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Abstract 

The non-obese diabetic (NOD) mouse develops spontaneous type 1 diabetes, with some 

features of disease that are very similar to the human disease. However, a proportion of NOD 

mice are naturally-protected from developing diabetes, and currently studies characterising this 

cohort are very limited. Here, using both immunofluorescence and multi-parameter flow 

cytometry we focus on the pancreatic islet morphology and immune infiltrate observed in 

naturally-protected NOD mice. We show that naturally-protected NOD mice are characterised 

by an increased frequency of insulin-containing, smaller sized, pancreatic islets. Although mice 

remain diabetes free, florid immune infiltrate remains. However, this immune infiltrate is 

skewed towards a regulatory phenotype in both T and B-cell compartments. Pancreatic islets 

have an increased frequency of IL-10 producing B cells and associated cell surface markers. 

Resident memory CD69+CD8+ T cells show a significant shift towards reduced CD103 

expression, while CD4+ T cells have increased FoxP3+CTLA4+ expression. These data indicate 

that naturally-protected NOD mice have a unique islet signature and provide new insight into 

regulatory mechanisms within pancreatic islets.  
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Introduction 

Type 1 diabetes is an organ-specific autoimmune disease characterized by immune-mediated 

beta-cell destruction in pancreatic islets, which results in deficient insulin production. Similar 

to humans, Non Obese Diabetic (NOD) mice develop spontaneous type 1 diabetes. However, 

in NOD mouse colonies worldwide, approximately 20% (or more) of NOD mice remain 

normoglycemic and ‘protected’ from diabetes, despite their genetic predisposition (1). Few 

studies have been done to discover the mechanism of this natural protection. Recently, we have 

dissected the B-cell functionality in naturally-protected NOD mice, highlighting an increased 

IL-10-producing B-cell frequency and enhanced response to dendritic cells, compared to NOD 

mice that have developed diabetes (2). Furthermore, it has been suggested that B cells, 

specifically anergic CD40+IL-10-producing B cells, found in the pancreatic islets of long term 

normoglycemic mice (protected) (3), may confer this natural protection. Currently, the 

phenotype and function of CD4+ and CD8+ T cell populations in naturally-protected NOD mice 

is unexplored. 

Pancreatic islets have a dynamic tissue microenvironment, in which immune cells 

communicate to drive beta cell destruction. This is complicated by cellular and kinetic 

heterogeneity in both mouse and human pancreatic islets, including the rate of beta cell 

destruction. The aim of this study was to investigate the characteristics and heterogeneity of 

the islets in naturally-protected NOD mice, including the immune infiltrate.  This knowledge 

may provide insight into disease heterogeneity in humans, as not all at-risk individuals develop 

type 1 diabetes.  
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Research Design and Methods 

Mice 

Female NOD/Caj mice, originally from Yale University, were bred in-house at Cardiff 

University. All mice received water, irradiated food ad libitum and were housed in specific 

pathogen-free isolators or scantainers, with a 12h dark/light cycle, at Cardiff University. All 

animal experiments were approved by Cardiff University ethical review process and conducted 

under United Kingdom Home Office license in accordance with United Kingdom Animals 

(Scientific Procedures) Act, 1986 and associated guidelines. Diabetes conversion rates for 

Cardiff University can be found in (4) with approximately 80% incidence in females by 30 

weeks, with a median incidence at 19 weeks old. NOD female incidence at other institutions 

or companies can vary; e.g. at Jackson laboratories incidence is approximately 90% incidence 

by 30 weeks of age, with a median female onset at 18 weeks.  

Diabetes Incidence 

Mice were monitored weekly for glycosuria (Bayer Diastix) from 12 weeks of age. Following 

2 positive glycosuria measurements, blood glucose levels were tested and if greater than 

13.9mmol/L, mice were diagnosed as diabetic. NOD mice that were 35 weeks of age or older 

and had never tested positive for glycosuria were considered to be protected from diabetes, as 

the incidence of diabetes after this age is very low.  

Islet preparation 

Pancreata were inflated with collagenase P solution (1.1mg/ml) (Roche, Welwyn Garden City, 

UK) in HBSS (with Ca2+ and Mg2+) via the common bile duct, followed by collagenase 

digestion with shaking at 37°C for 10min. Islets were isolated by Histopaque density 

centrifugation (Sigma-Aldrich, Dorset, UK), and hand-picked under a dissecting microscope. 

For flow cytometric analysis islets were then trypsinized to generate a single cell suspension. 
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Islet cells were rested at 37°C 5% CO2 in IMDM (supplemented with 5% fetal bovine serum 

(FBS), 2mM L-glutamine, 100U/mL Penicillin, 100μg/mL Streptomycin, and 50μM β-2-

mercaptoethanol) overnight, before multiparameter staining.  

Fluorescence immunohistochemistry  

Pancreatic tissues were frozen in optimal cutting temperature medium and sectioned at 7Pm 

thickness. For wholemounts, pancreatic islets were fixed overnight at 4qC in 1% 

paraformaldehyde (PFA). For pancreatic sections, sections were fixed in 1% PFA for 1hr at 

RT. Following fixation, tissue was permeabilised with 0.2% triton-x100 and blocked with 5% 

FBS before the addition of a rat anti-mouse CD45 (Biolegend) and a biotinylated anti-insulin 

(Abcam; clone D6C4,) antibody mix. Secondary labelling was performed with both AlexaFluor 

633-conjugated goat anti-rat antibody (Invitrogen) and a Streptavidin-conjugated AlexaFluor 

488 antibody (Invitrogen) and mounted with VECTASHIELD� mounting medium, with DAPI 

(Vector Laboratories). Islet wholemounts were centrifuged at 300g for 3mins before being 

resuspended in mounting medium, with DAPI, before mounting to the slide. All sections and 

wholemounts were imaged on Leica SP5confocal microscope.  

Image J analysis 

All analysis was performed using Fiji (Image J) (5). Islet area, perimeter, circularity, CD45 

and insulin intensity was measured by using a region of interest (ROI) on individual channels 

using Fiji’s measurement tool. Islets with insulin remaining were considered to be insulin 

containing islets (ICI) when 3 or more insulin+ beta cells were present.  

Flow Cytometry 

Cells were incubated with TruStain (anti-mouse CD16/32 [Biolegend, London, UK]) for 10min 

at 4°C, followed by fluorochrome-conjugated mAbs against cell surface markers for 30min at 

4°C. B cell phenotyping multi-parameter flow cytometry was carried out using mAbs: CD3 
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(145-2C11); B220 (RA3-6B2); CD138 (281-2); CD86 (PO3); CD80 (16-10A1); CD11c 

(N418); CD11b (M1/70); CD19 (6D5); CD44 (IM7); BAFFR (7H22-E16); MHC II (10-3-6); 

Ki67 (11F6), all purchased from Biolegend.  IL-10 (JES5-16E3); IgD (11-26c.2a); CD40 

(3/23) purchased from BD Biosciences. Galectin-1 antibody was purchased from RD systems. 

T cell phenotyping multi-parameter flow cytometry was carried out using mAbs: CD3 (145-

2C11); CD8 (53-6.7); CD4 (GK1.5); CD103 (2E7); CD69 (H1-2F3); PD-1 (29F.1A12); IFNJ 

(XMG1.2); CTLA4 (UC10-4B9); FoxP3 (MF-14), all purchased from Biolegend. CD25 

(PC61); IL-10 (JES5-16E3) were purchased from BD Biosciences. Dead cells were excluded 

from analysis by Live/Dead exclusion dye (Invitrogen, MA, USA). IFNJ; IL-10; CD107a and 

Galectin-1 were detected by intracellular cytokine staining after 3hrs of stimulation with PMA 

(50ng/ml), ionomycin (500ng/ml) and monensin (3µg/ml) [all from Sigma-Aldrich]. After 

extracellular staining, cells were fixed using fixation/permeabilization kit according to the 

manufacturer’s instructions (BD Biosciences) and subsequently stained for mAb against 

intracellular cytokines or appropriate isotype controls.  For FoxP3, CTLA4 and Ki67 staining 

cells were fixed/permeabilized using eBioscience nuclear transcription kit. Cell suspensions 

were acquired on an LSRFortessa (FACSDIVA software, BD Biosciences), and analysed using 

Flowjo software, version 10.1 (Tree Star, Oregon, USA).  

Statistical analysis 

Statistical analyses were performed using GraphPad Prism (GraphPad Software, San Diego, 

CA). Comparison between groups was determined by Mann-Whitney U test or Kolmogorov-

Smirnov test. For correlations, Pearson correlation co-efficient was calculated. Data were 

considered significant at p<0.05.  



 7 

Data Availability  

The datasets generated or analysed during the current study are available on reasonable 

request. 
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Results  

Increased frequency of insulin-containing small pancreatic islets in naturally-protected 

NOD mice 

To investigate the features of the pancreatic islets in naturally-protected NOD mice (not 

diabetic by 30 weeks of age and hereafter referred to as protected), we used 

immunofluorescence histochemistry, including both pancreatic islet wholemounts and 

sections. First, we analysed size, by area measured in pixels/Pm, of pancreatic islets in 

wholemounts, from protected NOD mice (Fig. 1a, b). Representative images (Fig. 1a) and 

summary graph (Fig. 1b) demonstrated a range of sizes in the remaining islets in protected 

NOD mice. Next, we determined the size, by area, of pancreatic islet sections, from both 

protected and diabetic NOD mice (Fig. 1c, d). Smaller pancreatic islets were significantly more 

frequent in NOD mice that were protected from diabetes, compared to mice that had developed 

diabetes (Fig. 1d) (p<0.001). To analyse these islet data further, we used a frequency 

distribution graph to show the relative contribution, in percentage, of each islet to set ‘bins’ 

according to islet area. Islet size distribution analysis (in percentage) showed that the relative 

frequency of islets, with an area smaller than 50,000 pixels/Pm, was greater in protected (85%) 

compared with diabetic (51%) NOD mice (Fig. 1e). Further analysis in both protected and 

diabetic NOD mice revealed that insulin-containing islets (ICI) with detectable insulin-positive 

beta cells were significantly smaller in size and more frequent in the protected NOD mouse 

pancreata compared to diabetic NOD mice (p<0.01) (Fig. 1f). Interestingly, in the diabetic 

NOD mice, the very few ICI detected were larger in area (Fig. 1g). Crucially, a comparison 

between insulin-containing islets (ICI) and insulin-deficient islets (IDI), in both NOD groups, 

revealed that ICI were significantly smaller in islet area (Fig. 1h) and were more frequent (Fig. 

1i), in comparison to IDI in protected NOD mice. However, this feature was lost in diabetic 



 9 

NOD mice with no significant difference found in islet area (Fig. 1h), or frequency (Fig.1i), in 

the few ICI identified. 

Alongside islet area, islet perimeter was also analysed and the features observed in protected 

NOD mice were further confirmed (SFig. 1a-c). In addition to islet size, we investigated 

whether islet circularity was different in protected NOD mice, compared to mice that have 

developed diabetes; however no difference was observed in total islets analysed (SFig. 1d) or 

between ICI and IDI in either the protected or diabetic NOD mouse cohort (SFig. 1e). 

Morphological characterisation of pre-diabetic NOD pancreatic islets 

Since protected mice had an increased frequency of smaller islets than diabetic mice, we 

determined if smaller islets were less affected by immune cell infiltrate when pancreatic 

insulitis was established and diabetes begins to manifest (mice aged 12-18 weeks old). 

Wholemount pancreatic islets were stained with insulin and CD45 (a marker of immune cells) 

to identify islets undergoing attack, and the size was measured by area. Figure 2a demonstrates 

heterogeneity of pancreatic islets, shown by representative pictures from two different NOD 

mice. Z-stacks taken from two individual islets are also shown in SFig. 2a. As expected, size, 

shape and quantity of the CD45 immune infiltrate were variable in each individual islet. 

However, we observed a clear pattern between size and quantity of CD45 immune infiltrate. 

We confirmed this with correlation analysis, comparing islet area (Fig. 2b) and islet perimeter 

(SFig. 2b), with fluorescence intensity of CD45 (left) and insulin (right). A significant positive 

correlation was observed (p<0.001) between islet area and CD45 immune infiltrate, alongside 

a significant negative correlation (p<0.01) between islet area and insulin+ beta cells. 

Regulatory B cells are increased in the islets of naturally-protected NOD mice 

As the pancreatic islets of naturally-protected NOD mice have considerable immune 

infiltration, although remaining normoglycemic, we analysed the B cell infiltrate to investigate 

the frequency of regulatory cells by flow cytometry (Figure 3). Firstly, we compared the 
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percentage of total B cells in groups of pooled protected NOD mice (>35 weeks), compared to 

groups of pooled younger pre-diabetic NOD mice (6-8 weeks old) (Fig. 3a, b) and observed a 

significant increase in CD19+ B cells (p<0.001). Secondly, complementing our previous 

observation that naturally-protected NOD mice have increased splenic IL-10-producing B cells 

(2), we showed a significant increase in pancreatic islet IL-10-producing B cells (Fig. 3c, SFig. 

3a). Furthermore, we also demonstrated a population of Galectin-1+ B-cells (SFig. 3b), which 

encompassed the majority of the IL-10-producing B cells and were increased in >35-week-old 

mice (p=0.06) (Fig. 3d, SFig. 3c). Interestingly, we also observed a significant increase in 

CD40+ (Fig. 3e) and CD80+ expressing B cells (Fig. 3f) (for representative gating see SFig. 

3d), both markers associated with regulatory B cell function (6; 7). It should be noted that no 

significant differences were observed in B cell expression of MHC II, CD86 or BAFFR (SFig. 

3e,f). 

Many B cells in pancreatic islets express CD138 (8; 9), a marker that identifies plasmablasts 

and plasma cells. We investigated our previously described populations identified by CD138 

and IgD expression (9), we examined these populations further (Fig. 3g-i), using markers for 

murine plasmablasts (10; 11). We assessed CD19 (Fig. 3h), CD44 and Ki67 (Fig. 3i) in each 

CD138+/- population revealing that CD138hiIgD- cells (red gate) contained a CD44hiKi67+ 

highly proliferative population which also expressed intermediate levels of CD19 (CD19int). 

With this further analysis, we propose that CD138hiIgD- cells (red gate) are a subpopulation of 

dividing plasmablasts. Few B cells that remained IgD+ were proliferating and so it is probable 

that they represent classical B cells (blue gate, CD138-IgD+) and an intermediate-stage of 

plasmablast (orange gate, CD138+IgD+). CD138+IgD- cells (grey gate) were a mixture of both 

+/- CD19 cells and increased Ki67 expression, compared to CD138-IgD+ classical B-cells, and 

are likely to represent both non-dividing intermediate-stage plasmablasts and dividing 

plasmablasts.  
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We demonstrated that protected NOD mice displayed significant increases in both 

CD138+IgD+ B cells (Fig. 3j), and CD138-IgD+ B cells (Fig. 3k), compared to young 6-8-week-

old mice. This observation indicated that CD138+IgD+ cells were not selectively recruited over 

CD138-IgD+ B-cells (Fig. 3l). However, the frequency of CD138+IgD- B-cells in both young 

and older, protected NOD mouse groups was not altered (Fig. 3m). Thus, the ratio of the 

CD138+IgD- to CD138-IgD+ B cells was increased in the younger NOD mice (Fig. 3n). This 

may suggest these B cells arrive early to the pancreatic islets. Analysis of the small population 

of dividing plasmablasts (CD138hiIgD-) showed a significant increase in protected NOD mice, 

compared to younger NOD mice (Fig. 3o). 

Enrichment of CD4+FoxP3+CTLA4+ Tregs in naturally-protected NOD mice 

To determine the characteristics of CD4+ T cells in the pancreatic islets of NOD mice, that are 

‘naturally-protected’ from diabetes, we studied the islet-infiltrating T cells of groups of pooled 

protected NOD mice by multiparameter flow cytometry, and compared these to islet-

infiltrating T cells from groups of pooled mice 6-8 weeks of age (mice with early-stage 

insulitis). CD4+ T cell frequency and expression were increased in protected NOD mice, 

although non-significant due to the variability in younger NOD mice (Fig. 4a, b). To ascertain 

if CD4+ Tregs contributed to the protection seen in protected NOD mice, we investigated the 

presence of CD4+FoxP3+ Tregs in the pancreatic islets and revealed a significant increase in 

CD4+FoxP3+ Treg cells in the pancreatic islets of protected NOD mice, compared to 6-8-week-

old mice (Fig. 4c, d). Further analysis of the CD4+FoxP3+ T cells revealed a significant increase 

in the frequency of CTLA4+CD4+FoxP3+ T cells in protected NOD mice, compared to 6-8-

week-old mice (p<0.01) (Fig. 4e, f). No significant differences were observed in the percentage 

of CD4+FoxP3+ T cells expressing CD25, PD-1 or CD103. Interestingly, intracellular cytokine 

analysis of both CD4+FoxP3-/+ T cells showed a significant increase in IFNJ-producing 

CD4+FoxP3- T cells in protected NOD mice, compared to mice aged 6-8 weeks old (Fig. 4g,h). 
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No differences in IL-10 in FoxP3+ CD4+ T cells was observed. This increase in IFNJ 

production from re-stimulated CD4+ T cells may reflect enhanced antigen experience.  

Islet CD8 TRM in naturally-protected NOD mice switch to a CD103- phenotype 

Additional analysis of T cells was performed. Similar to CD4+ T cells, CD8+ T cells were 

modestly increased in frequency in >35-week-old mice (Fig.5a,b). As CD8+ T cells are found 

from an early age in the pancreatic tissue we investigated markers of tissue residency. CD8+ 

tissue resident memory cells (TRM) can be distinguished by the surface markers CD69 and 

CD103 (12). CD8+ TRM populations have now been widely studied in various tissues and play 

a crucial role in immunosurveillance and protect against secondary viral infections (13). We 

demonstrated 3 key populations of CD8+ T cells in the pancreas of NOD mice: CD103-CD69- 

recirculating cells; CD103-CD69+ TRM and CD103+CD69+ TRM (Fig. 5d-g). Protected >35-

week-old NOD mice and younger NOD mice had similar frequencies of recirculating 

CD8+CD103-CD69- T cells (Fig. 5d). Strikingly, CD8+ TRM cells were significantly different 

between protected NOD mice and mice aged 6-8 weeks old, with a shift towards greater 

prominence of CD103- TRM cells in protected NOD mice (Fig. 5e, f). Further, both CD8+ 

CD103-/+ TRM populations expressed  CD107a, IFNJ and PD-1, with the CD103- TRM becoming 

more activated overall, after stimulation (Fig. 5g). There was no enrichment of PD-1 (a marker 

for T cell exhaustion (14) in either TRM population (Fig. 5g). Further analysis of the CD107a+ 

cells (a marker for recent degranulation) in the TRM populations, revealed CD107a+CD103+ 

TRM cells had fewer IFNJ+PD-1- expressing cells than the CD107a+CD103- TRM (P<0.05) (Fig. 

4i, summary graph), but overall a greater proportion of PD-1 expression (Fig. 4h, pie charts). 

Evaluation of IFNJ and PD-1 sub-populations in the younger as well as protected NOD mice 

showed a significant increase in IFNJ+PD-1+ T cells in both CD103+/- TRM populations (Fig. 

4j, k). Overall, naturally protected NOD mice show a shift towards a CD8+CD103- TRM 
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population, which has a more activated phenotype after stimulation, alongside an increase in 

IFNJ in the TRM subsets.
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Discussion 

In this report, we demonstrate key characteristics of pancreatic islets in a group of mice that 

are naturally protected from developing spontaneous diabetes. Firstly, we discovered that 

smaller islets remain in these protected mice, with a clear correlation between islet size and 

immune infiltrate. Furthermore, insulin+ beta cells are still present in pancreatic islets despite 

florid immune infiltrate. This immune infiltrate has a high frequency of B and T cells, however 

the compositional signature was notably different in both immune cell compartments. 

For the first time, we show that protected NOD mice have an increased frequency of smaller 

islets remaining in the pancreas, with insulin-containing islets smaller in size compared to islets 

deficient in insulin+ beta cells. NOD mice that developed diabetes did not display this pattern. 

Moreover, we show in pre-diabetic NOD mice, larger islets have larger immune infiltrates. 

Previously, islet size has been shown to decrease as the duration of disease progresses in the 

NOD mouse (15); however more sophisticated imaging identified that the smaller islets, 

located peripherally, are destroyed earlier in the disease process (16). However, surprisingly, 

the CD3+ immune infiltrate was not localized to the smaller islets or within a particular islet 

region (16). In humans, individuals with recent-onset type 1 diabetes have larger islets 

compared with people with long standing type 1 diabetes (17).  

Islets smaller in size than those found in the 12-16 week old NOD mice may have been 

destroyed; however we noted that islet size and infiltrate were correlated, but curiously the very 

few remaining islets with insulin+ beta cells were not smaller in size. Certainly, no correlation 

between beta-cell mass and insulitis was observed in human pancreatic sections from donors 

with type 1 diabetes, but islet size was not addressed (18). This dichotomy requires further 

study to ascertain why this is the case. An explanation for this correlation between islet size 

and immune infiltrate could be explained by an increased capillary density (19), providing 

more immune cell access.  



 15 

IL-10-producing B cells (B10 cells) diminish the inflammatory response (20). Building on 

previous work (2), we now show that naturally-protected NOD mice have a regulatory B cell 

bias in the pancreatic islets. We demonstrate Galectin-1+ B cells in pancreatic islets, a marker 

shown to be necessary for the function of regulatory B cells (21), and production of this protein, 

from activated B cells, can influence T cell responses, including inducing T cell apoptosis (22). 

Furthermore, the infiltrating B cells have increased levels of other cell surface markers 

associated with regulation. Firstly, the CD80 molecule is known to preferentially bind CTLA4 

(23), which we also find significantly increased on CD4+FoxP3+ Tregs in these protected NOD 

islets. Secondly, B10 cells require CD40 in order to suppress effector T cells and autoimmunity 

(6). Interestingly, here we describe a significant increase in dividing CD138hiCD44hi 

plasmablasts in protected NOD mice, previously reported to be an IL-10-producing population 

(10).  

We observed that CD138+IgD- pancreatic islet B cells are similar in frequency in both younger 

and protected NOD mice. Early islet B cells have a B1 B cell phenotype (24), B cells that are 

preferentially located in the peritoneum and pleural cavities, and are players in the initiation of 

type 1 diabetes (25). CD138+IgD- cells identified here are a heterogenous pool of dividing and 

non-dividing plasmablasts at various intermediate differentiation stages, which consist of 

CD19+ and CD19- cells which lack IgM expression and are more proliferative compared to 

classical B cells. Crucially, this subset also contains antigen-specific B cells (9). Further work 

on these defined subsets is required to understand if they are a B1-like-cell that has altered due 

to the inflamed tissue environment. 

Lastly, we identified a significant shift in the CD8+ T cell compartment. A CD8+CD103+TRM 

phenotype is more prevalent in the younger NOD, whereas a CD8+CD103- TRM phenotype 

dominates in the protected NOD mice, with CD8+CD103- TRM cells producing increased IFNJ, 

when re-stimulated ex vivo. CD8+ TRM respond rapidly to control local immune responses in 
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the tissue and so are central in tissue immunosurveillance. CD8+CD103- TRM have been 

described in various tissues, with CD8+CD103+ TRM cells located preferentially in the 

epidermis while CD8+CD103- TRM cells are located in the dermis of human skin (26), with 

distinct functional roles (26; 27). CD8+CD103+/- TRM have been defined as separate 

populations, with different patterns of recall, molecular signature and migration (27-29). 

CD8+CD103- TRM are more transient in the tissue compared to CD103+ counterparts (28), 

alongside an increased expression of sphingosine-1-phosphate receptor-1 (S1P1R) (27). It 

remains unclear if the enrichment of the CD8+CD103- TRM population in the older protected 

mice represents a more transient CD8 TRM population, and this would require further 

interrogation. CD8+ TRM in human pancreatic tissue from adults with recent onset type 1 

diabetes have been identified, but interestingly, only CD8+CD103+ TRM cells were detected in 

pancreatic tissue (30). However, in non-diabetic donors a CD8+CD103- TRM phenotype has 

been observed in approximately 20-30% of resident CD8+ T cells in pancreatic islets (31).  

E-cadherin, the principal ligand for CD103, is expressed by pancreatic islets (32) and this 

interaction can result in the release of cytokines and lytic granules from CD8+ T cells, therefore 

controlling cytotoxic CD8+T cell responses (33; 34). CD103 is also required for the efficient 

destruction of pancreatic islet allografts (35). A shift towards CD8+ T cells lacking CD103 in 

naturally-protected NOD mice may result in reduced targeted cell death. However, this CD103- 

TRM shift may also be as a result from the loss of the ligand E-cadherin due to substantial loss 

of pancreatic islets. 

In conclusion, naturally-protected NOD mice have a unique pancreatic signature, with 

remaining islets that contain smaller insulin-producing beta cells and an immune infiltrate (both 

T and B cells) shifted towards a regulatory phenotype. These results are important to 

understand the balance between a destroyed islet and an islet that remains, even partially, intact. 

Limitations in this study reflect the difficulty of studying both heterogenous islets and immune 
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cell subsets, especially with limited cell numbers. Furthermore, protected NOD mice represent 

a pool of mice that cannot be detected early in the disease process and so comparisons with 

mice that are younger, including mice that have established insulitis, is challenging. These 

younger mice would encompass both mice that will develop diabetes and be naturally 

protected, and we cannot, as yet, predict which mice will develop diabetes and distinguish them 

from mice that will be spared. Nevertheless, these observations highlight the need for further 

investigation into the dynamic process of beta-cell destruction. 
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Figure Legends 

Figure 1. Pancreatic islets from naturally-protected NOD mice are smaller in size. Pancreatic 

islet wholemounts and sections from naturally-protected NOD mice (>35 weeks old; blue) and 

NOD mice that had developed diabetes (grey) were analysed by immunofluorescence staining 

for CD45 (yellow), insulin (red) and DAPI (blue). (a) Representative images of wholemounts 

from naturally protected >35-week-old mice; (b) graph showing distribution of individual islet 

area in >35-week-old mice; (c) representative images from pancreatic sections from >35-week-

old mice and mice that have developed diabetes; (d) Summary graphs of islet area from 

individual islets in >35-week-old and diabetic NOD mice (left) and (e) the relative frequency 

distribution in percentage (right) of pancreatic islets; (f) summary graphs for insulin containing 

islets (ICI) in both >35-week-old and diabetic NOD mice showing area, (g) frequency 

distribution in number of islets (left), relative frequency distribution in percentage (right); (h) 

summary graphs for insulin-containing islets (ICI) and insulin-deficient islets (IDI) from >35-

week-old and diabetic NOD mice showing islet area (left); (i) relative frequency distribution 

of percentage of these islets in mice diabetic NOD mice (left), and relative frequency 

distribution of percentage of these islets in >35-week-old NOD (right). Data shown are from 

at least 2 independent experiments (protected n=3; diabetic n=3). *<0.05; **<0.01; ***<0.001; 

Kolmogorov-Smirnov test. 
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Figure 2. Morphological characterisation of pre-diabetic NOD pancreatic islets. Pancreatic 

islet wholemounts from NOD mice aged 12-18 weeks were analysed by immunofluorescence 

staining for the immune cell marker CD45 (yellow) and beta cell marker insulin (red). (a) 

Representative images from 2 (top panel, bottom panel) individual NOD mice, 8 pancreatic 

islets shown for each individual NOD mouse. (b) Correlative graphs for both CD45 and insulin 

expression against islet area. Data are from 4 independent experiments, n=8.  

Figure 3. Naturally-protected NOD mice have increased regulatory B cells in the pancreatic 

islet infiltrate. 

Pancreata from groups (n=2-3) of NOD mice aged 6-8 weeks old (younger prediabetic; red) 

and >35 weeks old (protected; blue) were taken and pancreatic islets pooled together before 

flow cytometric analysis. (a) Representative histograms to show CD19+ B cell expression; (b) 

Overall percentages for CD19+ B cells; (c-f) Overall percentages of CD19+ B cells expressing 

(c) IL-10, (d) IL-10+ in Gal-1+ and Gal-1- compartments, (e) CD80 (f) CD40; (g-i) 

representative flow cytometry plots gated on live, CD3-CD11b-CD11c- cells for (g) CD138 and 

IgD populations; CD138-IgD+ (blue gate); CD138+IgD+ (orange gate); CD138+IgD- (grey 

gate), CD138hiIgD- (red gate); (h) CD19 expression on each of the CD138/IgD populations; (i) 

histograms showing CD44 (left) and Ki67 (right) on each of the CD138/IgD populations; (j, 

k); Overall percentages for (j) CD138+IgD+ cells (k) CD138-IgD+; (l) Ratio of CD138+IgD+ to 

CD138-IgD+ B cells; (m) Overall percentages of CD138+IgD- cells; (n) Ratio of CD138+IgD- 

cells to CD138-IgD+ B cells (o) Summary graph for percentages of CD138hiIgD- plasmablasts 

in both young NOD and protected >35-week-old NOD mouse groups. Data shown are from at 

least 4 independent experiments. *<0.05; **<0.01; ***<0.001, Mann-Whitney U test. 

Figure 4. Increased frequency of CD4+CTLA4+FoxP3+ Tregs in naturally-protected NOD 

mice. Pancreata from groups (n=2-3) of NOD mice aged >35 weeks old (protected; blue) and 

6-8 weeks old (younger prediabetic; red) were taken and pancreatic islets pooled together 
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before flow cytometric analysis. (a) representative histogram of CD4 expression; (b) CD4+ T 

cell percentages (left) and CD4 geometric mean fluorescence intensity (GMFI) (right); (c) 

CD4+FoxP3+ T cell expression representative histograms and (d) summary graph; (e, f) 

expression of CD4+ Treg markers on CD4+FoxP3+ and CD4+FoxP3- T cells with (e) 

demonstrating representative histograms for CTLA4, CD25, PD-1 and CD103 and (f) graphs 

showing summary percentages; (g, h) IFNJ and IL-10 expression in CD4+FoxP3+/- subsets, 

with (g) illustrating representative flow plots and (h) summary graphs. Cells were gated on 

singlets, live, CD4+ cells. Data are from at least 3 independent experiments. *<0.05; **<0.01, 

Mann-Whitney U test. 

Figure 5. CD8+ TRM in naturally-protected NOD mice switch to a CD103- phenotype. 

Pancreatic islets from groups (n=2-3) of NOD mice aged >35 weeks old (protected; blue) and 

6-8 weeks old (younger prediabetic; red) were taken and pancreatic islets pooled together, 

before flow cytometric analysis. (a) representative flow plots showing CD8+ T cells; (b) CD8+ 

T cell percentages; (c) representative flow plots to show CD103-CD69- recirculating CD8+ T 

cells and CD103+/-CD69+ TRM cells (d-g) percentages CD8+ T cell populations with (d) 

demonstrating CD103-CD69- recirculating T cells, (e) CD103-CD69+ TRM, (f) CD103+CD69+ 

TRM and (g) pie charts summarising total percentages of CD107a, IFNJ and PD-1 expression 

on both CD103+/- TRM CD8+ subsets; (h, i) CD8+CD103+/- TRM subset analysis gated on 

CD107+ cells containing IFNJ+PD-1-; IFNJ+PD-1+ and IFNJ-PD-1+ subsets with (h) showing 

overall percentages of IFNJ and PD-1 populations and (i) illustrating pie charts showing 

proportion of CD107a-expressing cells for IFNJ and PD-1 populations (j, k) IFNJ+ and PD-1+ 

populations on the CD107a+ subset of CD8+CD103-CD69+ TRM (top) and CD8+CD103+CD69+ 

TRM (bottom) from 6-8-week-old (red) and >35-week-old (blue) NOD mice (j) representative 

flow cytometry plots (k) summary graphs of percentages. Cells were gated on singlets, live, 
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CD8+ cells. Data are from at least 3 independent experiments. *<0.05; **<0.01; ***<0.001, 

Mann-Whitney U test. 
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