal

solution, as this may lead to a final solution comprising more bins than necessary.

We therefore use the number of bins to indicate the quality of a solution, and only

use the fitness function (5.1) when comparing solutions containing an equal number

of bins. For example, the parent solutions S1 and S2 in Figure 5.1 comprise the same

number of bins; however f(S1) = 0.777 whilst f(S2) = 0.774, and so S1 is considered
the fitter solution. Although there exist a variety of fitness functions in literature,

75

5. EVOLUTIONARY METHODS FOR THE SCPP

we opted for this particular function due to its simplicity and its consideration into

the quality of packings in individual bins.

5.6 The Evolutionary Algorithm Framework

We now present our evolutionary algorithm framework for the SCPP, shown in Algo-

rithm 11. The process begins by generating a population P comprising |P| candidate
solutions for the given instance I of the SCPP, where one solution is created using

MFFD+ and the remaining |P| − 1 solutions are created using MFFR+ (where the

items are packed in a random order). Each solution is mutated before being added

to the population. The best-so-far solution, Sbsf, is initially set to the best solution

in P (Line 2).

Each iteration of our EA involves selecting two parent solutions S1 and S2 from

the population at random and applying one of our three recombination operators

to build an offspring solution S (Lines 5–6). If S does not contain all items in I,
MFFD+ is applied to the unpacked items to create a second partial solution S ′,
and our local search procedure is executed on the partial solutions S and S ′ to
produce a full offspring solution S (Lines 7–9). The full feasible offspring solution

S is then mutated and inserted into the population P, replacing the least fit of its

parents (Lines 10–12). Finally, if the offspring S is fitter than the current best-so-far

solution Sbsf, S is taken as the new best-so-far solution (Lines 13–14). The process

is repeated until a specified time limit is reached (Line 3).

Algorithm 11 EA(I)
1: create initial population P of candidate solutions
2: Sbsf ← best solution in P
3: while time limit not reached do
4: S ← ∅
5: randomly select two parent solutions S1 and S2 from P
6: S ← Recombination(S1,S2) . Using either GGA, AGX, or AGX′

7: if
⋃
S∈S 6= I then

8: S ′ ← MFFD+(I\S)
9: S ← LocalSearch(S,S ′)
10: S ← Mutate(S)
11: P ← P\{least fit parent solution}
12: P ← P ∪ {S}
13: if S is better than Sbsf then
14: Sbsf ← S
15: return Sbsf

Although there is the option of using the Pair-Smallest (PS) heuristic for the SCPP

presented in the previous chapter, the design of PS means that only one solution

76

5.7. COMPUTATIONAL RESULTS

can be produced for a given instance I of the SCPP. In contrast, by altering the

order of the items we can apply the MFFD+ heuristic (i.e. MFFR+ as the items

are in random order) to obtain numerous distinct solutions for the same instance I,
allowing us to produce a diverse population P of solutions.

5.7 Computational Results

To ensure a fair comparison with the heuristics in Chapter 4, the same set of problem

instances generated for the previous experiments were used to test our EA. After

preliminary experiments, we settled on an initial population containing |P| = 25

candidate solutions, which provides a suitable balance between population diversity

and convergence. Across all instances, the EA was given a fixed time limit of 600

seconds, which was deemed to be sufficient for these trials. Tables 5.1 to 5.3 display

the results obtained from the EA experiments using the different recombination

operators and bin sizes. A full breakdown of these results can be found online along

with all of our source code (Hawa, 2020e).2

For all values of δ, as |I| andW increase the local search procedure and mutation

operator take longer as the rise in the number of bins in solutions and/or the number

of items per bin results in an increase in the number of applications of AHC; thus

fewer iterations of the EA are performed. For example, the average number of

iterations range from 85,107 to 3,171,066 when W = 1250 for artificial instance

using 1000 and 100 items respectively when δ = 0.5, whilst the corresponding figures

for real instances using W = 5000 are 105 and 97,528 iterations. Consequently, we

see that the difference between |S| and the theoretical minimum t also increases as

the number of items increases, more so for the larger bin sizes. The reduction in the

number of EA iterations means that the evolution of the population is restricted by

the running time, which prevents better solutions from being achieved. This suggests

that the algorithm is less accurate.

The same trend seen in the previous experiments in Chapter 4 is evident through-

out the results where the average number of bins |S| and the difference between |S|
and t decreases as δ increases due to higher proportions of score widths fulfilling the

vicinal sum constraint. Furthermore, the coefficient of variation is also higher for

real instances as with the previous results because of the weakly heterogeneous item

sets.

Recall that the theoretical minimum t (2.2) for the BPP used to compare the

results is often not accurate for the SCPP, as explained in Chapter 2 (see Section 2.8).

Therefore, when δ = 0.25, of the 18 instance classes we see that only one class has
2As with the experiments conducted in Chapter 4, all experiments were implemented in C++

and executed on Windows machines with Intel Core i5-6500 3.20GHz processors and 8GB of RAM.

77

5. EVOLUTIONARY METHODS FOR THE SCPP

Table 5.1: Best solutions obtained from the EA using the GGA, AGX, and AGX′ recombination
operators for δ = 0.25. Figures in bold indicate the best results for each instance class. Asterisks
indicate statistical significance at ≤ 0.05(∗) and ≤ 0.01(∗∗) according to a two-tailed paired t-test
and two-tailed McNemar’s test for the |S| and %t columns respectively.

δ = 0.25 GGA AGX AGX′

Type, W |I| ta |S|b %tc |S| %t |S| %t

a, 1250 100 46.13 ∗∗53.34± 6.7 0.0 53.50± 6.6 0.0 53.38± 6.6 0.0
500 229.37 ∗∗256.78± 2.4 0.0 260.85± 2.6 0.0 257.92± 2.5 0.0
1000 458.37 ∗∗515.24± 1.5 0.0 520.96± 1.7 0.0 515.46± 1.7 0.0

a, 2500 100 23.32 36.21± 11.1 0.0 35.57± 11.7 0.0 ∗∗35.23± 12.0 0.0
500 114.94 183.83± 4.7 0.0 183.53± 4.7 0.0 ∗∗181.68± 4.9 0.0
1000 229.44 372.44± 3.5 0.0 375.22± 3.5 0.0 ∗∗369.52± 3.5 0.0

a, 5000 100 11.92 35.20± 12.7 0.0 35.14± 12.7 0.0 ∗∗35.09± 12.7 0.0
500 57.72 ∗∗173.42± 5.7 0.0 174.31± 5.6 0.0 173.67± 5.6 0.0
1000 114.97 349.45± 4.3 0.0 350.91± 4.3 0.0 349.41± 4.3 0.0

r, 1250 100 46.44 61.72± 16.7 0.0 61.79± 16.6 0.0 ∗∗61.70± 16.7 0.0
500 229.97 304.18± 15.9 0.0 305.04± 15.7 0.0 ∗∗303.65± 15.9 0.0
1000 459.38 609.12± 15.8 0.0 609.97± 15.7 0.0 ∗∗608.20± 15.8 0.0

r, 2500 100 23.47 42.71± 26.1 1.1 42.82± 25.9 1.0 ∗∗42.64± 26.2 1.1
500 115.24 ∗214.88± 23.6 0.0 217.01± 23.2 0.0 215.09± 23.5 0.0
1000 229.95 435.13± 23.3 0.0 437.82± 23.0 0.0 435.33± 23.1 0.0

r, 5000 100 11.98 42.41± 29.5 0.0 41.40± 29.5 0.0 41.39± 29.5 0.0
500 57.87 ∗∗207.38± 27.0 0.0 208.13± 26.7 0.0 207.69± 26.8 0.0
1000 115.23 420.36± 26.3 0.0 421.26± 26.1 0.0 420.41± 26.2 0.0

a t = d
∑n

i=1 wi/W e (mean from 1000 instances).
b Number of bins per solution (mean from 1000 instances plus or minus the coefficient of variation (%)).
c Percentage of instances in which the solution comprises t bins.

instances for which our EA is able to find solutions comprising t bins, whilst when

δ = 0.75 our EA is able to find solutions with t bins for instances in 16 classes.

For two instance classes, solutions comprising t bins have been found for all 1000

problem instances. However, as we are not able to determine the lower bounds for

the fewest number of bins for these instances, it is possible that in many of these

cases our EA has in fact been able to find optimal solutions.

Focusing on Table 5.1, we see that the GGA and AGX′ recombination operators

perform well, with GGA producing solutions with the fewest number of bins on

average for eight instance classes, and AGX′ for 10 instance classes. The design

of AGX′ prioritising bins containing the most items seems to be beneficial for the

smallest value of δ as the vicinal sum constraint is harder to fulfil; thus finding

collections of individual bins containing many items will clearly be advantageous. In

five of the instance classes where AGX′ outperforms GGA, the average number of

bins produced by AGX′ ranges from 0.92 to 2.92 fewer bins than the corresponding

GGA solutions, whilst there is only one instance in which GGA produces solutions

on average using over 0.31 fewer bins than AGX′. The AGX recombination operator

is not favourable in this scenario, as it operates based on bin fullness. This could be

rectified by choosing bins that contain a small number of large items, which would

78

5.7. COMPUTATIONAL RESULTS

Table 5.2: Best solutions obtained from the EA using the GGA, AGX, and AGX′ recombination
operators for δ = 0.5. Figures in bold and asterisks should be interpreted as in Table 5.1.

δ = 0.5 GGA AGX AGX′

Type, W |I| t |S| %t |S| %t |S| %t

a, 1250 100 46.13 47.51± 6.6 27.4 47.53± 6.6 25.3 47.51± 6.6 26.8
500 229.37 ∗∗230.63± 2.3 ∗∗19.6 230.89± 2.3 7.7 231.36± 2.2 0.2
1000 458.37 ∗∗459.80± 1.5 3.3 459.93± 1.5 3.0 461.84± 1.4 0.0

a, 2500 100 23.32 23.33± 4.5 99.4 23.33± 4.5 99.9 23.33± 4.5 99.4
500 114.94 ∗∗115.13± 1.9 ∗∗80.9 115.43± 1.9 59.7 115.31± 1.9 63.6
1000 229.44 ∗∗230.18± 1.4 ∗∗34.0 231.36± 1.4 9.8 230.66± 1.4 11.4

a, 5000 100 11.92 ∗∗12.16± 9.2 ∗∗90.5 12.20± 9.4 88.4 12.19± 9.1 82.0
500 57.72 ∗∗58.87± 3.0 ∗∗38.8 59.92± 3.7 16.8 59.69± 3.6 21.2
1000 114.97 ∗∗119.02± 2.7 ∗∗3.7 121.37± 3.2 0.2 120.78± 3.0 0.5

r, 1250 100 46.44 53.47± 18.4 1.7 53.52± 18.3 1.6 53.48± 18.3 1.4
500 229.97 262.96± 17.5 0.0 263.81± 17.2 0.0 262.97± 17.4 0.0
1000 459.38 526.00± 17.4 0.0 527.44± 17.1 0.0 526.21± 17.2 0.0

r, 2500 100 23.47 25.51± 20.9 66.9 25.57± 21.1 65.2 ∗∗25.45± 20.9 66.5
500 115.24 ∗∗127.92± 20.5 18.2 129.85± 20.9 18.5 128.78± 20.3 7.4
1000 229.95 ∗∗259.62± 21.0 1.6 262.54± 21.2 ∗∗3.0 261.36± 20.8 0.0

r, 5000 100 11.98 ∗∗17.21± 48.2 ∗∗53.4 17.25± 48.0 52.0 17.26± 48.0 50.6
500 57.87 ∗∗86.91± 44.6 ∗∗15.1 88.73± 43.9 11.5 88.25± 43.9 11.6
1000 115.23 ∗∗180.08± 44.1 ∗∗5.9 182.57± 43.7 4.3 181.72± 43.6 3.5

Table 5.3: Best solutions obtained from the EA using the GGA, AGX, and AGX′ recombination
operators for δ = 0.75. Figures in bold and asterisks should be interpreted as in Table 5.1.

δ = 0.75 GGA AGX AGX′

Type, W |I| t |S| %t |S| %t |S| %t

a, 1250 100 46.13 47.39± 6.6 31.8 47.40± 6.6 31.2 47.40± 6.6 31.4
500 229.37 ∗∗230.52± 2.3 ∗∗25.3 230.62± 2.3 18.6 230.83± 2.2 4.6
1000 458.37 ∗∗459.45± 1.5 ∗∗18.5 459.53± 1.5 14.4 460.64± 1.4 0.0

a, 2500 100 23.32 23.33± 4.5 99.9 23.32± 4.5 100.0 23.33± 4.5 99.6
500 114.94 ∗∗114.96± 1.9 ∗∗98.5 114.97± 1.9 96.9 115.21± 1.9 73.0
1000 229.44 229.54± 1.4 89.7 ∗∗229.51± 1.4 ∗∗93.0 230.21± 1.4 22.5

a, 5000 100 11.92 11.92± 4.8 100.0 11.92± 4.8 100.0 11.92± 4.4 100.0
500 57.72 ∗∗57.72± 2.0 ∗∗99.8 57.73± 2.0 98.9 57.75± 1.9 96.9
1000 114.97 ∗∗115.02± 1.4 ∗∗94.7 115.05± 1.4 91.9 115.14± 1.4 82.7

r, 1250 100 46.44 52.23± 18.5 3.2 52.24± 18.5 3.1 52.23± 18.5 3.1
500 229.97 ∗∗256.91± 17.5 0.0 257.21± 17.4 0.0 257.06± 17.5 0.0
1000 459.38 ∗∗513.24± 17.5 0.0 513.95± 17.4 0.0 513.80± 17.3 0.0

r, 2500 100 23.47 23.56± 11.7 93.9 23.56± 11.7 93.7 23.58± 11.7 92.1
500 115.24 ∗∗116.07± 11.1 58.5 116.22± 11.3 60.3 116.55± 11.2 24.9
1000 229.95 ∗∗232.37± 11.2 19.3 232.83± 11.3 ∗∗29.0 233.60± 11.3 0.8

r, 5000 100 11.98 12.11± 14.4 97.5 12.12± 14.4 97.1 12.11± 14.4 97.1
500 57.87 ∗∗59.10± 15.5 ∗∗80.5 59.39± 16.2 74.7 59.35± 16.0 71.7
1000 115.23 ∗∗118.71± 16.9 ∗∗49.7 119.11± 17.4 42.5 119.17± 17.3 36.3

then mean that many more bins overall will be needed to pack the remaining items.

Moving on to the higher values of δ in Tables 5.2 and 5.3, we see that the GGA

recombination operator dominates the results, outperforming the AGX and AGX′

recombination operators in the majority of instance classes. For GGA, the offspring S
will always contain a group of bins from parent solution S2, and potentially additional

bins from parent solution S1. In contrast, AGX and AGX′ select individual bins

79

5. EVOLUTIONARY METHODS FOR THE SCPP

from each parent solution in turn, prioritising what are perceived to be high quality

bins. The items contained in a single bin selected from one parent solution may

be dispersed amongst numerous bins in the other parent solution; thus all offending

bins will need to be removed. Some of these eliminated bins may be well-packed

bins, resulting in lower quality or less desirable bins remaining in the other parent

solution. Although this is also possible with GGA, it appears that the lack of bias

when selecting groups of bins makes the operator more suitable, particularly for these

higher values of δ.

Furthermore, recall that the offspring S produced by the AGX and AGX′ recom-

bination operators will comprise at most min(|S1|, |S2|) − 1 bins; if a large number

of bins are removed from the parent solutions the offspring may potentially contain

very few bins on completion of the recombination. Consequently, many items in I
will not be present in the offspring and the repair operator will need to be executed.

Thus, in this case, AGX and AGX′ may resemble large mutation operators as op-

posed to recombination operators. In addition, for these higher values of δ where a

higher proportion of score widths meet the vicinal sum constraint, selecting groups of

bins at random as with GGA rather than choosing individual bins further promotes

diversity, encouraging wider areas of the solution space to be explored.

5.8 Summary

In this chapter we presented a novel evolutionary algorithm (EA) tailored for the

SCPP. Firstly, we introduced three distinct recombination operators: GGA, an adap-

tation of a method proposed by Falkenauer and Delchambre (1992); AGX, which

focuses on selecting fuller bins; and AGX′, which prioritises bins containing a large

number of items. We then went on to describe our local search procedure, mutation

operator, and fitness function, before outlining how these stages are utilised within

our EA framework as a whole.

As previously discussed, a prominent reason for designing an evolutionary algo-

rithm for the SCPP is due to the often inordinately large number of feasible packings,

which can become too large to enumerate. In preliminary tests we also attempted

to maintain two sets, X and Y, throughout our EA program where X contained

subsets of items that our AHC algorithm determined could be feasibly packed into a

single bin, and Y contained subsets of items for which AHC could not find a feasible

arrangement. These sets were implemented as binary trees, and so packings could

be searched for and added to the sets in logarithmic time. Thus, for any subset of

items AHC would only have to be executed at most once. This would have been par-

ticularly useful for real instances where many items have the same dimensions and

80

5.8. SUMMARY

identical packings arise more frequently. However, during these preliminary tests we

saw that the sizes of X and Y often grew unmanageably large such that our machines

were unable to maintain and store the sets.

Nevertheless, we saw that using an EA produced superior solutions on average in

the majority of instances classes in comparison to the previous heuristics. Utilising

an EA allows us to incorporate a variety of operators specifically designed for the

SCPP, including the AHC algorithm for instances of the sub-SCPP. Furthermore,

the local search procedure introduces the ability to move items between bins, a useful

property which our heuristics do not possess.

In our EA, the only exact method used is the AHC algorithm for instances of

the sub-SCPP. Therefore, in the next chapter, we explore how an exact solver can

be used for the SCPP along with operators from our EA.

81

Chapter 6

Combining Metaheuristics and

Exact Methods for the

Score-Constrained Packing

Problem

In this chapter, we investigate the effects of combining elements of our evolutionary

algorithm (EA) from the previous chapter with an exact method for the SCPP in

various formats. To begin, we present an integer linear programming (ILP) formu-

lation for the SCPP and provide a brief literature review on the topic of combining

different optimisation techniques. We then define and formulate the Minimum Car-

dinality Exact Cover Problem (MXCP) and discuss its relation to the SCPP. Next,

the Generate and Solve (GS) framework is introduced, along with a specific instan-

tiation of GS known as the Construct, Merge, Solve & Adapt (CMSA) algorithm.

Then, we present and explain two bespoke CMSA-based algorithms adapted for the

SCPP, which combine our exact cover formulation with features from our EA. To

finish, the results from extensive experiments conducted on our CMSA algorithms

are analysed and compared.

6.1 Introduction

Let us begin by expressing the SCPP as an ILP from the perspective of a generalised

vehicle routing problem (VRP). The problem is as follows: a fleet of vehicles are

to leave from a depot, indexed by 0, to deliver to set of n customers and return

to the depot. The distance between two customers i and j is denoted wij for all

i, j = 1, . . . , n, i 6= j, whilst the distance between the depot and all customers is 0.

83

6. COMBINING METAHEURISTICS AND EXACT METHODS

The total distance of the route travelled by each vehicle is limited to a fixed distance

W . Furthermore, the n customers are presented in pairs – that is, each customer i

is paired with another customer, p(i), for i = 1, . . . , n. The vehicles must deliver to

these paired customers in succession. The task is to determine the fewest number of

routes, and therefore vehicles, required to deliver to all n customers exactly once.

minimise
n∑
i=1

xi0 (6.1a)

subject to
n∑
i=0

xij = 1 j = 1, . . . , n (6.1b)

n∑
j=0

xij = 1 i = 1, . . . , n (6.1c)

xi,p(i) + xp(i),i = 1 i = 1, . . . , n (6.1d)

0 ≤ qi ≤W + (wij −W)x0i i, j = 1, . . . , n (6.1e)

qj ≥ qj + wij −W (1− xij)

+ (W − 2wij)xji i, j = 1, . . . , n (6.1f)

xij ≤ αij i, j = 0, 1, . . . , n (6.1g)

xij ∈ {0, 1} i, j = 0, 1, . . . , n (6.1h)

xij =

1 if route goes from customer i to customer j

0 otherwise.

Here, the variable qi is the total distance of a route up to customer i. The objective

function (6.1a) is to minimise the number of routes by calculating the number of

times a vehicle returns to the depot. Constraints (6.1b) and (6.1c) ensure that each

customer is visited exactly once. Then, Constraint (6.1d) enforces the rule that each

customer must be preceeded or succeeded by its paired customer in any given route.

Constraints (6.1e) and (6.1f) impose the distance limit of the routes, whilst also

preventing subroutes, i.e. routes that do not begin and end at the depot. Finally,

Constraint (6.1g) states that all routes between customers must be valid routes, and

Constraint (6.1h) restricts the variable xij to integers 0 or 1.

It is apparent that this problem is equivalent to the SCPP, where each pair

of customers represents score widths from the same item and the maximum route

distance is the bin capacityW . Then, αij = 1 between customers i and j if the score

widths are partners (i.e. on the same item) or are on different items and fulfil the

84

6.1. INTRODUCTION

vicinal sum constraint. Thus, this generalised version of the vehicle routing problem

is equivalent to the task of minimising the number of bins in a solution for a given

instance of the SCPP such that the vicinal sum constraint is satisfied in each bin and

no bin is overfilled. Figure 6.1 illustrates a solution to an example instance of this

generalised VRP which translates to a solution for the corresponding SCPP, where

the central vertex represents the depot whilst all other vertices represent customers.

Here, the maximum route distance (and thus bin capacity) W = 1000, and the

distances on the thicker lines of each route denote the items’ widths. The distance

between customers that are not paired, as well as distances between the depot and

all other customers, are set to zero. Therefore, it can be seen that for the equivalent

instance I of the SCPP a minimum of four bins are required to pack the items

feasibly.

A
532

B
449

C
393

E
278

I
163

D
363

G
209

H
171

F
215

J
154

(a) A solution for an example instance of our generalised VRP consisting of four routes.

215
F

19 37

154
J

34 5

346
D

11 28

209
G

42 50

171
H

32 21

393
C

4 31

278
E

39 16

163
I

55 20

532
A

2 27

449
B

43 9

(b) A solution for an example instance of the SCPP comprising four bins.

Figure 6.1: An example showing a solution for an instance of our generalised VRP that translates
to a solution for the corresponding SCPP instance. Here, the number of customers n = 20 and
therefore |I| = 10, the maximum route distance/bin capacity W = 1000, and τ = 70.

85

6. COMBINING METAHEURISTICS AND EXACT METHODS

Recall that the SCPP is NP-hard; finding optimal solutions will often take an unrea-

sonable amount of time, especially for larger problem instances. In some preliminary

experiments, we attempted to use the above ILP model to acquire optimal solu-

tions for smaller SCPP instances.1 Although solutions to problem instances of size

|I| = 10 were obtained in under a second, increasing |I| to just 15 resulted in run-

ning times of over four days. As noted, the problem instances used in this thesis for

our experiments have a minimum size of 100 items; consequently, implementing an

exact solver in this form for the SCPP is not a viable option. However, it may be

useful to integrate exact methods into wider optimisation frameworks.

In Chapter 2 we provided an overview of metaheuristics and their applications

to optimisation problems. The success of metaheuristics gave rise to the idea of

combining metaheuristics with other optimisation techniques, often referred to as

“hybrid metaheuristics”, in the early 2000s with the first book dedicated to such

methods published in 2008 (Blum et al.). The aim of merging various optimisation

approaches into a single algorithm is to exploit the superior features of each method.

Common implementations include integrating metaheuristics with constraint pro-

gramming, dynamic programming, and branch and bound (Blum et al., 2011). Some

combinations in particular have earned individual recognition such as memetic algo-

rithms, which incorporate EAs and local search methods (Moscato et al., 1989) and

matheuristics, which involve merging metaheuristics with mathematical program-

ming techniques (Maniezzo et al., 2010).

The idea of consolidating multiple techniques has been widely studied for a

range of grouping problems. For example, tabu search has been used with both

a neighbourhood-based genetic algorithm (Nouri et al., 2016) and a variable neigh-

bourhood descent approach (Chen and Chen, 2009) for machine scheduling problems.

Many combinations of algorithms have also been proposed for variations of the VRP,

including EAs and iterated local search (Bianchi et al., 2006), guided local search

and tabu search (Tarantilis et al., 2009), simulated annealing and tabu search (Lin

et al., 2009), and ant colony optimisation (ACO) and neighbourhood search proce-

dures (Yu et al., 2011). For the graph colouring problem (GCP), Fidanova and Pop

(2016) developed an ACO and local search based algorithm, whilst Qin et al. (2011)

opted for a combination of local search with a particle swarm optimisation proce-

dure. Moalic and Gondran (2018) and Lü and Hao (2010) both presented memetic

algorithms incorporating tabu search for the GCP, with the former using an EA

comprising a population of just two solutions, and the latter implementing a novel

multi-parent recombination operator.

1Our model, which is implemented in Xpress Mosel and uses FICO Xpress Optimizer, is available
online (Hawa, 2020c).

86

6.2. AN EXACT COVER FORMULATION FOR THE SCPP

An abundance of literature also exists on the topic of combined algorithms for

packing problems. In 2010, Delorme et al. produced an algorithm using EA and

GRASP characteristics for a generalisation of the set packing problem and, for the

knapsack problem, Leung et al. (2012) developed a greedy algorithm which was

then improved using simulated annealing. For the strip packing problem, proposed

algorithms include a GRASP and variable neighbourhood search (VNS) approach

(Beltrán et al., 2004), an ACO and basic placement heuristic with learning capa-

bilities (Thiruvady et al., 2008), and a VNS procedure with improved constructive

heuristics (Zhang et al., 2016). In addition, other unique combinations have been

researched for the BPP. Hemmelmayr et al. (2012) decided on a VNS method which

makes use of lower-bounding techniques and dynamic programming for the variable-

sized BPP, whereas Kierkosz and Luczak (2014) opted for an EA which generates

solutions to be used in a tree search improvement procedure for a generalised pack-

ing problem where the total area of the packing is to be maximised. Most notably,

for the oriented two-dimensional BPP, Blum and Schmid (2013) proposed an EA

featuring a randomised one-pass heuristic for constructing solutions which was able

to find optimal solutions for four previously unsolved problem instances.

Due to the vast range of combined algorithmic approaches to combinatorial op-

timisation problems in literature, Talbi (2002) has published a taxonomy classifying

such “hybrid” methods and provides a common terminology. For further information,

the reader is directed to the work of Talbi (2013) which provides a complete back-

ground on the topic of combined metaheuristics as well as an abundance of examples

and real-world applications.

6.2 An Exact Cover Formulation for the SCPP

Firstly, let us consider the following definition:

Definition 6.1 Let B be a collection of subsets of a set I. Then, a subcollection S∗

of B is an exact cover if and only if each element in I is contained in exactly one

subset in S∗.

For example, given a collection of subsets B = {{1, 2, 3}, {3, 4, 5}, {4}, {5}} of a

set I = {1, 2, 3, 4, 5}, the subcollection S∗1 = {{1, 2, 3}, {3, 4, 5}} is a set cover

as it contains every element of I at least once, whereas the subcollection S∗2 =

{{1, 2, 3}, {4}, {5}} is an exact cover as it contains every element of I exactly once.

In this case, we say that each element in I is covered by exactly one subset in S∗2 .
The exact cover problem, which seeks to determine whether an exact cover S∗ of

B exists, is a decision problem and one of Karp’s 21 NP-complete problems (1972).

Examples of exact cover problems include the popular puzzles Sudoku (Delahaye,

87

6. COMBINING METAHEURISTICS AND EXACT METHODS

2006) and Pentomino tilings (Scott, 1958), whilst the n-queens problem can be seen

as a generalised exact cover problem (Rivin et al., 1994).

If it is known that at least one exact cover exists for a given collection B, then
the exact cover problem can be transformed into an optimisation problem with the

aim of finding the smallest exact cover in B. Consider the following adaptation of

the exact cover problem:

Definition 6.2 Let B be a collection of subsets of a set I. Then, the Minimum

Cardinality Exact Cover Problem (MXCP) involves finding an exact cover S∗ ⊆ B
such that |S∗| is minimised.

Given a collection of subsets B of a set I, let bij = 1 if element i ∈ I is in subset

j ∈ B. Then, the MXCP can be formulated as the following integer linear program:

minimise
∑
j∈B

xj (6.2a)

subject to
∑
j∈B

bijxj = 1 ∀ i ∈ I (6.2b)

xj ∈ {0, 1} ∀ j ∈ B (6.2c)

xj =

1 if j ∈ S∗

0 otherwise

The MXCP can be directly linked to the SCPP where, given a collection B of feasible

bins for an instance of the SCPP, the task is to determine the smallest subcollection

of bins S∗ that forms a feasible solution. Finding such an exact cover implies that

each item in I is in exactly one bin in S∗, fulfilling Conditions 2.7a and 2.7b of the

SCPP. Indeed, since the bins are already feasible and meet Conditions 2.7c and 2.7d,

the complications associated with the vicinal sum constraint are eliminated. A simple

example is provided in Figure 6.2, where the collection B contains seven feasible bins

for an instance of the SCPP. Although there exists an exact cover in B made up of

five bins, the minimum cardinality exact cover S∗ in B comprises four bins.

Recall that for the SCPP, F is the set of all possible feasible bins. Ideally,

each element in the set F would correspond to a member of B, however since the

cardinality of F has the potential to grow at an exponential rate in relation to the

problem size it may not be possible to produce B in this manner, let alone find an

exact cover in a feasible amount of time. Nevertheless, it may be possible to identify

methods that can produce a smaller, more manageable subset B ⊂ F containing

suitable bins. One option is to utilise a framework combining optimisation techniques

called Generate and Solve, which we now consider.

88

6.3. THE GENERATE AND SOLVE FRAMEWORK

B

171
H

21 32

278
E

39 16

346
D

11 28

209
G

42 50

171
H

32 21

215
F

19 37

154
J

34 5

532
A

2 27

449
B

43 9

209
G

42 50

393
C

31 4

163
I

20 55

346
D

28 11

393
C

4 31

278
E

39 16

163
I

55 20

S∗
215
F

19 37

154
J

34 5

346
D

11 28

209
G

42 50

171
H

32 21

393
C

4 31

278
E

39 16

163
I

55 20

532
A

2 27

449
B

43 9

Figure 6.2: A collection B of feasible bins for an instance I of the SCPP, and a minimum cardinality
exact cover S∗ ⊂ B comprising four bins. Here, |I| = 10, W = 1000, and τ = 70.

6.3 The Generate and Solve Framework

In the case of the SCPP, F comprises all feasible bins for the given instance I
where each individual bin fulfils both the vicinal sum constraint and the bin capacity

constraint. It then follows that all feasible solutions to the problem instance are

in fact subsets of F that correspond to exact covers. As previously mentioned,

F can become too large to completely enumerate in all but the most trivial of

instances. Therefore, we can consider a subset B ⊂ F containing a reduced collection

of solution components from F for the problem instance that make up high quality

solutions – a so-called “sub-instance”. Then, an exact method could be applied to

the more manageable sub-instance B to obtain high quality solutions to the original

problem instance I with less computational effort and time in comparison to finding

an optimal solution within the entire set F of feasible components.

This is the fundamental basis of a framework known as Generate and Solve

(GS) (Nepomuceno et al., 2007a,b, 2008). The GS framework comprises two distinct

modules. The first, called Generator of Reduced Instances (GRI), is responsible

for producing components for the original problem instance that form a restricted

problem instance B. Any metaheuristic method can be implemented in the GRI

provided the method creates components that satisfy the constraints of the original

problem. For example, for the SCPP the GRI module would generate a number of

feasible bins for the given problem instance. The second module is the Solver of

Reduced Instances (SRI), which applies an exact method to find an optimal solution

within the sub-instance B created by the GRI. An optimal solution to B will evidently

also be a feasible solution to the original problem. In the case of the SCPP, this would

89

6. COMBINING METAHEURISTICS AND EXACT METHODS

involve finding a minimum cardinality exact cover within the set of bins B created

by the GRI. The objective function value of the optimal solution with respect to B is

then used as feedback from the SRI module to the GRI module to guide the search

process. This procedure is repeated until some stopping criteria is met, and the best

solution obtained throughout the whole process is deemed to be the final solution to

the original problem. Figure 6.3 illustrates the GS framework and process.

Generator of
Reduced Instances

(GRI)

Metaheuristic

Solver of
Reduced Instances

(SRI)

Exact Method

Sub-instance
B

Feedback

Original
ProblemGeneral Data General Solution

Figure 6.3: A diagram depicting the Generate and Solve framework, showing the relationship
between the GRI and SRI modules.

This concept of reducing problem instances to solve to optimality has been exploited

outside of the GS framework. One such example is that of Applegate et al. (1999)

and Cook and Seymour (2003) for the TSP, where a metaheuristic is used to create

high quality solutions that are then merged to produce a reduced problem instance.

An exact solver is then used on the reduced instance to find an optimal solution.

Klau et al. (2004) approached the Steiner tree problem in a similar manner, also

incorporating a memetic algorithm based on a steady-state evolutionary algorithm.

An ant colony optimisation algorithm is also suggested by Massen et al. (2012) and

Massen et al. (2013) to construct a large number of feasible routes for the vehicle

routing problem, from which a subset of routes is chosen using an exact solver for a

relaxed set partitioning problem.

The GS framework has been utilised for a variety of optimisation problems. Pro-

cedures using a genetic algorithm in the GRI component have been developed for

the container loading problem (Nepomuceno et al., 2007a,b; Saraiva et al., 2019)

and cutting and packing problems (Nepomuceno et al., 2008; Pinheiro et al., 2011),

which have also been adapted to include a simulated annealing method in place of

the genetic algorithm (Saraiva et al., 2013). Similarly, algorithms based on the GS

methodology have been constructed for wireless network efficiency problems using

simulated annealing (Coudert et al., 2010, 2011) and genetic algorithms (Pinheiro

et al., 2012). In each case, the problem has been mathematically formulated using

integer programming for use with an exact solver.

90

6.4. THE CONSTRUCT, MERGE, SOLVE & ADAPT ALGORITHM

6.4 The Construct, Merge, Solve & Adapt Algorithm

One particular instantiation of the GS framework is the Construct, Merge, Solve

& Adapt (CMSA) algorithm of Blum et al. (2016). This is a generally applicable

algorithm for combinatorial optimisation problems initially created for the minimum

weight arborescence problem (Blum and Calvo, 2015).

The general CMSA algorithm, shown in Algorithm 12, operates as follows. The

procedure begins with an empty sub-instance B which is to be filled with solution

components, and an empty best-so-far solution Sbsf (Lines 1–2). Then, in each itera-

tion, a fixed number q of solutions are constructed using the ConstructSolution

function (Line 5). Each component of each solution is then merged into B, provided
the component does not already exist in B, and the age of each new component,

age[b], is initialised to zero (Lines 6–8). In the first iteration of CMSA, the best-so-

far solution Sbsf is taken as the best of the q solutions created by the Construct-

Solution function. Next, an exact solver is executed in the ApplyExactSolver

function to find an optimal solution S∗ to the sub-instance B (Line 11).

Algorithm 12 CMSA (I, q, agemax)

1: B ← ∅
2: Sbsf ← ∅
3: while time limit not reached do
4: for i← 1 to q do
5: S ← ConstructSolution()
6: for all b ∈ S and b /∈ B do
7: age[b]← 0
8: B ← B ∪ {b}
9: if first iteration then

10: Sbsf ← best solution S created by ConstructSolution()

11: S∗ ← ApplyExactSolver(B)
12: if S∗ is better than Sbsf then
13: Sbsf ← S∗

14: for all b ∈ B do
15: if b ∈ S∗ then
16: age[b]← 0
17: else if b /∈ S∗ then
18: age[b]← age[b] + 1
19: if age[b] = agemax then
20: B ← B\{b}
21: return Sbsf

If S∗ is better than the current best-so-far solution Sbsf, then solution S∗ is stored

as the new best-so-far solution (Lines 12–13). Finally, the sub-instance B is adapted

using the solution S∗ and an aging mechanism. The age of each component in B
that is used in S∗ is reset to zero, whilst the age of all other components in B is

91

6. COMBINING METAHEURISTICS AND EXACT METHODS

increased by one (Lines 14–18). Any components in B whose age has reached the

predefined maximum component age, agemax, are removed from B (Lines 19–20).

The adaptation stage aids the process by removing components from B that

have not contributed to an optimal solution for a set period of time. This allows the

algorithm to control the size of B and therefore the speed of the exact solver. It also

retains components in B that are used in solutions, which could prove to be useful in

subsequent iterations of CMSA. Moreover, resetting the age of the components that

are in the optimal solution to zero in each iteration ensures that there is at least one

solution that can be formed by the components of the sub-instance B at all times.

This algorithm, which maintains and evolves a smaller, more manageable set of

bins B ⊂ F , is a promising approach to the SCPP due to its focus on collecting high

quality groups of bins, which has been seen to be a successful technique within our

EA in the previous chapter by way of the GGA recombinaton operator.

The CMSA algorithm has been applied to a variety of combinatorial optimisa-

tion problems since its creation. Blum initially implemented the procedure on string

problems, namely a generalisation of the minimum common string partition prob-

lem (Blum, 2016) and a special case of the longest common subsequence problem

(Blum and Blesa, 2016), before exploring adaptations of CMSA involving the input

format (Blum and Santos, 2019) and the feedback mechanism (Blum and Pereira,

2016), which was implemented on a multi-dimensional knapsack problem. A CMSA

algorithm for the knapsack problem was also investigated by Lizárraga et al. (2017),

comparing it against a large neighbourhood search (LNS) algorithm using varying

problem sizes. Following on from the weighted arborescence problem, CMSA has

been applied to a number of graph problems: the maximum happy vertices problem

involving graph colouring (Lewis et al., 2019), the weighted independent domination

problem (Pinacho-Davidson et al., 2018), as well as the minimum capacitated dom-

inating set problem (Pinacho-Davidson et al., 2019). Other applications of CMSA

include resource-constrained project scheduling (Thiruvady et al., 2019) and coop-

erative vehicle route planning with fuel constraints (Arora et al., 2019).

We now present two algorithms based on the CMSA methodology that have

been modified appropriately for the SCPP, both of which also feature evolutionary

characteristics. Note that in the general CMSA algorithm described above, and in

the remainder of this chapter, the solution S∗ is the optimal solution with respect

to the sub-instance B, as opposed to the optimal solution with respect to F which

would be the global optimum to the problem instance overall.

92

6.4. THE CONSTRUCT, MERGE, SOLVE & ADAPT ALGORITHM

6.4.1 CMSA with Mutation

Our first CMSA algorithm adapted for the SCPP is CMSA-M, which incorporates

the mutation operator implemented in our EA from the previous chapter. The

pseudocode for the ConstructSolution function used in CMSA-M is provided

in Algorithm 13, which takes in I and Sbsf as arguments. In the first iteration

of CMSA-M the sub-instance B is empty, so a fixed number q of initial solutions

are generated using heuristics – one using MFFD+ and the remaining q − 1 using

MFFR+ – and each solution is mutated (Lines 1–4). In all subsequent iterations of

CMSA-M, the incumbent best-so-far solution Sbsf is mutated q times to produce q

new solutions (Line 5).

Algorithm 13 CMSA-M: ConstructSolution(I, Sbsf)
1: if first iteration then
2: if i = 1 then S ← MFFD+(I)
3: else S ← MFFR+(I)
4: S ← Mutate(S)
5: else S ← Mutate(Sbsf)
6: return S

This method of constructing solutions by mutating the incumbent best-so-far solution

Sbsf may be beneficial as it encourages higher quality bins to be created and added

to B, which in turn increases the possibility of high quality solutions being found

by the exact solver. On the other hand, modifying the same solution to create all

subsequent solutions may prevent the inclusion of new, different solution components

to the sub-instance B, which could potentially limit exploration of the solution space.

6.4.2 CMSA with EA

Our second CMSA algorithm, CMSA-EA, implements our EA from the previous

chapter in its entirety. This version begins by creating an initial population P of

candidate solutions using the same method designed for our EA. Then, in each

iteration of CMSA-EA, q new solutions are produced from the population P using

recombination, mutation, and local search, as shown in Algorithm 14.

Note that rather than using just one recombination operator, the Construct-

Solution function for CMSA-EA produces an offspring S using each of our three

recombination operators – GGA, AGX, and AGX′ – from the same two parent so-

lutions (Lines 5–8). The best offspring solution overall, Sbest, is returned by the

function and also replaces the least fit of the parent solutions in P (Line 16).

As the offspring are inserted into the population P throughout the CMSA-EA

algorithm, not only does the sub-instance B get updated but the population also

93

6. COMBINING METAHEURISTICS AND EXACT METHODS

Algorithm 14 CMSA-EA: ConstructSolution(P)
1: select two parent solutions from P at random
2: Sbest ← ∅
3: for i← 1 to 3 do
4: S ← ∅
5: let S1 and S2 be copies of the original parent solutions
6: if i = 1 then S ← GGA(S1,S2)
7: else if i = 2 then S ← AGX(S1,S2)
8: else if i = 3 then S ← AGX′(S1,S2)
9: if

⋃
S∈S 6= I then

10: S ′ ← MFFD+(I\S)
11: S ← LocalSearch(S,S ′)
12: S ← Mutate(S)
13: if i = 1 then Sbest ← S
14: else if S is better than Sbest then
15: Sbest ← S
16: replace least fit parent solution with Sbest in P
17: return Sbest

evolves. Consequently, better parent solutions in P will create high quality offspring,

which in turn results in superior bins being added to B.
In each iteration of both CMSA-M and CMSA-EA the algorithms solve the sub-

instance B by means of an exact technique using the ApplyExactSolver function.

Finding a solution for the SCPP within the sub-instance B involves seeking a mini-

mum cardinality exact cover; that is, solving the MXCP with respect to B. To do so,

we use a recursive depth-first backtracking algorithm process implemented using the

“dancing links” technique of Knuth (2000). In general this algorithm, known as DLX,

is designed to find all exact covers in a given sub-instance. However, as we are only

interested in determining a single minimum cardinality exact cover S∗ ⊂ B, i.e. a

solution comprising the fewest bins, we modified this algorithm to create MinDLX,

which only searches for exact covers that improve upon the best exact cover found

so far.

Note also that our criteria for determining the “better” solution when comparing

solutions in both CMSA-M and CMSA-EA algorithms is identical to that used for

our EA: the solution comprising fewer bins is deemed the better solution, and if

the solutions contain the same number of bins the one with the higher fitness value,

calculated using (5.1), is taken as the better solution.

6.5 Computational Results

To compare the performance of our CMSA-M and CMSA-EA algorithms we ran-

domly selected 50 problem instances from each of the 18 instance clases for the

94

6.5. COMPUTATIONAL RESULTS

SCPP. A time limit of 3600 seconds was also used for each of the algorithms, whilst

MinDLX was set to run for a maximum of 600 seconds in each iteration. Parameter

settings of q = 3 and agemax = 3 were also decided after preliminary tests, and for

CMSA-EA the population P was set to contain |P| = 25 solutions, keeping in line

with our previous EA experiments. The source code for both CMSA-M and CMSA-

EA along with the MinDLX procedure is available online (Hawa, 2020d).2 As with

previous chapters, Tables 6.1 to 6.3 show the results obtained from our experiments

using different values of δ.

In Table 6.1, for artificial instances we see that CMSA-EA produces solutons

using the fewest number of bins |S| on average for larger item sets, whilst for the

real instance classes CMSA-M is seen to be more suited for the two largest bin

capacities. Due to the small value of δ = 0.25 (and therefore a lower proportion of

score widths meeting the vicinal sum constraint) we see that, similarly to previous

experiments in Chapters 4 and 5, it is more difficult to find solutions comprising t

bins. Consequently, there is only one instance class where the algorithms are able to

find a solution for a single instance that contains t bins.

As expected, across all instance classes, the algorithm that creates the best so-

lutions on average also produces more solutions that use fewer bins than the cor-

responding solution of the alternative algorithm. For three of the instance classes,

CMSA-M produces solutions that use the same number or fewer bins that the CMSA-

EA counterpart for all 50 instances, however there are no instance classes in which all

solutions produced by CMSA-EA are better than or equal to the CMSA-M solutions.

Our experience with this algorithm also reveals a pattern with regards to the

number of iterations of each method. For all instance classes where CMSA-M is

superior, the average number of iterations performed by CMSA-M is greater than

the average number of iterations of CMSA-EA. For example, for the real instance

class using W = 5000 and |I| = 500 the average number of iterations were 201

and 8 for CMSA-M and CMSA-EA respectively, whilst for artificial instances when

W = 1250 and |I| = 100 the corresponding values were 1681137 and 51. On the

other hand, with the instance classes where the number of iterations of the algorithms

are roughly equal, CMSA-EA is the method that produces the solutions using the

fewest bins.

Turning to Table 6.2, the increase in δ is immediately apparent as we see that

solutions comprising t bins have been found by at least one of the two algorithms

for 13 of the 18 instance classes. In fact, for the artificial instance class when W =

2500 and |I| = 100, all solutions produced by both CMSA-M and CMSA-EA use t

2As with our previous experiments, all experiments were implemented in C++ and executed
on Windows machines with Intel Core i5-6500 3.20GHz processors and 8GB of RAM.

95

6. COMBINING METAHEURISTICS AND EXACT METHODS

Table 6.1: Best solutions obtained from the CMSA-M and CMSA-EA algorithms for δ = 0.25.
Figures in bold indicate the best results for each instance class. Asterisks indicate statistical signifi-
cance at ≤ 0.05(∗) and ≤ 0.01(∗∗) according to a two-tailed paired t-test and two-tailed McNemar’s
test for the |S| and #t columns respectively.

δ = 0.25 CMSA-M CMSA-EA

Type, W |I| ta |S|b #tc Bestd |S| #t Best

a, 1250 100 46.22 ∗∗54.10± 8.0 0 20 54.64± 7.7 0 0
500 228.82 269.54± 2.3 0 3 ∗∗265.64± 2.1 0 45

1000 459.94 540.66± 1.9 0 1 ∗∗532.94± 1.8 0 48

a, 2500 100 23.36 36.94± 12.0 0 7 37.04± 12.3 0 3
500 114.74 ∗∗190.20± 7.6 0 35 195.46± 4.3 0 12

1000 230.24 397.40± 4.4 0 7 ∗∗387.50± 4.1 0 42

a, 5000 100 11.96 ∗36.68± 12.8 0 6 36.80± 12.6 0 0
500 57.62 ∗∗176.00± 6.9 0 43 180.96± 5.0 0 5

1000 115.42 362.06± 4.9 0 21 ∗359.30± 4.4 0 27

r, 1250 100 46.12 63.84± 15.1 0 1 63.80± 15.1 0 3
500 230.94 319.30± 13.0 0 3 ∗∗316.40± 13.2 0 37

1000 461.96 638.96± 12.8 0 2 ∗∗632.50± 13.0 0 35

r, 2500 100 23.34 46.64± 25.3 1 5 46.74± 25.0 1 3
500 115.76 ∗∗234.44± 25.1 0 30 239.02± 22.8 0 11

1000 231.26 485.00± 23.5 0 22 ∗479.30± 23.3 0 23

r, 5000 100 11.94 ∗45.84± 27.5 0 5 45.94± 27.2 0 0
500 58.12 ∗∗228.08± 27.2 0 31 232.02± 25.6 0 8

1000 115.92 465.32± 27.1 0 25 466.50± 25.5 0 18

a t = d
∑n

i=1 wi/We (mean from 50 instances).
b Number of bins per solution (mean from 50 instances plus or minus the coefficient of variation (%)).
c Number of instances in which the solution comprises t bins.
d Number of instances in which the solution comprises the fewest bins of the two algorithms.

bins, and CMSA-M also yields optimal solutions for all 50 artificial instances using

W = 5000 and |I| = 500.

Again, the same trend exists whereby CMSA-M produces solutions using fewer

bins on average for the two largest bin capacities, i.e. when the number of items

per bin is higher, whilst when using W = 1250 and the two larger item set sizes

CMSA-EA creates better solutions for both real and artificial problem types. There

are four instance classes where, although CMSA-M is able to produce solutions that

use t bins, no such solutions are returned by CMSA-EA. Looking at the average

number of iterations performed by each algorithm for these four classes, it is clear

that the low number of CMSA-EA iterations, ranging on average between 7 and 8

in comparison to CMSA-M, which range from 49 to 84144, restricts the ability for

the algorithm to seek superior solutions. Futhermore, there are seven classes for

which all solutions returned by CMSA-M consist of the same number or fewer bins

than the corresponding solutions produced by CMSA-EA and for all such classes the

average number of CMSA-M iterations consistently exceeds the average number of

CMSA-EA iterations.

Finally in Table 6.3, where δ = 0.75, CMSA-M and CMSA-EA both produce

solutions using the same number of bins on average for six of the 18 instance classes,

96

6.5. COMPUTATIONAL RESULTS

Table 6.2: Best solutions obtained from the CMSA-M and CMSA-EA algorithms for δ = 0.5.
Figures in bold and asterisks should be interpreted as in Table 6.1.

δ = 0.5 CMSA-M CMSA-EA

Type, W |I| ta |S|b #tc Bestd |S| #t Best

a, 1250 100 46.22 ∗47.86± 7.4 13 5 47.96± 7.3 9 0
500 228.82 233.82± 2.3 0 16 233.74± 2.2 0 21

1000 459.94 470.58± 1.7 0 17 469.64± 1.5 0 28

a, 2500 100 23.36 23.36± 4.5 50 0 23.36± 4.5 50 0
500 114.74 ∗∗114.94± 1.9 ∗∗41 50 117.50± 2.0 0 0

1000 230.24 ∗∗232.82± 1.5 1 45 235.86± 1.8 0 1

a, 5000 100 11.96 12.26± 8.9 43 1 12.28± 9.5 43 0
500 57.62 ∗∗57.62± 1.9 ∗∗50 27 58.52± 2.5 23 0

1000 115.42 ∗∗115.50± 1.4 ∗∗46 46 119.48± 4.1 3 0

r, 1250 100 46.12 53.64± 15.4 1 5 53.74± 15.3 0 2
500 230.94 271.62± 13.2 0 5 ∗∗269.72± 13.4 0 26

1000 461.96 545.54± 12.8 0 4 ∗∗540.48± 13.1 0 28

r, 2500 100 23.34 26.56± 29.0 33 6 26.74± 2.9 31 1
500 115.76 ∗∗134.72± 29.0 ∗∗15 46 144.42± 25.9 0 3

1000 231.26 ∗∗279.80± 28.4 0 38 290.62± 25.5 0 8

r, 5000 100 11.94 19.96± 54.7 19 2 20.00± 54.5 18 0
500 58.12 ∗∗92.86± 55.7 ∗∗21 41 103.24± 50.2 7 0

1000 115.92 ∗∗187.64± 55.8 ∗∗18 45 214.98± 47.4 2 1

and for three of these classes all solutions comprise t bins. CMSA-EA also finds

optimal solutions for all 50 artificial problem instances when |I| = 1000 and W =

5000. The number of solutions found by the algorithms that consist of t bins is

higher in accordance with the increase in the proportion of score widths that are

able to fulfil the vicinal sum constraint; however there are still four instance classes

– the artificial and real instance types using the two largest problem instance sizes

and W = 1250 – for which neither of the CMSA algorithms yield a single solution

using t bins.

Note that both CMSA-M and CMSA-EA performed fewer iterations on average

in comparison to our previous EA experiments, despite the EA running for one sixth

of the time period. The recombination operators in our EA require only two parent

solutions from the population – which in the worst-case would each comprise |I|
bins – and simply involves selecting bins from each parent solution for the offspring.

The local search procedure applied on partial solutions is the most computationally

expensive operator, however using the AHC algorithm aids the process. On the other

hand, the MinDLX procedure is executed on the entire set of bins B, which in some

cases was seen to contain over 4000 bins. In preliminary trials, we allowed MinDLX

to breach the 600 second time limit if no solution had been found, however this led

to impractical run times. Therefore, in the event that MinDLX is unable to find a

solution S∗ with respect to B within the time limit, S∗ is set to Sbsf.
Enforcing the time limit in this manner caused issues in some of the tests. Obvi-

ously, as |B| increases, the MinDLX procedure will not be able to assess all combi-

97

6. COMBINING METAHEURISTICS AND EXACT METHODS

Table 6.3: Best solutions obtained from the CMSA-M and CMSA-EA algorithms for δ = 0.75.
Figures in bold and asterisks should be interpreted as in Table 6.1.

δ = 0.75 CMSA-M CMSA-EA

Type, W |I| ta |S|b #tc Bestd |S| #t Best

a, 1250 100 46.22 47.68± 7.1 15 0 47.68± 7.1 15 0
500 228.82 231.86± 2.2 0 11 ∗231.40± 2.1 0 18

1000 459.94 466.40± 1.5 0 13 ∗∗464.00± 1.4 0 30

a, 2500 100 23.36 23.36± 4.5 50 0 23.36± 4.5 50 0
500 114.74 ∗∗114.88± 2.0 ∗∗43 13 115.14± 1.9 30 0

1000 230.24 ∗∗231.30± 1.4 4 11 231.52± 1.4 0 0

a, 5000 100 11.96 11.96± 5.3 50 0 11.96± 5.3 50 0
500 57.62 57.62± 1.9 50 0 57.62± 1.9 50 0

1000 115.42 115.50± 1.4 46 0 ∗115.42± 1.4 50 4

r, 1250 100 46.12 51.24± 15.7 2 2 51.26± 15.6 1 1
500 230.94 258.44± 13.5 0 8 257.98± 13.3 0 15

1000 461.96 518.30± 13.1 0 6 ∗∗516.44± 13.1 0 19

r, 2500 100 23.34 23.56± 9.6 43 1 23.56± 9.6 44 1
500 115.76 ∗∗116.70± 8.6 ∗∗34 49 119.84± 9.3 1 0

1000 231.26 ∗∗235.26± 9.3 1 47 240.92± 9.5 0 2

r, 5000 100 11.94 12.56± 22.0 47 0 12.56± 22.0 47 0
500 58.12 ∗60.16± 18.9 ∗∗48 11 61.00± 21.6 39 0

1000 115.92 ∗∗119.96± 19.7 ∗∗47 22 124.00± 22.6 27 0

nations of the bins in B within the time limit and so may not be able to find the best

solution S∗, even if the appropriate bins are available in B. Clearly, if MinDLX

reaches the 600 second time limit in many iterations, the total number of CMSA

iterations will be very low. Therefore, the solution returned by the algorithm will

only be a result of these few iterations, and B will not have had the opportunity to

evolve. That is, of course, assuming that a solution S∗ is found in each iteration and

is better than the incumbent Sbsf. However, this is not always the case, and it may

be that the solution returned by CMSA is simply the best-so-far solution set in the

first iteration (see Lines 9–10 of Algorithm 12).

For example, consider the results produced by CMSA-EA for the real instance

class when |I| = 100, W = 1250, and δ = 0.25. Of the 50 problem instances, 48

comprised just six iterations as MinDLX reached the time limit in each iteration, and

two problem instances consisted of seven iterations, with MinDLX terminating in

under 600 seconds in the first iteration, and reaching the time limit in the subsequent

six iterations. There were only eight problem instances of the 48 where MinDLX

found a solution S∗ with respect to B in every iteration; the remaining 40 instances

all contained at least one iteration where MinDLX was unable to return a solution.

In fact, there were five problem instances whereby not a single solution S∗ was found
using MinDLX in all six iterations.

Furthermore, although MinDLX may find a solution S∗ within the time limit,

the solution may not be the minimum cardinality exact cover. For MinDLX to

find the smallest exact cover, the procedure would have to be left to run so that all

98

6.5. COMPUTATIONAL RESULTS

possible bin combinations can be assessed, which as previously explained would take

an unreasonable amount of time.

As briefly mentioned, fewer iterations of CMSA-EA were performed in compar-

ison to CMSA-M in the majority of our experiments. One reason is due to the

ConstructSolution function of each method. In CMSA-M, the construction of

a single solution S simply requires using local search to mutate the incumbent best-

so-far solution Sbsf. In contrast, creating a single solution in CMSA-EA involves

producing three individual offspring solutions using each of our recombination oper-

ators and executing the local search procedure up to two times for each offspring.

However, although important to note, this would not make enough of an impact to

contribute to the vast differences in the number of iterations. The main reason is

not because of the time taken for the ConstructSolution function to produce

solutions, but is a result of the actual solutions themselves. The solutions created

by ConstructSolution in CMSA-M are created by mutating Sbsf, so it is ex-

pected that some bins in the solution S will be identical to bins in Sbsf or bins that
are present in B; thus these bins will not be added to B. Conversely, the solutions

created by ConstructSolution in CMSA-EA are not derived from Sbsf, and are

less likely to contain as many duplicate bins. Consequently, the set B in CMSA-EA

comprises a greater number of bins than in CMSA-M, and so MinDLX will tend to

be slower.

Despite the computational issues observed, there are positive characteristics asso-

ciated with our CMSA approaches. Using an exact solver is advantageous: MinDLX

will, given a sufficient amount of time, produce a solution S∗ that is optimal with

respect to B. On the other hand, although the recombination and local search stages

of the EA perform much faster than MinDLX due to the input size, there is no

way to determine whether the resulting offspring solution S generated using these

operators is the best possible solution that can be produced from the two initial par-

ent solutions. In CMSA, the entire set B is used in MinDLX and all bins in B are

adapted accordingly. In other words, every bin in B serves a purpose and is utilised

in every iteration. Conversely, the EA selects just two solutions from the population

P, disregarding the remaining solutions, and only one solution is replaced in P in

each iteration. Moreover, our CMSA-M algorithm has a feedback property, which

makes use of the incumbent best-so-far solution Sbsf to assist the construction of new

bins in subsequent iterations. Note also that the set B does not permit duplicate

bins, whilst in the EA there is the possibility of identical bins appearing in multiple

solutions in the population, or even entirely identical solutions.

99

6. COMBINING METAHEURISTICS AND EXACT METHODS

6.6 Summary

In this chapter we turned our attention to exact methods for the SCPP. We began by

formulating an ILP model for a generalised vehicle routing problem that corresponds

to the SCPP and explained that, as the SCPP is NP-hard, the model is only useful for

finding optimal solutions for very small problem instances. From this, we introduced

the Minimum Cardinality Exact Cover Problem (MXCP) and discussed how exact

methods can be integrated into wider optimisation frameworks such as Generate

and Solve (GS). After reviewing the Construct, Merge, Solve & Adapt (CMSA)

algorithm, an instantiation of GS which operates on a population of individual bins

rather than entire solutions, we presented two custom CMSA-based algorithms for

the SCPP: CMSA-M, which adopts a mutation operator to create new solutions

from the current best-so-far solution Sbsf, and CMSA-EA where each new solution

is produced using a single iteration of our EA.

Our initial intention was to implement a post-optimisation stage in a similar

manner to Malaguti et al. (2008), by copying the bins of each offspring solution

created by our EA into a set B and then simply applying an exact solver to obtain

a minimum cardinality exact cover with respect to B. However, as explained in the

previous chapter, the size of the set of offspring bins became too large to maintain.

Therefore, we developed the CMSA-EA algorithm as an alternative method that

uses a smaller number of bins from offspring solutions in each iteration.

Both CMSA algorithms were hindered by MinDLX, the procedure implemented

to solve the MXCP with respect to B. Although in our experiments we set q = 3, B
still grew to contain a great number of bins, particularly for larger problem instances

when W = 1250. As a result, for many of the instances MinDLX struggled to find a

single exact cover, let alone a minimum cardinality exact cover, within the specified

time limit. One possible improvement would be to somehow limit the size of B –

whilst also ensuring that at least one exact cover exists in B – so that a solution

S∗ can be found in a shorter period of time which would subsequently increase the

number of overall CMSA iterations and encourage the evolution of bins in B.
Another potential modification to consider is implementing a feedback mechanism

within CMSA-EA. Currently, each solution S∗ found by MinDLX in CMSA-EA is

only used within the adapt section of the overall algorithm, and of course replaces the

best-so-far solution Sbsf if it is of higher quality. The population P can thus be seen

as a separate entity, where only the offspring solutions produced in ConstructSo-

lution facilitate the evolution of P. An improvement on CMSA-EA would involve

incorporating Sbsf into the population P, perhaps by replacing the least fit solution

in P with Sbsf whenever a new best-so-far solution is found.

100

Chapter 7

An Alternative Version of the

Score-Constrained Packing

Problem

Recall that in the SCPP, items are to be packed alongside one another into the

fewest number of bins such that no bin is overfilled and the vicinal sum constraint

is fulfilled in every bin (see Definition 1.1). We have acknowledged that, due to the

vicinal sum constraint, there can exist instances where no two score widths meet the

vicinal sum constraint and so each item in I must be packed into individual bins;

thus, a feasible solution S will comprise |I| bins.
Suppose, however, that we were to permit spaces between successive items in

bins. Then, if the score widths of two adjacent items do not satisfy the vicinal sum

constraint the items can be moved further apart from one another in the bin, creating

a “gap” between the items so that the total distance between the two score lines is

greater than or equal to the minimum scoring distance τ . This then allows the knives

to be able to score the items correctly, as shown in Figure 7.1.

A B

8 25 16 13

< τ

A B

8 25 16 13

≥ τ

Figure 7.1: An example showing two items whose adjacent score widths do not total the minimum
scoring distance, τ = 70. By separating the items to create a space, indicated by the lined area, the
distance between the neighbouring score lines of the items increases, allowing the knives to score
along the items in the correct locations.

In this short final chapter we introduce an alternative version of the SCPP and

discuss the differences between the two problems as well as potential approaches.

101

7. AN ALTERNATIVE VERSION OF THE SCPP

7.1 Definitions

Given a set I of n items and a minimum scoring distance τ ∈ Z+, consider the

following modified vicinal sum constraint:

r(i) + l(i+ 1) + α(r(i), l(i+ 1)) ≥ τ ∀ i ∈ {1, 2, . . . , |S| − 1}, (7.1)

where l(i) and r(i) denote the left- and right-hand score widths of the ith item in the

bin S, and α(r(i), l(i+ 1)) denotes the inter-item width between the two successive

items in the bin. The inter-item width is calculated as follows:

α(r(i), l(i+ 1)) =

τ − (r(i) + l(i+ 1)) if r(i) + l(i+ 1) < τ

0 otherwise.

From this, we introduce the Modified Score-Constrained Packing Problem:

Definition 7.1 Let I be a set of n rectangular items of height H > 0 with varying

widths wi ∈ Z+ and score widths ai, bi ∈ Z+ for all i ∈ I. Given a minimum

scoring distance τ ∈ Z+, the Modified Score-Constrained Packing Problem (MSCPP)

involves packing the items from left to right into the fewest number of H ×W bins

such that the modified vicinal sum constraint is satisfied in each bin and no bin is

overfilled.

Figure 7.2 compares solutions to the original SCPP and the MSCPP for the same

instance I. It can be seen that permitting the use of space between items in bins (as

with the MSCPP) allows more items to be packed together into each bin, resulting

in fewer bins in this case.

215
F

19 37

154
J

34 5

346
D

11 28

209
G

42 50

171
H

32 21

393
C

4 31

278
E

39 16

163
I

55 20

532
A

2 27

449
B

43 9

(a) SCPP

154
J

5 34

171
H

32 21

209
G

50 42

278
E

39 16

163
I

55 20

393
C

4 31

215
F

19 37

346
D

28 11

532
A

2 27

449
B

43 9

(b) MSCPP

Figure 7.2: A comparison of solutions for the SCPP and MSCPP using the same instance I where,
due to the modified vicinal sum constraint, the solution for the MSCPP comprises fewer bins. The
lined area between items in the MSCPP solution indicate the inter-item widths. Here, |I| = 10,
W = 1000, and τ = 70.

In order for each bin to be packed properly and not be overfilled, not only must the

total width of the items in each bin be less than or equal to the bin capacity, but

102

7.1. DEFINITIONS

the inter-item widths must also be taken into consideration. So, in a similar manner

to the SCPP, the MSCPP involves determining which items should be packed into

each bin and how each item should be packed within each bin. This gives rise to the

following sub-problem that occurs within the MSCPP.

Definition 7.2 Let I ′ ⊂ I be a subset of rectangular items whose total width is

less than or equal to the bin capacity, i.e. A(I ′) =
∑

i∈I′ wi ≤ W . Then, given a

minimum scoring distance τ ∈ Z+, the Modified Score-Constrained Packing Sub-

Problem (sub-MSCPP) consists in finding an order and orientation of the items in

I ′ into a bin S such that the modified vicinal sum constraint is fulfilled and the total

inter-item width

f(S) =

|S|−1∑
i=1

α(r(i), l(i+ 1)) (7.2)

is less than or equal to W −A(I ′).

Consider Figure 7.3, where a set I ′ of four items of total width A(I ′) ≤W are packed

into two bins S1 and S2 in different configurations. Although the modified vicinal

sum constraint is fulfilled in both bins, the arrangement of items in the first bin has

a larger total inter-item width f(S1) which is greater than W − A(I ′), causing the

bin to be overfilled. By changing the order and orientation of the items we obtain

the packing shown in bin S2, where f(S2) +A(I ′) ≤W .

S1 301
A

8 47

219
C

51 5

167
D

11 26

254
B

2 19

S2 254
B

2 19

167
D

26 11

301
A

47 8

219
C

51 5

Figure 7.3: A set I′ of four items packed into two bins of capacity W = 1000 in different arrange-
ments, where A(I′) = 941 and τ = 70. In bin S1 the total inter-item width, f(S2) = 96, causes
the bin to be overfilled, whilst the alignment of items in bins S2 has smaller total inter-item width
f(S2) = 48 and so can be packed into the bin feasibly. The red vertical dashed line on bin S1

indicates the end of the bin.

Observe that, for any instance I ′ and minimum scoring distance τ , if there exists a

feasible solution that fulfils the constraints of the sub-SCPP, then it is guaranteed

that there also exists a feasible solution that satisfies the sub-MSCPP; however, the

converse is not true. For any given instance, the set of all feasible bins F will be larger

for the sub-MSCPP. Permitting spaces between items also means that removing an

item from a feasible bin for the MSCPP maintains feasibility, unlike with the SCPP.

The MSCPP is similar to the cutting stock problem with sequence-dependent cut

losses (CSP-SDCL) of Garraffa et al. (2016) which we reviewed in Chapter 2, where

the inter-item widths in the MSCPP can be viewed as cut losses in the CSP-SDCL.

103

7. AN ALTERNATIVE VERSION OF THE SCPP

The cut losses between each pair of items in the CSP-SDCL is only dependent on the

order of the items, however, whilst both the ordering and orientation of the items in

the MSCPP affect the inter-item widths between items due to the modified vicinal

sum constraint. It is also important to note the symmetry that occurs in the MSCPP:

the inter-item width between two items A and B packed in regular orientations will

be the same as the inter-item width between the items in their rotated orientations

with B packed before A. On the other hand, recall that the cut losses between each

pair of items in the CSP-SDCL are not symmetrical, and are also highly varied.

7.2 The sub-MSCPP

Although both the sub-SCPP and the sub-MSCPP involve packing a set I of n items

with score widths into bins, the two problems differ in a number of ways. Firstly,

consider the total width of the set of items A(I): in the sub-SCPP, if A(I) ≤W then

any feasible arrangement of the items will fit into a single bin S. However, in the

sub-MSCPP there is no guarantee that a feasible configuration of a set of items with

total width A(I) ≤ W will fit into a bin S as the total inter-item width f(S) may

exceed W −A(I). Secondly, finding a solution for the sub-SCPP involves seeking a

single arrangement of the items such that the vicinal sum constraint is fulfilled. For

an instance I of the sub-MSCPP, all 2n−1n! distinct configurations of the n items

are feasible with regards to the modified vicinal sum constraint (7.1), and so the

task instead is to find the arrangement with minimum f(S). Therefore, if the best

configuration found has f(S) > W −A(I) then it can be said for certain that there

does not exist an arrangement of the items in I that can be packed into a single bin.

The sub-MSCPP can be presented as a generalised travelling salesman problem

(TSP), where a salesman is to start from city 0 and visit n cities before returning

back to city 0. The distance between two cities i and j is denoted by wij for all i, j =

0, 1, . . . , n, i 6= j, and each city i is paired with one other city, p(i), for i = 1, . . . , n.

The salesman is required to visit paired cities in succession. Thus, the problem of

finding the shortest tour such that each city is visited exactly once can be formulated

as the following ILP:

minimise
n∑
i=0

n∑
j=0

wijxij (7.3a)

subject to
n∑
i=0

xij = 1 j = 1, . . . , n (7.3b)

n∑
j=0

xij = 1 i = 1, . . . , n (7.3c)

104

7.2. THE SUB-MSCPP

xi,p(i) + xp(i),i = 1 i = 1, . . . , n (7.3d)

u0 = 1 (7.3e)

ui − uj + 1 ≤ (n− 1)(1− xij) i, j = 1, . . . , n (7.3f)

1 ≤ ui ≤ n i = 1, . . . , n (7.3g)

ui ∈ Z i = 0, . . . , n (7.3h)

xij ∈ {0, 1} i, j = 0, . . . , n (7.3i)

xij =

1 if the salesman travels from city i to city j

0 otherwise.

The objective function (7.3a) is to minimise the total distance of the tour travelled

by the salesman. Constraints (7.3b) and (7.3c) state that each city must be visited

exactly once, and the requirement for each city i, except city 0, to be preceeded

or succeeded by its paired city in the tour is covered by Constraint (7.3d). Con-

straints (7.3e) – (7.3h) ensure that the tour begins and ends at city 0 and prevents

subtours, and finally Constraint (7.3i) restricts the decision variable xij to integers

0 and 1. This ILP model, implemented in Xpress Mosel, is available online (Hawa,

2020b).

In this formulation, it can be seen that each city i = 1, . . . , n represents a score

width of an item in the set I, and paired cities correspond to score widths that

are on the same item. Then, the distances wij denote either the item widths if the

cities are paired or the inter-item widths. Similarly to our ILP for the SCPP in the

previous chapter, this generalised TSP is NP-hard; finding an exact solution using a

commercial solver for larger instances of the sub-MSCPP is not feasible. Therefore,

it is worthwhile seeking alternative methods for finding arrangements of items with

minimum total inter-item width.

7.2.1 An Algorithm for the sub-MSCPP

Due to the resemblances between the sub-SCPP and the sub-MSCPP, it would be

beneficial to approach the latter in a manner similar to that of the former, as seen

in Chapter 3. As before, we can model an instance I of the sub-MSCPP graphically

by assigning two vertices u and v for every item i ∈ I, with weights w(u) = ai and

w(v) = bi, along with a blue edge {u, v}. For parity with the sub-SCPP model we

refer to these pairs of vertices as partners, and without loss of generality assume the

vertices {v1, . . . , v2n} are indexed in order of non-decreasing weight, i.e. w(vi) ≤
w(vi+1). An additional pair of partner vertices, v2n+1 and v2n+2, each of weight τ ,

105

7. AN ALTERNATIVE VERSION OF THE SCPP

is also introduced together with a blue edge {v2n+1, v2n+2}. The blue edges between
partners form the edge set B, where the partner of each vertex vi is denoted by p(vi).

The graph G thus consists of a vertex set V of 2n+ 2 vertices and an edge set B of

n+ 1 edges (see Section 3.2 of Chapter 3).

In the sub-SCPP model, the set of edges R only contains edges between vertices

whose corresponding score widths meet the vicinal sum constraint. This is where the

two models differ: for the sub-MSCPP, the set R of red edges added to the graph G

comprises 2n(n + 1) edges where every vertex is adjacent to every other vertex via

an edge in R, provided the vertices are not partners; that is, R = {{vi, vj} : p(vi) 6=
vj ∀ vi, vj ∈ V, vi 6= vj}. This is due to the modified vicinal sum constraint, as every

pair of items in I can be placed alongside one another so long as the total distance

between the neighbouring score lines is greater than or equal to the minimum scoring

distance τ . Therefore, the edges in both B and R are weighted to account for the

items’ widths and inter-item widths. Recall that each vertex vi ∈ V represents a

score width and each item i ∈ I can be denoted by its score widths, (ai, bi). Then,

the edges in B and R are weighted as follows:

w({vi, vj}) =


w(ai,bi) if {vi, vj} ∈ B

τ − (w(vi) + w(vj)) if w(vi) + w(vj) < τ and {vi, vj} ∈ R

0 otherwise.

Note that because the additional vertices v2n+1 and v2n+2 do not represent an item,

the weight of the edge {v2n+1, v2n+2} is zero. Thus, the sum of all edges in B is

equal to the total width of all items in I:

w(B) =
∑

{vi,p(vi)}∈B

w({vi, p(vi)}) = A(I).

The resulting graph G = (V,B ∪ R) is a vertex-weighted, edge-weighted complete

graph. Figure 7.4 illustrates an example instance I of the sub-MSCPP and the

corresponding graph G, where |I| = 8, τ = 70, and w(B) = 1856.

As with the original sub-SCPP, the task involves finding an alternating Hamil-

tonian cycle in G; however, in the case of the sub-MSCPP it is known that there

exists 2n−1n! such cycles in G. Instead, the aim is to obtain the shortest alternating

Hamiltonian cycle. All edges in B will be present in the final cycle, and so the fo-

cus is on selecting edges from R of minimum total weight that form an alternating

Hamiltonian cycle with the edges in B. To do this, we make use of the original AHC

algorithm from Chapter 3, modifying the procedure to suit the sub-MSCPP.

The first stage is to obtain a subset R′ ⊂ R of n + 1 edges. The Maximum

Cardinality Matching (MCM) algorithm used in AHC is suitable for this model,

106

7.2. THE SUB-MSCPP

320
A

30 46

150
B

2 11

181
C

9 16

272
D

21 27

243
E

3 42

215
F

18 23

166
G

5 13

309
H

35 55

(a) Problem instance I

v1(2)v17(70)
v18(70)

v2(3)

v8(18)
v9(21)

v3(5)

v7(16)

v4(9)

v5(11)

v12(30)

v15(46)

v6(13)

v10(23)

v11(27)

v13(35)

v14(42)

v16(55)

(b) G = (V,B ∪R)

Figure 7.4: (a) An instance I of the sub-MSPP comprising eight items; and (b) the graph G =
(V,B∪R) modelling the instance I, where the thicker blue edges are in B and the thinner red edges
are in R, with the vertices’ weights stated in parentheses. In this instance, A(I) = w(B) = 1856
and τ = 70. Note that due to the number of edges on G the edge weights are not labelled.

as it selects edges from R connecting the lowest-indexed vertices to the highest-

indexed vertices, which will have minimum weight overall (see Algorithm 2). Note

that, unlike with the sub-SCPP, there will always exist a set R′ ⊂ R such that

|R′| = n + 1. The subgraph G′ = (V,B ∪ R′) then consists of cyclic components

C1, . . . , Cz. Figure 7.5 shows the subgraph G′ after MCM has been executed on our

example instance, where it can be seen that G′ consists of z = 4 components. In this

case, the sum of the weights of edges in R′ is w(R′) = 139, and so the total length

of G′ is w(B) + w(R′) = 1995.

v1

v2

v3

v4

v5

v6

v7

v8
v9

v10

v11

v12

v13

v14

v15

v16

v17
v18

0

150
243

166

181

215
272

320

309

0
0

10

15

17

22

24

25

26

(a) G′ = (V,B ∪R′)

v5 v14

v1 v2

v18 v17

v16 v3

v13 v6

v4 v7

v15 v12

v8 v11

v10 v9

17

243

0

0

0

150

10

166309

22

181

2415

320

25

272215

26

C1

C2

C3

C4

(b) G′ in planar form

Figure 7.5: The subgraph G′ = (V,B ∪ R) using the edge set R′ produced using MCM, where in
planar form it can be seen that G′ comprises z = 4 cyclic components. The total sum of edge
weights in R′ is w(R′) = 139; thus the length of G′ is w(B) + w(R′) = 1995.

107

7. AN ALTERNATIVE VERSION OF THE SCPP

We are now able to provide a lower bound for the shortest length of an alternating

Hamiltonian cycle in G, as stated in the following theorem.

Theorem 7.3 Let G = (V,B ∪ R) be a vertex-weighted, edge-weighted graph mod-

elling an instance I of the sub-MSCPP, and let R′ ⊂ R be the subset of edges

procured by MCM. Then, the length of the shortest alternating Hamiltonian cycle in

G is greater than or equal to w(B) + w(R′).

Proof. As all edges in B must be present in the final alternating Hamiltonian cycle,

the weights of the edges in B will contribute to the length of the cycle. Therefore,

it must be shown that there does not exist any other matching in R that has total

weight less than w(R′).

Recall that the vertices are labelled such that w(vi+1) ≥ w(vi) for all vi ∈ V .

Then, consider the vertices vi, vj , vk, and vl, where i < j < k < l. Given the ordering

of the vertices, it follows that w({vi, vl}) + w({vj , vk}) ≤ w({vi, vk}) + w({vj , vl});
thus the process of matching the smallest vertices with the largest vertices as with

the MCM algorithm produces a matching R′ of minimum weight.

If G′ comprises just one component then an alternating Hamiltonian cycle of min-

imum length has been found; else, the next stage is to remove edges from R and

replace them with edges from R\R′ that connect the multiple components into a

single cycle. In the sub-SCPP, it is not known whether it is possible to merge the

components together, and there may not exist an alternating Hamiltonian cycle.

However, in the case of the sub-MSCPP there are a multitude of ways of joining the

components as the underlying graph G is complete. Thus, the aim is to determine

which edges to remove from R′ and which edges to add to R′ from R\R′ such that

the overall length of the resulting alternating Hamiltonian cycle is minimised.

For this, we implement a variant of the Bridge-Cover Recognition (BCR) proce-

dure used in our original AHC algorithm, BCR′, that has been appropriately modified

for the sub-MSCPP. The first part of this procedure is shown in Algorithm 15. To

begin, the edges in R′ are sorted into a list L such that the lower-indexed vertices

of the edges are in increasing order. Then, BCR′ starts from the beginning of L in

search of two successive edges that are in different components of G′ (Lines 7–9).1

The second of the two edges is referred to as the “starting edge” (Line 10). BCR′

adds these two edges to a subset R′′i (Lines 11–15) before proceeding to the next

edge in L, checking whether the edge is in a different component of G′ to the edges

in R′′i . If so, the edge is added to a new subset R′′i+1 along with the edges in R′′i

1Note that BCR′ does not need to check that the lower-indexed vertex of the current edge is
adjacent to the higher-indexed vertex of the next edge as with the original algorithm as G is a
complete graph.

108

7.2. THE SUB-MSCPP

(Lines 16–20). This process continues until the next edge is in the same component

as one of the previous edges. BCR′ then returns to the starting edge in the list and

repeats the search for new subsets, terminating once the penultimate edge in L has

been assessed (Line 21).

Algorithm 15 BCR′ (G′ = (V,B ∪R′))
1: create list L of edges in R′
2: let k denote edges {vj ,m(vj)} in L
3: let l denote the last edge in L, and let l − 1 denote the penultimate edge in L
4: startingEdge ← {v1,m(v1)}
5: i← 1
6: repeat
7: k ← startingEdge
8: while k 6= l − 1 and (k ∈ Cp and k + 1 ∈ Cp) do
9: k ← k + 1

10: startingEdge ← k + 1
11: if k ∈ Cp and k + 1 ∈ Cq : p 6= q then
12: R′′i ← {{k}, {k + 1}}
13: S′′i ← {p, q}
14: k ← k + 1
15: i← i+ 1
16: while k 6= l and k + 1 ∈ Cr : r /∈ S′′i−1 do
17: k ← k + 1
18: R′′i ← R′′i−1 ∪ {{k}}
19: S′′i ← S′′i−1 ∪ {r}
20: i← i+ 1

21: until startingEdge = l

It should be noted that all edges in R′ are included in the list L. In the original BCR

procedure, the list L is sorted such that the lower-indexed vertices of the edges are in

increasing order and the higher-indexed vertices of the edges are in decreasing order,

and any edges that do not adhere to this criteria are removed. This is to ensure that

the lower-indexed vertex of any edge in L (excluding the first edge) will be adjacent

to the higher-indexed vertex of the previous edge in the list. However, in this model

for the sub-MSCPP all vertices are adjacent to one another, and so there is no need

to disregard any of the edges.

Once all possible subsets of edges have been created, the next stage is to find a

collection of the subsets that can connect the cyclic components of G′ together into

a single alternating Hamiltonian cycle, as described in Section 3.3.2 of Chapter 3.

Rather than attempting to construct just one collection R′′, however, BCR′ proceeds
to assemble all possible collections R′′i of subsets. To distinguish from the initial

matching R′, let R′M denote the modified version of the edge set that is produced by

a collection R′′i , where edges in R′ have been removed and replaced. BCR′ calculates

the sum of the edge weights w(R′M) for each collection, and the collection that yields

the modified edge set of minimum weight is used to merge the components of G′

109

7. AN ALTERNATIVE VERSION OF THE SCPP

together. Note, however, that if BCR′ finds a collection that produces a modified

edge set R′M of the same total weight as R′, i.e. w(R′M) = w(R′), then on the basis

of Theorem 7.3 no other collection exists that creates a shorter cycle; thus BCR′

concludes the search for further collections.

Figure 7.6 demonstrates the BCR′ procedure on our example instance, where

12 subsets have been obtained from the list L. Starting from R′′1 , BCR′ forms

collections and calculates the sum of the edge weights of R′M that each collection

generates. As the set R′M created by R′′4 has the same total weight as R′, BCR′

uses R′′4 to procure the edges from R\R′ that will replace edges in R′. Figure 7.7

shows the new modified set R′ connecting the four cyclic components of G′ into a

single alternating Hamiltonian cycle. Removing the two additional vertices v2n+1

and v2n+2 and incident edges from the cycle forms a weighted alternating path that

corresponds to an alignment of the items in I with inter-item widths, as shown in

Figure 7.7c.

v18 v17 v16 v15 v14 v13 v12 v11 v10

v1 v2 v3 v4 v5 v6 v7 v8 v9

C1 C1 C2 C3 C1 C2 C3 C4 C4

Subsets

R′′1 = {{v2, v17}, {v3, v16}}

R′′2 = {{v2, v17}, {v3, v16}, {v4, v15}}

R′′3 = {{v3, v16}, {v4, v15}}

R′′4 = {{v3, v16}, {v4, v15}, {v5, v14}}

R′′5 = {{v4, v15}, {v5, v14}}

R′′6 = {{v4, v15}, {v5, v14}, {v6, v13}}

R′′7 = {{v5, v14}, {v6, v13}}

R′′8 = {{v5, v14}, {v6, v13}, {v7, v12}}

R′′9 = {{v5, v14}, {v6, v13}, {v7, v12}, {v8, v11}}

R′′10 = {{v6, v13}, {v7, v12}}

R′′11 = {{v6, v13}, {v7, v12}, {v8, v11}}

R′′12 = {{v7, v12}, {v8, v11}}

Collections

R′′1 = {R′′1 , R′′5 , R′′12} w(R′M) = 141

R′′2 = {R′′1 , R′′11} w(R′M) = 141

R′′3 = {R′′2 , R′′12} w(R′M) = 145

R′′4 = {R′′3 , R′′7 , R′′12} w(R′M) = 139

R′′3

v16 v15

v3 v4

R′′7

v14 v13

v5 v6

R′′12

v12 v11

v7 v8

v18 v17 v15 v16 v13 v14 v11 v12 v10

v1 v2 v3 v4 v5 v6 v7 v8 v9

Figure 7.6: The BCR′ procedure operating on our example instance of the sub-MSCPP, where
subsets R′′1 , . . . , R′′12 have been created from the list L of edges from R′. The collection R′′4 produces
a modified set R′M of the same total weight as R′; thus R′′4 is used to obtain edges from R\R′.

110

7.3. A HEURISTIC FOR THE MSCPP

v5 v14

v1 v2

v18 v17

v16 v3

v13 v6

v4 v7

v15 v12

v8 v11

v10 v9

17

243

0

0

0

150

10

166309

22

181

2415

320

25

272215

26

C1

C2

C3

C4

(a)

v5 v14

v1 v2

v18 v17

v16 v3

v13 v6

v4 v7

v15 v12

v8 v11

v10 v9

243

0

0

0

150

166309

181

320

272215

26

24
15

19

6

22

27

(b)

150
B

2 11

309
H

35 55

181
C

9 16

272
D

27 21

215
F

23 18

320
A

30 46

166
G

5 13

243
E

42 3

24 6 27 26 22 19 15

(c)

Figure 7.7: (a) The graph G′ = (V,B ∪ R′) comprising four cyclic components; (b) the graph
G′ using the modified set R′ shown in Figure 7.6 which connects the components into a single
alternating Hamiltonian cycle; and (c) the corresponding alignment of the eight items in I.

This algorithm for the sub-MSCPP, which will be referred to as AHC′, does not

currently have the same guarantee as the original AHC algorithm for the sub-SCPP.

Given larger problem instances there may exist a greater number of subsets R′′i ;

consequently, it may take an extensive period of time to form and assess all possible

collections of the subsets. Therefore, at this time we are unable to determine if a

minimum length alternating Hamiltonian cycle can be found in polynomial-time for

all instances of the sub-MSCPP. This remains an issue warranting further research.

7.3 A Heuristic for the MSCPP

Using the AHC′ algorithm for the sub-MSCPP, we can easily produce a heuristic for

the MSCPP based on the MFFD+ heuristic for the SCPP introduced in Chapter 4.

This new heuristic, MFFD+′, operates in a similar manner to MFFD+ as shown in

Algorithm 16, where the items are packed in turn into the first bin that can accom-

modate the item. However, MFFD+′ must take into account the total inter-item

width f(S) of items in a bin S. Therefore, AHC′ is executed to find an arrangement

S′ of all items in the current bin Sj and the current item i with minimal inter-item

width f(S′) (Line 9). If the new configuration of items in S′ can be packed into a

single bin feasibly – that is, the total width of the items in S′ and the total inter-item

111

7. AN ALTERNATIVE VERSION OF THE SCPP

width f(S′) does not exceed the bin capacity W – then MFFD+′ replaces Sj with

the arrangement of items in S′ which includes the item i (Lines 10–13). Otherwise,

MFFD+′ attempts to pack i into the next bin Sj+1.

Algorithm 16 MFFD+′(I)
1: sort items in I in order of non-increasing widths wi

2: A(Sj)← 0 ∀ j = 1, . . . , |I| . All bins are initially empty
3: S ← ∅
4: for i← 1 to |I| do
5: j ← 1
6: packed ← false
7: while not packed do
8: if Sj ∈ S and A(Sj) + wi ≤W then
9: S′ ← AHC′(Sj , i)

10: if A(S′) + f(S′) ≤W then
11: Sj ← S′

12: A(Sj)← A(S′) + f(S′)
13: packed ← true
14: else j ← j + 1

15: else if Sj /∈ S then
16: Sj ← Sj ∪ (ai, bi) . Item i packed into a new bin
17: A(Sj)← A(Sj) + wi

18: S ← S ∪ Sj

19: packed ← true
20: return S

7.4 Computational Results

To demonstrate the differences between the SCPP and the MSCPP, we ran the

MFFD+′ heuristic for the MSCPP on our set of problem instances for the SCPP

with varying values of δ. Tables 7.1 to 7.3 compare the results obtained by MFFD+′

for the MSCPP with the results using MFFD+ for the SCPP from Chapter 4. The

source code and results for the MFFD+′ heuristic is available online (Hawa, 2020a).

As expected, across all values of δ the MFFD+′ produces solutions using fewer

bins |S| on average, with notable differences for instances using W = 5000 when

δ = 0.25. As fewer score widths meet the vicinal sum constraint there are fewer

items per bin on average for the SCPP; however, for the MSCPP more items can

be packed into a single bin due to the modified vicinal sum constraint, even more

so for the larger bin capacity. We also see that when δ = 0.25, MFFD+′ is able to

produce solutions for the MSCPP that comprise t bins for five of the 18 instance

classes, whereas MFFD+ is unable to produce any such solutions for the SCPP.

For δ = 0.5 and δ = 0.75, although MFFD+′ does still yield solutions using the

fewest bins, the difference between the average number of bins of the two heuristics

is smaller, as a higher proportion of score widths meet the vicinal sum constraint.

112

7.4. COMPUTATIONAL RESULTS

Table 7.1: Results obtained using the MFFD+′ and MFFD+ heuristics for the MSCPP and the
SCPP respectively for δ = 0.25.

δ = 0.25 MFFD+′ MFFD+

Type, W |I| ta |S|b %tc |S| %t

a, 1250 100 46.13 48.03± 6.1 0.3 59.50± 5.4 0.0
500 229.37 233.733± 2.1 0.0 289.84± 2.3 0.0

1000 458.37 465.57± 1.4 0.0 574.26± 1.7 0.0

a, 2500 100 23.32 23.94± 4.4 38.2 46.27± 8.6 0.0
500 114.94 117.74± 1.9 0.0 220.87± 4.1 0.0

1000 229.44 234.87± 1.3 0.0 435.81± 3.1 0.0

a, 5000 100 11.92 12.25± 4.7 66.9 42.70± 10.4 0.0
500 57.72 59.37± 1.9 0.0 203.56± 4.9 0.0

1000 114.97 118.23± 1.3 0.0 402.3± 3.8 0.0

r, 1250 100 46.44 52.87± 17.7 0.0 65.52± 14.1 0.0
500 229.97 260.15± 16.8 0.0 332.46± 13.4 0.0
1000 459.38 519.57± 16.7 0.0 646.49± 13.4 0.0

r, 2500 100 23.47 24.56± 11.3 8.4 51.93± 19.6 0.0
500 115.24 120.95± 10.5 0.0 257.99± 18.4 0.0
1000 229.95 241.48± 10.5 0.0 516.00± 18.4 0.0

r, 5000 100 11.98 12.48± 11.2 50.3 49.35± 22.3 0.0
500 57.87 60.53± 10.4 0.0 246.96± 20.7 0.0
1000 115.23 120.62± 10.4 0.0 494.44± 20.7 0.0

a t = d
∑n

i=1 wi/We (mean from 1000 instances).
b Number of bins per solution (mean from 1000 instances plus or minus the coefficient of variation
(%)).

c Percentage of instances in which the solution comprises t bins.

Table 7.2: Results obtained using the MFFD+′ and MFFD+ heuristics for the MSCPP and the
SCPP respectively for δ = 0.5.

δ = 0.5 MFFD+′ MFFD+

Type, W |I| t |S| %t |S| %t

a, 1250 100 46.13 47.67± 6.2 9.2 49.73± 5.7 0.8
500 229.37 232.02± 2.1 0.0 239.15± 2.3 0.0

1000 458.37 462.18± 1.4 0.0 472.35± 1.6 0.0

a, 2500 100 23.32 23.62± 4.4 70.1 28.46± 10.4 2.6
500 114.94 115.98± 1.9 4.0 132.65± 4.9 0.0

1000 229.44 231.41± 1.3 0.0 258.39± 3.5 0.0

a, 5000 100 11.92 12.03± 4.9 89.7 19.88± 18.3 0.7
500 57.72 58.12± 2.0 60.3 89.54± 9.3 0.0

1000 114.97 115.74± 1.4 22.1 172.61± 7.1 0.0

r, 1250 100 46.44 52.44± 17.8 0.0 56.51± 15.9 0.0
500 229.97 257.99± 16.9 0.0 278.39± 14.9 0.0
1000 459.38 515.23± 16.9 0.0 556.37± 14.8 0.0

r, 2500 100 23.47 24.22± 11.6 29.5 35.42± 23.1 1.6
500 115.24 119.21± 10.8 0.0 177.25± 21.2 0.0
1000 229.95 237.96± 10.7 0.0 355.04± 21.2 0.0

r, 5000 100 11.98 12.22± 11.5 75.7 29.61± 32.7 0.5
500 57.87 59.39± 10.6 1.6 153.42± 28.9 0.0
1000 115.23 118.34± 10.6 0.0 308.64± 28.7 0.0

113

7. AN ALTERNATIVE VERSION OF THE SCPP

Table 7.3: Results obtained using the MFFD+′ and MFFD+ heuristics for the MSCPP and the
SCPP respectively for δ = 0.75.

δ = 0.75 MFFD+′ MFFD+

Type, W |I| t |S| %t |S| %t

a, 1250 100 46.13 47.60± 6.2 12.8 47.76± 6.1 10.4
500 229.37 231.81± 2.1 0.0 232.04± 2.1 0.0

1000 458.37 461.86± 1.4 0.0 462.06± 1.4 0.0

a, 2500 100 23.32 23.56± 4.5 76.0 23.94± 5.5 55.7
500 114.94 115.68± 1.9 26.5 116.09± 2.1 21.3

1000 229.44 230.86± 1.3 0.0 231.16± 1.4 0.0

a, 5000 100 11.92 11.99± 4.9 93.2 12.48± 8.7 63.6
500 57.72 57.97± 1.9 75.7 58.56± 2.7 50.9

1000 114.97 115.45± 1.4 51.3 115.91± 1.6 37.8

r, 1250 100 46.44 52.27± 18.0 0.1 53.39± 17.2 0.0
500 229.97 257.20± 17.0 0.0 263.03± 16.2 0.0
1000 459.38 513.65± 16.9 0.0 525.60± 16.1 0.0

r, 2500 100 23.47 24.06± 11.7 43.9 27.69± 18.4 17.9
500 115.24 118.43± 10.9 0.0 138.56± 17.0 0.0
1000 229.95 236.42± 10.9 0.0 277.84± 17.1 0.0

r, 5000 100 11.98 12.14± 11.5 84.6 18.28± 34.8 19.2
500 57.87 58.83± 10.7 15.5 96.73± 31.5 1.9
1000 115.23 117.21± 10.7 0.5 195.60± 31.4 0.3

Nevertheless, for δ = 0.5 there are four instance classes whereby, unlike MFFD+ for

the SCPP, MFFD+′ finds solutions comprising t bins for the MSCPP. A significant

case in point is the artificial instance class with |I| = 500 and W = 5000, where

MFFD+′ generates over 600 solutions containing t bins. Moreover, although MFFD+

does produce solutions using t bins for the SCPP for five instance classes, MFFD+′

yields a larger number of such solutions – in three of the instance classes the difference

between the number of solutions using t bins ranges from 675 to 890.

The same trend is observed when δ = 0.75, where MFFD+′ yields solutions

comprising fewer bins in comparison to MFFD+ and also finds a higher number of

solutions using t bins. Despite the increase in the quality of solutions produced by

MFFD+′, however, there still exist instance classes in which even MFFD+′ is unable

to generate solutions of t bins. This, of course, could be due to the inaccuracy of t

for the MSCPP, or perhaps suggests that a simple heuristic such as MFFD+′ is not

sufficient enough to produce high quality solutions for all instances of the MSCPP.

7.5 Summary

This chapter has introduced the Modified Score-Constrained Packing Problem (MSCPP),

an alternative version of the SCPP in which spaces can exists between adjacent items

in bins to aid the fulfillment of the vicinal sum constraint. The similarites and dif-

114

7.5. SUMMARY

ferences between the MSCPP and the SCPP have been explored, and an algorithm

based on the AHC algorithm of Chapter 3 is presented for the sub-MSCPP. From

this, we have created the MFFD+′ heuristic for the MSCPP, which is analogous to

MFFD+ for the SCPP, and have compared the results of the heuristics to see the

differences in solutions of the two problems.

The main advantage of the MSCPP is the increase in the number of items per

bin which, of course, can reduce the total number of bins in the final solution.

Clearly, this is a desirable factor in industry as fewer bins (i.e. strips of material)

will be required, thus reducing costs. However, it still remains to be seen whether

all instances of the sub-MSCPP can be solved in polynomial-time.

115

Chapter 8

Conclusions and Future Research

This thesis has been dedicated to the Score-Constrained Packing Problem (SCPP),

a combinatorial optimisation problem that generalises the classical one-dimensional

bin packing problem (BPP), in which the goal is to pack a set I of items that possess

score lines into the fewest number of bins such that no bin is overfilled and vicinal

sum constraint (1.1) is fulfilled in each bin. As the order and orientation of the items

in each bin affects the feasibility of a solution, standard methods for the BPP are

not guaranteed to produce valid solutions for the SCPP.

The single bin version of the problem was motivated by a problem arising in the

packaging industry, where sheets of cardboard are to be cut and folded into boxes

(Goulimis, 2004). Finding high quality solutions to the SCPP not only reduces the

cost of materials, but also minimises the amount of waste generated, which should

be a priority given current environmental issues. This further motivates the study

of the SCPP.

As the SCPP is a relatively new problem, this thesis set out to discover the

different properties that benefit the SCPP. To do so, we studied various methods

including heuristics, metaheuristics, and exact methods, allowing us to form a better

understanding and overview of the problem.

8.1 Summary of Findings

In this section, we present the findings and contributions of this thesis relating to

the research aims stated in Section 1.2.

8.1.1 Research Aim 1

To compare several heuristics for the SCPP and identify characteristics that make

the heuristics suitable for particular problem instance types.

117

8. CONCLUSIONS AND FUTURE RESEARCH

Due to the novelty of the SCPP and thus the lack of benchmark instances, heuristics

are an appropriate initial approach to better understand what is required to produce

higher quality solutions. In Chapter 4, we explored three heuristics for the SCPP.

The effectiveness and the simplicity of the FFD heuristic for the BPP discussed in

Chapter 2 led us to base two of our heuristics on FFD: MFFD, a slightly modi-

fied version of FFD, and MFFD+ which incorporates the Alternating Hamiltonian

Construction (AHC) algorithm for the sub-SCPP detailed in Chapter 3. We also

developed a third heuristic, PS, which focuses on packing individual bins in turn.

A wide range of problem instances for the SCPP with varying item sizes and

types as well as bin capacities were used to compare the heuristics. A parameter

δ was also introduced to control the proportion of score widths of items in a set I
that satisfy the vicinal sum constraint. This allows us to alter the difficulty of the

problem instances and fully assess the performance of the heuristics in a variety of

scenarios.

It is immediately evident that the limitations on MFFD proved unfit for the

SCPP, producing the lowest quality solutions across the majority of instance classes.

The PS heuristic was shown to be beneficial for problem instances where the pro-

portion of score widths that meet the vicinal sum constraint is low, due to the

heuristic’s mechanism of selecting items based on their score widths. On the other

hand, MFFD+ yields higher quality solutions for instances with fewer items per bin

and instances with a higher proportion of score widths that meet the vicinal sum

constraint. This indicates that MFFD+ is more suited to instances with smaller bin

sizes where the widths of the items are important, as PS does not consider the items’

widths. The lack of an accurate lower bound for the SCPP is also acknowledged, and

suggests that optimal solutions may have been found in a larger number of problem

instances. Ultimately, the use of heuristics further confirms that the ability to re-

order and reorientate items within bins is crucial in the formation of higher quality

solutions.

8.1.2 Research Aim 2

To investigate the effects of different recombination operators within an evolution-

ary algorithm framework on the quality of solutions and determine the desirable

attributes of each operator.

In Chapter 2 we highlighted the abundance of literature of evolutionary algorithms

(EAs) for the BPP and related packing problems including the TPP, a problem

similar to the SCPP with order and orientation restrictions. The adaptability of

EAs is appealing for a problem like the SCPP, because the operators can be tailored

118

8.1. SUMMARY OF FINDINGS

specifically for the constraints of the problem. Chapter 5 describes our EA for the

SCPP which includes a local search procedure to introduce the movement of items

between bins, an attractive property not seen our the previous heuristics.

Within the EA framework, three distinct recombination operators were com-

pared, each with different priorities. Computational results show that the AGX

recombination operator performed worst overall in line with results seen in existing

work (Lewis and Holborn, 2017). Although operators that perform in a similar man-

ner to AGX would be suitable for the BPP, the results produced using AGX indicate

that the vicinal sum constraint must be prioritised when forming solutions. This is

further confirmed by the higher quality results obtained using the AGX′ recombi-

nation operator which operates by seeking bins containing the most items, and in

these scenarios it is difficult to fulfil the vicinal sum constraint; thus such bins are

more desirable. The advantage of the AGX′ mechanism is particularly noticeable

in experiments when δ = 0.25, where the proportion of score widths that meet the

vicinal sum constraint is smallest. Furthermore, the GGA recombination operator

yields high quality results on average in the majority of instance classes, which sug-

gests that the formation of good groups of bins over a high number of iterations is

beneficial for the SCPP.

8.1.3 Research Aim 3

To explore the combination of exact methods with metaheuristics and assess the

associated advantages and disadvantages.

Having investigated heuristics and metaheuristics, our next step into helping us

better understand the SCPP was to look into exact methods. Chapter 6 provided

an ILP formulation for a generalised vehicle routing problem corresponding to the

SCPP and discussed how commercial solvers are not appropriate for larger, realistic

problem instance sizes. Instead, we described the MXCP, which involves finding an

exact cover of minimum cardinality from a collection of subsets. We then introduced

two CMSA-based algorithms: CMSA-M and CMSA-EA, which use metaheuristics

to form and evolve a set of high quality bins B that make up high quality solutions

for the given instance I. They also use an exact algorithm, MinDLX, to solve the

MXCP and find an optimal solution S∗ with respect to B in each iteration.

The idea behind this approach is that finding a solution will be easier with a

smaller, restricted set of bins B. However, it is clear from the outset that, despite

the mechanisms and parameters used to control the size of the set of bins B, MinDLX

is computationally expensive and the amount of time allocated for the procedure to

find an optimal solution with respect to B is insufficient. This affects the overall

119

8. CONCLUSIONS AND FUTURE RESEARCH

CMSA algorithms, primarily by reducing the number of iterations performed which

in turn restricts exploration of the search space, implying that the problem size and

complexity of the SCPP is not appropriate for this type of exact method approach.

However, in theory the CMSA algorithm framework can be seen to be promising due

to its focus on collecting high quality groups of bins, which is a successful approach

within our EA in the previous chapter. Moreover, the effectiveness of the feedback

mechanism implemented within CMSA-M is highlighted, and further investigation

should be considered into exploiting this feature.

8.1.4 Research Aim 4

To determine whether improved solutions can be found by relaxing elements of the

SCPP, namely by allowing spaces between items in each bin.

After studying the SCPP, we turned our attention to an alternative version of the

problem. Chapter 7 initially defined the Modified Score-Constrained Packing Prob-

lem (MSCPP) and its associated sub-problem (sub-MSCPP) which use the modified

vicinal sum constraint, a relaxed version of (1.1) that permits spaces between items

in a packing so that the distance between score lines of adjacent items is greater than

or equal to the minimum scoring distance τ . We then introduced AHC′, adapted

from the AHC algorithm for the sub-SCPP, which aims to find the shortest alternat-

ing Hamiltonian cycle in a graph G modelling an instance of the sub-MSCPP. Using

AHC′, we created the MFFD+′ heuristic for the MSCPP, based on MFFD+ for the

SCPP, and compared the results of these heuristics to see how the solutions for the

two problems differ.

We saw that MFFD+′ produced solutions using the fewest number of bins |S| on
average in all instance classes. Clearly, relaxing the vicinal sum constraint gives rise

to an increase in the number of items per bin, resulting in fewer bins in the overall

solution. However, it is also important to note that although we are able to deduce a

lower bound for the shortest alternating Hamiltonian cycle in G for the sub-MSCPP,

at the time of writing there is no guarantee that AHC′ can solve all instances of the

sub-MSCPP in polynomial-time, as with AHC for the sub-SCPP.

8.2 Future Research

The research presented in this thesis gives rise to a variety of ways in which the

study could be extended. In this section, we provide several suggestions for future

work considering both theoretical and computational aspects.

120

8.2. FUTURE RESEARCH

8.2.1 Lower Bounds

Throughout this thesis, the theoretical minimum t (2.2) for the BPP is used to

analyse results for the SCPP. Although a solution S for an instance I of the SCPP

is an optimal solution if |S| = t, there is currently no way to determine whether S
is optimal when |S| > t. Of course, other lower bounds that exist in literature could

be considered for the SCPP; however, ideally, an accurate lower bound for the SCPP

would take into account δ – the proportion of score widths of a set of items I that

fulfil the vicinal sum constraint – as well as the bin capacityW . It has been shown in

our experiments that as δ decreases and tends towards 0 the vicinal sum constraint

should be prioritised as fewer items can be packed into a single bin, whilst as δ tends

to 1 the SCPP becomes equivalent to the BPP; thus the focus must shift to the bin

capacity constraint. Having a reliable lower bound for the SCPP would allow us to

determine the performance of algorithms in the form of upper bounds and develop

approximation algorithms.

8.2.2 Alternative Heuristics

Two of the heuristics examined in this thesis are based upon the FFD heuristic for

the BPP, however other heuristics might be considered for the SCPP. There exists

an abundance of literature proposing heuristics for the BPP and related packing

problems, many of which can be adapted for the SCPP. Investigating a wider variety

of methods for the SCPP would provide further insight into the characteristics that

improve and hinder the performance of a constructive heuristic. Potential studies

range from the basic BFD heuristic (Johnson, 1973) modified to incorporate the

AHC algorithm as with MFFD+, to developing guidelines for partitioning items into

subsets in a similar manner to the HarmonicM heuristic (Lee and Lee, 1985).

8.2.3 Evolutionary Algorithm Operators and Metaheuristics

In Chapter 5, where we have developed the first EA for the SCPP, the focus is

on comparing the effects of different recombination operators on the quality of so-

lutions. However, there also exists other operators within the EA that should be

investigated in a similar manner, including the number of parent solutions chosen

from the population in each iteration, how the parents are selected, the number of

offspring solutions produced from the parent solutions, alternative distributions for

selecting values of r in the mutation operator, as well as considering different local

search methods. Moreover, additional heuristics such as MFFD and PS could be

used in conjuction with MFFD+ and MFFR+ to create candidate solutions for the

initial population. Besides EAs, other metaheuristic methods and properties should

121

8. CONCLUSIONS AND FUTURE RESEARCH

be studied both within and independent of our EA, for example, simulated annealing

and tabu search, both of which would provide an invaluable insight into the mech-

anisms of the algorithms with respect to the SCPP and allow us to examine how

efficiently each method navigates the solution space.

8.2.4 Combining Techniques

We saw in Chapter 6 that the exact algorithm MinDLX used within our CMSA-

based algorithms requires an unrealistic amount of time in order to perform correctly

given the size of the set of bins B. Other than further restricting the size of B, a
simple substitute to consider is implementing an ILP solver in place of MinDLX.

Alternatively, the exact solver within CMSA could be removed entirely, instead using

a procedure to find just a single solution in B rather than the minimum cardinality

exact cover. Finding solutions faster would increase the number of CMSA iterations

and encourage the evolution of B. In addition, a method such as tabu search could

be implemented to prevent the algorithm from producing identical solutions and

bins in each iteration. The feedback mechanism should also be exploited further to

introduce new, higher quality bins into B.

8.2.5 The MSCPP

The main focus into the MSCPP should be on the complexity of the AHC′ algorithm

and/or determining whether there exists an exact polynomial-time algorithm for the

sub-MSCPP which would prove beneficial for the MSCPP. Methods for the SCPP

could then be used for the MSCPP which would allow us to further examine the

similarities and differences between the two problems. Furthermore, an additional

constraint of maximising useable leftover materials could be considered, which may

have a positive impact in industrial applications.

8.3 Final Remarks

This final chapter has presented a summary of significant findings obtained through-

out this thesis and highlights promising areas of our research. The novelty of the

SCPP gives rise to numerous avenues for future work regarding both the SCPP and

related problems, for which this thesis provides a solid foundation. Further publica-

tions of the research in this thesis are also underway.

122

8.4. SUMMARY OF AVAILABLE RESOURCES

8.4 Summary of Available Resources

This section provides an overview of the resources created and used for the research

in this thesis. All resources are accompanied with a user guide as well as a list of

the specific parameter values used for each of the experiments.

• The problem instance generator and all problem instances used in the experi-

ments throughout this thesis can be found at Hawa (2020g).

• The code and results for the three constructive heuristics in Chapter 4 is avail-

able at Hawa (2020f).

• The code and results for the evolutionary algorithm framework in Chapter 5,

which includes all three recombination operators, is provided by Hawa (2020e).

• The ILP model for the SCPP presented in Chapter 6 is available online (Hawa,

2020c) and is implemented in Xpress Mosel.

• The code and results for the two CMSA-based algorithms described in Chap-

ter 6 is available at Hawa (2020d).

• The ILP model for the sub-MSCPP introduced in Chapter 7 is available online

(Hawa, 2020b) and is implemented in Xpress Mosel.

• Finally, the code and results for the MFFD+′ heuristic for the MSCPP in

Chapter 7 can be found at Hawa (2020a).

123

Bibliography

Aardal, K. I., Van Hoesel, S. P., Koster, A. M., Mannino, C., and Sassano, A. (2007).

Models and solution techniques for frequency assignment problems. Annals of

Operations Research, 153(1):79–129.

Akeb, H., Hifi, M., and M’Hallah, R. (2009). A beam search algorithm for the circular

packing problem. Computers & Operations Research, 36(5):1513–1528.

Alvarez-Valdes, R., Martinez, A., and Tamarit, J. (2013). A branch & bound algo-

rithm for cutting and packing irregularly shaped pieces. International Journal of

Production Economics, 145(2):463–477.

Applegate, D., Bixby, R., Chvatal, V., and Cook, W. (1999). Finding tours in the

TSP. Technical report.

Arora, D., Maini, P., Pinacho-Davidson, P., and Blum, C. (2019). Route planning for

cooperative air-ground robots with fuel constraints: an approach based on CMSA.

In Proceedings of the Genetic and Evolutionary Computation Conference, pages

207–214.

Bäck, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford University

Press.

Bäck, T., Fogel, D. B., and Michalewicz, Z. (1997). Handbook of Evolutionary Com-

putation. Institute of Physics Publishing and Oxford University Press.

Baker, B. S. (1985). A new proof for the first-fit decreasing bin-packing algorithm.

Journal of Algorithms, 6(1):49–70.

Baker, B. S., Coffman, Jr, E. G., and Rivest, R. L. (1980). Orthogonal packings in

two dimensions. SIAM Journal on Computing, 9(4):846–855.

Balas, E. (1965). An additive algorithm for solving linear programs with zero-one

variables. Operations Research, 13(4):517–546.

Bang-Jensen, J. and Gutin, G. (1997). Alternating cycles and paths in edge-coloured

multigraphs: a survey. Discrete Mathematics, 165(1):39–60.

125

BIBLIOGRAPHY

Bang-Jensen, J. and Gutin, G. (1998). Alternating cycles and trails in 2-edge-

coloured complete multigraphs. Discrete Mathematics, 188(1-3):61–72.

Bankfalvi, M. and Bankfalvi, Z. (1968). Alternating Hamiltonian circuit in two-

coloured complete graphs. In Proceedings of Colloq. Tihany 1968, pages 11–18.

Becker, K. H. (2010). Twin-Constrained Hamiltonian Paths on Threshold Graphs

- An Approach to the Minimum Score Separation Problem. PhD thesis, London

School of Economics.

Bellman, R. E. (1961). Dynamic programming treatment of the traveling salesman

problem. Journal of the ACM (JACM), 9(1):61–63.

Belov, G. and Scheithauer, G. (2002). A cutting plane algorithm for the one-

dimensional cutting stock problem with multiple stock lengths. European Journal

of Operational Research, 141(2):274–294.

Beltrán, J. D., Calderón, J. E., Cabrera, R. J., Moreno-Pérez, J. A., and Moreno-

Vega, J. M. (2004). GRASP-VNS hybrid for the Strip Packing Problem. Hybrid

metaheuristics, 2004:79–90.

Bennell, J. A., Dowsland, K. A., and Dowsland, W. B. (2001). The irregular cutting-

stock problem – a new procedure for deriving the no-fit polygon. Computers &

Operations Research, 28(3):271–287.

Bianchi, L., Birattari, M., Chiarandini, M., Manfrin, M., Mastrolilli, M., Paquete, L.,

Rossi-Doria, O., and Schiavinotto, T. (2006). Hybrid metaheuristics for the vehicle

routing problem with stochastic demands. Journal of Mathematical Modelling and

Algorithms, 5(1):91–110.

Bianchi, L., Dorigo, M., Gambardella, L. M., and Gutjahr, W. J. (2009). A survey

on metaheuristics for stochastic combinatorial optimization. Natural Computing,

8(2):239–287.

Bjorklund, A. (2014). Determinant sums for undirected Hamiltonicity. SIAM Journal

on Computing, 43(1):280–299.

Blum, C. (2016). Construct, merge, solve and adapt: application to unbalanced

minimum common string partition. In International Workshop on Hybrid Meta-

heuristics, pages 17–31. Springer.

Blum, C. and Blesa, M. J. (2016). Construct, merge, solve and adapt: applica-

tion to the repetition-free longest common subsequence problem. In Evolutionary

Computation in Combinatorial Optimization, pages 46–57. Springer.

126

BIBLIOGRAPHY

Blum, C. and Calvo, B. (2015). A matheuristic for the minimum weight rooted

arborescence problem. Journal of Heuristics, 21(4):479–499.

Blum, C. and Pereira, J. (2016). Extension of the CMSA algorithm: an LP-based

way for reducing sub-instances. In Proceedings of the Genetic and Evolutionary

Computation Conference 2016, pages 285–292.

Blum, C., Pinacho, P., López-Ibáñez, M., and Lozano, J. A. (2016). Construct,

merge, solve & adapt a new general algorithm for combinatorial optimization.

Computers & Operations Research, 68:75–88.

Blum, C., Puchinger, J., Raidl, G. R., and Roli, A. (2011). Hybrid metaheuristics in

combinatorial optimization: a survey. Applied Soft Computing, 11(6):4135–4151.

Blum, C. and Roli, A. (2003). Metaheuristics in combinatorial optimiza-

tion: Overview and conceptual comparison. ACM computing surveys (CSUR),

35(3):268–308.

Blum, C., Roli, A., and Sampels, M. (2008). Hybrid metaheuristics: an emerging

approach to optimization, volume 114. Springer.

Blum, C. and Santos, H. G. (2019). Generic CP-supported CMSA for binary integer

linear programs. In International Workshop on Hybrid Metaheuristics, pages 1–15.

Springer.

Blum, C. and Schmid, V. (2013). Solving the 2D bin packing problem by means of

a hybrid evolutionary algorithm. Procedia Computer Science, 18:899–908.

Bollobás, B. and Erdös, P. (1976). Alternating Hamiltonian cycles. Israel Journal

of Mathematics, 23(2):126–131.

Bortfeldt, A. (2006). A genetic algorithm for the two-dimensional strip packing

problem with rectangular pieces. European Journal of Operational Research,

172(3):814–837.

Brandstadt, A., Spinrad, J. P., et al. (1999). Graph classes: a survey, volume 3.

SIAM.

Brown, A. R. (1971). Optimum packing and depletion. American Elsevier, New York.

Buckles, B. P. and Petry, F. E. (1992). Genetic Algorithms. IEEE Computer Society

Press.

Burke, E. K., Hyde, M. R., and Kendall, G. (2006). Evolving bin packing heuristics

with genetic programming. In Parallel Problem Solving from Nature-PPSN IX,

pages 860–869. Springer.

127

BIBLIOGRAPHY

Cardoso Silva, A. and Hasenclever Borges, C. C. (2019). An improved heuristic based

genetic algorithm for bin packing problem. In 2019 8th Brazilian Conference on

Intelligent Systems (BRACIS), pages 60–65. IEEE.

Carter, M. W., Laporte, G., and Lee, S. Y. (1996). Examination timetabling: Algo-

rithmic strategies and applications. Journal of the Operational Research Society,

47(3):373–383.

Chan, L. M. A., Simchi-Levi, D., and Bramel, J. (1998). Worst-case analyses, linear

programming and the bin-packing problem. Mathematical Programming, 83(1-

3):213–227.

Chandra, A., Hirschberg, D. S., and Wong, C. (1978). Bin packing with geometric

constraints in computer network design. Operations Research, 26(5):760–772.

Chen, C. and Daykin, D. E. (1976). Graphs with Hamiltonian cycles having adjacent

lines different colors. Journal of Combinatorial Theory, Series B, 21(2):135–139.

Chen, C.-L. and Chen, C.-L. (2009). Hybrid metaheuristics for unrelated paral-

lel machine scheduling with sequence-dependent setup times. The International

Journal of Advanced Manufacturing Technology, 43(1-2):161.

Chvátal, V. and Hammer, P. L. (1973). Set packing and threshold graphs. Waterloo

Res. Report, pages 73–21.

Chvátal, V. and Hammer, P. L. (1977). Aggregation of inequalities in integer pro-

gramming. Annals of Discrete Mathematics, 1:145–162.

Cobham, A. (1965). The intrinsic computational difficulty of functions. In Proceed-

ings of the 1964 International Congress for Logic, Methodology, and Philosophy of

Science, pages 24–30. North-Holland Publishing Company: Amsterdam.

Coelho, K. R., Cherri, A. C., Baptista, E. C., Jabbour, C. J. C., and Soler, E. M.

(2017). Sustainable operations: The cutting stock problem with usable leftovers

from a sustainable perspective. Journal of cleaner production, 167:545–552.

Coffman, E. G., Csirik, J., Galambos, G., Martello, S., and Vigo, D. (2013). Bin

packing approximation algorithms: survey and classification. Handbook of combi-

natorial optimization, pages 455–531.

Coffman, E. G., Galambos, G., Martello, S., and Vigo, D. (1999). Bin packing

approximation algorithms: Combinatorial analysis. In Handbook of combinatorial

optimization, pages 151–207. Springer.

128

BIBLIOGRAPHY

Coffman, E. G., Garey, M. R., and Johnson, D. S. (1978). An Application of Bin-

Packing to Multiprocessor Scheduling. SIAM Journal on Computing, 7(1):1–17.

Coffman, E. G., Garey, M. R., and Johnson, D. S. (1984). Approximation Algorithms

for Bin-Packing – An Updated Survey. In Algorithm Design for Computer System

Design, pages 49–106. Springer.

Coffman, E. G., Garey, M. R., and Johnson, D. S. (1987). Bin packing with divisible

item sizes. Journal of Complexity, 3(4):406–428.

Coffman, E. G., Garey, M. R., and Johnson, D. S. (1996). Approximation algorithms

for bin packing: a survey. In Approximation algorithms for NP-hard problems,

pages 46–93. PWS Publishing Co.

Cook, S. (2006). The P versus NP problem. The millennium prize problems, pages

87–104.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings

of the third annual ACM symposium on Theory of Computing, pages 151–158.

Cook, S. A. (1983). An overview of computational complexity. Communications of

the ACM, 26(6):400–408.

Cook, W. and Seymour, P. (2003). Tour merging via branch-decomposition. IN-

FORMS Journal on Computing, 15(3):233–248.

Coudert, D., Nepomuceno, N., and Rivano, H. (2010). Power-efficient radio con-

figuration in fixed broadband wireless networks. Computer Communications,

33(8):898–906.

Coudert, D., Nepomuceno, N., and Tahiri, I. (2011). Energy saving in fixed wireless

broadband networks. In International Conference on Network Optimization, pages

484–489. Springer.

Csirik, J. and Totik, V. (1988). Online algorithms for a dual version of bin packing.

Discrete Applied Mathematics, 21(2):163–167.

Cui, Y., Song, X., Chen, Y., and Cui, Y.-P. (2017). New model and heuristic solution

approach for one-dimensional cutting stock problem with usable leftovers. Journal

of the Operational Research Society, 68(3):269–280.

Cui, Y., Yang, L., and Chen, Q. (2013). Heuristic for the rectangular strip packing

problem with rotation of items. Computers & Operations Research, 40(4):1094–

1099.

129

BIBLIOGRAPHY

da Silveira, J. L., Miyazawa, F. K., and Xavier, E. C. (2013). Heuristics for the strip

packing problem with unloading constraints. Computers & Operations Research,

40(4):991–1003.

Darwin, C. (1875). The variation of animals and plants under domestication. John

Murray.

Daykin, D. (1976). Graphs with cycles having adjacent lines different colors. Journal

of Combinatorial Theory, Series B, 20(2):149–152.

Delahaye, J.-P. (2006). The science behind Sudoku. Scientific American, 294(6):80–

87.

Delorme, M., Iori, M., and Martello, S. (2016). Bin packing and cutting stock

problems: Mathematical models and exact algorithms. European Journal of Op-

erational Research, 255(1):1–20.

Delorme, X., Gandibleux, X., and Degoutin, F. (2010). Evolutionary, constructive

and hybrid procedures for the bi-objective set packing problem. European Journal

of Operational Research, 204(2):206–217.

do Nascimento, D., de Araujo, S., and Cherri, A. (2020). Integrated lot-sizing and

one-dimensional cutting stock problem with usable leftovers. Annals of Operations

Research, pages 1–19.

Dorigo, M. (1992). Optimization, learning and natural algorithms. PhD thesis,

Politecnico di Milano.

Dósa, G. (2007). The Tight Bound of First Fit Decreasing Bin-Packing Algorithm

is FFD(I) ≤ 11/9OPT (I) + 6/9. Combinatorics, Algorithms, Probabilistic and

Experimental Methodologies, pages 1–11.

Dósa, G., Li, R., Han, X., and Tuza, Z. (2013). Tight absolute bound for First Fit

Decreasing bin-packing: FFD(l) ≤ 11/9OPT (L) + 6/9. Theoretical Computer

Science, 510:13–61.

Dósa, G. and Sgall, J. (2013). First Fit bin packing: A tight analysis. In 30th

International Symposium on Theoretical Aspects of Computer Science (STACS

2013). Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Dósa, G. and Sgall, J. (2014). Optimal analysis of Best Fit bin packing. In Inter-

national Colloquium on Automata, Languages, and Programming, pages 429–441.

Springer.

130

BIBLIOGRAPHY

Ecker, K. and Zaks, S. (1977). On a graph labelling problem. Ges. f. Math. u.

Datenverarb.

Edmonds, J. (1965). Paths, trees, and flowers. Canadian Journal of Mathematics,

17:449–467.

Eilon, S. and Christofides, N. (1971). The Loading Problem. Management Science,

17(5):259–268.

Falkenauer, E. (1993). The grouping genetic algorithms: widening the scope of the

GA’s. JORBEL-Belgian Journal of Operations Research, Statistics, and Computer

Science, 33(1-2):79–102.

Falkenauer, E. (1996). A hybrid grouping genetic algorithm for bin packing. Journal

of Heuristics, 2(1):5–30.

Falkenauer, E. (1998). Genetic algorithms and grouping problems. John Wiley &

Sons, Inc.

Falkenauer, E. and Bouffouix, S. (1991). A genetic algorithm for job shop. In ICRA,

pages 824–829. Citeseer.

Falkenauer, E. and Delchambre, A. (1992). A genetic algorithm for bin packing and

line balancing. In IEEE International Conference on Robotics and Automation,

pages 1186–1192. IEEE.

Fan, Y., Chu, J., and Xu, H. (2020). Improvement grouping genetic algorithm for

solving the bin packing problem. In Journal of Physics: Conference Series, volume

1550, page 032168. IOP Publishing.

Feo, T. A. and Resende, M. G. (1995). Greedy randomized adaptive search proce-

dures. Journal of Global Optimization, 6(2):109–133.

Fernandez de la Vega, W. and Lueker, G. S. (1981). Bin packing can be solved within

1+ ε in linear time. Combinatorica, 1(4):349–355.

Ferreira, C. (2001). Gene expression programming: a new adaptive algorithm for

solving problems. Complex Systems, 13(2):87–129.

Fidanova, S. and Pop, P. (2016). An improved hybrid ant-local search algorithm

for the partition graph coloring problem. Journal of Computational and Applied

Mathematics, 293:55–61.

Fleszar, K. and Hindi, K. S. (2002). New heuristics for one-dimensional bin-packing.

Computers & Operations Research, 29(7):821–839.

131

BIBLIOGRAPHY

Fogel, D. B. (1995). Evolutionary Computation: Toward a New Philosophy of Ma-

chine Intelligence. IEEE.

Fogel, L. J., Owens, A. J., and Walsh, M. J. (1966). Artificial intelligence through

simulated evolution. John Wiley & Sons.

Galinier, P. and Hao, J.-K. (1999). Hybrid evolutionary algorithms for graph color-

ing. Journal of Combinatorial Optimization, 3(4):379–397.

Garey, M. R., Graham, R. L., Johnson, D. S., and Yao, A. C.-C. (1976). Resource

constrained scheduling as generalized bin packing. Journal of Combinatorial The-

ory, Series A, 21(3):257–298.

Garey, M. R., Graham, R. L., and Ullman, J. D. (1972). Worst-case analysis of mem-

ory allocation algorithms. In Proceedings of the fourth annual ACM Symposium

on Theory of Computing, pages 143–150. ACM.

Garey, M. R. and Johnson, D. S. (1978). “Strong”NP-Completeness Results: Moti-

vation, Examples, and Implications. Journal of the ACM, 25(3):499–508.

Garey, M. R. and Johnson, D. S. (1979). Computers and Intractability: A Guide to

the Theory of NP-Completeness. WH Freeman Co., San Francisco.

Garraffa, M., Salassa, F., Vancroonenburg, W., Vanden Berghe, G., and Wauters,

T. (2016). The one-dimensional cutting stock problem with sequence-dependent

cut losses. International Transactions in Operational Research, 23(1-2):5–24.

Gilmore, P. C. and Gomory, R. E. (1961). A linear programming approach to the

cutting-stock problem. Operations Research, 9(6):849–859.

Gilmore, P. C. and Gomory, R. E. (1963). A linear programming approach to the

cutting stock problem—Part II. Operations Research, 11(6):863–888.

Glover, F. (1986). Future paths for integer programming and links to artificial

intelligence. Computers & Operations Research, 13(5):533–549.

Glover, F. W. and Kochenberger, G. A. (2003). Handbook of Metaheuristics. Kluwer

Academic Publishers.

Goldberg, D. E. (1989). Genetic Algorithms in Search, Optimization and Machine

Learning. Addison-Wesley Publishing Co.

Golumbic, M. C. (2004). Algorithmic graph theory and perfect graphs, volume 57.

Elsevier.

132

BIBLIOGRAPHY

Gould, R. J. (1991). Updating the Hamiltonian problem – a survey. Journal of

Graph Theory, 15(2):121–157.

Gould, R. J. (2003). Advances on the Hamiltonian problem – a survey. Graphs and

Combinatorics, 19(1):7–52.

Goulimis, C. (2004). Minimum Score Separation - an open combinatorial problem

associated with the cutting stock problem. Journal of the Operational Research

Society, 55(12):1367–1368.

Grossman, J. W. and Häggkvist, R. (1983). Alternating cycles in edge-partitioned

graphs. Journal of Combinatorial Theory, Series B, 34(1):77–81.

Gupta, J. N. and Ho, J. C. (1999). A new heuristic algorithm for the one-dimensional

bin-packing problem. Production Planning & Control, 10(6):598–603.

Häggkvist, R. (1977). On F-Hamiltonian graphs. University of Umeå, Department

of Mathematics.

Haouari, M. and Serairi, M. (2009). Heuristics for the variable sized bin-packing

problem. Computers & Operations Research, 36(10):2877–2884.

Hawa, A. L. (2020a). A Heuristic for the Modified Score-Constrained Packing Prob-

lem (MSCPP): Source Code and Results. https://doi.org/10.5281/zenodo.

3986642.

Hawa, A. L. (2020b). An Integer Linear Programming (ILP) Model for the Modified

Score-Constrained Packing Sub-Problem (sub-MSCPP). https://doi.org/10.

5281/zenodo.3986656.

Hawa, A. L. (2020c). An Integer Linear Programming (ILP) Model for the Score-

Constrained Packing Problem (SCPP). https://doi.org/10.5281/zenodo.

3986644.

Hawa, A. L. (2020d). CMSA Algorithms for the Score-Constrained Packing Problem

(SCPP): Source Code and Results. https://doi.org/10.5281/zenodo.3986637.

Hawa, A. L. (2020e). Evolutionary Algorithm (EA) for the Score-Constrained Pack-

ing Problem (SCPP): Source Code and Results. https://doi.org/10.5281/

zenodo.3986640.

Hawa, A. L. (2020f). Heuristics for the Score-Constrained Packing Problem (SCPP):

Source Code and Results. https://doi.org/10.5281/zenodo.3986638.

133

https://doi.org/10.5281/zenodo.3986642
https://doi.org/10.5281/zenodo.3986642
https://doi.org/10.5281/zenodo.3986656
https://doi.org/10.5281/zenodo.3986656
https://doi.org/10.5281/zenodo.3986644
https://doi.org/10.5281/zenodo.3986644
https://doi.org/10.5281/zenodo.3986637
https://doi.org/10.5281/zenodo.3986640
https://doi.org/10.5281/zenodo.3986640
https://doi.org/10.5281/zenodo.3986638

BIBLIOGRAPHY

Hawa, A. L. (2020g). Problem instance generator for the Score-Constrained Packing

Problem (SCPP. https://doi.org/10.5281/zenodo.3986636.

Hawa, A. L., Lewis, R., and Thompson, J. M. (2018). Heuristics for the Score-

Constrained Strip-Packing Problem. In International Conference on Combinato-

rial Optimization and Applications, pages 449–462. Springer.

He, K., Jin, Y., and Huang, W. (2013). Heuristics for two-dimensional strip packing

problem with 90◦ rotations. Expert Systems with Applications, 40(14):5542–5550.

Held, M. and Karp, R. M. (1962). A dynamic programming approach to sequenc-

ing problems. Journal of the Society for Industrial and Applied mathematics,

10(1):196–210.

Hemmelmayr, V., Schmid, V., and Blum, C. (2012). Variable neighbourhood search

for the variable sized bin packing problem. Computers & Operations Research,

39(5):1097–1108.

Henderson, P. B. and Zalcstein, Y. (1977). A graph-theoretic characterization of the

PVchunk class of synchronizing primitives. SIAM Journal on Computing, 6(1):88–

108.

Hifi, M. (1997). A genetic algorithm-based heuristic for solving the weighted maxi-

mum independent set and some equivalent problems. Journal of the Operational

Research Society, 48(6):612–622.

Hifi, M. (1998). Exact algorithms for the guillotine strip cutting/packing problem.

Computers & Operations Research, 25(11):925–940.

Hilton, A. J. (1992). Alternating Hamiltonian circuits in edge-coloured bipartite

graphs. Discrete Applied Mathematics, 35(3):271–273.

Hinterding, R. and Khan, L. (1994). Genetic algorithms for cutting stock problems:

with and without contiguity. In Progress in evolutionary computation, pages 166–

186. Springer.

Holland, J. H. (1962a). Concerning efficient adaptive systems. In Self-Organizing

Systems, volume 230, pages 215–230. Spartan Books.

Holland, J. H. (1962b). Outline for a logical theory of adaptive systems. Journal of

the Association for Computing Machinery, 9(3):297–314.

Holland, J. H. (1975). Adaptation in natural and artificial systems. University of

Michigan Press.

134

https://doi.org/10.5281/zenodo.3986636

BIBLIOGRAPHY

Hung, M. S. and Brown, J. R. (1978). An algorithm for a class of loading problems.

Naval Research Logistics (NRL), 25(2):289–297.

Iima, H. and Yakawa, T. (2003). A new design of genetic algorithm for bin packing.

In The 2003 Congress on Evolutionary Computation, 2003. CEC’03., volume 2,

pages 1044–1049. IEEE.

Jansen, K. and van Stee, R. (2005). On strip packing with rotations. In Proceedings

of the thirty-seventh annual ACM symposium on Theory of computing, pages 755–

761.

Johnson, D. S. (1973). Near-optimal bin packing algorithms. PhD thesis, Mas-

sachusetts Institute of Technology.

Johnson, D. S. (1974). Fast algorithms for bin packing. Journal of Computer and

System Sciences, 8(3):272–314.

Johnson, D. S., Demers, A., Ullman, J. D., Garey, M. R., and Graham, R. L. (1974).

Worst-Case Performance Bounds for Simple One-Dimensional Packing Algorithms.

SIAM Journal on Computing, 3(4):299–325.

Jongen, H. T., Meer, K., and Triesch, E. (2007). Optimization theory. Springer

Science & Business Media.

Junkermeier, J. (2015). A genetic algorithm for the bin packing problem. Evolution-

ary Computation, St. Cloud State University, Spring.

Kammarti, R., Ayachi, I., Ksouri, M., and Borne, P. (2013). Evolutionary ap-

proach for the containers bin-packing problem. Studies in Informatics and Control,

18(4):315–324.

Kantorovich, L. V. (1960). Mathematical methods of organizing and planning pro-

duction. Management science, English translation of a 1939 paper written in Rus-

sian, 6(4):366–422.

Karp, R. M. (1972). Reducibility Among Combinatorial Problems. In Complexity of

Computer Computations, pages 85–103. Springer.

Kenmochi, M., Imamichi, T., Nonobe, K., Yagiura, M., and Nagamochi, H. (2009).

Exact algorithms for the two-dimensional strip packing problem with and without

rotations. European Journal of Operational Research, 198(1):73–83.

Kennedy, J. and Eberhart, R. (1995). Particle swarm optimization. In Proceedings of

IEEE International Conference on Neural Networks, volume 4, pages 1942–1948.

IEEE.

135

BIBLIOGRAPHY

Kierkosz, I. and Luczak, M. (2014). A hybrid evolutionary algorithm for the two-

dimensional packing problem. Central European Journal of Operations Research,

22(4):729–753.

Kirkpatrick, S., Gelatt, C. D., and Vecchi, M. P. (1983). Optimization by simulated

annealing. Science, 220(4598):671–680.

Klau, G. W., Ljubić, I., Moser, A., Mutzel, P., Neuner, P., Pferschy, U., Raidl,

G., and Weiskircher, R. (2004). Combining a memetic algorithm with integer

programming to solve the prize-collecting steiner tree problem. In Genetic and

Evolutionary Computation Conference, pages 1304–1315. Springer.

Knuth, D. E. (2000). Dancing links. arXiv preprint cs/0011047.

Koren, M. (1973). Extreme degree sequences of simple graphs. Journal of Combina-

torial Theory, Series B, 15(3):213–224.

Korf, R. E. (2002). A New Algorithm for Optimal Bin Packing. In AAAI/IAAI,

pages 731–736.

Korf, R. E. (2003). An improved algorithm for optimal bin packing. In IJCAI,

volume 3, pages 1252–1258.

Kröger, B. (1995). Guillotineable bin packing: A genetic approach. European Journal

of Operational Research, 84(3):645–661.

Kucukyilmaz, T. and Kiziloz, H. E. (2018). Cooperative parallel grouping genetic

algorithm for the one-dimensional bin packing problem. Computers & Industrial

Engineering, 125:157–170.

Lee, C. C. and Lee, D.-T. (1985). A simple on-line bin-packing algorithm. Journal

of the ACM, 32(3):562–572.

Leung, S. C., Zhang, D., Zhou, C., and Wu, T. (2012). A hybrid simulated anneal-

ing metaheuristic algorithm for the two-dimensional knapsack packing problem.

Computers & Operations Research, 39(1):64–73.

Levine, J. and Ducatelle, F. (2004). Ant colony optimization and local search for bin

packing and cutting stock problems. Journal of the Operational Research Society,

55(7):705–716.

Lewis, R. (2009). A general-purpose hill-climbing method for order independent

minimum grouping problems: A case study in graph colouring and bin packing.

Computers & Operations Research, 36(7):2295–2310.

136

BIBLIOGRAPHY

Lewis, R. (2015a). Graph coloring and recombination. In Springer Handbook of

Computational Intelligence, pages 1239–1254. Springer.

Lewis, R. (2015b). A guide to graph colouring, volume 7. Springer.

Lewis, R. and Holborn, P. (2017). How to Pack Trapezoids: Exact and Evolutionary

Algorithms. IEEE Transactions on Evolutionary Computation, 21(3):463–476.

Lewis, R. and Paechter, B. (2007). Finding feasible timetables using group-based

operators. IEEE Transactions on Evolutionary Computation, 11(3):397–413.

Lewis, R., Song, X., Dowsland, K., and Thompson, J. (2011). An investigation into

two bin packing problems with ordering and orientation implications. European

Journal of Operational Research, 213(1):52–65.

Lewis, R., Thiruvady, D., and Morgan, K. (2019). Finding happiness: An analy-

sis of the maximum happy vertices problem. Computers & Operations Research,

103:265–276.

Lewis, R., Thompson, J., Mumford, C., and Gillard, J. (2012). A wide-ranging

computational comparison of high-performance graph colouring algorithms. Com-

puters & Operations Research, 39(9):1933–1950.

Lin, S.-W., Lee, Z.-J., Ying, K.-C., and Lee, C.-Y. (2009). Applying hybrid meta-

heuristics for capacitated vehicle routing problem. Expert Systems with Applica-

tions, 36(2):1505–1512.

Lizárraga, E., Blesa, M. J., and Blum, C. (2017). Construct, merge, solve and

adapt versus large neighborhood search for solving the multi-dimensional knapsack

problem: Which one works better when? In European Conference on Evolutionary

Computation in Combinatorial Optimization, pages 60–74. Springer.

Lodi, A., Martello, S., and Monaci, M. (2002). Two-dimensional packing problems:

A survey. European Journal of Operational Research, 141(2):241–252.

Lodi, A., Martello, S., and Vigo, D. (1999). Approximation algorithms for the

oriented two-dimensional bin packing problem. European Journal of Operational

Research, 112(1):158–166.

Lourenço, H. R., Martin, O. C., and Stützle, T. (2003). Iterated local search. In

Handbook of Metaheuristics, pages 320–353. Kluwer Academic Publishers.

Lü, Z. and Hao, J.-K. (2010). A memetic algorithm for graph coloring. European

Journal of Operational Research, 203(1):241–250.

137

BIBLIOGRAPHY

Ma, N., Liu, Y., and Zhou, Z. (2019). Two heuristics for the capacitated multi-period

cutting stock problem with pattern setup cost. Computers & Operations Research,

109:218–229.

Mahadev, N. V. and Peled, U. N. (1994). Longest cycles in threshold graphs. Discrete

Mathematics, 135(1-3):169–176.

Mahadev, N. V. R. and Peled, U. N. (1995). Threshold Graphs and Related Topics,

Annals of Discrete Mathematics, volume 56. Elsevier.

Malaguti, E., Monaci, M., and Toth, P. (2008). A metaheuristic approach for the

vertex coloring problem. INFORMS Journal on Computing, 20(2):302–316.

Maniezzo, V., Stützle, T., and Voß, S. (2010). Matheuristics. Springer.

Martello, S. (1983). An enumerative algorithm for finding Hamiltonian circuits in a

directed graph. ACM Transactions on Mathematical Software (TOMS), 9(1):131–

138.

Martello, S., Pisinger, D., and Vigo, D. (2000). The three-dimensional bin packing

problem. Operations Research, 48(2):256–267.

Martello, S. and Toth, P. (1990a). Knapsack problems: Algorithms and computer

implementations. Wiley.

Martello, S. and Toth, P. (1990b). Lower bounds and reduction procedures for the

bin packing problem. Discrete Applied Mathematics, 28(1):59–70.

Massen, F., Deville, Y., and Van Hentenryck, P. (2012). Pheromone-based heuristic

column generation for vehicle routing problems with black box feasibility. In Inter-

national Conference on Integration of Artificial Intelligence (AI) and Operations

Research (OR) Techniques in Constraint Programming, pages 260–274. Springer.

Massen, F., López-Ibánez, M., Stützle, T., and Deville, Y. (2013). Experimental

analysis of pheromone-based heuristic column generation using irace. In Interna-

tional Workshop on Hybrid Metaheuristics, pages 92–106. Springer.

Mathews, G. B. (1896). On the partition of numbers. Proceedings of the London

Mathematical Society, 1(1):486–490.

Mitchell, M. (1996). An introduction to genetic algorithms. MIT press.

Mladenović, N. and Hansen, P. (1997). Variable neighborhood search. Computers &

Operations Research, 24(11):1097–1100.

138

BIBLIOGRAPHY

Moalic, L. and Gondran, A. (2018). Variations on memetic algorithms for graph

coloring problems. Journal of Heuristics, 24(1):1–24.

Moscato, P. et al. (1989). On evolution, search, optimization, genetic algorithms

and martial arts: Towards memetic algorithms. Caltech concurrent computation

program, C3P Report, 826:1989.

Nepomuceno, N., Pinheiro, P., and Coelho, A. L. (2007a). Tackling the container

loading problem: a hybrid approach based on integer linear programming and ge-

netic algorithms. In European Conference on Evolutionary Computation in Com-

binatorial Optimization, pages 154–165. Springer.

Nepomuceno, N., Pinheiro, P., and Coelho, A. L. (2008). A hybrid optimization

framework for cutting and packing problems. In Recent Advances in Evolutionary

Computation for Combinatorial Optimization, pages 87–99. Springer.

Nepomuceno, N. V., Pinheiro, P. R., and Coelho, A. L. (2007b). Combining meta-

heuristics and integer linear programming: a hybrid methodology applied to

the container loading problem. In Proceedings of the XX congreso da sociedade

brasileira de computação, concurso de teses e dissertações, pages 2028–32.

Nouri, H. E., Driss, O. B., and Ghédira, K. (2016). Hybrid metaheuristics for schedul-

ing of machines and transport robots in job shop environment. Applied Intelligence,

45(3):808–828.

Ntene, N. and van Vuuren, J. H. (2008). A survey and comparison of heuristics for

the 2D oriented on-line strip packing problem. ORiON, 24(2):157–183.

Orlin, J. (1977). The minimal integral separator of a threshold graph. In Annals of

Discrete Mathematics, volume 1, pages 415–419. Elsevier.

Ozcan, S. O., Dokeroglu, T., Cosar, A., and Yazici, A. (2016). A novel group-

ing genetic algorithm for the one-dimensional bin packing problem on gpu. In

International Symposium on Computer and Information Sciences, pages 52–60.

Springer.

Pankratz, G. (2005). Dynamic vehicle routing by means of a genetic algorithm.

International Journal of Physical Distribution & Logistics Management.

Papadimitriou, C. H. (2003). Computational complexity. John Wiley & Sons Ltd.

Petzold, C. (2008). The Annotated Turing: a guided tour through Alan Turing’s

historic paper on computability and the Turing machine. Wiley.

139

BIBLIOGRAPHY

Pinacho-Davidson, P., Blum, C., and Lozano, J. A. (2018). The weighted indepen-

dent domination problem: Integer linear programming models and metaheuristic

approaches. European Journal of Operational Research, 265(3):860–871.

Pinacho-Davidson, P., Bouamama, S., and Blum, C. (2019). Application of CMSA to

the minimum capacitated dominating set problem. In Proceedings of the Genetic

and Evolutionary Computation Conference, pages 321–328.

Pinheiro, P. R., Coelho, A. L., de Aguiar, A. B., and Bonates, T. O. (2011). On

the concept of density control and its application to a hybrid optimization frame-

work: investigation into cutting problems. Computers & Industrial Engineering,

61(3):463–472.

Pinheiro, P. R., Coelho, A. L. V., Aguiar, A. B., and Sobreira Neto, A. d. M. (2012).

Towards aid by generate and solve methodology: application in the problem of

coverage and connectivity in wireless sensor networks. International Journal of

Distributed Sensor Networks, 8(10):790459.

Poldi, K. C. and Arenales, M. N. (2009). Heuristics for the one-dimensional cut-

ting stock problem with limited multiple stock lengths. Computers & Operations

Research, 36(6):2074–2081.

Qin, J., Yin, Y., and Ban, X. (2011). Hybrid discrete particle swarm algorithm for

graph coloring problem. JCP, 6(6):1175–1182.

Quiroz-Castellanos, M., Cruz-Reyes, L., Torres-Jimenez, J., Gómez, C., Huacuja,

H. J. F., and Alvim, A. C. (2015). A grouping genetic algorithm with controlled

gene transmission for the bin packing problem. Computers & Operations Research,

55:52–64.

Radcliffe, N. J. et al. (1991). Forma analysis and random respectful recombination.

In ICGA, volume 91, pages 222–229.

Reeves, C. (1996). Hybrid genetic algorithms for bin-packing and related problems.

Annals of Operations Research, 63(3):371–396.

Rekiek, B., De Lit, P., Pellichero, F., Falkenauer, E., and Delchambre, A. (1999).

Applying the equal piles problem to balance assembly lines. In Proceedings of the

1999 IEEE International Symposium on Assembly and Task Planning (ISATP’99),

pages 399–404. IEEE.

Rivin, I., Vardi, I., and Zimmermann, P. (1994). The n-queens problem. The Amer-

ican Mathematical Monthly, 101(7):629–639.

140

BIBLIOGRAPHY

Rohlfshagen, P. and Bullinaria, J. A. (2007). A genetic algorithm with exon shuf-

fling crossover for hard bin packing problems. In Proceedings of the 9th annual

conference on genetic and evolutionary computation, pages 1365–1371. ACM.

Rubin, F. (1974). A search procedure for Hamilton paths and circuits. Journal of

the ACM (JACM), 21(4):576–580.

Saraiva, R. D., Nepomuceno, N., and Rogério Pinheiro, P. (2019). A two-phase ap-

proach for single container loading with weakly heterogeneous boxes. Algorithms,

12(4):67.

Saraiva, R. D., Nepomuceno, N. V., and Pinheiro, P. R. (2013). The generate-

and-solve framework revisited: generating by simulated annealing. In European

Conference on Evolutionary Computation in Combinatorial Optimization, pages

262–273. Springer.

Scholl, A., Klein, R., and Jürgens, C. (1997). Bison: A fast hybrid procedure for

exactly solving the one-dimensional bin packing problem. Computers & Operations

Research, 24(7):627–645.

Schreiber, E. L. and Korf, R. E. (2013). Improved bin completion for optimal bin

packing and number partitioning. In Twenty-Third International Joint Conference

on Artificial Intelligence.

Schwefel, H.-P. (1981). Numerical Optimization of Computer Models. John Wiley &

Sons, Inc.

Schwerin, P. andWäscher, G. (1999). A new lower bound for the bin-packing problem

and its integration into MTP. Pesquisa Operacional, 19(2):111–129.

Scott, D. (1958). Programming a Combinatorial Puzzle. Princeton University De-

partment of Electrical Engineering.

Seiden, S. S. (2002). On the online bin packing problem. Journal of the ACM,

49(5):640–671.

Singh, A. and Gupta, A. K. (2007). Two heuristics for the one-dimensional bin-

packing problem. OR Spectrum, 29(4):765–781.

Smith, S. F. (1980). A learning system based on genetic adaptive algorithms.

Song, X. and Bennell, J. A. (2014). Column generation and sequential heuristic

procedure for solving an irregular shape cutting stock problem. Journal of the

Operational Research Society, 65(7):1037–1052.

141

BIBLIOGRAPHY

Sörensen, K. and Glover, F. (2013). Metaheuristics. Encyclopedia of Operations

Research and Management Science, 62:960–970.

Sörensen, K., Sevaux, M., and Glover, F. (2017). A history of metaheuristics. arXiv

preprint arXiv:1704.00853.

Storn, R. and Price, K. (1997). Differential evolution – a simple and efficient heuristic

for global optimization over continuous spaces. Journal of Global Optimization,

11(4):341–359.

Syswerda, G. (1989). Uniform crossover in genetic algorithms. In Proceedings of

the Third International Conference on Genetic Algorithms, pages 2–9. Morgan

Kaufmann Publishers.

Talbi, E.-G. (2002). A taxonomy of hybrid metaheuristics. Journal of Heuristics,

8(5):541–564.

Talbi, E.-G. (2009). Metaheuristics: from design to implementation. John Wiley &

Sons.

Talbi, E.-G. (2013). Hybrid metaheuristics, Studies in computational intelligence.

Springer-Verlag.

Tarantilis, C. D., Zachariadis, E. E., and Kiranoudis, C. T. (2009). A hybrid

metaheuristic algorithm for the integrated vehicle routing and three-dimensional

container-loading problem. IEEE Transactions on Intelligent Transportation Sys-

tems, 10(2):255–271.

Thiruvady, D., Blum, C., and Ernst, A. T. (2019). Maximising the net present value

of project schedules using CMSA and parallel ACO. In International Workshop

on Hybrid Metaheuristics, pages 16–30. Springer.

Thiruvady, D. R., Meyer, B., and Ernst, A. T. (2008). Strip packing with hybrid

ACO: Placement order is learnable. In 2008 IEEE Congress on Evolutionary

Computation (IEEE World Congress on Computational Intelligence), pages 1207–

1213. IEEE.

Thompson, J. M. and Dowsland, K. A. (1998). A robust simulated annealing based

examination timetabling system. Computers & Operations Research, 25(7-8):637–

648.

Ullman, J. D. (1971). The performance of a memory allocation algorithm. Princeton

University, Department of Electrical Engineering.

142

BIBLIOGRAPHY

van de Vel, H. and Shijie, S. (1991). An application of the bin-packing technique to

job scheduling on uniform processors. Journal of the Operational Research Society,

42(2):169–172.

Vazirani, V. V. (2003). Approximation Algorithms. Springer-Verlag Berlin Heidel-

berg.

Wäscher, G., Haußner, H., and Schumann, H. (2007). An improved typology

of cutting and packing problems. European Journal of Operational Research,

183(3):1109–1130.

Williamson, D. P. and Shmoys, D. B. (2011). The design of approximation algorithms.

Cambridge University Press.

Wu, D. and Yan, C. (2016). A balance approach for the one-dimensional multiple

stock size cutting stock problem with setup cost. Proceedings of the Institution of

Mechanical Engineers, Part B: Journal of Engineering Manufacture, 230(12):2182–

2189.

Xavier, E. and Miyazawa, F. K. (2008). A one-dimensional bin packing problem

with shelf divisions. Discrete Applied Mathematics, 156(7):1083–1096.

Xia, B. and Tan, Z. (2010). Tighter bounds of the First Fit algorithm for the bin-

packing problem. Discrete Applied Mathematics, 158(15):1668–1675.

Yang, Z. (1999). On F-Hamiltonian graphs. Discrete Mathematics, 196(1-3):281–286.

Yao, A. C.-C. (1980). New algorithms for bin packing. Journal of the ACM (JACM),

27(2):207–227.

Yu, B., Yang, Z., and Yao, B. (2011). A hybrid algorithm for vehicle routing problem

with time windows. Expert Systems with Applications, 38(1):435–441.

Yue, M. (1991). A simple proof of the inequality FFD(L) ≤ 11/9OPT (L)+1,∀L for

the FFD bin-packing algorithm. Acta Mathematicae Applicatae Sinica, 7(4):321–

331.

Zhang, D., Che, Y., Ye, F., Si, Y.-W., and Leung, S. C. (2016). A hybrid algo-

rithm based on variable neighbourhood for the strip packing problem. Journal of

Combinatorial Optimization, 32(2):513–530.

Zhou, C., Wu, C., and Feng, Y. (2009). An exact algorithm for the type-constrained

and variable sized bin packing problem. Annals of Operations Research, 172(1):193.

143

	List of Figures
	List of Tables
	List of Algorithms
	Introduction
	Definitions
	Research Aims
	Contributions of the Thesis
	Outline of the Thesis
	Academic Publications

	Literature Review
	Computational Complexity
	Grouping Problems
	The One-Dimensional Bin Packing Problem
	Computational Complexity of the Bin Packing Problem

	Heuristics for the Bin Packing Problem
	Metaheuristics for the Bin Packing Problem
	Exact Algorithms for the Bin Packing Problem
	Variations of the Bin Packing Problem
	The Knapsack Problem
	The Cutting Stock Problem
	The Strip Packing Problem

	The Score-Constrained Packing Problem
	Summary

	The Score-Constrained Packing Sub-Problem
	Introduction
	Modelling the sub-SCPP
	Hamiltonian Cycles
	Approaching the Constrained Ordering Problem

	The Alternating Hamiltonian Construction Algorithm
	The Maximum Cardinality Matching Algorithm
	The Bridge-Cover Recognition Algorithm

	Summary

	Heuristics for the Score-Constrained Packing Problem
	The Modified First-Fit Decreasing Heuristic
	The Pair-Smallest Heuristic
	The Modified First-Fit Decreasing with AHC Heuristic
	Computational Results
	Problem Instances
	Analysis of Results

	Summary

	Evolutionary Methods for the Score-Constrained Packing Problem
	Representation
	Recombination
	The Grouping Genetic Algorithm Crossover
	The Alternating Grouping Crossover Using Bin Fullness
	The Alternating Grouping Crossover Using Bin Cardinality
	Repair Operator

	Local Search
	Mutation
	Solution Fitness
	The Evolutionary Algorithm Framework
	Computational Results
	Summary

	Combining Metaheuristics and Exact Methods for the Score-Constrained Packing Problem
	Introduction
	An Exact Cover Formulation for the SCPP
	The Generate and Solve Framework
	The Construct, Merge, Solve & Adapt Algorithm
	CMSA with Mutation
	CMSA with EA

	Computational Results
	Summary

	An Alternative Version of the Score-Constrained Packing Problem
	Definitions
	The sub-MSCPP
	An Algorithm for the sub-MSCPP

	A Heuristic for the MSCPP
	Computational Results
	Summary

	Conclusions and Future Research
	Summary of Findings
	Research Aim 1
	Research Aim 2
	Research Aim 3
	Research Aim 4

	Future Research
	Lower Bounds
	Alternative Heuristics
	Evolutionary Algorithm Operators and Metaheuristics
	Combining Techniques
	The MSCPP

	Final Remarks
	Summary of Available Resources

	Bibliography

