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Abstract 24 

Acute myeloid leukemia (AML) is a heterogeneous disease with poor clinical outcomes. We have 25 

previously shown that constitutive activation of NADPH oxidase 2 (NOX2), resulting in 26 

overproduction of reactive oxygen species (ROS), occurs in over 60% of AML patients. We have 27 

also shown that increased ROS production promotes increased glucose uptake and proliferation in 28 

AML cells, mediated by changes in carbohydrate metabolism. Given that carbohydrate, lipid, and 29 

protein metabolism are all intricately interconnected we aimed to examine the effect of cellular ROS 30 

levels on these pathways and establish further evidence that ROS rewires metabolism in AML. We 31 

carried out metabolomic profiling of AML cell lines in which NOX2-derived ROS production was 32 

inhibited and conversely in cells treated with exogenous H2O2. We report significant ROS-specific 33 

metabolic alterations in sphingolipid metabolism, fatty acid oxidation, purine metabolism, amino acid 34 

homeostasis and glycolysis. These data provide further evidence of ROS directed metabolic changes 35 

in AML and the potential for metabolic targeting as novel therapeutic arm to combat this disease. 36 



  

1 Introduction 37 

Reactive oxygen species (ROS) is the collective term for oxygen containing free radicals and other 38 

reactive molecules, including hydrogen peroxide (H2O2), which exert important cellular functions 39 

both in innate immunity and as cell signaling molecules (Lambeth and Neish, 2014). Physiologically, 40 

production of cellular ROS mainly occurs as a result oxidative phosphorylation in the mitochondria, 41 

or via the transmembrane proteins, nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 42 

family of enzymes (NOX) (Hole et al., 2011). In particular, NOX2, which is expressed on the plasma 43 

membrane of hematopoietic cells, generates  ROS via the univalent reduction of molecular oxygen, 44 

producing extracellular superoxide, which rapidly dismutates to H2O2, either spontaneously or via the 45 

catalytic action of the enzyme superoxide dismutase (Bienert et al., 2006). H2O2 is a relatively long 46 

lived ROS molecule which is able to traverse cell membranes and this, alongside its ability to 47 

reversibly oxidize cysteine residues in the active sites of regulatory proteins, underlies its function as 48 

a cell signaling molecule (Bindoli and Rigobello, 2013). H2O2 plays an integral role in hematopoiesis 49 

both through direct and indirect regulation of gene expression (Prieto-Bermejo et al., 2018;Robinson 50 

et al., 2020). 51 

Previously, using hematopoietic stem progenitor cells as a model for hematopoiesis, we demonstrated 52 

that mutant N-RASG12D promotes ROS production via NADPH oxidase 2 (NOX2) (Hole et al., 53 

2010). We further showed that overproduction of NOX-derived ROS in acute myeloid leukemia 54 

(AML) promotes proliferation which is associated with defective oxidative stress signaling (Hole et 55 

al., 2013). Indeed, over 60% of AML patients show elevated levels of extracellular superoxide and 56 

H2O2 and furthermore these levels correlate with the levels of NOX2 expression (Hole et al., 2013). 57 

To understand the underlying mechanism through which ROS promotes proliferation, we previously 58 

used transcriptome profiling to identify changes in gene expression impacted by ROS over-59 

production (Robinson et al., 2020). We demonstrated that ROS mediated proliferation was attributed 60 

to changes in carbohydrate metabolism, with a key glycolytic regulator, 6-phosphofructo-2-61 

kinase/fructose-2,6-bisphosphatase 3 (PFKFB3), acting as an important mediator of ROS. Elevated 62 

levels of PFKFB3 have been detected in numerous cancers including, colon, prostate, breast, lung, 63 

pancreatic, ovarian, kidney and thyroid (Atsumi et al., 2002).  64 

In addition to carbohydrate metabolism, there are two other main classes of molecules involved in 65 

metabolism, proteins, and lipids. These can be either catabolized to produce energy or synthesized to 66 
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molecules such as nucleotides and structural proteins for the generation of cell membranes. Given 67 

that carbohydrate, lipid, and protein metabolism are all intricately interconnected we aimed to 68 

examine the effect of ROS on these pathways and establish further evidence that ROS rewires 69 

metabolism in AML. Using metabolomic profiling of AML cell lines (in which ROS production was 70 

inhibited by knocking down NOX2 expression) or using a cell line incubated with glucose oxidase 71 

(GOX; an enzyme that produces H2O2), we report significant metabolic alterations in sphingolipid 72 

metabolism, fatty acid oxidation (FAO), purine metabolism, amino acid homeostasis and glycolysis. 73 

2 Materials and Methods 74 

2.1 Materials 75 

Key reagents and resources are provided in below. 76 

Reagent or Resource Source Resource Identifier 
(RRID) or Cat # 

Antibodies 
NOX2-PE MBL Life science Nagoya, Japan, RRID:AB_591389
IgG1-PE Biolegend RRID:AB_326429
 
Chemical, Peptides, Recombinant proteins 
DiogenesTM GeneFlow, Staffordshire U.K. Cat # A2-0092
Diphenyleneiodonium (DPI) Sigma-Aldrich, Poole, U.K Cat # D2926
Glucose Oxidase Sigma-Aldrich, Poole, U.K Cat # G6766
Lipofectamine 3000 Invitrogen, Paisley, U.K Cat # 11668019
7-AAD Sigma-Aldrich, Poole, U.K Cat # SML1633-1ML
NOX2 shRNA Vector Builder  
 
Experimental Models: Cell lines 
Human: 293T ATCC, Middlesex, U.K. RRID:CVCL_0063
Human: Mv4;11 ATCC, Middlesex, U.K. RRID:CVCL_0064
Human: NOMO-1 DSMZ, Germany RRID:CVCL_1609
Human: THP-1 EACC, Salisbury, U.K. RRID:CVCL_0006
 
Analytical platform, Software   
Metabolic assays Metabolon, USA  
FCS express v6 DeNovos Software, California, 

U.S.A
RRID:SCR_016431 

2.2 Methods 77 
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2.2.1 Cell culture 78 

Cell lines were cultured according to recommended conditions at 37⁰C, 5% CO2 for all experiments. 79 

The genetic identity of the cell lines was confirmed by short tandem repeat (STR) at purchase. THP-1 80 

and NOMO-1 cells were lentivirally transduced with shRNA complementary to NOX2 mRNA and 81 

encoding puromycin resistance (THP-1 NOX2-KD or NOMO-1 NOX KD) and control cells (shTHP-82 

1 or shNOMO-1) which had been transfected with shRNA coding for a non-mammalian target 83 

sequence as previously described (Robinson et al., 2020). Additionally, control cells (shTHP-84 

1/NOMO-1) were treated with the NOX inhibitor diphenyleneiodonium (100 nM) for 24 hours prior 85 

to metabolomic analysis. DPI was reconstituted in DMSO and the final concentration was <0.01% 86 

DMSO,This dose has previously been shown to inhibit NOX activity without compromising cell 87 

viability (Robinson et al., 2020). To mimic the effect of NOX2 generated ROS, Mv4;11 cells were 88 

treated with glucose oxidase (GOX; 10 and 20 mU/mL), which catalyzes the production of H2O2 in 89 

cell culture, for 24 hours prior to metabolomic analysis. Control cells were treated with 0.002% v/v 90 

DMSO (Vehicle control).Viability was tested using 7-AAD (1 μg/mL) and analyzed using flow 91 

cytometry; viable cells were used in subsequent superoxide and metabolic assays. 92 

2.2.2 Determination of NOX2 expression 93 

To determine expression levels of NOX2, cells were incubated with NOX2 PE conjugated antibody 94 

(5 ng/μL) or an isotype matched control (MBL), incubated for 45 minutes at 4⁰C and analyzed by 95 

flow cytometry. All flow cytometric data were acquired using an Accuri C6 flow cytometer (Becton 96 

Dickinson, U.K.).  A minimum of 3,000 events collected in the region of interest.  Data analysis was 97 

performed using FCS express v6. 98 

2.2.3 Detection of Superoxide 99 

Cell cultures were adjusted for viable cell number and superoxide measurement carried out using the 100 

chemiluminescent probe Diogenes as previously described (Hole et al., 2010). 101 

2.2.4 Metabolomics 102 

Metabolomic analysis was performed on quadruplicate samples of the AML cell lines THP-1, 103 

NOMO-1 and Mv4;11 by MetabolonTM (http://www.metabolon.com). Cell line samples were 104 

analyzed using ultra-high-performance liquid chromatography mass spectrometry (UPLC-MS), 105 

utilizing Waters ACQUITY UPLC and Thermoscientific Q-Exactive high resolution mass 106 

spectrometer interfaced with a heated electrospray ionization source and Orbitrap mass analyzer. 107 

Raw data was extracted, peaks identified, and quality control processed using proprietary 108 
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MetabolonTM hardware, software, and biochemical library database. Following normalization to 109 

Bradford protein concentration, log transformation and imputation of missing values with the 110 

minimum observed value for each compound, Welch unequal variance two-sample t test was 111 

performed to identify significant differences between the experimental groups. To account for 112 

potentially high false discovery rate (because of multiple comparisons), a q-value was also 113 

calculated, where a lower q-value is an indication of higher confidence in the result. 114 

3 Results 115 

3.1 ROS induce global changes in metabolism in AML cell lines 116 

Our previous study show that NOX2 derived ROS in AML patient blasts increases glucose uptake 117 

(Robinson et al., 2020). These changes in carbohydrate metabolism could also be induced by addition 118 

of GOX (providing a source of exogenous H2O2) in an AML cell line (Mv4;11) that does not 119 

generate NOX2 derived ROS. To establish further evidence that ROS affects metabolism in AML, 120 

we have now analyzed the whole metabolome of AML cell lines producing different levels of NOX-2 121 

derived ROS. Since Mv4;11 cells have very low levels of ROS, we treated these cells with GOX. 122 

Conversely, we have also analyzed the metabolome of lines generating NOX2 derived ROS (THP-1 123 

and NOMO-1) and have examined the impact of knockdown or inhibition of NOX2 in this context 124 

using shRNA vectors and DPI, respectively. To compare NOX2-KD to an appropriate control, we 125 

created control lines infected with non-mammalian target (labelled ‘sh’). The levels of DMSO in 126 

treated samples were less than 0.01%. Given the very low levels of DMSO, we did not treat control 127 

samples with this proportion of DMSO as the effects would be negligible. The knockdown of NOX2 128 

expression / superoxide production (>90% reduction) in THP-1 NOX2 KD as well as the impact of 129 

DPI on THP-1 cells has been previously described (Robinson et al., 2020). Supplemental Figure S1 130 

shows knockdown of NOX2 and reduced superoxide production in NOMO-1 cells. Analysis of the 131 

impact of NOX2 knockdown or inhibition on the global biochemical metabolic profile whose levels 132 

were significantly altered in THP-1 and NOMO-1 cells are shown in Figure 1. Treatment of Mv4;11 133 

cells with H2O2 (mediated by incubation with GOX) resulted in a several significant changes of 134 

biochemical metabolites when cultured with 10 and 20 mU/mL, respectively. Analysis of the overall 135 

biochemical variations between each sample was performed using principal component analysis 136 

(PCA) (Figure 1B). This analysis revealed significant separations -based on the individuality of cell 137 

lines and treatment conditions (i.e., the samples from each AML cell line clustered relatively close to 138 

each other). Due to the limited use of three cell lines, it was not possible to correlate changes with 139 

cell line abnormalities (e.g. mutational or genotypic analysis). However, NOX2 KD and those cells 140 
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treated with DPI showed significant differences of biochemical metabolite levels compared to 141 

shTHP-1/NOMO-1 controls. The largest effects were observed with DPI inhibition. The global 142 

differences between Mv4;11 cells treated/untreated with GOX were much more modest (Figure 1B). 143 

This data is supported by hierarchical clustering where samples also clustered according to genotype 144 

and treatment status (Supplemental Figure S2).  145 

Furthermore, Random Forest (RF) analyses of cellular metabolic profiles (Supplemental Figure S3A 146 

and B) showed 100% prediction accuracy when differentiating shTHP-1 or shNOMO-1 control cells 147 

both from those treated with DPI and cells with NOX2-KD cells; as compared to 33.3% by random 148 

chance alone. Prediction accuracy in differentiating Mv4;11 untreated cells from those treated with 149 

GOX was 91.7% (Supplemental Figure S3C). The high predictive accuracies of the analyses are 150 

consistent with the large number of statistically significant differences between the groups (Figure 151 

1A).  Taken together, these data indicate that whilst cell line origin was the largest determining factor 152 

in changes in global biochemical metabolite variation, culture in a ROS environment affects the 153 

metabolome or global biochemical metabolite composition. 154 

3.2 ROS alters metabolism linked to fatty acid oxidation in AML cell lines 155 

Across all conditions tested above, RF analysis showed consistent changes were observed in lipid 156 

metabolism (Supplemental Figure S3). To determine the NOX2 mediated ROS effects on lipid 157 

metabolism we have compared the common and unique metabolic changes in THP-1 and NOMO-1 158 

cells where NOX2 levels were knocked down (or inhibited) and Mv4;11 cells treated with GOX. 159 

These cell lines showed significant changes in sphingolipid metabolism and FAO (Table 1). Knock-160 

down of NOX2 in THP-1 and NOMO-1 cells significantly decreased levels of sphingomyelins 161 

(phospholipids composed of ceramide and phosphocholine) as well as sphingosine and, in THP-1, 162 

sphinganine metabolites which are involved in their synthesis and degradation (Hait and Maiti, 163 

2017). Levels of sphingosine and sphinganine were also significantly decreased in these cells treated 164 

with DPI (Table 1). Conversely, Mv4;11 cells, significant increases in sphingomyelin levels were 165 

observed upon treatment with GOX (Table 1). Together these data suggest that ROS levels are in 166 

important in regulating sphingolipid synthesis and/or degradation.  167 

It has previously been reported that NOX2 inhibition leads to increased FAO (Adane et al., 2019) and 168 

that FAO can be an important method of ATP production in solid tumors experiencing metabolic 169 

stress (Zaugg et al., 2011;Carracedo et al., 2012). Consistent with this, our data showed that knock-170 

down of NOX2 in THP-1 and NOMO-1 or treatment of cells with DPI led to significant decreases in 171 
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long chain acylcarnitines, metabolites which are consumed during FAO though reciprocal changes 172 

were not seen in Mv4;11 cells treated with GOX (Table 2). NOX2 KD in THP-1 cells displayed 173 

significant decreases in several 3-hydroxy fatty acids (intermediates formed during β-oxidation) and 174 

in free carnitine and its metabolic precursor (deoxycarnitine). Many of the latter metabolites were 175 

lower in the NOMO-1 NOX2 KD cells but fell below the cut-off for statistical significance (Table 2). 176 

Taken together, these data suggest that ROS affects the transport and oxidation of fatty acids. 177 

3.3 ROS alters purine and amino acid homeostasis in NOX2 KD and DPI treated AML cell 178 
lines 179 

It is well established that ROS contributes to enhanced proliferation of leukemia cells including the 180 

cell lines assayed in this study (Hole et al., 2010;Hole et al., 2013;Robinson et al., 2020). Analysis of 181 

our data showed that reduction of ROS levels in THP-1 cells either through NOX2 KD or DPI 182 

treatment, resulted in several alterations in nucleotide metabolism. As shown in Figure 2, notable 183 

changes in purine catabolic/salvage pathway were observed. THP-1 NOX2 KD cells exhibited 184 

significant increases in xanthine, xanthine 5’-monophosphate (XMP) and xanthosine, whilst NOMO-185 

1 cells with reduced levels of NOX2/ROS also showed significant increases in XMP. In parallel with 186 

these changes, THP-1 NOX2 KD cells also exhibited decreases in allantoin and allantoic acid, 187 

metabolites that can be derived from urate (the end-product of purine catabolism), suggesting that 188 

increased Xanthine metabolites are being diverted to adenosine/guanosine synthesis. In addition, 189 

treatment of Mv4;11 with GOX showed a significant increase in xanthine (supplemental 190 

metabolomics file). Whilst XMP and xanthosine levels were increased and a reduction in allantoin 191 

and allantoic acid was observed, these levels were not statistically significant (supplemental 192 

metabolomics file). Taken together, these changes are consistent with alterations in purine utilization 193 

and degradation rates.  194 

AML blasts producing significant levels of ROS show increased levels of metabolites associated with 195 

nucleotide metabolism (Robinson et al., 2020). Significant reductions in the levels of numerous 196 

amino acids were observed in THP-1 cells in which NOX2 was knocked-down or where ROS 197 

production was inhibited by DPI (Table 3). In the shNOMO-1 cell line, similar patterns of amino acid 198 

metabolite levels were observed when the cells were treated with DPI. However, NOX2 KD did not 199 

elicit a change when compared to controls. Decreases were also observed in select dipeptides (short 200 

polymers of amino acids typically derived via protein degradation) (Supplemental metabolomics data 201 

file). Treatment of Mv4;11 cells with H2O2 showed significant increases, at the lower (though not 202 

higher) GOX dosage (Table 3). Together, these data are consistent with the notion where increased 203 
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amino acid production are recycled into metabolic and biosynthetic pathways necessary for increased 204 

proliferation (Rabinowitz and White, 2010). 205 

3.4 ROS alters the glycolytic metabolites pyruvate and lactate in AML cell lines 206 

We previously found that AML blasts with high levels of ROS showed significantly higher levels of 207 

glucose, glucose-6-phosphate, and fructose-6-phosphate (F-6-P), than AML blasts exhibiting low 208 

levels of ROS (Robinson et al., 2020). When THP-1 and NOMO-1 cells with NOX2 KD were 209 

compared to control cells, they exhibited several alterations in metabolites linked to glucose 210 

utilization. While no significant changes in the above metabolites were observed upon modulation of 211 

ROS levels other changes observed were consistent with a role for ROS in promoting glycolysis.  212 

The levels of pyruvate and lactate were significantly lower (1.3 and 1.9-fold respectively) in THP-1 213 

cells with NOX2 KD. In NOMO-1 cells NOX2 KD induced a significant, 2.3-fold decrease in the 214 

glycolytic intermediate fructose-1,6-bisphosphate (F-1,6-BP) indicating decreased flux through the 215 

glycolytic pathway arising from inhibition of ROS production (Figure 3A). Consistent with this data, 216 

shTHP-1 cells treated with DPI also showed a significant decrease 2.2 fold decrease in lactate levels. 217 

Surprisingly, some changes were not supportive of the role of ROS promoting glycolysis. Significant 218 

4.4 fold increases in pyruvate, 8.1 fold increase in 3-phosphoglycerate (3-PG) were observed in THP-219 

1 cells treated with DPI (Figure 3B). A significant increase in 3-PG (3.6-fold) was also observed in 220 

shNOMO-1 cells treated with DPI, whilst significant decreases were observed in F-6-P (3.8-fold), F-221 

1,6-BP (4-fold), dihydroxyacetone phosphate (DHAP; 2-fold) and lactate (2.9-fold) (Figure 3B).  222 

Taken together, these data are consistent with ROS modulated changes in biochemical levels within 223 

the glycolytic pathway.   224 

4 Discussion 225 

Previous work in our group, linked mutational RAS activation with increased NOX2 derived ROS 226 

production and cellular proliferation in normal human hematopoietic cells (Hole et al., 2010). This 227 

was supported by further studies on AML patient blasts and AML cell lines which demonstrated an 228 

association of proliferation with NOX2 derived ROS (Hole et al., 2013). Indeed, a causal link 229 

between ROS and relapse has also been established (Zhou et al., 2010). Further, FLT3-ITD (and 230 

subsequent signaling), another common mutation in AML has also been shown to increase levels of 231 

ROS which was associated with increased DNA double strand breaks (Sallmyr et al., 2008). Elevated 232 

ROS levels have also been observed in other hematological malignancies including acute 233 

lymphoblastic leukemia and chronic myeloid leukemia patient samples (Devi et al., 2000). Beside 234 
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roles in DNA damage and cell death, there is increasing evidence regarding ROS as a signaling 235 

molecule. Redox signaling can affect transcription factor activity involved in metabolic regulation, 236 

such as HIF1, STAT3 and NF-κB (Zhao et al., 2014). More recently, we identified that ROS 237 

specifically led to changes in mRNA expression levels of several metabolic enzymes including 238 

glycolytic genes (Robinson et al., 2020). We now show here using global metabolomic profiling, the 239 

impact knocking down or inhibiting NOX2 and conversely the effect of exogenous H2O2 on global 240 

cellular metabolism. To address this, we made used of two AML cell lines (THP-1 and NOMO-1) 241 

that constitutively produce extracellular superoxide (ROS) and a cell line with negligible ROS 242 

production (Mv4;11). These models permitted the reciprocal approach to reduce ROS levels (by 243 

knocking down NOX2) or to add exogenous ROS (H2O2) by incubating cells with GOX.  244 

When NOX2 was knocked down in THP-1 and NOMO-1 cell lines, both cell types exhibited 245 

alterations in metabolites linked to FAO and complex lipid homeostasis. Treatment of both these cell 246 

lines with DPI also resulted in changes consistent with the effect of NOX2 derived ROS on 247 

metabolites linked to glucose utilization and amino acid homeostasis. These ROS induced changes in 248 

concentrations of glycolytic metabolites are commensurate with the idea that ROS induces increase 249 

in glucose uptake in these cell lines which leads to metabolic changes and redox adaptation that 250 

supports the enhanced proliferation of leukemia cells (Robinson et al., 2020). However, glycolysis is 251 

only one component of cellular metabolism, with many other metabolic pathways feeding into and 252 

branching off from glycolytic intermediates, such as FAO. Support for the changes observed in lipid 253 

metabolism here, can also be found in recent metabolomic studies in pancreatic ductal 254 

adenocarcinomas, which have identified sphingolipids as relevant biomarkers in this disease 255 

(Daemen et al., 2015).  256 

THP-1 NOX2-KD cells and THP-1 cells treated with DPI exhibited several unique changes, namely, 257 

alterations in metabolites linked to purine metabolism and amino acid homeostasis. Analogous 258 

changes were not observed in NOMO-1 cells with NOX2 KD. NOMO-1 cells generate significantly 259 

larger amounts of ROS than THP-1 cells (Supplemental Figure S1) and given that the knock-down of 260 

NOX2 in these cells was only partial, it may be that cellular ROS remained at high enough levels in 261 

these cells to prevent equivalent changes occurring. Interestingly, NOMO-1 cells treated with DPI 262 

and exhibiting lower levels of ROS than those with NOX2 knocked down, showed similar changes in 263 

purine metabolites and amino acid levels to those in the THP-1 cells. Additionally, it is worth noting 264 

that changes in purine synthesis and catabolism could in themselves influence ROS production, as 265 
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H2O2 is produced as a co-product by the enzyme xanthine oxidase (XO; the enzyme responsible for 266 

metabolizing xanthine to urate). In addition to these changes, THP-1 and NOMO-1 cells also 267 

exhibited decreases in the purine synthetic intermediate AICA ribonucleotide and increases in the 268 

pyrimidine synthetic intermediate orotate (Supplemental Metabolomics data file).  269 

The data generated from the addition of GOX to Mv4;11 cell line was more equivocal particularly at 270 

the higher dose of GOX. Addition of GOX at the lower (10mU/mL) dose demonstrated changes to 271 

both sphingolipid metabolism and amino acid homeostasis consistent with the data generated in the 272 

THP-1 and NOMO-1 cell lines. Culture with GOX did not dose dependently increase the various 273 

sphingolipids and other sphingomyelins. It suggests higher GOX levels maybe toxic but we did not 274 

observe changes in cell viability. Alternatively, it is interesting to speculate that higher levels of 275 

GOX are activating a negative feedback loop.  Little effect was observed on purine synthesis and the 276 

impact on FAO. FAO is known to be negatively correlated with ROS production (Schafer et al., 277 

2009) and is an important source of NADPH. NADPH is also generated via the pentose phosphate 278 

pathway (PPP) and serine synthesis pathway and discrepancies here may simply be reflective of 279 

differing relative cellular utilization of alternative antioxidant generating pathways. Overall, the more 280 

modest changes in this cell line may be reflective of the smaller variation between the untreated and 281 

treated samples, as revealed by the PCA analysis (Figure 1B), when compared with those observed in 282 

the other two cell lines.  283 

The biochemical changes arising from the DPI treatment noted several common alterations, however, 284 

there were some degree of differences within the THP-1 and NOMO-1 cells. Specifically, both cell 285 

lines exhibited alterations in metabolites linked to glucose utilization, TCA cycle activity, lipid 286 

availability, nucleotide turnover, nicotinamide metabolism, and amino acid homeostasis. It is 287 

recognized that at micro-molar concentrations, DPI inhibits not only NOX but also mitochondrial 288 

respiration through the inhibition of NAPDH cytochrome P450 oxidoreductase, as well as, nitric 289 

oxide synthase, and xanthine oxidase (reviewed in (Aldieri et al., 2008)). Additionally, it has been 290 

reported (Riganti et al., 2004) that DPI inhibits not only the TCA but also the PPP, the first step of 291 

which regenerates NADPH, an important reducing agent for ROS. Inhibition of the citric acid cycle 292 

could potentially explain increases in extracellular lactate as an accumulation of pyruvate (the final 293 

product of glycolysis) would also generate proportional increases in the concentration of intracellular 294 

lactate. However, the levels of DPI used (in nanomolar range) over the time course of incubation (24 295 

h) does not significantly affect cell viability or mitochondrial superoxide production (Hole et al., 296 
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2010). Further, it has also been suggested that at nano-molar concentrations, inhibition of NOX but 297 

not mitochondrial respiration is observed (Bulua et al., 2011).  298 

Otto Warburg initially ascribed his observation that cancer cells exhibited increased aerobic 299 

glycolysis to defective mitochondrial function in these cells (Warburg, 1956), although a number of 300 

subsequent studies have shown functional mitochondria is important in cancer cell metabolism 301 

(reviewed in (Wallace, 2012)). The citric acid cycle commences from the reaction of acetyl CoA with 302 

oxaloacetate to form citrate. Acetyl CoA is generated following the decarboxylation of pyruvate 303 

catalyzed by the enzyme pyruvate dehydrogenase, whilst oxaloacetate is regenerated from the citric 304 

acid cycle. Importantly the metabolic step which converts succinate to fumarate involves the 305 

reduction of flavin adenine dinucleotide which generates the proton gradient necessary for oxidative 306 

phosphorylation. Furthermore, it has been shown that whilst hematopoietic stem cells require 307 

fumarate hydratase (the enzyme that catalyzes this step) for self-renewal and maintenance, leukemia 308 

stem cells do not (Guitart et al., 2017). Therefore, ROS induced changes in fumarate levels may be 309 

indicative of changes in the cellular rates of oxidative phosphorylation. Analysis of the mass 310 

spectrometry data by MetabolonTM showed no significant changes in fumarate levels in either THP-1 311 

or NOMO-1 cells with NOX2 KD but significant decreases were observed in DPI treated cells 312 

(Supplemental Figure S4). It should be noted that decreases in fumarate metabolites could have 313 

arisen from DPI’s inhibitory effect on flavoproteins independent of NOX. Taken together, these data 314 

suggest that genetic knock down of NOX2 in THP-1 and NOMO-1 cells does not affect the rate of 315 

oxidative phosphorylation.  316 

In summary, exposure of cells to NOX2 derived ROS is consistent with cellular alterations in protein 317 

degradation rates, amino acid utilization, lipid metabolism and energy production. Changes of this 318 

nature may correlate with alterations in growth and proliferation rates.  319 
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12 Figure Legends 414 

Figure 1.  Production of ROS is associated with global changes in metabolism in AML cell lines.  415 

Data from global biochemical profiling of shTHP-1, shNOMO-1 and Mv4;11 AML cell lines. THP-416 

1/NOMO-1 cells with NOX2 knocked down using shRNA (NOX2-KD), compared to control cells 417 

infected with non-mammalian targeting control shRNA (control) or 100nM DPI, a NOX inhibitor. 418 

Mv4;11 cells were treated with 10 mU/mL or 20 mU/mL GOX (compared to untreated control). (A) 419 

Summary of the numbers of biochemicals that achieved statistical significance (*p≤0.05) analyzed by 420 

Welch’s two sample t-test. (B) Principal components analysis (PCA) of global biochemical profiling 421 

of AML cell lines cells. Sh controlcells were treated with 100nM DPI for 24h or NOX2 was KD 422 

using shRNA (n=4). Mv4;11 cells were treated with 10 or 20 mU/mL of GOX for 24 h (n=4).  423 

Figure 2.  Alterations in purine metabolism in NOX2 KD and DPI-Treated AML cell lines.  424 

Data from global biochemical profiling of shTHP-1 and shNOMO-1 cells with NOX2 KD or treated 425 

with DPI (100 nM) for 24 h followed by analysis by MetabolonTM. Levels of biochemicals 426 

normalized to total protein in purine metabolism. Statistical significance analyzed by Welch’s two 427 

sample t-Test (n=4 per group) and significance denoted by *, P<0.05. Ctrl, untreated control cells; 428 

XMP, xanthosine 5’-monophosphate; GMP, guanosin-monophosphate; XO, xanthine oxidase. THP-1 429 

cells are color coded (blue) and NOMO-1 cells color coded Red. Y axis is scaled intensity.  430 

Figure 3. Changes in glycolytic intermediates in AML derived cell lines with NOX2 KD or 431 

treated with DPI. Significant changes in glycolytic metabolites in (A) shTHP-1 and shNOMO-1 432 

cells with NOX2 KD. (B) shTHP-1 and shNOMO-1 cells treated with DPI (100nM) for 24h. Data 433 

shows relative values following normalization to protein concentration, log transformation and 434 

imputation of missing values with the minimum observed value for each compound (n=4). Box plots 435 

represent median quartile ranges, x represents mean value. * denotes p<0.05 = as analyzed by 436 

Welch’s two sample t-test. THP-1 cells are color coded (blue) and NOMO-1 cells color coded green.  437 

Table 1. Exposure of AML cell lines to ROS is associated with global changes in sphingolipid 438 

metabolism. Table shows mean fold changes in sphingolipids in THP-1 and NOMO-1 cells with 439 

NOX2 KD when compared to controls (transduced with control shRNA vector). Changes in 440 

sphingolipids were also compared in shTHP-1 and shNOMO-1 cells treated with DPI (100 nM) for 441 

24 h or Mv4;11 cells treated with increasing GOX units/mL. Data shows relative values following 442 
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normalization to protein concentration, log transformation and imputation of missing values with the 443 

minimum observed value for each compound (n=4). Color boxes indicate ratios and p-values for each 444 

comparison:.boxes shaded dark green indicate significant decreases and boxes shaded dark red 445 

indicate significant increases; statistical significance was performed using Welch’s two sample t-test 446 

(P<0.05). Boxes shaded light green or red indicate decreases or increases, respectively and 447 

approaching significance (p<0.1).  448 

Table 2.  Exposure of AML cell lines to ROS is associated with global changes FAO 449 

metabolism. Table shows mean fold changes in fatty acid oxidation in THP-1 and NOMO-1 cells 450 

with NOX2 KD when compared to controls (transduced with control shRNA vector). Changes in 451 

sphingolipids were also compared in shTHP-1 and shNOMO-1 cells treated with DPI (100 nM) for 452 

24 h or Mv4;11 cells treated with increasing GOX units/mL. Data shows relative values following 453 

normalization to protein concentration, log transformation and imputation of missing values with the 454 

minimum observed value for each compound (n=4). Color boxes indicate ratios and p-values for each 455 

comparison: boxes shaded dark green indicate significant decreases and boxes shaded dark red 456 

indicate significant increases; statistical significance was performed using Welch’s two sample t-test 457 

(P<0.05). Boxes shaded light green or red indicate decreases or increases, respectively and 458 

approaching significance (p<0.1). 459 

Table 3 Exposure of AML cell lines to ROS is associated with global changes in amino acid 460 

metabolism. Table shows mean fold changes in amino acids in THP-1 and NOMO-1 cells with 461 

NOX2 KD when compared to controls (transduced with control shRNA vector). Changes in 462 

sphingolipids were also compared in shTHP-1 and shNOMO-1 cells treated with DPI (100 nM) for 463 

24 h or Mv4;11 cells treated with increasing GOX units/mL. Color boxes indicate ratios and p-values 464 

for each comparison: data shows relative values following normalization to protein concentration, log 465 

transformation and imputation of missing values with the minimum observed value for each 466 

compound (n=4). Boxes shaded dark green indicate significant decreases and boxes shaded dark red 467 

indicate significant increases; statistical significance was performed using Welch’s two sample t-test 468 

(P<0.05). Boxes shaded light green or red indicate decreases or increases, respectively and 469 

approaching significance (p<0.1). 470 



  

Table 1 

Biochemical Name 

THP-1 NOMO-1 Mv4;11 

NOX2 KD 
vs 

shControl

DPI vs 
shControl 

NOX2 KD 
vs Control 

DPI vs 
shControl 

GOX 
10mU/ml 
vs Control

GOX 
20mU/ml 
vs Control

N-palmitoyl-sphinganine 
(d18:0/16:0) 0.68 0.49 1.30 0.81 2.27 2.88 

sphinganine 0.82 0.47 1.10 0.30 1.06 0.99 
phytosphingosine 0.65 0.80 0.81 0.63 1.12 1.13 
palmitoyl sphingomyelin 
(d18:1/16:0) 0.80 1.22 0.85 0.98 1.09 0.89 

stearoyl sphingomyelin 
(d18:1/18:0) 0.82 1.10 0.65 0.96 1.31 1.04 

sphingomyelin (d18:1/18:1, 
d18:2/18:0) 0.89 1.16 0.61 0.96 1.39 1.14 

sphingosine 0.62 0.37 0.70 0.30 1.13 1.00 
N-palmitoyl-sphingosine 
(d18:1/16:0) 0.76 1.68 0.88 1.27 1.08 0.88 

sphingomyelin (d18:1/14:0, 
d16:1/16:0)* 0.80 1.32 0.88 1.22 1.15 0.96 

sphingomyelin (d18:2/14:0, 
d18:1/14:1)* 0.77 1.24 0.85 1.16 1.45 1.37 

sphingomyelin (d18:1/24:1, 
d18:2/24:0)* 0.81 1.17 0.85 0.85 1.32 1.06 

sphingomyelin (d18:2/16:0, 
d18:1/16:1)* 0.78 1.07 0.88 0.91 1.35 1.19 

sphingomyelin (d18:1/20:1, 
d18:2/20:0)* 0.81 0.92 0.76 1.21 1.76 1.43 

behenoyl sphingomyelin 
(d18:1/22:0)* 0.83 1.11 0.83 1.08 1.44 1.14 

sphingomyelin (d18:1/22:1, 
d18:2/22:0, d16:1/24:1)* 0.79 1.09 0.89 1.26 1.72 1.43 

sphingomyelin (d18:1/20:0, 
d16:1/22:0)* 0.82 1.00 0.86 1.16 1.46 1.20 

palmitoyl dihydrosphingomyelin 
(d18:0/16:0)* 1.09 0.93 1.18 0.64 2.23 2.10 

sphingomyelin (d18:1/15:0, 
d16:1/17:0)* 0.77 1.14 0.87 1.07 1.19 1.04 

sphingomyelin (d18:1/21:0, 
d17:1/22:0, d16:1/23:0)* 0.79 0.96 0.79 1.44 1.70 1.52 

sphingomyelin (d18:2/23:0, 
d18:1/23:1, d17:1/24:1)* 0.77 1.09 0.74 1.09 1.59 1.35 

sphingomyelin (d18:2/24:1, 
d18:1/24:2)* 0.74 1.14 0.78 0.97 1.60 1.33 

tricosanoyl sphingomyelin 
(d18:1/23:0)* 0.80 1.16 0.76 1.11 1.70 1.47 

sphingomyelin (d18:1/17:0, 
d17:1/18:0, d19:1/16:0) 0.74 1.03 0.71 1.09 1.39 1.23 

glycosyl-N-stearoyl-sphingosine 0.70 0.97 0.70 0.97 0.94 0.70 
glycosyl-N-palmitoyl-sphingosine 0.62 0.91 0.90 0.99 1.10 0.91 
lactosyl-N-palmitoyl-sphingosine 0.86 0.97 0.93 0.90 1.00 0.83 
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Table 2 

Biochemical Name 

THP-1 NOMO-1 Mv4;11 

NOX2 KD 
vs Control 

DPI vs 
shControl 

NOX2 KD 
vs Control 

DPI vs 
shControl 

GOX 
10mU/mL 
vs Control

GOX 
20mU/mL 
vs Control

hexanoylcarnitine 0.16 0.05 0.29 0.04 0.50 0.29 
octanoylcarnitine 0.27 0.27 0.19 0.12 2.08 0.78 
laurylcarnitine 0.56 0.19 0.48 0.21 0.83 0.69 
myristoylcarnitine 0.48 0.23 0.53 0.21 0.76 0.65 
palmitoylcarnitine 0.45 0.18 0.58 0.15 0.66 0.56 
stearoylcarnitine 0.40 0.06 0.74 0.09 0.63 0.57 
linoleoylcarnitine 0.12 0.38 1.26 0.74 1.09 0.63 
oleoylcarnitine 0.34 0.40 0.56 0.24 1.03 0.68 
myristoleoylcarnitine 0.45 0.39 0.46 0.34 1.08 0.79 
suberoyl carnitine 0.87 0.68 1.20 0.88 0.84 0.92 
deoxycarnitine 0.57 1.09 0.85 0.68 0.86 0.69 
carnitine 0.62 0.96 0.90 0.80 0.94 0.74 
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Table 3 

Biochemical 
Name 

THP-1 NOMO-1 MV4;11 

NOX2 KD 
vs Control 

DPI vs 
shControl 

NOX2 KD 
vs Control 

DPI vs 
shControl 

GOX 
10mU/ml 
vs Control 

GOX 
20mU/ml 
vs Control

Glycine 0.75 1.31 1.02 0.84 1.11 0.85 

Serine 0.78 0.37 1.19 0.63 1.09 0.72

Threonine 0.77 0.83 1.10 0.51 1.28 1.00

Alanine 0.75 0.57 1.19 0.43 0.98 0.73

Asparagine 0.67 0.64 1.25 0.48 1.13 0.86

Glutamate 0.75 0.95 0.95 0.90 1.06 0.82

Glutamine 0.16 1.64 1.27 0.42 1.14 0.73

Histidine 0.81 0.74 1.16 0.72 1.28 0.97

Phenylalanine 0.79 0.51 1.06 0.65 1.18 0.91

Tryptophan 0.80 0.63 1.12 0.70 1.23 1.03

Leucine 0.77 0.64 1.07 0.71 1.16 0.86

Methionine 0.83 0.63 1.14 0.86 1.20 0.82

Cysteine 0.52 1.08 0.83 0.79 1.19 0.97

Proline 0.74 0.89 0.88 0.71 1.23 1.03

Aspartate 1.38 0.54 0.77 0.41 0.84 0.64

Arginine 0.93 1.32 1.06 0.86 1.09 0.78

Isoleucine 0.82 0.89 1.13 0.84 1.28 1.03

Valine 0.85 0.73 1.06 0.73 1.28 0.95

Lysine 0.86 0.84 0.91 0.63 1.15 0.89

Tyrosine 0.74 0.47 1.11 0.68 1.18 0.92
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