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ABSTRACT 

Buildings account for 30% of the final global energy and 28% of the total carbon 

emissions in the world. Heating, ventilation and air-conditioning (HVAC) systems can 

consume up to 60% of the total energy consumption in buildings. Improving the energy 

efficiency of HVAC systems is important in reducing carbon emissions and mitigating 

risks associated with global climate change such as overheating of indoor environments. 

Another benefit of improving the energy efficiency of HVAC systems is to save energy 

cost for building owners. Many previous studies focused on the design and retrofit for 

improving building energy efficiency, but few of them looked into how to improve the 

building operation. As the primary building energy system, Commercial HVAC systems 

are complex because of the interaction of a large number of sub-systems and 

uncertainties resulting from the interactions of building mass, thermal inertia, weather 

and occupancy. The application of Model Predictive Control (MPC) has received 

significant attention in the last few years from researchers and the industry to the control 

and management of building energy systems. Despite increasing research on using MPC 

for improving the energy efficiency of HVAC systems, few of them utilise flexibilities such 

as time of use (ToU) and killowatt Max (kWmax) control.   

This research investigates how the control of building elements (such as windows) and 

HVAC systems could improve energy efficiency and thermal comfort. This study has 

been divided into two parts based on three case studies. The first part of the study 

demonstrates a physics-based case study that assesses the impact of climates on the 

indoor environment and how the control of window openings for natural ventilation can 

reduce overheating risk in current and future climates. The results find bedrooms are 

easier to suffer overheating risks than living rooms but increasing openings for natural 

ventilation is more effective in reducing overheating hours in bedrooms. By opening 20% 

of window area for natural ventilation, the results show that 2%, 17% and 45% of the 

total 108 dwellings’ bedrooms are overheated in the 2030s, 2050s and 2080s, compared 

to living rooms with 30%, 60% and 89%. In the 2030s, increasing the window opening 

area ratio from 20% to 80% can reduce the number of dwellings with overheating risk in 

bedrooms from 32 to 14, but find nearly no change in living rooms. However, the passive 

control of building elements such as windows, blinds and overhangs has limitations in 

adapting dwellings to climate change. With a maximum window area for opening plus 

blinds and 2-meter overhangs, it can still not eliminate overheating risk in most UK cities 

in the 2080s.   

After demonstrating the limitations of the control of building elements in future climates, 

the second part of the study introduces two case studies which turn to study the 
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optimisation of controls for HVAC systems in a residential and a commercial building. 

The research goes towards the development of data-driven MPC controllers for the two 

buildings. A sensor network has been established for building energy metering and 

environmental monitoring in the residential building to enable remote control of the 

heating system with the MPC controller. It is found that the MPC controller can improve 

thermal comfort by allowing more hours with room temperatures within the design 

comfort band. In the commercial case study building, a data-driven MPC controller has 

been developed, running optimal control of 9 indoor units per 15 minutes to maintain 

indoor temperatures within the design comfort band. It proposes a demand response 

method to minimize energy cost by integrating with ToU and kWmax use cases. The 

study finds that MPC could take advantage of energy tariffs and flexibility by shifting the 

loads from high-demand periods to low-demand periods. With the data-driven MPC, it 

could reduce the peak energy consumption by up to 36% and the peak power by about 

15%.  
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Chapter 1 Introduction 

1.1 Background 

Globally, buildings consume about 30% of the final energy and generate approximately 

28% of energy-related carbon emissions worldwide (UN Environment & International 

Energy Agency (IEA), 2017). In Europe, buildings account for about 40% of the total 

energy (European Commission, 2008), generating 36% of the greenhouse gas (GHG) 

emission (Grozinger, et al., 2014). The total energy consumption in the building sector 

reached about 39% in the UK (Grozinger, et al., 2014) and 40% in the USA (US EIA, 

2018). As the increasing GHG emission significantly contributes to global climate 

warming (United Nations, 2015), energy conservation and GHG emission reduction in 

buildings play a vital role in alleviating the impact of climate change. In Europe, the GHG 

emission reduction targets are to cut emissions (from 1990 levels) in the EU by at least 

20% for 2020 (European Commission, 2012), 40% for 2030 (European Commission, 

2014) and achieving a climate-neutral society with net-zero GHG by 2050 (European 

Union, 2020). Improving energy efficiency is critical to achieving these targets. 

The energy consumed by heating, ventilation and air-conditioning (HVAC) accounts for 

up to 60% of the total energy consumption in buildings (Khan, et al., 2015). Effective and 

efficient control of the HVAC operation is necessary for energy saving. Conventional 

controllers, also called classical (Belic, et al., 2015), have been widely used in building 

energy systems due to the low computational complexity and simplicity of the design 

(ASHRAE, 2015). A Rule-Based Controllers (RBC) is used for the dynamic control in 

HVAC sub-systems based on “if-else” logic (Afram & Janabi-Sharifi, 2014), such as 

On/Off control and Proportional-Integral-Derivative (PID) control (Kwadzogah, et al., 

2013). The On/Off controller is the most simple and easy to implement that is commonly 

used in old building systems without digital control, but it is unable to control moving 

processes with time delays (Serale, et al., 2018). A process controlled using an on/off 

controller shows fluctuations from the set-points due to the high thermal inertia of many 

HVAC processes. While PID controllers are implemented in HVAC systems with digital 

control and variable frequency drives (ASHRAE, 2015), giving promising results. 

However, the tuning of the controller parameters is burdensome, as well the performance 

of the controller reduces if the operating conditions differ from the tuning conditions. 

Many research discussed optimal tuning and auto-tuning methods for PID controllers, 

which can be time-consuming and unacceptable due to its intrusive nature in relation to 

the normal operation of the systems (Afram & Janabi-Sharifi, 2014). 

Computational intelligence (CI) methods have been widely used instead of traditional 

statistical methods for their efficiency and faster convergence in forecasting building 
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energy demand (Namdar & Berenji, 2014). Unlike statistical methods, CI methods have 

the versatility to deal with temporal variation (Lee & Tong, 2012). Non-linear methods 

are often more effective in forecasting intermittent energy demand, typically found in 

building energy applications. The most widely used methods in building energy are 

artificial neural network (ANN), genetic algorithm (GA) and support vector machine 

(SVM) (Azadeh & Tarverdian, 2007). There is a growing trend of using CI methods for 

energy demand forecasting (Zhao & Magoulès, 2012), energy performance modelling 

(Foucquier, et al., 2013) and energy system control (Dounis & Caraiscos, 2009) for 

buildings. Many applications of CI methods on HVAC systems have been introduced in 

a comprehensive review, including design, control, management, optimization and fault 

detection and diagnosis (Ahmad, et al., 2016).  

The developments in the internet of things (IoT) and embedded sensors now afford us 

to collect enormous data and information from occupants and buildings at a high 

resolution in a cost-effective manner. It provides an opportunity in applying CI methods 

and machine learning techniques in developing data-driven based controllers for HVAC 

systems in buildings. The research aims to optimise the energy and comfort performance 

of buildings through sensor network technique and CI methods/machine learning 

techniques in the data-driven model predictive control (MPC) of building HVAC systems. 

1.2 Problem statement 

The operational control of HVAC systems in buildings is complex because of its nonlinear 

characteristics, the interaction of a large number of sub-systems and uncertainties 

resulting from the interactions of building mass, thermal inertia, weather and occupancy. 

Conventional control strategies have limitations in dealing with nonlinear HVAC systems 

and do not cope well with the dynamic nature of occupant behaviour and uncertainties 

in boundary conditions such as weather – often resulting in underperformance in terms 

of energy efficiency and occupant comfort. 

1.3 Motivation 

UK dwellings are mostly naturally ventilated buildings that are vulnerable to climate 

change-related overheating. The increasing incidence of summertime overheating has 

been found in the dwellings without air-conditioning in Europe and the UK, especially in 

existing stocks and new dwellings designed for retaining winter heat (Lomas & Porritt, 

2017). Many studies on human bioclimates have found an increasing trend in heat stress 

and a decreasing trend in cold stress in different climate zones between the 20th and 

21st centuries (Li, et al., 2011). Due to the increase in heat stress, summer overheating 

risk is expected to increase in buildings, especially in naturally ventilated buildings. 

Overheating and heatwave can increase the heat-related mortality to vulnerable 
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occupants such as the elderly, chronically ill and infants who are less sensitive to 

temperature variations and physiologically less capable of regulating their body 

temperatures (Lomas & Porritt, 2017). Natural ventilation is a crucial sustainable 

measure in improving indoor air quality and maintaining thermal comfort in buildings 

(Tong, et al., 2016). It is important to optimise the natural ventilation in UK dwellings to 

reduce summertime overheating risk, especially in future climates. 

Thermal comfort is always of great importance for occupants compared to acoustic and 

visual comfort and indoor air quality (Frontczak & Wargocki, 2011). The growing demand 

for better indoor thermal comfort increases the installation of HVAC systems, resulting in 

a significant rise in energy use in building operation. HVAC consumes a large number of 

total energy consumption of a building, more than 50% in tropical climates (Chua, et al., 

2013). The more energy buildings consume, the more GHG they emit, resulting in 

escalating climate and environmental crisis. Mitigating climate change and global 

warming require efforts on improving energy efficiency in both design and operation for 

building energy systems. However, few studies have looked into how to improve building 

operation to mitigate climate change while most previous studies focused on design and 

retrofit (Yang, et al., 2014). It has been an increasing concern in improving the efficiency 

of building operation, maintaining indoor thermal comfort and mitigating climate change. 

It is vital to optimising the control of the HVAC system to improve energy efficiency 

without compromising thermal comfort. 

Physics-based models are hard for modelling complex HVAC systems because of a gap 

between the models and real buildings, tuning efforts from domain experts, the variation 

of models from building to building, and a requirement of repeating system identification 

for updating models which change with time (Smarra, et al., 2018). With the development 

of sensing and communication technologies, a great amount of energy consumption and 

environmental monitoring data can be collected from the sensors, smart meters and 

devices in the buildings (Kim, et al., 2019). The unprecedented streaming data provides 

a great opportunity to use data-driven approaches in building energy management for 

potential operational efficiency and cost control (Zhou, et al., 2016). Data-driven models 

outperform physics-based models by reducing computational cost and model complexity 

in modelling, learning non-linear functions between inputs and outputs, optimizing 

hyperparameters with learning algorithms and its scalability in repeating the methods 

with historical data in a different building (Smarra, et al., 2018). A machine learning-

based data-driven approach is proposed for modelling the HVAC systems in both 

residential and commercial buildings. This study is to integrate machine learning-based 

data-driven models with the optimal control of HVAC operation. 
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Demand response provides an opportunity for buildings to participate in the energy 

markets by providing energy flexibility and reliving power imbalance in the grid (Hu, et 

al., 2019). Temperature dynamics in buildings are relatively slow while HVAC operation 

can be rapidly changed, providing certain flexibility in exploiting building thermal capacity 

(Mai & Chung, 2016). MPC controller can take advantage of the flexibility to achieve a 

cost-saving and comfortable indoor environment. It is a model-based technique that has 

been widely used to improve the performance of control systems such as the HVAC 

system. It has been found that the energy consumption of the HVAC systems can be 

reduced by 7% to more than 50% by adding an MPC controller (Kusiak, et al., 2010; 

Ferreira, et al., 2012). MPC requires dynamical models of the buildings and energy 

systems to predict their thermal dynamic or energy needs over a prediction horizon. With 

the advances of dynamic data-driven models, it readily enables MPC for fast online 

control (Hu, et al., 2019). The study is to develop a near real-time demand response 

controller for the HVAC system to shift some load/power away from the peak in response 

to time-varying energy price. 

In summary, the motivation of this study is described in the following four aspects:  

1. The importance of ventilation control for sustaining thermal comfort and mitigating 

overheating risks in the UK dwellings;  

2. Optimisation of HVAC operation for enhancing energy efficiency and thermal 

comfort;  

3. Advances in data-driven models and machine learning techniques for optimal 

control of HVAC systems; and 

4. Development of near real-time MPC controllers for HVAC systems for energy 

efficiency and comfort management.  

1.4 Research hypothesis 

In light of the problems identified above, this research aims to tackle current limitations 

concerning building HVAC control and optimisation by adopting the following overarching 

hypothesis: 

Data-driven based model predictive control can allow near real-time optimal control of 

the HVAC systems through integrating machine learning, the Internet of Things and 

automated control to enhance the building performance by tackling the uncertainties of 

changing weather and dynamic system behaviours and integrating demand response. 
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1.5 Statement of purpose and research questions 

The purpose of this study is to optimise HVAC control systems for building energy 

conservation and comfort management with machine learning and IoT techniques.  

Based on the proposed purpose of the study, the research questions are set up as 

follows: 

1. What is the impact of climate change on existing buildings? 

2. What are the benefits of using the sensor network and IoT for HVAC controls? 

3. How are HVAC models and tools used for simulating the behaviour of HVAC 

systems while considering their scope and limitations? 

4. Can the optimisation of HVAC operational control lead to indoor comfort, energy 

efficiency and cost reduction? 

5. Can the integration of data-driven methods and MPC ease the deployment of 

energy management and control strategies for control systems in buildings on a 

wider scale and aid building automation? 

1.6 Research objectives 

The study aims to optimise HVAC control strategies using machine learning and IoT 

techniques for building energy efficiency and comfort. In response to the research aim 

and research questions, the research objectives are to: 

1. Investigate the barriers of conventional HVAC controls, considering challenges 

such as climate change and carbon emission targets; 

2. Identify the opportunities of using low-cost sensor network and IoT techniques 

for building environmental monitoring and metering; 

3. Establish data-driven forecasting models using machine learning algorithms for 

modelling the HVAC systems; 

4. Implement model-based predictive control for near real-time control and 

optimisation of HVAC systems for building energy efficiency and comfort; and 

5. Appraise machine learning-based control strategies for HVAC controls. 

1.7 Research contribution 

The key contributions of this research indicate the significance of the research work in 

controls and optimisation of HVAC systems, which are expressed as follows. 

The core contribution of this work is the development and implementation of a near real-

time optimal control strategy for HVAC systems, which allows the optimisation and 
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controls completed within 15 minutes. The near real-time optimal control enables HVAC 

systems to cope well with uncertainties and shift load response to demand and energy 

price. Due to its short response time and capability in predicting uncertainties and peak 

demands, it can be embedded in a simple controller or building energy management 

systems to improve energy efficiency and manage indoor comfort in real buildings. 

Another core contribution is the implementation of machine learning techniques in data-

driven models for real HVAC systems in a residential building and a commercial building. 

It allows us to compare the performance of machine learning-based models with 

conventional models such as physics-based simulation models in two different kinds of 

buildings. The state-of-the-art review of machine learning algorithms in modelling HVAC 

systems makes an additional contribution, providing a better understanding of 

computational intelligence in HVAC and building controls. 

The third core contribution is the establishment of a sensor network monitoring system 

in a residential building. It forms an IoT based monitoring system for measuring high-

resolution data and a test environment to optimise controls through wireless 

communication. 

Apart from the systems, this study provided an improved understanding of the 

performance of dwellings and overheating risks in present-day and future climates. This 

allows us to establish the need for automated control of building elements (e.g. fabric) 

and systems. While current practice relates to the automation of building systems, this 

research highlights the need for automating the control of building systems and elements 

together. 

1.8 Thesis structure 

This thesis consists of eight chapters, and the content of each chapter is briefly 

introduced in this section.  

Chapter 1 provides the broader context of this thesis by introducing the background, 

problem statement, motivation, hypothesis, objectives, and contribution of the research. 

Chapter 2 undertakes a state-of-art review on the widely used modelling methods of 

HVAC systems, energy and environmental monitoring techniques, machine learning in 

data-driven models and the optimisation through the MPC for HVAC operational control.  

Chapter 3 presents the methodologies for developing the data-driven MPC for the 

operation of the HVAC systems. The first section outlines data acquisition and storage 

comprised in the monitoring system. The second investigates the forecasting models for 

HVAC systems. Finally, the third section explores the use of MPC for near real-time 

optimal control of HVAC systems. 
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Chapter 4 aims to investigate the impact of climate change on the thermal comfort of 

occupants. It establishes a study in investigating how future climates influence the 

overheating risks in the UK dwellings. It emphasises the requirement of the control of 

building elements for thermal comfort management. 

Chapter 5 introduces the case studies in part II of the study and the analysis of the data 

from the case study buildings. 

Chapter 6 is to develop the data-driven models for the HVAC systems in two experiment 

buildings. It evaluates the performance of the widely used machine learning algorithms 

in the day-ahead forecasts. 

Chapter 7 develops the data-driven based MPC for near real-time optimal control of the 

HVAC systems in both case study buildings. It also introduces how optimisation of the 

controls of HVAC systems is achieved by the MPC. 

Chapter 8 concludes the work completed in previous chapters and outlines the key 

contributions of the study. 
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Chapter 2 Literature review 

This chapter provides a comprehensive literature review in five sections, including the 

links between climate change and overheating, HVAC forecasting models, energy 

metering and environmental monitoring, machine learning and MPC for HVAC operation. 

Each section is linked to another, aiming to answer the research questions and test the 

hypothesis presented in Chapter 1. Section 2.1 begins with identifying the impact of 

climate on naturally ventilated residential buildings. It provides insight into high 

overheating risk for buildings in future climates and the importance of control in building 

HVAC systems and elements to mitigate the impact of climate change.  Section 2.2 

introduces the most widely used methods for modelling and forecasting of HVAC 

systems and brings out the advantages of data-driven approaches for near real-time 

operational control of HVAC systems. Section 2.3 reviews building energy metering and 

environmental monitoring, providing high-resolution data for applying data-driven 

methods using data from the formed monitoring system. Section 2.4 investigates the 

machine learning techniques in data-driven models. Section 2.5 identifies the MPC in 

the near real-time control of HVAC systems. 

2.1 Climate change on buildings 

2.1.1 Overheating risk 

High summertime temperatures lead to a rise in indoor overheating risks, resulting in 

thermal discomfort and heat-related health issues to the occupants (Santamouris & 

Kolokotsa, 2015). Indoor temperatures were found to reach 30°C in living rooms and 

36°C in bedrooms in Manchester homes (37.9°C in a London flat) when the daily average 

outdoor temperature was above 20°C (Lomas & Kane, 2013). The UK Climate 

Projections 2009 reported (UKCP09) that average summer temperature would increase 

by 1.3 - 4.6°C in London by the 2050s under a high emission scenario (UKCP, 2009). In 

2013 a heatwave hit the UK, particularly in the South and West UK, with daily maximum 

temperatures exceeding 30°C for seven consecutive days from 13 to 19 July and 

somewhere in England exceeding 28°C for 19 consecutive days from 6 to 24 July (Met 

office, 2013). The impact of heatwave on mortality was considerably less in 2013 (301 

deaths) than in 2006 (2323 deaths) and 2003 (2234 deaths) (Green, et al., 2016). 

Although heatwaves are unusual extreme weather scenarios according to current 

climate projection, they will occur every two to three years by the 2050s (Greater London 

Authority, 2008). Life-threatening heat-related illness, such as heatstroke and sunstroke 

increased significantly in the 2013 heatwave (Elliot, et al., 2014). Especially for the 
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elderly, more evidence supported that the comfortable temperature they feel is actually 

not healthy for them. 

Previous guidance and criteria have defined overheating risk for UK dwellings. According 

to the Chartered Institution of Building Services Engineers (CIBSE) Guide A in 2006, 

overheating risk should be considered when the hours of indoor operative temperature 

exceeding 26°C for bedrooms (28°C for living rooms) is over 1% of annual occupied 

hours (CIBSE, 2006). In 2013, the CIBSE updated its Technical Memorandum (TM) for 

overheating criteria TM52 (Nicol, 2013), which applied an adaptive comfort approach 

based on European and British adaptive thermal comfort standard BS EN15251 (2007). 

TM52 considered human’s adapting ability to temperature change and redefined 

overheating threshold temperature relating to the running mean outdoor temperature. 

The hours of indoor operative temperature exceeding the overheating threshold should 

not exceed 3% of annual occupied hours. In 2017, CIBSE’s newest overheating criteria 

TM59 (CIBSE, 2017) updated overheating criteria for bedrooms, stating that the total 

bedroom occupied hours with temperature exceeding 26°C should not be over 1% of 

annual occupied hours (1% of annual hours between 10 pm and 7 am is 33 hours). This 

overheating criterion was established considering occupant thermal comfort, defining the 

overheating that occurred at a point or range when occupants experienced thermal 

discomfort.  

2.1.2 UK housing stock 

The 2016-2017 housing stock survey showed that there were around 27.2 million 

dwellings in the UK. As shown in Figure 2-1a, there is more housing stock in England, 

especially in South East England and London. The majority of dwelling types are houses, 

including detached (17%), semi-detached (25%), and terraced houses (28%). 

Bungalows and Low-rise purpose-built flats take account for 9% and 15% of the building 

stock, respectively. High-rise and converted flats are the least, accounting for 2% and 

4%, shown in Figure 2-1b. Most of the dwellings are in England (around 83%) and 

Scotland (around 9%), according to 2017’s households’ survey. Figure 2-1c showed a 

steady increase in the UK housing stock from 1996 to 2017. The UK housing stock is 

generally old. The English housing survey 2016-2017 (shown in  Figure 2-1d) revealed 

that 21% of the houses were built before 1919 in England, and more than 75% of the 

English dwellings were built before the 1980s (MHCLG, 2018). Figure 1e presented the 

usual insulation measurements of dwellings, including cavity, wall insulation, double 

glazing, and loft insulation. Most of the dwellings have cavity walls and the entire house 

double glazing, about 93% and 83%.  There has been an increasing need for cavity walls 

and insulation to comply with building regulations since 1990. Dwellings are becoming 

more air tightened to meet new building regulations and carbon emission reduction 

http://www.cibse.org/
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targets, such as the UK’s ‘Zero Carbon’ homes target by 2016. However, a high level of 

insulation could improve energy efficiency by reducing heat loss. But at the same time, 

it could also increase the airtightness of the dwellings resulting in lower air infiltration and 

higher overheating risk in the summer (McLeod, et al., 2013).   

 

Figure 2-1 The UK housing stock. (a) The number of homes by administrative regions. (b) 

Percentage of English dwellings by building types. (c) Building stock by country between 1996 

and 2017. (d) English dwellings by age. (e) English dwellings by insulation measures. Source of 

data: (a) and (c) Labour Force Survey (LFS), Office for National Statistics (ONS, 2018); and (b), 

(d) and (e) English Housing Survey headline report 2016 to 2017 (MHCLG, 2018). 

Non-air-conditioned buildings are more vulnerable to climate change (Lomas & Porritt, 

2017). Dwellings in the UK are mostly built with heating systems and natural ventilation. 

They are projected to experience high indoor summertime temperatures as extreme 

weather events such as heatwaves are becoming more common and lasting longer due 

to anthropogenic climate change (Mavrogianni, et al., 2012). Gupta and Gregg used 

Integrated Environmental Solutions-Virtual Environment (IES-VE) for modelling main 
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types of the UK dwellings based on UKCP09 probabilistic weather data within a series 

of scenarios to examine the impact of several passive adaptation measures on 

overheating hours. They suggested that flats and mid-terraced houses had much more 

risk of overheating in future climatic scenarios than detached or semi-detached houses, 

and user-controlled shading was the most effective passive cooling measures (Gupta & 

Gregg, 2012). 

2.1.3 Natural ventilation and controls 

Natural ventilation is vital as most UK dwellings are built with natural ventilation which is 

usually the only cooling measure in hot summer. A BRE study of ventilation and air 

quality of dwellings has been implemented since 1995 when building regulations were 

revised. The further studies were carried out for pilot study, main study and peak level 

study in 2001, 2002 and 2003 to measure tightness, temperature, humidity, indoor air 

ventilation, and pollutant concentrations in homes during occupancy (Dimitroulopoulou, 

et al., 2005). A study of ventilation in European dwellings pointed out that 30% of UK 

homes in summer had an inadequate ventilation rate of fewer than 0.5 air change per 

hour ( ach-1) which was recommended to decrease the growth of mould and 0.8 ach-1 for 

house dust mites (Dimitroulopoulou, 2012).  

Night-time ventilation is highly recommended for cooling the buildings in the summer. 

The basic concept of this strategy is to cool the structure overnight during the occupied 

hours and form a heat sink to guarantee thermal comfort without mechanical cooling 

during the day (Kolokotroni, et al., 2001). Givoni suggested that night-time ventilation is 

best suited to arid regions where night-time temperature is below 20°C, and the daytime 

temperature is around 30°C to 36°C which natural ventilation is not able to achieve indoor 

comfort (Givoni, 1994). Artmann et al. proposed a degree-hours based method using the 

climatic data of 259 European stations to analyse the effect of night ventilation for 

passive cooling and suggested that night ventilation (assumed constant airflow rate of 6 

ach-1) has a high potential for passively cooling the commercial buildings in Europe 

(Artmann, et al., 2007). McLeod et al. compared a naturally ventilated Fabric Energy 

Efficiency Standard (FEES) dwelling with mechanically cooled Passivhaus dwellings 

under UKCP09 projected weather in central London and found that both of them suffered 

similarly high overheating risks by 2050 (McLeod, et al., 2013). However, the FEES 

dwellings used purge ventilation which restricted window opening with maximum 

opening angles of 10°, which limited the natural ventilation rate for cooling. Such an 

opening angle is for using the window restrictors in UK new-build social housing to 

comply with the 2014 guidance from the Royal Society for the Prevention of Accidents 

(RoSPA) to prevent children falling from the windows (RoSPA, 2014). In addition, the 
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Urban Heat Island (UHI) effect from 11 pm to 8 am in central London also affected the 

cooling (McLeod, et al., 2013).  

2.2 HVAC system modelling and forecasting 

2.2.1 Physics-based model 

It is also known as a white-box model, requiring the understanding of the underlying 

principles and process physics. The physics-based models is generally created and 

simulated on simulation tools. The model has good accuracy in forecasting but requires 

expert knowledge for selecting structure and parameters. Simulation tools such as 

EnergyPlus (Zhao, et al., 2015) are usually used in the design stage. The optimisation 

of models in the design stage does not need to consider the complexity and 

computational time. However, the MPC for real-time control has to consider the time 

consumption and accuracy. Due to the complexity of the simulation model, it is difficult 

to be used in MPC for real-time control. To overcome this problem, Ascione et al. 

(Ascione, et al., 2016) implemented a simulation-based MPC for the control of the HVAC 

system, suggesting a minimum run period of 10 days covered by EnergyPlus simulation 

to reduce the computational time in the optimisation stage as several runs of the 

simulation were required in this stage. 

The physics-based method uses building simulation engines (e.g. EnergyPlus), with their 

multi-domain (thermal, lighting, network airflow, etc.) modelling capabilities, to predict 

energy consumption (Mourshed, et al., 2003). The simulation of buildings based on 

physical models can reduce uncertainties of evaluation and provide fine spatial and 

temporal resolution. However, the use of engines requires computation time for 

simulation, making them unsuitable for online or near-online applications (Ahmad, et al., 

2016). This method can monitor the dynamic behaviour of the thermal storage system 

(e.g. heat pump) for load control. Arteconi et al. designed a physical model for the heat 

pump to shift electricity peak load by deciding when to supply hot water (Arteconi, et al., 

2013). The system can be switched on and off for shifting load but had the interval of 6 

minutes between each switching to avoid excessively rapid cycling of the pump. A similar 

method was used by Lee and Braun for simulation chiller power, and the computation 

time is around 15 minutes to 1 hour as time is required for data generation and simulation 

(Lee & Braun, 2008).  

The physics-based simulation method uses time-series weather data and building 

physical parameters in the dynamic simulation. Building parameters such as construction 

details are used in building simulation models for energy consumption. The simulation is 

based on physical modelling of the heat transfer and can be written via the energy 

conservation law as follows: 
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 𝑄in + 𝑄source =  𝑄out + 𝑄store (4.2) 

𝑄in is the heat flux entering the system. 𝑄source  is the heat flux of an eventual heat 

source. 𝑄out represents the heat flux leaving the system and 𝑄store represents the heat 

flux stored.  

 

Figure 2-2 The schematic of a typical EnergyPlus simulation model. 

The heat transfer equation takes account of the conduction through walls, the 

convection, the short and longwave radiation and the ventilation (Foucquier, et al., 2013). 

Physics-based modelling uses a multi-zone approach that each zone is considered to be 

homogeneous for the entire building. Based on this approach, there are some commonly 

used simulation software such as EnergyPlus (EnergyPlus, 2020), ESP-r (ESP-r, 2020), 

TRANSYS (TRNSYS, 2019), and e-QUEST (eQUEST, 2018). Figure 4-2 presents a 

schematic of the physics-based simulation model using EnergyPlus. The inputs and 

outputs have been illustrated in Figure 2-2. 

Typically, MPC will need the model to be computationally efficient on real-time HVAC 

control and optimisation. In order to reduce the model complexity, the reduced-order 

model, such as a simplified mathematical model, is usually used to describe the thermal 

network and system behaviour (Salakij, et al., 2016). The simplified model will still need 

an understanding of the physical correlation among parameters for reflecting the 

interaction between the sub-systems. It has been a major challenge to develop an 

accurate simplified mathematical model for predicting the nonlinearity of the HVAC 

system. An alternative is to use a state-space model. It is generally developed based on 

a thermal network such as the resistance-capacitance (RC) method. This method uses 

an electrical network to model the heat transfer between HVAC sub-systems, while 
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electrical resistor, capacitor, current and voltage represent thermal resistivity, 

capacitance, heat transfer and temperature respectively. (Afram & Janabi-Sharifi, 2014). 

The state-space model has been widely used for creating control-oriented models in 

MPC (Hu & Karava, 2014). Based on this method for predicting building systems, the 

optimisation process can be linear (Braun & Chaturvedi, 2002) and nonlinear (Goyal & 

Barooah, 2012). 

2.2.2 Grey box model 

The Grey box model requires both knowledge and data of physical phenomenon to 

complete a model. It is generally a non-linear model using the physics-based models as 

the model structure and measured data as the model parameters. Therefore, this 

approach provides physical meaning and better generalisation capability to a data-driven 

model. The estimation algorithms for selecting the particular parameters decide the most 

common grey box approaches, including simplex search, nonlinear least squares, and 

genetic algorithms (GA) (Afram & Janabi-Sharifi, 2014). 

Balan et al. (Balan, et al., 2011) introduced a grey box model based on a thermal model 

and genetic algorithm. The thermal model contains parameters, including outdoor 

temperature, indoor temperature, and energy consumption. The approach is to develop 

a lumped parameter model as the thermal model to represent heat transfer between the 

zone air and wall using the concept of resistive capacity (RC) circuit. Wu and Sun (Wu 

& Sun, 2012) developed a grey model based on thermodynamic equations and 

autoregressive moving average (ARMA) algorithm, predicting the room temperature 

accurately up to ten weeks. However, the equation requires a lot of heat- and energy-

related parameters, including temperature parameters (room, discharge air, wall surface, 

inside window surface), and airflow parameters (discharge air density, the heat capacity 

of air, heat gain from the solar flux and internal sources such as human and electrical 

devices).  

2.2.3 Data-driven model 

A data-driven model, or black-box model, fits the function model using the real data as 

inputs and outputs. Compared with the physics-based model, it does not require expert 

knowledge of system physics. It can model the internal relationship among parameters 

requiring only the input-output data from the system or building environment. Therefore, 

it has its advantage of the ease of model development (Afram, et al., 2017).  

The data-driven model is used in the MPC to identify complex systems such as HVAC 

systems considering energy, cost and thermal comfort. Various data-driven models can 

be used as the predictive model for building HVAC systems, including statistical models 

(e.g., Autoregressive exogenous (ARX) (Ma, et al., 2012)), Artificial Neural Network 
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(ANN) (Afram, et al., 2017), Random Forest (RF) (Afram & Janabi-Sharifi, 2014). 

Although the statistical models, such as ARX, show their ability to linearise the model, 

there is still a challenge to forecast accurately (Li, et al., 2015). 

2.3 Energy metering and environmental monitoring 

Energy metering can be useful in building energy inefficiencies identification, energy 

benchmarking, load planning, and demand management for balancing system reliability 

and price volatility (Genet & Schubert, 2011). A comprehensive building energy metering 

and environmental monitoring provide valuable information about building performance 

and play an important role in data-driven measures on energy efficiency (Ahmad, et al., 

2016). Therefore, it can involve all stakeholders, including tenants, property owners and 

energy managers, to implement the measures for energy efficiency (Genet & Schubert, 

2011).  

The updating energy-related regulations and legislations have more requirements in 

building energy efficiency, which motivate the development of building metering, 

environmental monitoring and automated controls (Ahmad, et al., 2016). European 

Performance of Building Directive (EPBD) requires European members to release 

building regulations to encourage intelligent metering and building automation in new 

and renovated (European Commission, 2012).In the USA, metering is required for 

federal buildings in the energy Policy Act of 2005. The requirement for metering and 

control was enhanced by the International Energy Conservation Code (IECC), which has 

been adopted in most US states (International Code Council, 2016). In the UK, energy 

suppliers were required to roll out smart meters to comply with energy regulations 

EnergyAct 2008 and Energy Act 2011, which aimed at reducing energy use, improving 

the environment and saving energy cost (DBEIS&Ofgem, 2013). Government guidance 

such as Smart meters: a guide has mentioned that smart meters will be implemented 

across the country by the end of 2020 (DBEIS, 2018). 

2.3.1 Electricity 

Electricity meters measure energy consumption by sensing the voltage and current. The 

traditional electricity meters were electromechanical meters containing a metal disc to 

rotate at speed in proportion to the power through the meters. The inside disc can be 

influenced by the induction coils producing magnetic flux proportional to the voltage and 

the current (Edison Electric Institute, 2014). The old mechanical meters must measure 

energy usage by reading the dial directly. Lagging is an issue for those mechanical 

meters. According to the side-by-side testing by Oncor, 5% of the mechanical meters 

have a lagging problem, resulting in an inaccuracy of more than 2% for electricity 

metering (although 2% is still accurate for mechanical meters). Due to no storage and 
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communication of data, meter readers were sent to come to read the measurement. 

Fraud is another issue as meters could be disabled by customers when they are not 

around. 

Morden electricity meters can generate electronic or pulse outputs using encoders or 

other registering mechanisms (Parker, et al., 2015). One example is the encoder receiver 

transmitter (ERT) developed by Itronwhich allows data to be transmitted from the utility 

meters to a utility vehicle through a packet radio protocol. Although electromechanical 

meters have been used in residential and commercial buildings for many years, 

electronic meters are replacing them with many advantages (Sun, et al., 2015). 

Electronic meters have no moving parts and are good at displaying, storing and 

transmitting data with higher accuracy. Morden electronic meters can measure various 

types of data, such as maximum power demand and support time-of-day billing. They 

can track the direction of energy if solar panels or wind turbines have been installed in a 

residential or commercial building in a power network. With wireless technology such as 

ERT for remote metering, automatic meter reading (AMR) can automatically collect 

energy consumption and transfer the data to a data centre for billing or analysis. Although 

modern meters, such as AMR meters, have many advantages, some customers still want 

to keep their old analogue meters. The prime reasons are the dirty electricity (voltage 

spikes, surges and high-frequency variations forming a harmful electromagnetic field in 

the buildings) and overexposure to electromotive force(EMF) radiation (Havas, 2006). 

Dirty electricity and the growing exposure to radiofrequency radiation have been 

recognized to cause public health epidemic (Kleiber, 2017). 

 

Table 2-1 Characteristics of domestic and commercial electronic electricity meters. 

Parameter Use 

Domestic Commercial 

Phase 1 3 1 3 3 

Connection Direct Direct Direct Direct CT 

Maximum voltage (V) 290 400 275 415 1500 

Maximum current (A) 100 125 100 100 100 

Minimum error (%) 1 1 1 1 0.2 

Maximum error (%) 2 2 2 2 1 

Maximum number of tariff rates 8 4 2 8 16 

Max power dissipation in current circuit per phase 
(W) 

0.5 0.5 0.8 0.5 0.5 

Price ($) 20 - 
150 

75 - 
245 

25 - 
208 

68 - 
125 

68 - 
3500 
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AMR has been enhanced by the development of communication technologies such as 

ZigBee, radio frequency and global system for mobile communications (GSM) (Rawat, 

et al., 2016). It has been used by some business users in the UK, helping them monitor 

energy use and control the costs. The meter contains a remote reading device either 

connected to or embedded in the body. The signal sent by AMR meters can be picked 

by a ‘collector’ such as a meter reader’s vehicle. Through AMR, no manual reading is 

required as the energy supplier can remotely get the readings and calculate the monthly 

energy bills for the users. Unlike AMR meters, smart meters are normally two-way meters 

connected to the smart grid while AMR meter is capable of one-way wireless 

communication from the energy supplier side. Smart meters enable users from domestic 

and business to monitor their energy use in near real-time and subsequently change the 

energy use behaviour. They are operated through a centralised data communication 

company. Besides, the automatic outage reporting function is embedded in the smart 

meters (Jiang, et al., 2016). Due to the capability of two-way communication, it is 

considered to be worse than AMR meters as more frequent emissions and dirty electricity 

pose a long-term risk on human’s health. However, the distance to the meter makes a 

significant difference in the emissions received by the occupants (Pope, 2019). It is 

recommended to sleep as far from the meter as possible and stay away from it as much 

as possible. 

Table 2-1 illustrates the parameters of electronic electricity meters in domestic and 

commercial buildings. The three-phase meter is significantly more expensive than the 

single-phase meter, especially for the current transformer (CT) connected meter which 

transforms high current (over 100Amps) to low current (e.g.5Amps). Those CT meters 

can cost more than three thousand pounds. However, they can provide higher accuracy 

(e.g. 2%), while most meters can only reach 1% or 2%. Both domestic and commercial 

electricity meter can have dual or multi tariff rates. The maximum power dissipation in 

the current circuit per phase is around 0.5 to 0.8 W. 

2.3.2 Gas 

Gas consumption is measured with gas meters, which should comply with the local 

codes. There are different types of gas meters on the market, while diaphragm, rotary 

and turbine are the most widely used. The diaphragm gas meters operate through the 

two or multiple chambers formed by the moving diaphragms. The gas flow is measured 

by counting the rotary motion converted from the linear motion of the diaphragms. Rotary 

gas meters can provide higher measuring precision over the higher gas flow rate. This 

type of gas meter uses two aligned spinning motors to allow a certain amount of gas to 

pass through each complete turn. The rotation of motors is related to the gas flow rate 

and recorded using mechanical counters or electrical pulses. Turbine gas meters 
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measure the gas consumption by measuring the gas velocity through the meters. They 

have been often used in the industrial applications where the continuity of the flow is 

crucial and high accuracy and reliability are needed, for instance, custody transfer 

metering (Cascetta & Rotondo, 2015). 

All three types of gas meters use dynamic mechanisms to measure the flow rate. 

Although these meters have been widely supplied and installed by the energy suppliers 

due to their simplicity and low cost, they have disadvantages such as high-pressure 

losses, wear and tear, mechanical outputs and inability to show an instantaneous gas 

flow rate. In recent years, static gas flow meters have been encouraged because of the 

accuracy, safety and remote-reading. Static ultrasonic flow meters are well known for its 

non-intrusiveness and performance characteristics, including data-recording, auto-

diagnostic and integration with electronic sensors. (Buonanno, 2000). Table 2-2 presents 

the parameters of four different types of gas meters. The technical data were collected 

from manufacturers for comparison. Diaphragm meters have been widely used in 

domestic and commercial areas as they can measure a considerably narrow range in 

flow rate. Rotary and Turbine meters are designed with a higher flow rate which allows 

them for fiscal metering. Ultrasonic can measure a broader range of flow rate. For 

example, a domestic one can measure a small flow rate from 0.04 to 6 m3/h. However, 

the accuracy can be improved if the size of the tube is larger than 150 mm from the 

lowest of 5% to 1%. 

 

Table 2-2 Characteristics of the most common gas meter types. 

Parameter Meter type 

Diaphragm Rotary Turbine Ultrasonic 

Min flow rate 
(m3/h) 

0.001 0.25 2.5 Speed dependent 

Max flow rate 
(m3/h) 

100 650 10000 Depends on speed 

Min temperature 
(°C) 

-25 -20 -25 -10 

Max temperature 
(°C) 

65 60 70 40 

Accuracy at 
maximum flow 
rate (± %) 

1 - 1.5 1 - 1.5 1 - 1.5 1.5 - 2 

Min cyclic volume 
(l) 

1.2 - - - 

Max cyclic volume 
(l) 

65 - - - 

Use Domestic/ 
Commercial 

Fiscal Fiscal Domestic/ 
Commercial/ 
Fiscal 
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2.3.3 Temperature 

Air temperature can be defined as ‘the thermal of the air surrounding the human body, 

which represents the aspect of the surroundings and determines the heat flow between 

the body and air (Parsons, 2014). In the building, the indoor air temperature is important 

for the occupants regarding human’s thermal comfort, health and wellbeing (Teli, et al., 

2018). The room temperature is suggested to be a modifiable risk factor in hypertension-

related morbidity and mortality as it could influence people’s blood pressure, especially 

for those who do not take physical activity regularly (Zhao, et al., 2019). 

Various types of sensors can be used to measure temperature by sensing the change in 

physical properties. Table 2-3 illustrates the most common types of temperature sensors 

in the industry. The most common types of temperature sensors are thermocouples, 

resistive temperature devices (RTDs) and thermistors (Tong, 2001). The measurement 

of temperature is based on different kinds of phenomena, including thermoelectricity, 

thermal expansion, the temperature-dependent electrical resistivity of the conductor, and 

spectral characteristics and fluorescence (Childs, et al., 2000). Most of the temperature 

sensors rely on mechanical and electrical principles. Mechanical sensors are easily 

installed and maintained without a power supply. One example is the room thermostat 

using bimetallic thermometers to measure temperature through different thermal 

expansion rate of two different metals (Venkateshan, 2015). Another example is the fluid-

expansion thermal thermometers which use mercury or organic-liquid. However, it is 

hard to record or transmit data, and they are not as accurate as of the thermocouples or 

RTDs (Omega, 2018).  

Electrical sensors can convert the measured data to digitally encoded signals which 

allow direct communication for control and management. Thermocouples temperature 

sensors are based on thermoelectric effect with conversion between the temperature 

and voltage. They have a wide measuring range (e.g. type K thermocouple’s measuring 

range from -200°C to +1250°C) and reasonable accuracy (within 1°C to 2°C traditionally) 

(Duff & Towey, 2010). RTDs measures temperature based on the resistance changes of 

a conductor corresponding to the temperature change. This type of sensors is accurate, 

reliable and stable but has some disadvantages such as large size, high time response 

and cost (Duff & Towey, 2010). One of the RTDs used in the building sector is the 

platinum resistance thermometer (PRT is an RTDs using platinum as the conductor). 

Instead of using pure metal, thermistor uses semiconductor such as metallic oxides with 

lower cost in a smaller size. However, one of the problems is a drift in resistance value 

over time (Micro-Chip Technologies, 2010). Morden thermistors have improved its 

accuracy from the best tolerance of 5% in the past to an acceptable error of 0.18°C 

(Tong, 2001). 

https://www.sciencedirect.com/topics/earth-and-planetary-sciences/heat-transmission
https://www.sciencedirect.com/topics/engineering/spectral-characteristic
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Most of the temperature sensors can measure temperature between -20°C and 70°C. 

However, the accuracy will be decreased if the temperature is not within the range 

between 0°C and 50°C. Due to the drop of the sensing accuracy in extreme temperature, 

those sensors are not suitable for outdoor temperature metering but are still good for 

indoor use. Most of those sensors are negative temperature coefficient (NTC) 

thermistors measuring similar temperature range and accuracy. One of them has 

thin-film RTD sensors inside, which allows it to measure a wider temperature range 

(e.g. -200°C to 800°C) with high accuracy and resolution. However, it is more expensive 

than the common temperature loggers with internal NTC thermistors. Radio Frequency 

is still the most common communication methods for wireless temperature logger. 

However, Wi-Fi, ZigBee and Bluetooth are becoming popular. Especially, ZigBee is often 

used to form the mesh network in the buildings. Bluetooth is often used to pair with cell 

phones through applications. Therefore, temperature loggers with Bluetooth normally do 

not have a central gateway to allow sensors sending data.   

Table 2-3 The most common temperature sensors in the industry. 

Parameter Meter type 

Thermocouple RTD Thermistor Integrated Silicon 

Temperature 
range (°C) 

−270 to 1800 −250 to 900  −100 to 450 −55 - 150 

Accuracy (± °C) 0.5 0.01 0.1 1 

Responsiveness 
in 
stirred oil (Sec) 

<= 1  1 - 10 1 - 5 4 - 60 

Excitation None Required Current Source Voltage Source Typically supply 
voltage 

Form of Output Voltage Resistance  Resistance Voltage, current, or 
digital 

Price ($) 1 - 50 25 - 1000 2 – 10 1 - 10 

 
  

https://en.wikipedia.org/wiki/Thermistor#NTC_(negative_temperature_coefficient)
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2.3.4 Relative humidity 

Relative humidity (RH) is the ratio of actual water vapour density to the saturated water 

vapour density at the same temperature. The RH value is increased when air is cooled 

as cold air can hold less moisture. RH is important for thermal comfort and health of 

occupants in the buildings (Vellei, et al., 2017). RH sensing is usually based on 

measuring wet-dry bulb temperature and monitoring the change of material properties, 

such as their physical or electrical parameters. Various methods have been developed 

to measure humidity, from the simplest methods based on the expansion and contraction 

of the materials (e.g. human hair) to complex methods by using miniaturized chips. (Tan, 

et al., 2005). The whirling hygrometer is one of the most often used instruments for 

measuring relative humidity. By rotating two thermometers, it measures the wet- and dry-

bulb temperature for calculating or searching the RH value in the tables (Parsons, 2014). 

Based on the change in electrical capacitance and resistance to humidity, the electronic 

humidity sensors are mainly classed into capacitive humidity sensors and resistive 

sensors. In capacitive humidity sensors, they measure the RH by detecting the dielectric 

change of the conductor, which is proportional to RH. Resistive sensors measure the RH 

based on the resistance change of the hygroscopic medium.  

Both types of sensors are low cost and power consumption, covering a wide range of 

humidity with good repeatability. However, they suffer from cross-sensitivities and 

temperature dependency on some chemical species (Blank, et al., 2016). In recent 

years, many kinds of materials have been used in water or humidity sensing based on 

the change in electrical parameters of materials, including electrolytes, organic polymers, 

ceramics and composite materials (Erol, et al., 2011). Polymers and porous ceramic are 

widely used in commercial humidity sensors (Arshak & Twomey, 2002). Compared with 

electrical humidity sensors, optical fibre-based humidity sensors have serval 

advantages, including fast time response, no electrical contacts and electromagnetic 

immunity, allowing them to work in flammable environments. The disadvantages are the 

high cost, the complexity of the system and precise installation (Yeo, et al., 2008).  

Table 2-4 presents some RH loggers found on the market. Most humidity sensors are 

capable of measuring RH between 0 to 100%. However, most of them can measure the 

highest accuracy of RH between 25% and 75%. Out of this range, the error will increase 

from around 3% to 10%. Same as temperature logger, the RH loggers often use radio 

for wireless communication. Other than radio, ZigBee has been increasingly used in 

wireless RH logger. 
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Table 2-4 A summary of capabilities of RH sensors on the market. 

Parameter Min Max Box chart 

Min RH (%) 0 15  

Max RH (%) 90 100  

Resolution (%) 0.001 1  

Response 
time (s) 11 720  

Max error 
(%)[limited] 1 5  

Max error (%) 
[full] 1.5 10  

Sample rate 
from (minute) 0.02 11  

Sample rate 
to(minute) 3 1440  

Max 
transmission 
range (m) 0 152  

Max battery 
life (month) 3 36  

Max readings 4000 3200000  

Price ($) 15 678  

2.3.5 Daylight 

As a passive strategy, daylighting is important to occupants’ vitality, performance and 

visual comfort in the buildings. The design of modern lighting systems needs to take into 

account the visual comfort of people. As a natural source, good design of utilizing 

daylight can also increase the efficiency of space lighting and reduce the energy 

consumption of lighting (Nasrollahi & Shokri, 2016). The light sensor is often used to 

detect daylight or light illuminance level, which can be used to control the light switching 

on or off, or dimming by setting the threshold of daylight. It is typically placed on the 

lighting device to adjust the artificial lighting to achieve a design illuminance. Combining 

light sensors for local illumination can efficiently save the lighting energy and tune the 

illumination. The lighting system can also be used in conjunction with occupancy sensors 
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to turn off or reduce lighting requirements in unmanned areas (Pandharipande & Caiced, 

2015). In Europe, the standard about illumination such as EN 12464-1 recommended a 

minimum illuminance values of 500 lux (occupied) and 300 lux (unoccupied) in the office 

building (European Committee for Standardization, 2002). 

Table 2-5 Characteristics of the common light sensor on the market. 

Parameters Min Max Box chart 

Min. 
illuminance 
(lux) 0 322  

Max. 
illuminance 
(lux) 220 400000  

Highest 
accuracy (±%) 2 5  

Lowest 
accuracy (±%) 1 10  

Highest 
accuracy (± 
lux) 5 30  

Lowest 
accuracy (± 
lux) 100000 100000  

Min. 
resolution 
(lux) 0.01 2  

Min. sampling 
Interval 
(second) 0.4 60  

Record 
capacity 
(readings) 3000 1000000  

Battery life 
(year) 0.0057 5  

Min. working 
temperature 
(°C) -40 0  

Max. working 
temperature 30 85  

Price ($) 56 867  
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2.4 Machine learning techniques 

Machine learning algorithms have been widely used for creating data-driven (or black-

box) models to explain the interactions among the measured input and output variables.  

2.4.1 Artifice Neural Network 

Artifice Neural Network (ANN) is a non-linear statistical method to determine the complex 

relationship between the input and output without prior knowledge (Haykin, 1994). This 

method is usually used to trace previous load patterns for predicting future loads and can 

adapt to future changes with new data (Park, et al., 1991). It is capable of forecasting 

short-, medium-, and long-term energy consumption (Deb, et al., 2017). Compared with 

physics-based methods in forecasting HVAC energy demand, ANN showed less error 

with a simpler model which can use only temperature as input (Neto & Fiorelli, 2008).  

Among the CI/machine learning methods, ANN is the most widely used artificial 

intelligence algorithm for predicting building energy demand (Zhao & Magoulès, 2012). 

It can be used for forecasting demands for various building energy applications, including 

singe application (e.g. heating) (Dı́az, et al., 2001), multiple applications (e.g. cooling 

and lighting) (Aydinalp, et al., 2002), and building system with solar energy system 

(Kalogirou, 2006). The forecasting by ANN can rely on the single input variable (e.g. 

external temperature) (Ben-Nakhi & Mahmoud, 2004), or multiple variables (e.g. 

occupancy and weather) (Kalogirou & Bojic, 2000). Both short-term (Gonzalez & 

Zamarreno, 2005) and long-term (Ekonomou, 2010) forecasting are satisfied with ANN. 

For industrial buildings with high fluctuating energy consumption, ANN can also be used 

to predict energy demand (Azadeh, et al., 2008). Neural Networks based model is one 

of the most popular machine learning method for predicting energy consumption in 

buildings. An ANN model has been proposed for predicting the Predicted Mean Vote 

(PMV) index, which is used in MPC of the HVAC system to achieve thermal comfort and 

energy saving (Ferreira, et al., 2012). 

2.4.2 Random Forest 

Random Forest (RF) is one of the algorithms in the regression tree (RT) family. RF model 

is improved from bagging regression tree (Prasad, et al., 2006), consisting of an 

ensemble of decision trees. Each tree can produce a response and presented as a set 

of predictors which uses the conditional mean of the observations on the resulting leaf. 

The forest can form an overall better model by averaging the variance from trees 

(Voyant, et al., 2017). RF is an attractive tool for predicting the energy consumption of 

HVAC systems because it can (i) involve the interaction between predictors; (ii) learn 

simple and complex problems based on its ensemble learning theory; (iii) save time 

without much fine-tuning of parameters compared with other machine learning 
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techniques such as ANN (Ahmad, 2017). Compared with a single classifier or regression 

tree, RF methods offer a significant improvement in regression (Siroky, 2009). Compared 

with ANN, it is faster to train and tune. The training time for RF is 17.8 seconds for one 

job, while it is 11.1 minutes for ANN (Ahmad, 2017). 

RF was proposed to model the nonlinear function of the HVAC system regarding the 

dynamics of the room temperature and power consumption, which shows high accuracy 

with Normalized Root Mean Square Error (NRMSE) of more than 92% for power and 

more than 96% for room temperature (Smarra, et al., 2018). An RF model was developed 

to infer the interaction between internal temperatures, external temperatures and loads 

of the HVAC system. Based on it, a next 24-h energy optimizer for the HVAC system 

was proposed to dynamically adjust the On/Off of the HVAC and the operational 

schedule of the mechanical ventilation, achieving 48% and 39% of energy reduction for 

heating and cooling (Manjarres, et al., 2017). 

2.4.3 SVM 

SVM is one of the most robust and accurate data mining algorithms (Wu, et al., 2008), 

and is recognized as a new neural network algorithm for forecasting (Dong, et al., 2005). 

Compare with ANN using training data to minimize classification error, SVM can find the 

unique global optimum by minimizing overall error while ANNs may only find a local 

optimum (Mitchell, et al., 2017). SVM was firstly used by Dong et al. to estimate building 

load, and the forecasting result showed less error with SVM than that with neural network 

and genetic programming (Dong, et al., 2005). A review by Zhao and Magoulès showed 

SVM and ANN performed better, showing more promising results than simulation and 

statistical methods based on historical data analysis (Zhao & Magoulès, 2010). This 

method is reported to have remarkable improving accuracy in forecasting energy 

demand with clustering techniques (e.g. K-means algorithm) for weather data (Chen, et 

al., 2004) and energy consumption data (Alvarez, et al., 2011). However, one of the 

drawbacks is that the training process would become extremely slow when training data 

is very large (e.g. multiple buildings’ heating load), and parallel SVM was recommended 

to improve training speed (Zhao & Magoulès, 2010).  

SVM showed better accuracy than ANN in short-term (hourly (Fattaheian-Dehkordi, et 

al., 2014) and every 5-min (Setiawan, et al., 2009)) electricity demand forecasting. SVM 

method was used by Fu et al. for hourly lighting, heating, cooling and total energy 

forecasting, and it outperformed ARIMAX (ARIMA with explanatory variable), Decision 

Tree, and ANN (Fu, et al., 2015). Pai and Hong found SVM model performed better than 

ARIMA and general regression neural network (GRNN) model in forecasting electricity 

load (Pai & Hong, 2005). SVM is also a supervised learning method similar to ANN but 
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works differently by first classifying non-linear data. It uses the structural minimization 

principle to achieve a global optimum (Hong, 2013).  It is highly effective to solve non-

linear problems and is often used to forecast energy consumption with high accuracy 

(Zhao & Magoulès, 2012). 

2.5 Model predictive control 

MPC is an acknowledged method for constrained control, which has recently gained 

significant attention from researchers and industry in controlling and managing the 

building energy system (Goyal, et al., 2013), appliances, building interaction with a smart 

grid, and on-site renewable energy system generation (Serale, et al., 2018), as MPC has 

the ability to exploit disturbances’ predictions and prior constraints to predict the energy 

demand the building. As well, it provides great potentials for the achievement of energy-

efficient control, system dynamics and solidity along with time delays (Shaikh, et al., 

2014). MPC is considered a promising method to reduce energy use while saving cost, 

as it can integrate constraint handling, disturbance rejection with energy-saving and 

dynamic control strategies into controller formulation. It has been adopted for optimising 

the control of building systems such as cooling, heating, ventilation systems, water 

heating, thermal storages and window control (Serale, et al., 2018). 

Demand strategies are generally applied in building energy consuming or generating 

systems such as HVAC, lighting and photovoltaic systems. End-customers lacks 

knowledge and information about efficiently scheduling the operation of building energy 

systems in response to electricity pricing (Shan, et al., 2016). A home energy 

management controller (HEMC) was developed by Ahmed et al. (Ahmed, et al., 2016), 

which is trained by a feed-forward neural network type and Levenberg-Marquardt (LM) 

algorithm, can reduce energy usage by switching the home appliances through the 

signals of ON or OFF considering inputs such as room temperature, the temperature of 

electric water heater, DR signal and total power consumption. A total energy saving of 

over 3 % per 5 hours can be achieved. 

Evolutionary computation method such as Genetic Algorithm (GA) is often used as a 

search tool to find the optimal weights of the fitness function. It is generally used to 

optimise other forecasting algorithms rather than using it directly for energy demand 

forecasting (Ceylan & Ozturk, 2004). GA is often used for the determination of simple 

energy demand forecasting models, and a large amount of data is normally required for 

evolution (Foucquier, et al., 2013). It integrates with forecasting models to improve 

accuracy (Holland, 1992). Togun and Baysec pointed out that the GA-based model 

performs as well as ANN for forecasting energy demand (Togun & Baysec, 2010). GA 

was used to optimise statistical models (logarithmic linear, exponential and quadratic) to 



 

43  

  

predict electricity energy demand (Azadeh, et al., 2007). The result showed GA could 

improve the accuracy of these regression models for energy forecasting (Azadeh, et al., 

2007), and it showed better accuracy than time-series and simulation-based GA models 

(Azadeh & Tarverdian, 2007). The model combining GA and BP network designed by 

Yugui can outperform others in training and operation time (Yugui, 2013).  

GA can be used as an optimization algorithm to find the optimal global solution. 

Therefore, it is a popular method for solving optimisation problems (Shariatzadeh, et al., 

2016). It has been proved to be an effective method employed in the power system to 

find an optimal load shedding strategy (Luan, et al., 2002). GA can deal with non-linear 

objective problems with discrete decision variables. It can also be used to solve 

multi-objective optimisation problem with acceptable computational cost (Shariatzadeh, 

et al., 2016). 

2.6 Summary 

Summertime overheating risk in buildings is of increasing concern. High temperatures 

have been found in the UK dwellings, exceeding 36°C in bedrooms in Manchester homes 

and reaching 37.9°C in a London flat. The projection of future climates proposed a rise 

in average summer temperatures by 1.3°C to 4.6°C in London by the 2050s. Under 

climate change and global warming, the more frequent heatwave is expected to be a life-

threatening risk for people, especially for vulnerable people such as the elderly. The 

literature looked into the UK housing stock in 2017, discovering the most homes are 

locating in the South of the UK, where the weather is warmer than North of the UK. 

Therefore, a large group of people are going to experience overheating risk in the future. 

Another finding is that most of the dwellings are built with natural ventilation and heating 

system, lack of mechanical cooling to adapt to climate change and increasing 

overheating risk. Potential cooling can be achieved by natural ventilation. However, the 

design of inadequate ventilation, the design of air-tightening new homes, the limit of the 

window opening in urban cities and the heat island effect are influencing the cooling 

effect of natural ventilation. Research turns to investigate if the control of natural 

ventilation can reduce the overheating risk in the current and future climates and how to 

optimize the building operation if the HVAC systems are installed for better thermal 

comfort and mitigation of climate change.  

Data-driven models are suitable for developing MPC for HVAC systems compared to 

physic-based and hybrid models. Both physics-based and data-driven models can be 

types of linear/non-linear, explicit/implicit and static/dynamic models. However, 

physics-based models are usually continuous and deterministic, while data-driven 

models are stochastic models which are generally discrete and deterministic (Afram & 



 

44  

  

Janabi-Sharifi, 2014). The grey box model (or hybrid model) is a combination of the 

previous two models, requiring specific knowledge of the system and data to form a semi-

physical model. Therefore, the difficulty in founding the theoretical structure of the grey 

model may prevent non-expert users from using this method. Besides, this method still 

requires data to create the model, and some data such as wall surface temperature is 

hard to measure through the sensor.  

A sensor network is an option to collect time-series data for data-driven approaches for 

optimisation of the HVAC operation. The sensor network leverages data collected from 

sensors to embed intelligence in the control of the building and its systems, including but 

not limited to lighting, heating, ventilation, air conditioning, security and circulation. The 

integration of data analytics with building management systems (BMS) for intelligent 

control in a smart building sets itself apart from a conventional building. Therefore, the 

collection and availability of sensor data from a building monitoring system play a vital 

role in enabling intelligence in smart buildings. The summary of the reviews for sensors 

(including electricity, gas, relative humidity and light) is listed below. 

1. Conventional mechanical electricity meter has an issue in lagging, resulting in a 

metering error of more than 2%. Morden electronic ones are more accurate and 

allow for AMR. However, they are reported to have dirty electricity, which can be 

harmful to the health of users.  

2. Most gas meters use dynamic mechanisms to measure the flow rate, but 

ultrasonic gas meters provide a non-intrusive way for measuring gas 

consumption. The accuracy can be affected by the flow rate of the gas and the 

size of the tube. Ultrasonic meters used in larger size of tube brings higher 

accuracy, therefore, are widely used for commercial purpose.  

3. Most temperature sensors on the market can measure the temperature ranging 

from -20°C to 70°C, such as NTC thermistors. However, the accuracy can be 

dramatically affected if the temperature is out of the range between 0°C and 

50°C. Expensive temperature sensors such as thin-film RTD sensor can measure 

a wider range, from -200°C to 800°C. 

4. Mosy RH sensors can measure the RH between 0 and 100%, promising an 

acceptable error from 1% to 5%. However, the accuracy decreases significantly 

(error increases from 3% to 10%) when surrounding RH is out of the range 

between 25% and 75%.  

5. The light sensors can be used to detect the illuminance level. They can be 

integrated with artificial lighting to provide lighting control. On/Off and dimming 

are the main strategies to control artificial lighting, offering an opportunity for 
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energy saving by maximizing the use of daylight. The recommended minimum 

illuminance level is 500 lux for occupied space. 

This chapter also reviewed machine learning algorithms, including ANN, RF and SVM. 

ANN is the most widely used machine learning algorithms for forecasting temperature 

and energy in buildings. RF is an ensemble-based machine learning algorithm, gaining 

popularity for its feasibility and effectively for predicting hourly electricity consumption. It 

also outperforms ANN because it is easy to train and tune. SVM is more accurate than 

ANN in short-term (such as 5-minute timestep) forecasting of electricity demand. Section 

2.5 introduced GA, which is capable of finding the global optimal in the optimisation 

problem. 
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Chapter 3 Research methodology 

This chapter introduces the research methodology used to conduct the research study 

and achieve the objectives proposed in Chapter 1. The methodology section is divided 

into two parts. Part I is to design a case study for studying the relationship between the 

buildings and climates. Part II is to design case studies for developing data-driven based 

model predictive control (MPC) for HVAC systems of buildings. Section 3.1 introduces 

the case study method used to investigate the impact of climate change on UK dwellings 

and the effect of natural ventilation control strategies for reducing overheating risk. 

Section 3.2 demonstrates that case studies for MPC development and validation. Section 

3.3 illustrates the key machine learning algorithms used in developing data-driven 

models of HVAC systems. Section 3.4 identifies the MPC and optimisation algorithms 

for optimizing the operational control of the HVAC systems. Section 3.5 outlines the key 

performance indicators for error analysis for evaluating the forecasting performance and 

validating the performance of the near real-time MPC. 

3.1 Part I: Climate change and the need for building controls 

3.1.1 Why EnergyPlus 

EnergyPlus, IDA Indoor Climate and Energy (ICE) and TRaNsient SYstem Simulation 

(TRNSYS) were the most popular building performance simulation tools considering the 

requirements for accuracy, flexibility, and high-speed dynamic simulation (Mazzeo, et 

al., 2020). Mazzeo et at. compared them in simulating building thermal behaviour in a 

solar box. Their study illustrated that EnergyPlus and IDA ICE have higher accuracy than 

TRNSYS in predicting indoor temperatures, but EnergyPlus presents the highest R2 in 

predicting glass internal surface temperatures. Although IDA ICE performs better in two 

of three testing months, EnergyPlus shows the minimum RMSE value in predicting 

indoor temperatures in another month. However, IDA ICE does not consider the 

directionality effects of direct solar radiation. Compared with IDA ICE, EnergyPlus and 

TRNSYS are more sophisticated in modelling the direct solar radiation. EnergyPlus 

provides more accurate phase change material (PCM) models than TRNSYS’s, resulting 

in a better method for predicting the thermal behaviour of a PCM in external walls 

(Mazzeo, et al., 2020).  

Same as EnergyPlus, some building modelling tools such as eQUEST is also based on 

DOE-2. However, eQUEST is only built upon DOE-2, which has a limitation in modelling 

emerging technologies, while EnergyPlus is built on DOE-2 and BLAST that also 

combines heat balance of BLAST with a generic HVAC system. eQUEST is often used 

during the design phase due to its ease of use and quick in producing results, but 
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EnergyPlus can be used in modelling complex systems and produce more accurate 

results (Rallapalli, 2010). 

Computational Fluid Dynamics (CFD) models have been widely used in simulating 

natural ventilation. Compared with EnergyPlus, CFD is computationally expensive as it 

divides the modelled space into fine meshes to solve flows in and around the space. In 

addition, CFD is not suitable for modelling conjugate heat transfer between solid and 

fluid. The response times to thermal energy for walls and air are hours and seconds, 

making it stiff (Zhang, et al., 2013).   

Finally, EnergyPlus is open source and free to download. It is also the core of some 

interfaces, including OpenStudio 1and DesignBuilder2 , which are user-friendly platforms 

to support building energy modelling. 

3.1.2 Building simulation 

The building simulation program EnergyPlus is used to simulate summer indoor 

operative temperatures in UK dwellings, and CIBSE TM 59 is applied to assess the 

overheating risk. The most common types of UK dwellings have been modelled, 

including detached, semi-detached, terraced houses and 4-floor and 10-floor residential 

flats. The buildings sit in the six most populated and latitude-varying cities (London, 

Cardiff, Birmingham, Manchester, Edinburgh and Belfast) to represent UK dwellings and 

consider the change of weather on locations. Four climate scenarios (the current, 2030, 

2050 and 2080) are used to show the impact of climate change on UK dwellings, and all 

scenarios are based on very likely (90% probability) medium emissions from the 

UKCP09 database.  

The effect of natural ventilation on indoor temperature is studied by opening window area 

of 0%, 20%, 40%, 60% and 80%, while 0% stands for a closed window and 80% 

represents the maximum window opening regardless of the window frames. Opening 

windows during a different time in a day can significantly influence the effect of natural 

ventilation on indoor thermal condition. There are three simple window opening 

schedules based on opening hours: day-time (8 am to 6 pm), night-time (6 pm to 8 am), 

and whole-day (0 am to 12 pm). Besides, shades such as blinds and external overhangs 

are applied to investigate the effect of mitigation strategies on overheating risk.  

3.1.3 Building physics 

There are 18 types of dwellings of different build years from the 1900s to 2010s in this 

study, shown in Table 3-1. Most common types of UK residential buildings are tested, 

 
1 https://www.openstudio.net/ 
2 https://designbuilder.co.uk/ 
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including detached houses, semi-detached houses, middle terraced houses, low-rise (4-

floor) and high-rise (10-floor) flats. Early houses were built around the 1900s, and early 

flats were built around the 1950s in the UK. Dwellings built in the same period were 

assumed to use the same materials for the construction. The construction methods and 

materials of the building facade are different for houses and flats.  

Table 3-2 and Table 3-3 show the details of the construction for the external walls of UK 

houses and flats built in different periods. As different size and orientation of windows 

can cause different solar heat gain for a room, resulting in a significant change in indoor 

temperature. Therefore, the size and orientation of windows are assumed to be the same 

for all the dwellings built in the same period. As occupants spend most of their time in 

the buildings, especially in the bedrooms and living rooms, operative temperatures in 

both types of rooms are studied to assess the summer overheating risk in the UK 

dwellings.  

 

Table 3-1 Dwelling models in types and build years. 

Build year Building type/Code 

     

Detached 
house 

Semi-detached 
house 

Terraced house Low-rise flat High-rise flat 

1900s D1900 S1900 T1900 - - 

1950s D1950 S1950 T1950 L1950 H1950 

2000s D2000 S2000 T2000 L2000 H2000 

2010s D2010 S2010 T2010 L2010 H2010 
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Table 3-2 Construction of external walls for houses and low-rise flats. 

 

 

 

 

 

 

Table 3-3 Construction of external walls for high-rise flats. 

Build year 1900s 1950s 2000s 2010s 

Section 

    

Construction type  Solid wall 
 

Uninsulated 
cavity 
brick/block wall 
 

 Min wool 
insulated 
brick/block 
cavity wall 
 

XPS polystyrene 
Insulated brick/block 
wall 
 

Brick layer (mm) 225 100 105 105 

Air gap (mm) 0 50 25 0 

Concrete layer (mm) 0 100 100 105 

Insulation (mm) 0 0 50 200 

Plaster/render (mm) 13 15 13 15 

U values (W/m2K) 2.062 1.487 0.350 0.250 

Infiltration at 50 pa 
(m3/ m2hr) 

12 16 10 5 

Note: The values of parameters are from DesignBuilder 

Build year 1950s 2000s 2010s 

Section 

   

Construction type  Uninsulated lightweight wall 
 

XPS polystyrene 
insulated 
lightweight wall 
 

XPS polystyrene 
Insulated 
lightweight wall 
  

Concrete layer (mm) 200 0 0 

Air gap (mm) 25 0 0 

Steel/ Metallic cladding 
(mm) 

1 10 10 

Insulation (mm) 0 89.7 121.9 

Plaster/render (mm) 10 13 15 

U values (W/m2K) 0.708 0.347 0.263 

Infiltration at 50 pa 
(m3/ m2hr) 

16 10 5 

Note: The values of parameters are from DesignBuilder 
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3.1.4 Locations and climates 

The UK has a wide range in its latitude, from 49° to 61° N, resulting in various regional 

climates. For example, the summer is cool in the North West and North East but is warm 

in South East and South West. Due to the enormous variations in regional climates, the 

six most populated cities at different latitudes are chosen for the locations of the 

dwellings in the UK: London, Cardiff, Birmingham, Manchester, Edinburgh and Belfast.  

Climate changes significantly over time, and the temperature is likely to increase in 

future. The regional weather data for these cities was downloaded from the UK climate 

projections (UKCP) database, based on the medium emission scenario (three emission 

scenarios: low, medium and high) at the 90% probability level. Climates in periods: the 

current, 2030s, 2050s and 2080s, are adopted as the weather inputs for the dwellings to 

investigate the performance of the buildings in the present time and future. 

3.1.5 Heat gains 

The room temperature can increase through gaining heat from surrounding people, 

lighting or other electrical equipment. Each model has considered heat gain from people, 

lighting and other electrical equipment. As shown in Figure 3-1, all of the three elements 

can contribute heat to the indoor environment. Electrical equipment such as lights is 

assumed to be switched off in the bedrooms during the night. People become the main 

contributor to heat gain. While in the morning and evening, lights and other electrical 

equipment consume a significant amount of energy during the occupancy.  

 

Figure 3-1 The 24-hour bedroom heat gain pattern for a 1900s detached dwelling. The average 

24-hour heat gain pattern for an example detached dwelling presents the hours of bedroom 

heat gains generated in a day. 
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3.1.6 Opening and shading strategies 

Across the UK, most dwellings use natural ventilation through the window opening for 

cooling in the summer. This study aims to find out whether the current dwellings can still 

provide thermal comfort in the present and future climates. Different window schedules 

(daytime, night-time and all-day) and opening areas (0%, 20%, 40%, 60% and 80%) are 

applied to assess the overheating risks of dwellings in the UK dwellings in the current 

and future climates. Shading strategies such as blinds and overhangs installation are 

applied as extra measures to reduce overheating hours. The overheating assessment of 

the UK dwellings is carried out in the following scenarios. 

• All-day closed window 

• Daytime (8 am to 6 pm) opening 

• Night-time (6 pm to 8 am) opening 

• All-day window opening 

• Night-time window open plus daytime blinds 

• Night-time window open plus daytime blinds and 0.25 m overhangs 

• Night-time window open plus daytime blinds and 0.5 m overhangs 

Scenario 1 aims to investigate the effects of non-ventilation on overheating hours. 

Scenario 2 evaluates the effect of daytime ventilation. In this scenario, the windows are 

assumed to be opened during the day but closed during the night for the occupants’ 

sleeping. Scenario 3 models the effect of night-time ventilation. The occupants are 

assumed to leave windows opened for cooling when they stayed or slept in the bedrooms 

during the night but close windows for safety during the day. Scenario 4 examines the 

maximum ventilation for all-day cooling. Scenarios 5 applies blinds during the day to 

reduce solar heat gain and leaves the window opened during the night. Scenario 6 and 

7 add 0.25 m and 0.5 m overhangs above the windows for additional shading. 

3.1.7 Overheating criteria 

CIBSE TM59 overheating assessment method is used to evaluate the overheating risk 

for UK dwellings. There are two criteria (Criteria I and II) for the assessment of 

overheating risk for living rooms and bedrooms, respectively. Criteria II for bedrooms is 

more strict as it considers the temperature of 26°C as the threshold of thermal comfort 

during the sleeping time. Indoor temperature exceeding 26 °C is considered as high 

temperature for bedrooms at night, leading to sleep deprivation.  
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Figure 3-2 Overheating assessment for the living room and bedroom. 

Figure 3-2 illustrates an example of using the two criteria, implementing them to evaluate 

the overheating hours for the living rooms and bedrooms in a semi-detached house in 

Birmingham in the 2030s. The scatter plots show the indoor temperature is positively 

correlated to outdoor temperature for both room types, with most of the points falling in 

a stripe shape (highly correlated when all points in a straight line). The bedroom’s 

temperature is more correlated to outdoor temperature as the points form a narrow stripe 

shape.  

Criterion I is to assess overheating risk for living rooms, kitchens and bedrooms. This 

criterion defines overheating risk based on the adaptive thermal comfort standard BS EN 

15251. The number of the occupied hours for the indoor temperature exceeding the 

maximum allowable temperature by at least 1 K (∆𝑇 ≥ 1) shall be no more than 3% of 

occupied hours from 1st May to 30th September (3% of occupied hours in summer 

between 10 am and 10 pm is 59 hours). The ∆T is the difference between the actual 

indoor operative temperature (𝑇op) and the maximum allowable temperature (𝑇max).  

𝑇max, according to BS EN 15251, is equal to (𝑇c + 3) for the existing buildings.  

Criteria II is an additional criterion for assessing the overheating risk in bedrooms only. 

It is more strict as it also considers the temperature of 26°C as the threshold of thermal 

comfort during sleeping time. The overheating risk is defined if the number of hours for 

a bedroom occupied temperature exceeding 26°C more than 1% of annual occupied 

hours (33 hours). The TM59 overheating criteria require the building to pass both Criteria 

I and II for relevant rooms to prevent overheating risk. 

3.1.8 Adaptive thermal comfort standard BS EN15251 

BS EN15251 is an adaptive thermal comfort standard designed to set up limits for the 

indoor thermal comfort of the occupants. The neutral comfort temperature ( 𝑇c ) is 

calculated from the running mean outdoor temperature (𝑇rm), while 𝑇rm is calculated from 

the previous 7-day daily mean outdoor temperature (𝑇od). 

 ∆𝑇 = 𝑇op − 𝑇max (1) 
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The adaptive thermal comfort criteria suggest acceptable comfort temperatures range of 

2°C and 3°C from neutral comfort temperature (𝑇c) for 90% and 80% acceptability limits. 

The levels of acceptability or categories indicate indoor temperature should be within the 

suggested acceptable range to achieve different levels of expectation for specified 

occupants or buildings. In existing dwellings, 𝑇c + 3 is for the upper limit of the comfort 

range. 

3.1.9 Heatwave 

Summer heatwave days can be calculated using the weather data from climate 

projection and the definition of a heatwave from the Met Office. More than three 

consecutive days with daily maximum temperature over temperature thresholds is 

considered a heatwave. The temperature threshold varies from 25 to 28 in different 

locations in the UK: 25 °C in parts of Scotland, North and South-West England, Wales, 

Northern Ireland; 26 °C in Dorset and the area from Lincolnshire to Cheshire; 27 °C in 

East Anglia, parts of the middle land and much of the Home Countries; and 28 °C in 

London. 

3.1.10 Data processing 

Previous sections have explained why EnergyPlus has been adopted for modelling the 

dwellings. This section is to introduce the main steps and tools used on how to create 

3D models, modify inputs and plot outputs. Figure 3-3 shows the data flow from model 

development to the plotting of the results. DesignBuilder is used to create 3D models for 

dwellings. As a user-friendly graphical interface based on EnergyPlus, the models can 

be exported into input files for EnergyPlus to recognize, edit and run for simulation. There 

is massive simulation work needed for this study (18 types of dwellings, 6 locations, 4 

weather files from the 1990s to the 2080s, 5 openings from 0% to 80%, 3 opening 

strategies and 3 shading strategies). The programming tool Python is used to automate 

the process. It can connect with EnergyPlus to edit the input files, run the simulation, and 

save the results on the local computer. The two most useful packages in Python are 

used to deal with data: Pandas and Matplotlib. Pandas is used to open and edit 

EnergyPlus input files, while Matplotlib is used to generate plots for visualization. 

 
𝑇c = 0.33𝑇rm + 18.8 

(2) 

 

𝑇𝑟𝑚 = (1 − 0.8) ∗ {𝑇od−1 + 0.8 ∗ 𝑇od−2 + 0.82 ∗ 𝑇od−3 + 0.83 ∗ 𝑇od−4

+ 0.84 ∗ 𝑇od−5 + 0.85 ∗ 𝑇od−6 + 0.86 ∗ 𝑇od−7} 
(3) 
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Figure 3-3 Flow chart of the main steps and used tools. 

3.2 Part II: Case studies for MPC 

3.2.1 Residential building 

One of the case study buildings is a mid-terraced house locating in Cardiff, shown in 

Figure 3-4. The sensing and controllable devices have been installed in the building. A 

Photovoltaics (PV) system has been installed in the roof of the buildings. Besides, 

sensors and other devices have been installed to help the building become ‘smart’. 

 

Figure 3-4 The overview and geometry of the residential building in Cardiff site. 

Control systems 

The test house uses a Nest thermostat3 as the heating controller for maintaining indoor 

air temperature within the range of occupants’ preference. Nest operates on two 

predominant modes: operating schedule and home/away. The occupants use the Nest 

thermostat to set the operating schedule for the conventional heating system. Nest can 

also detect the presence of occupants using the on-device presence sensor and 

occupants’ location with a detached sensor. This helps to determine if the boiler should 

be turned off while occupants are away from home. Nest is marketed as a learning 

thermostat as it can automatically learn occupants’ daily routines and create an 

operational schedule to match occupants’ preferences. The occupants can also 

manually change the schedule remotely using a phone or PC via the internet to adjust 

the room temperature. 

 
3 https://nest.com/uk/thermostats/nest-learning-thermostat/overview/ 
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Weather station 

Real-time outdoor environmental conditions and solar radiation are measured using the 

Davis Vantage Pro4 weather station. Outdoor dry-blub and dew point temperatures, wind 

speed and direction, relative humidity, and global horizontal solar radiation are measured 

on a 5-minute interval. The data are collected via a Davis gateway, stored in the local 

database and uploaded to Weather Underground so that the station can be accessed 

online5. Like indoor environmental monitoring system, the data from the weather station 

are not currently utilised in the BMS but rather used for validating forecasting algorithms.  

Monitoring system 

In the residential building, the building monitoring system has been developed by 

installing sensors (including data loggers and data receivers) to detect environmental 

data (including temperature, humidity, etc.) and energy meters (generation and 

consumption). The temperature and humidity sensors have been deployed in the living 

room, kitchen, hallway and bedrooms. In addition, the meter sensors have been installed 

in the electricity meter, gas meter and PV system. All the data will be wirelessly 

transmitted to the database on a computer to report historical environmental data and 

energy consumption. Moreover, the weather station has been installed to receive the 

weather data (e.g. outdoor temperature). All the data has been stored for analysis. Other 

than these sensors, more smart devices (smart as they have simple optimiser or can be 

connected to the internet for control), such as Nest thermostat, have been installed to 

simply control heating system bases on set point and room temperature. The devices 

and sensors installed in the house have been illustrated in Figure 3-5. 

 

Figure 3-5 Devices and sensors installed in the house. 

 
4 https://www.davisnet.com/solution/vantage-pro2/ 
5 https://www.wunderground.com/personal-weather-station/dashboard?ID=IPENARTH2 
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Figure 3-6 Sensor locations in the house. 

The building environmental monitoring system uses Onset Hobo ZW-series wireless6 

nodes. The nodes are set up as an independent wireless mesh network, comprising a 

gateway (ground floor) and a router (first floor). Each node has stand-by battery power 

for fail-safe operation in the event of a power failure. Temperature and humidity are 

monitored in each of the five rooms at a 1-minute interval. In addition, the import of 

electricity and the export of excess solar PV generation are monitored using ZW series 

pulse meters at a 1-minute interval. The data from environmental sensors and electricity 

meters are collated and stored on an Intel-Atom PC running 24 hours a day. The Hobo 

monitoring network is independent of the building management system, and its key 

purpose is to validate the ongoing and future research for assessing how indoor 

environmental conditions are affected by system operation. 

The test house has a sensor network monitoring system that collects data from various 

sensing and monitoring systems as well as a heating controller (Nest thermostat) that 

sends control signals to the boiler. Key systems in the test house are described below 

for a better understanding of the systems and components in the house. The locations 

of key sensors and controllers are illustrated in Figure 3-6. 

 
6 http://www.onsetcomp.com/products/data-loggers/zw-indoor-wireless-hobo-data-nodes 
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Figure 3-7 InfluxDB7 database for aggregating sensor monitoring data. 

Data  collection 

Figure 3-7 illustrates the data flow in the energy metering and environmental monitoring 

system in the residential building. As the hub/data receiver collects data from different 

sensors, it is necessary to aggregate all the data in one place. InfluxDB, an open-source 

time-series database, is adopted as a local database to store all the data collected from 

different sensors. The database is designed for storing time-series data. It is used to 

collect measurement of the indoor environment (such as indoor temperature), energy 

consumption and generation. It is installed in the low-cost Raspberry Pi and backed up 

in a mini Lenovo PC. As shown in Figure 3-7, data is collected by the sensors, sent to 

hub/data receiver, saved in the InfluxDB database and visualized in Grafana. Grafana is 

an open-source metrics dashboard and graph editor supporting InfluxDB for near real-

time data visualization. The collected data in the database is used as input for training 

the model for the heating system of the Cardiff residential building.  

3.2.2 Commercial building 

Another case study building is an office building in Barcelona, Spain. It has six stories 

and a mezzanine level in the first two floors. The HVAC system of the building is a VRF 

system consisting of 10 outdoor and 78 indoor units. The exterior view of the building 

and the layout of the 4th floor with the indoor units are shown in Figure 3-8. 

 
7 www.influxdata.com 
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Figure 3-8 The exterior view of the commercial building and the layout of indoor HVAC units. It 
shows 9 indoor HVAC units with their corresponding supply ducts and served zones in the 4th 
floor. 

HVAC System 

The office building has a variable refrigerant volume (VRV) technology-based HVAC 

system. This means there are no chillers and no boilers. The energy used in the system 

is electrical energy. The indoor units are located across the building, deliver the thermal 

energy to the air to condition the space occupied by people, while the external units are 

located on the rooftop. These units convey thermal energy to or from the indoor units 

through a refrigerant fluid.  

Indoor unit 

Each one of the indoor units has its own autonomous built-in controller. This controller 

communicates with a local panel to provide the building user with the ability to adjust 

working parameters such as temperature set point. It also communicates with the 

corresponding outdoor unit so that it can provide the needed thermal energy through the 

refrigerant fluid to all its associated indoor units. At the office building, all communications 

happen through two separate Mitsubishi M-Net proprietary Fieldbuses. The first one 

connects indoor units and control panels on floors 0, mezzanine, 1, and 2 with the 

corresponding outdoor units on the rooftop. The second one connects indoor units and 

control panels on floors 3, 4, 5, and 6 with the corresponding outdoor units on the rooftop. 

In order to provide the HVAC system with the capability of centralized control, two 

Mitsubishi GB-50 units exist (one for each Fieldbus), which allow supervision and control 

from a PC with a web browser. With the corresponding outdoor unit so that it can provide 

the needed thermal energy through the refrigerant fluid to all its associated indoor units. 

Table 3-4 shows the monitored parameters in the commercial building, including 
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paramters of indoor units (such as temperature set-points), weather parameters, indoor 

temperature and humidity, and energy and power meters.   

Table 3-4 Monitored energy, environmental, weather and system parameters at the commercial 
building. 

Category Parameter Scope 
HVAC indoor unit Mode [cooling/heating] 

Operation status [on/off] 
Temperature set-point  
Unit temperature 

Unit 

Weather  Humidity outdoor 
Solar radiation 
Temperature outdoor 

Site 

Indoor environment Humidity indoor 
Temperature indoor 

Floor 

Energy  Energy active global 
Power active global 
Energy active HVAC 

Floor 

Data collection 

 

Figure 3-9 Data flow from commercial building to local database 

Figure 3-9 shows data collection from the commercial building to the local database. The 

data flow can be divided into two main parts. The first part is the data collection inside 

the building. The commercial building has its own building monitoring system (BMS), 

which is based on Mitsubishi commercial products. Mitsubishi M-Net proprietary 

Fieldbuses are used to monitor and collect data from indoor units, outdoor units, weather 

station and energy meters. All the data are collected and saved in local BMS. Inside the 

BMS, the gateway and API are set up to share the data. The second part of the data 

collection is to use API and fetch data via the internet. High-resolution data per minute 

are monitored and collected inside the building, and the Python code is developed to 

fetch these data via the open API. The most important Python package used to fetch the 

data is the InfluxDB client, which saves data at the local InfluxDB database 
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3.3 Model predictive control 

3.3.1 Data processing 

Data processing includes data collection and data clean. Data collection for the 

residential and commercial building has been introduced in section 3.2.1 and section 

3.2.2, illustrating the devices, tools and techniques used in monitoring and collecting the 

data. This section introduces the methods in data clean. 

The data stored in the database are the raw data collecting from the buildings. These 

raw data can not be used as inputs for training data-driven models. The data needs to 

be cleaned before applying them into model training. The methods for cleaning the data 

from both buildings are nearly same. For example, the most important step in cleaning 

data is to remove the outliers. 

Outliers can be extremely high or low values in the data. Such outliers may come from 

errors of sensors and should be removed to improve the accuracy of models. Box plot 

can be used to display data and detect outliers. It uses the interquartile range (IQR) to 

calculate the difference of data between 25th (Q1) and 75th (Q3) percentiles (IQR = Q3 – 

Q1). The IQR represents the middle half of the data. Values far away from this IQR can 

be treated as outliers. Figure 3-10 introduces the rule of 1.5 IQR, which is often used to 

detect the outliers by finding out if the value is with the range of (Q1-1.5 IQR) and (Q3 + 

1.5 IQR). Another method is to find the outliers by simply plotting the data. By plotting 

data, there may be a few extreme values. Deleting them is a simple method to remove 

the outliers. 

Other than outlier removal, data resampling is also the main task in data cleaning. As 

original data can be less or equal to per minutes, it needs to be changed into per 15 

minutes for use in models. Python package Pandas has been used to read excel files 

downloaded from InfluxDB and resample the data. 

 

Figure 3-10 The rule of 1.5 IQR for outlier detection  
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3.3.2 Machine learning 

Machine learning algorithms can reveal the non-linear relationship between the input and 

output variables. In the study, the data-driven approach requires machine learning 

algorithms for forecasting indoor temperatures, energy demand and power. Machine 

learning algorithms ANN, RF and SVM are used for developing data-driven forecasting 

models. Sciket-Learn is a free Python package for machine learning, providing various 

machine learning algorithms including ANN, RF and SVM. 

Model training and testing are two important stages in the development of machine 

learning-based models. After the data has been cleaned as inputs for training models, 

data are divided into 70%, 20% and 10% for training, validation and testing stages. The 

reason to separate them is to prevent the models from overfitting to accurately evaluate 

the models. Sciket-Learn also has functions in splitting data from training and testing. 

In the training stage, the decision of parameters for models is import as different 

parameters can directly influence the accuracy. Optimisation algorithms are used to 

optimise the choice of parameters. Keras is a free and open-source Python library for 

deep learning models. It can be used to optimise the parameters in the training stage. 

After training and validation, models need to be saved and reloaded for future use, such 

as testing the accuracy of models with new input data for prediction. Pickle is a Python 

library used for saving and calling data-driven models. 

Table 3-5 presents the main Python tools used in this study. It includes Python libraries 

not only for data processing and model training but also for API calls, visualisation and 

optimisation.  

Table 3-5 Main Python tools used in the study. 

Python library Description 
Pandas Deal with data, including data processing and analysis 

Scikit-Learn Provide Machine learning algorithms 

Keras Optimize the parameters in the training stage; Also provide machine learning 
algorithms such as ANN 

Influxdb Access to influxDB database, upload and download data 

Platypus Provide optimization algorithm for MPC 

Json Read json file (monitored data from buildings) from API 

Request Call API via internet 

Matplotlib Plot figures for visualization 

Pickle Save and load data-driven models 
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3.3.3 Optimization and control 

 

Figure 3-11 A framework of MPC optimisation process. 

The forecasting model is used to describe the behaviour of the HVAC system, which 

uses historical inputs to forecast next time step outputs such as energy consumption. 

The inputs involve three main types: manipulated, measured and controlled. The 

manipulated variables are the control signals, such as the next time step temperature 

set-point given to the indoor unit. The measured variables are from the measurement, 

including last time step state (e.g., energy or indoor temperature) and outdoor weather 

parameters. The controlled variables are next time step energy consumption, power and 

indoor temperature monitored by each indoor unit thermostat. With the forecasting model 

of the system, it is able to find the impact of the indoor unit control signals on the future 

change of the energy consumption, power and indoor thermal condition, considering the 

disturbance of the outdoor weather. Figure 3-11 illustrates a simple structure for the 

optimisation process of the MPC. Based on the model, the MPC aims to find the optimal 

solution (e.g., next time step control signals) to achieve maximum energy reduction but 

satisfy the constrained power and comfort temperature. 

Optimisation of the control on indoor units for future time steps is built based on the 

system forecasting model, objective and constraints. The Non-dominated Sorting 

Genetic Algorithm II (NSGA-II) has been used as the optimisation method for optimizing 

the control of the indoor units based on the data-driven model. It is an evolutionary 

algorithm generating a group of equally optimal solutions, which is called Pareto non-

dominated front. The selection of the optimal solution of the Pareto front is depended on 

the objectives and constraints.  

Figure 3-12 illustrates the flow chart of the MPC. The GA algorithm initializes the 

population based on the identified type and range of the manipulated inputs. With the 

system model, the output variables such as next time step energy are forecasted. The 
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forecasted results at time step k can be used as the inputs for time step k+1. Repeatedly, 

the model can forecast the next N (N = 96 for the day ahead forecasting) time step 

system states. The sorting process is based on the non-domination criteria of the 

population. The objective of the NSGA-II algorithm is to improve the adaptive fit of a 

group of optimal solutions to a Pareto front.  

 

Figure 3-12 MPC flow chart. The chart illustrates the main steps in the MPC using data-driven 
system model and NSGA-II optimisation method.  

3.4 Error analysis 

The accuracy of the forecasting model is the key indicator of model performance. There 

are various methods to evaluate the forecasting model accuracy (Smith & Sincich, 1992). 

Some of these methods are the mean absolute error (MAE), mean squared error (MSE), 

root mean square error (RMSE), the mean absolute percentage error (MAPE) and the 

coefficient of determination (R2). The forecasting results are assessed by using these 

widely used accuracy measures as the key performance indicators (KPI)s.   

Table 3-6 lists the five most common metrics for measuring the accuracy for the forecast 

through measuring the errors. They are used as KPIs for evaluating the forecasting 

results. In Table 3-6,  𝐴𝑡  is the actual value at time 𝑡; 𝐴 is the average of the actual 

values; 𝐹𝑡 is the forecasted value at time 𝑡; n is the total data points and t represents 

time. KPI is to measure the forecasting error; thus, the smaller error (from number 1 to 4 

) is the better. R2 (number 5 of KPIs) value is used to represent the goodness of fit of a 

model, with values ranging from 0 to 1, while 1 shows the predictions fit the data perfectly. 
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Table 3-6 KPIs for measuring the load/demand and indoor temperature forecasts. 

KPI Formula/Equation Number 

Mean Absolute Error (MAE) 
MAE =  

∑ |𝐴𝑡 − 𝐹𝑡|𝑛
𝑡=1

𝑛
 

1 

Mean Squared Error (MSE) 
MSE =

∑ (𝐴𝑡 − 𝐹𝑡)2𝑛
𝑡=1

𝑛
 

2 

Root Mean Square Error (RMSE) 

RMSE = √
∑ (𝐴𝑡 − 𝐹𝑡)2𝑛

𝑡=1

𝑛
 

3 

Mean Absolute Percentage Error 
(MAPE) MAPE =  

100%

𝑛
∑ |

𝐴𝑡 − 𝐹𝑡

𝐴𝑡
|

𝑛

𝑡=1

 
4 

The coefficient of determination (R2) 
R2 = 1 −

∑ (𝐴𝑡 − 𝐹𝑡)2𝑛
𝑡=1

∑ (𝐴𝑡 − 𝐴)
2

𝑛
𝑡=1

 
5 
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Chapter 4 Need for building controls 

This chapter investigates the impact of climate change on buildings to examine if natural 

ventilation can mitigate overheating risk in future climates. It allows the study to identify 

the limitation of natural ventilation, the increasing needs of HVAC installation and the 

importance of operational control for energy systems or controllable elements in 

buildings for improving the performance of energy and comfort. 

4.1 Introduction 

Although HVAC systems have been widely used in buildings to cope with weather or 

achieve better thermal comfort, some buildings do not apply HVAC systems for direct 

heating or cooling but rely on the control of building elements such as windows. Buildings 

such as most of the UK dwellings use natural ventilation for cooling in summer because 

of infrequent high temperatures in the mild climate of the UK. Therefore, the HVAC 

systems in existing UK dwellings are often designed with heating systems only to meet 

the heating demand in cold winter. In summer, occupants open windows for natural 

ventilation cooling.  

Increasing summertime ambient temperatures and resulting indoor overheating in 

dwellings adversely affect occupant thermal comfort; hence productivity, sleep, and 

health and safety. Might passive strategies such as natural ventilation and shading be 

sufficient to prevent summertime overheating at present and in the future without 

resorting to expensive building refurbishments. We investigated the effectiveness of 

passive measures in mitigating overheating risks in representative UK dwellings under 

multiple climate change projections. 

4.2 Increasing summer heatwave days 

Monthly heatwave days have been calculated from May to September in four climate 

scenarios from the present to the 2080s, shown in Figure 4-1a. It illustrates summer 

heatwave becomes more and more intense across the UK in the future. Most of the 

heatwave days fall in July and August since the 2030s. No significant heatwave is found 

in the present days for all cities, but heatwave days increase dramatically in future 

periods in southern cities. Especially in London, heatwave days can increase to 10 in the 

2030s, 26 in the 2050s and 58 (63% of the summer period) in the 2080s. Edinburgh and 

Belfast are cities in the North, have much fewer heatwave days than the other cities. 

Both have less than 10 heatwave days in the 2080s, taking up 15% of the summer. 

Figure 4-1b presents the mean of summer daily maximum indoor temperature in 

dwellings’ types and age bands from the present to 2080s. Maximum indoor temperature 

is usually used to compare with the threshold to evaluate the impact of heat on health 
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(Public Health England (PHE), 2014), and 26 °C was regarded as the most suitable 

threshold for at-risk groups (Tham, et al., 2020). It is found dwellings in London have the 

highest indoor temperature. The indoor temperature also reflects the higher outdoor 

temperature and more heatwave days in London. Terraced houses built in the 1900s 

have much higher indoor temperature than other types of houses and flats. The figure 

also shows the maximum outdoor temperature in a heatwave can be more than 30°C, 

leading to a life-threatening heat-related risk to vulnerable people such as the elderly 

and infants. Longer duration of the heatwave will result in a consistently increased 

attributable number of deaths (Cheng, et al., 2018). People will be more vulnerable to 

heat strain as they are not able to physiologically adapt to a sudden change of weather 

(Parsons, 2009). 

 

(a) 

 

(b) 

Figure 4-1 (a) Monthly summer heatwave days from May to September. (b) Summer indoor 
average daily maximum indoor operative temperatures. Summer days with temperature 
exceeding 30°C in the daytime and 15°C at night in at least 2 consecutive days are considered 
as heatwave days. Summer indoor average daily temperatures are represented in colormap for 
the most often seen UK dwellings under climates from the 1990s to 2080s. All dwellings are 
applied with night ventilation with 20% of window area and blinds. 
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4.3 The impact of locations and climates 

In the UK, dwellings in the lower latitude cities have a higher overheating risk. Figure 4-2 

and Figure 4-3 illustrate the overheating hours in living rooms and bedrooms for 

dwellings in various locations and periods. The results show the locations of the 

dwellings have a significant impact on the overheating hours. Dwellings in Southern cities 

such as London have more overheating hours than those in the North such as Belfast 

and Edinburgh. Besides, the overheating hours of dwellings increase as the periods 

increase from the present to the 2080s. Early built dwellings in the 1900s and 1950s 

have a low overheating risk in the high latitude cities under climate change. In Belfast, 

terraced houses built in the 1900s and 1950s has overheating hours less than 20 until 

2050s, well below the threshold of overheating (59 for living rooms). However, the 

number will reach 400 in London in the same period. 
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Figure 4-2 Overheating hours in living rooms with different opening duration (Scenario 1, 2, 3 
and 4) between the 1990s and 2080s. Each line in the radar plot represents the number of 
overheating hours for one type of dwellings. The inner circle (1000 hours) and outer circle 
account for approximately 50% and 100% of the living room occupied hours in summer. 
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Figure 4-3 Overheating hours in bedrooms with different opening duration (Scenario 1, 2, 3 and 
4) between the 1990s and 2080s. Each line in the radar plot represents the number of 
overheating hours for one type of dwellings. The inner circle (660 hours) and outer circle 
account for approximately 50% and 100% of a bedroom occupied hours in summer. 
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4.4 The overheating risk without natural ventilation 

Without natural ventilation, dwellings can be easily overheated in summer. Figure 4-2 

shows the overheating hours in living rooms in various types of dwellings with opening 

windows during different periods. When the windows are closed with no natural 

ventilation, newly built high-rise flats (O) experience more overheating risk, with almost 

all the hours overheated under the current climates. Followed by the 2000s’ high-rise 

flats (Q) and 2010s’ low-rise flats (R), both have overheating hours of more than 1000 

hours which are about half of the total summer hours. In future climates from the 2030s 

to the 2080s, the newly built houses in the 2000s and 2010s also have significant 

overheating risks as flats. However, houses built in the 1900s and 1950s have the least 

increment in overheating hours.  

More types of dwellings suffer severe overheating risk in the bedrooms. Figure 4-3 shows 

the overheating hours in bedrooms in various types of dwellings with different opening 

strategies. Compared to the living rooms, the overheating hours in the bedrooms of the 

old buildings (the 1900s and 1950s) increase more significantly than in living rooms, 

shown in Figure 2. Without ventilation, the bedrooms in the recently built dwellings (the 

2000s and 2010s) behaved similarly as living rooms. For dwellings built in the 1900s and 

1950s, the largest growth of the overheating hours was found between the present and 

2030s. Bedrooms in the 1900s Detached and 1950s low-rise flats have a rise of over 

700 hours of overheating hours from the present to 2030s, compared to living rooms of 

an increase less than 150 hours. 

Due to the lack of ventilation, dwellings can only rely on air infiltration to condition the 

indoor environment. Recently built dwellings have higher insulation and airtightness to 

keep them warmer in the summer. However, older dwellings have their external walls 

with no insulation layer and bigger gap and crack, resulting in enough air infiltration to 

effectively cool indoor operative temperature in summer. 

4.5 Natural ventilation strategies 

Natural ventilation is effective in reducing overheating hours in dwellings. Figure 4-2 

shows that overheating hours in the living rooms can be dramatically reduced with 

natural ventilation in scenario 2 (Daytime ventilation), 3 (Night-time ventilation) and 4 (all-

day ventilation). The results show that night-time ventilation has the best performance in 

cooling almost all types of dwellings. Compared to all-day ventilation, it can reduce more 

than up to 50% of overheating hours in the warm summer in the 2080s. Both of them can 

reduce the overheating risks in the living rooms until the 2050s except in London. The 

2000s terraced houses experience the severest overheating risks, with around 200 

overheating hours in London in the 2050s, increasing up to 483 in the 2080s. Although 
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daytime ventilation has the weakest performance on reducing the overheating risks, it 

can still significantly reduce overheating hours by around 50% for recently built dwellings 

for living rooms in 2080.  

Figure 4-3 presents the cooling effect of natural ventilation on bedrooms in scenario 2 

(Daytime ventilation), 3 (Night-time ventilation) and 4 (All-day ventilation). For bedrooms 

with daytime ventilation, significant overheating risks have been found in the dwellings 

in the present day. Daytime ventilation has low performance in effectively reducing 

overheating hours for bedrooms when the ambient temperature rises. Among the three 

ventilation strategies, night ventilation is the best one in mitigating overheating risks, and 

it can maintain thermal comfort of dwellings in the 2030s, except in London and 

Birmingham. Dwellings in London suffer more overheating risks, with 12 out of 18 total 

types of dwellings suffering overheating under the current climate. Among those 12 

dwellings, early built dwellings have more overheating hours than newly built dwellings, 

with 85 hours in the 1900s detached houses compared to 1 hour in the 2010s detached 

houses. 

Criteria II is stricter for assessing the overheating risk of bedrooms, and the allowance 

overheating hours are fewer than in living rooms. Therefore, overheating hours in 

bedrooms are higher. The 1900s and 1950s built dwellings have higher thermal mass 

but lower insulation. With daytime ventilation, the thermal mass absorbs the solar heat 

and release the heat to the internal building during the night, resulting in more 

overheating hours. 
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Figure 4-4 Overheating hours in living rooms with night ventilation using different opening area 
and shading strategies (Scenario 3 (20% - 80% opening), 5, 6, and 7) between the 1990s and 
2080s. Each line in the radar plot represents the number of overheating hours for one type of 
dwellings. The inner circle (59 hours) accounts for the overheating threshold for living rooms in 
summer. 
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Figure 4-5 Overheating hours in bedrooms with night ventilation using different opening area 
and shading strategies (Scenario 3 (20% - 80% opening), 5, 6, and 7) between the 1990s and 
2080s. Each line in the radar plot represents the number of overheating hours for one type of 
dwellings. The inner circle (33 hours) accounts for the overheating threshold for bedrooms in 
summer. 
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4.6 Opening areas of windows 

Night ventilation has been found to outbid daytime and all-day ventilation in mitigating 

overheating risks in dwellings in the UK. However, there are still significant overheating 

hours found in the dwellings after the 2030s. It is worth to consider other mitigation 

measurements such as enlarging the window opening area and adding shading 

elements. Figure 4-4 illustrates the overheating hours in the living rooms with night 

ventilation plus overheating mitigation measures, including opening window area from 

20% to 80%, and the installation of blinds and overhangs. In the figure, the inner circle 

indicates 3% of the total summer occupied hours (59 hours) which is the overheating 

threshold for the living rooms in summer. The results show that increasing the window 

opening area can significantly reduce the summer overheating risk. In the 2030s, the 

2000s terraced houses are the only dwellings likely to suffer overhearing risks in London 

and Birmingham, and increasing window area to 80% of the window area can prevent 

overheating of the living rooms in both cities. In the 2050s, another two types of dwellings 

(the 2000s semi-detached and detached houses) are likely to exceed overheating 

threshold for living rooms in London. Maximising the window opening area to 80% can 

still not prevent them from overheating in the summer. 

Figure 4-5 illustrates the overheating hours in the bedrooms with night ventilation plus 

overheating mitigation measures, including opening window area from 20% to 80%, and 

the installation of blinds and overhangs. The inner-circle in each radar plot indicated 1% 

of the total summer bedroom occupied hours (which is 33 hours as the overheating 

threshold for bedrooms). Any type of building with its overheating hours out of the circle 

is considered to have summer overheating risk in its bedrooms. The results show that 

opening 20% of the window area for night ventilation can eliminate overheating risk in 

bedrooms for all dwellings in all the cities in the present days. The results also show that 

the largest reduction of overheating hours is found when the opening window area 

increases from 20% to 40%, especially for the 1900s and 1950s dwellings. The reduction 

is up to 76 hours for the 1900s detached houses in London in the 2080s.  

There is a total of 108 buildings considering building types, ages and locations in this 

study. It is worth to find out the impact of opening areas on the living rooms and 

bedrooms on all of these buildings as the thresholds of overheating hours are different 

for them. As mentioned in previous sections, they are 59 and 33 hours for living rooms 

and bedrooms respectively. It is also worth to looking into the 2030s’ weather to see how 

climate will influence overheating risks for different types of dwelling in the near future. 

Maximum natural ventilation is assumed with opening windows for 24 hours. By 

ascending the overheating hours of all 108 dwellings, the impact of opening areas can 

be illustrated in Figure 4-6 at (a) for living rooms and (b) for bedrooms. 
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Figure 4-6 Overheating hours at (a) living rooms and (b) bedrooms in ascending orders for all 108 
dwellings with opening area from 20% to 80% in the 2030s. Enlarging window areas for openings 
for natural ventilation is more effective in reducing overheating hours at bedrooms. 

The results show that living rooms suffer low overheating risks than bedrooms in the 

2030s. Even with 20% of window area opened for natural ventilation, there are only 2 of 

108 dwellings overheated. The overheating hours are slightly over the threshold of 59 

hours, with a maximum of 81 hours in the terraced house built in 2000 in London. The 

results also indicate that increasing window areas has almost no change in overheating 

hours in living rooms. Contrarily, bedrooms are easier to be overheated in the 2030s. 

The reason could be the stricter overheating threshold of 33 hours compared to 59 hours 

for living rooms. Additionally, room temperatures over 26 °C are also considered 

overheating, as high temperatures can affect sleep. The results also show that increasing 

the window opening area can significantly reduce the overheating hours for bedrooms. 

The number of overheated dwellings is reduced from 32 to 14 by increasing the opening 

area from 20% to 80%.  

4.7 Blinds and overhangs 

For living rooms, night ventilation with a maximum opening area can not prevent all 

dwellings from overheating risks in the 2050s, but adding blinds can effectively reduce 

overheating hours to under 20 for them. As shown in Figure 4-4, the 2000s terraced 

houses are the most vulnerable dwellings to overheating, and they can be overheated 

after the 2030s in certain cities even with 80% of the window area opened for night 

ventilation. However, the blinds can maintain overheating hours under the threshold for 

most of the dwellings in the 2080s. Based on night ventilation and blinds, the installation 

of 0.25 m overhangs can prevent dwellings from overheating risk in Cardiff in the 2080s. 

However, it is not enough for dwellings in London in the 2080s, even with 0.5 m 

overhangs. 

For bedrooms, even with maximum openable area, blind and 0.5m overhang, most of 

the dwelling get overheated in the 2050s and 2080s. As shown in Figure 4-5, houses 
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built in the 1900s and 1950s are easier to be overheated as the ambient temperature 

increase in future. They can easily exceed the overheating threshold in London and 

Birmingham in the 2030s, in Manchester and Cardiff in the 2050s, in Edinburgh and 

Belfast in the 2080s. Dwellings built in the 2010s have the least overheating risk in the 

bedrooms in summer, keeping indoor thermal comfort in Edinburgh and Belfast in the 

2080s. The results also present that the installation of blinds has better performance for 

flats, reducing 34 overheating hours in the 1950s flats in the 2080s. Unlike in living 

rooms, shading such as blind and overhang can only slightly reduce overheating hours 

for bedrooms because occupied hours in bedrooms are almost at night. Opening window 

area from 20% to 80% can maximumly reduce 123 overheating hours for the 1900s 

detached houses in the 2080s, but blinds and 0.5 m overhangs can only reduce 34 and 

13 for the 1950s flats in the 2080s.  

4.8 Overheating hours under future climates 

Climate change can significantly influence overheating hours as UK dwellings are often 

naturally ventilated and vulnerable to adapt to future climates. The TM59 describes that 

indoor temperatures are generally used to assess the overheating hours for dwellings, 

with different overheating thresholds of 59 and 33 hours for living rooms and bedrooms, 

respectively. It is worth to investigate the impact of future climates on living rooms and 

bedrooms at all 108 dwellings regardless of building types, build years and locations. 

The opening window area is assumed to be 20% rather than 60% or 80% because small 

window opening areas are often recommended considering safety to stop children from 

falling. Windows are assumed to open 24 hours to investigate if the maximum natural 

ventilation can eliminate overheating risks. By ascending the overheating hours of all 

108 dwellings, Figure 4-7 (a) and (b) illustrate the impact of future climates on living 

rooms and bedrooms’ overheating hours. 

The results show that bedrooms suffer more overheating risk than living rooms in future 

climates. Although no overheating hour for both rooms is found in the 1990s’ weather, 

the numbers of overheated living rooms are 2, 18 and 48 out of a total of 108 dwellings 

in the 2030s, 2050s and 2080s. Compared with living rooms, the numbers of overheated 

bedrooms are 32, 65 and 96 out of a total of 108 dwellings under the same climates. In 

the near future in the 2030s, about 30% of dwellings have overheating risk in their 

bedrooms but less than 2% in their living rooms. The proportions of dwellings with 

overheated living rooms and bedrooms are abou17% and 60% in the 2050s, 45% and 

89% in the 2080s. Bedrooms suffer more overheating risks than living rooms, and more 

concerns should be paid to adapt them to future climate change. 
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Figure 4-7 Overheating hours at (a) living rooms and (b) bedrooms in ascending orders for all 108 
dwellings with an opening area of 20% from the 1900s to 2080s. The 59 and 33 are the thresholds 
of overheating hours for living rooms and bedrooms. The bedrooms of buildings are easier to 
suffer overheating risks compared to living rooms in the same year.  

4.9 Discussion 

The effect of natural ventilation on UK dwellings was investigated by simulating the 

overheating hours under different scenarios. However, these scenarios were based on 

the assumptions of natural ventilation and shading strategies which should be explained 

in this section. 

Overall, night ventilation has the best performance in reducing overheating risks 

compared to daytime ventilation and all-day ventilation. The average overheating hours 

of all dwellings are 21 with night ventilation, 35 with all-day ventilation and 125 with 

daytime ventilation. This number is significantly increased to 784 without natural 

ventilation by closing the windows. The results show that natural ventilation could 

dramatically reduce overheating risks. Kubota et al. (Kubota, et al., 2009) pointed out 

night ventilation leads to lower indoor temperature than daytime and all-day ventilation 

but can result in high humidity in the hot-humid climate of Malaysia. If the climate of the 

UK develops as high as the climate projection, humidity control is needed when night 

ventilation is applied. Michael et al. (Michael, et al., 2017) also suggested night 

ventilation is the most effective compared to the other two strategies as it capitalises on 

the thermal inertia of the building envelope. However, no ventilation and all-day 

ventilation are also important for naturally ventilated dwellings as occupants are inactive 

in changing the ventilation status (Lai, et al., 2018). 

Overheating hours can be significantly affected by floor insulation. There are more 

overheating hours for living rooms in the 2000s/2010s built houses, but in flats, the 

overheating hours decrease as the build year increases. However, the same pattern 

(overheating hours decrease in new dwellings) occurs for bedrooms in all types of 

dwellings, and the 1900s built houses has the highest overheating risk. The performance 
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of the living rooms and bedrooms are similar for flats but totally different for houses. To 

find out what makes the big difference for overheating hours in the living room and 

bedroom of the houses, we analysed the hourly temperature in the living room and 

bedroom in a semi-detached house. Figure 4-8 presents the hourly temperature of the 

living room and bedroom with full-day natural ventilation in a semi-detached house in the 

summer design day in London in the 2080s. In the living room, the 2000s built houses 

did have the highest indoor operative temperature. Comparing the floor conduction heat 

transfer rate per area between the living room and bedroom, we found out the floor 

cumulated conduction rate per area is much lower in living room in the 2000s and 2010s 

built house due to an additional insulation layer in the ground floor in modern houses. 

But for bedrooms, they are the same materials with wooden layers. Moreover, the living 

room and bedroom are on the same floor for flats resulting in a similar performance of 

the living room and bedroom in flats. 

 

Figure 4-8 Room operative temperatures and floor conduction transfer rate per area in one day 
of July. Bedrooms’ floors have a higher conduction heat transfer rate per area resulting in higher 
indoor operative temperature. 

The regions of UK building stock are shown in Figure 4-9, illustrating the distribution of 

four main types of dwellings in the UK regions. The housing or household survey data 

was from 2016-2017 housing statistics, 2011 UK census data, 2016 estimates of the 

households and dwellings in Scotland. The results showed that most of the detached 

houses were in the East of England and Scotland while most of the other two types of 

houses (including semi-detached and terraced houses) located in London, East of 

England, Yorkshire and the Humber, and Scotland, around 1 million dwellings. 

Compared with houses, most of the flats were in London, around 1.7 million flats which 
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are about 1.7 times of dwellings in Edinburgh with the second-largest flats. However, 

Scotland land area is much larger, which is about 50 times in London. It shows the largest 

density of flats in London. In Cardiff, Edinburgh and Belfast, fewer houses and flats have 

been found in these areas compared to London, Birmingham and Manchester. The high 

density of flats and terraced houses indicated that a large population worked and lived 

in London, resulting in more terraced houses, low-rise and high-rise apartments. 

However, the study of overheating risk found that ground-floor living rooms in terraced 

houses could experience overheating risk in the 2030s in London without adequate 

window opening (needs 80% of total window area) for natural ventilation. Compared with 

the living rooms, bedrooms are easier to be overheated in the old dwellings, especially 

in house-type dwellings. However, all dwellings could have suffered a severe 

overheating risk since the 2050s in London and Birmingham. It is recommended more 

dwellings could be built in Scotland as the future climate in Scotland is comparably cooler 

than in England. The results also showed overheating in Cardiff is much lower than in 

London, although they are slightly different in latitudes. Urban Heat Island effect is 

concerned to produce microclimate in the cities resulting in higher temperature in 

London. Natural ventilation and wind speed could also be affected by surrounding tall 

buildings. Air quality is another concern as occupants might keep windows closed due 

to air quality and dust. 

 

Figure 4-9 The households by dwelling types in the UK regions. The plot shows the distribution 
of the four types of dwellings in the UK regions. The deeper colour, the more dwellings are in this 
region. 

Children and elderly occupants are vulnerable to overheating risk. Figure 4-10 illustrates 

the population estimates for different age groups (age 0-15, 16-64, 65 and over) in the 

UK regions in mid-2017. The largest number of children (age 0-15) is in London and 

South England. The largest number of elderly (65 and over) is in the South East. A 
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significant number of children and elderly have also been found in West England, North 

West Yorkshire and the East of England. Compared with children and elderly, the 

number of people aged between 16 and 64 is up to 5 times of them in each region, and 

most of them are in England (especially London and South West) and Scotland. Children 

and the elderly are more vulnerable to overheating risks in the summer. As shown in 

Figure 4-10, South East and London are lower latitude regions in the UK, but with the 

largest number of children and elderly people. Both regions are expected to experience 

high overheating risks in future. Elderly people aged 65 and over account for 19.4% of 

the total population in London, which is a big number as London urban area has a 

population of around 8.8 million (ONS, 2018). As the biggest city in the UK, London has 

a population of more than 8 million according to 2011’s census, while 34.5% of them are 

the elderly and young children under 15. The number of vulnerable occupants in London 

is seven times more than the second largest population in Birmingham. Belfast and 

Cardiff have the least of the vulnerable occupants, which is about 117 thousand. Those 

vulnerable occupants in London are expected to experience the highest overheating risk 

in the 2030s. A deep concern should be paid to the large group of vulnerable people.  

 

Figure 4-10 The population in the UK regions: (a) age 0-15; (b) age 65 and over; and (c) age 16-
64. According to the 2017 population estimates in the UK (ONS, 2018), it showed the hexagon 
areas population across the UK. 

4.10 Summary 

UK dwellings are expected to experience a high risk of overheating in future climates. 

The indoor temperatures vary in different locations and time periods but are overall 

proportional to the outdoor operative temperatures. Dwellings in lower latitude UK cities 
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such as London will suffer more overheating risk. However, more than 3 million elderly 

and children are living in London. More attention should be paid to them as they are 

vulnerable to overheating while excess ‘heat-related’ mortality is proved to be related to 

overheating and heatwave.  

Overheating hours can be gradually reduced by increasing the openable window area, 

but the reduction is not proportional to the openable area. The effect of increasing the 

openable area is becoming less on reducing overheating hours as a very small reduction 

was found when the window area increased from 60% to 80%.  

Shading such as blinds and overhangs are more effective for reducing overheating hours 

in living rooms than in bedrooms because the shading measures could dramatically 

reduce solar gain during the daytime occupancy in living rooms. On the contrary, 

occupancy in bedrooms is from 10 pm to 7 am during the night when occupants go to 

sleep. Although the shading does reduce the overheating hours in bedrooms by reducing 

solar gain during the day to reduce indoor temperatures in the evening, night ventilation 

plays a more important role in reducing the overheating hours. Even without shading, 

night ventilation can cool down indoor temperatures effectively, reducing overheating 

hours significantly. In addition, the absorption of solar gain is highly related to the thermal 

mass of the buildings. Buildings with lower thermal mass can store less solar heat gain. 

Especially in light-weight high-insulated flats, they have less thermal mass than medium-

weight houses which have more thermal inertia allowing houses to store heat during the 

day and release heat during the night. Therefore, shading is less effective for bedrooms 

of medium-weight houses but more effective in cooling light-weight flats.  

Bedrooms are easier to be overheated due to stricter overheating assessment criteria 

involving 26°C as overheating threshold temperature. Bedrooms would have a high 

overheating risk when the outdoor temperature reaches 22°C during the night occupied 

hours. However, the living room would have a high risk of overheating when the outdoor 

temperature is over 29 °C. 

This chapter pointed out that dwellings in London are expected to experience high 

overheating risk, but those in Edinburgh and Belfast have much less overheating risk. 

The largest number of vulnerable groups of people, such as children and the elderly are 

living in London and South East which are both low latitude regions expected to 

experience the highest overheating risk in the UK future climates. They are at the risk of 

heat-related deaths in the hot summer such as heatwaves in future. They are 

encouraged to move to the North of England or Scotland.  
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Chapter 5 Case studies and preparation 

This chapter outlines the site preparation of the case study buildings for the development 

and implementation of the data-driven MPC for near real-time optimal control of the 

HVAC systems. Section 5.1 and 5.2 introduce monitoring and control systems in 

residential and commercial buildings. Below them, sub-sections also analyse the data 

collected from both sites. As metering and environmental data contain much information 

about buildings, systems and occupants, it provides an opportunity for a better 

understanding of building energy performance, indoor environment and occupants 

behaviours. This chapter analyses the collected data for extracting the information 

contained in the data before developing data-driven models in Chapter 6. 

5.1 Residential building 

5.1.1 Data 

Data can be collected from the systems in the building. Each system can provide different 

types of data. As shown in Table 5-1, various data have been collected from different 

systems in the building. The heating system can provide temperature set-points which is 

a key to control the indoor temperatures. The monitoring system measures indoor dry-

bulb temperature and relative humidity in each room through the temperature and 

humidity sensors installed in the rooms. The weather station can generate a lot of 

weather parameters such as outdoor temperature through the local weather station 

installed in the garden. These devices and sensors provide high-resolution 

measurements and offer the opportunity for occupants to understand the performance 

of their buildings. The data can also be used to develop data-driven models for predicting 

future energy or thermal performance, providing opportunities to adjust the control 

strategies for energy efficiency and thermal comfort. 

 

Table 5-1 Monitored data from sensors and weather station. 

Parameters Sensors Location/Equipment Unit 

Dry-bulb temperature Temperature sensor Bedroom, living room, kitchen, hallway °C 

Relative humidity Humidity sensor Bedroom, living room, kitchen, hallway % 

Electricity consumption  LED pulse sensor Electricity consumption meter kWh 

Electricity Generation  LED pulse sensor Electricity generation meter kWh 

Outdoor dry-bulb 
temperature 

Weather station Outside of the building °C 

Outdoor relative humidity Weather station Outside of the building % 

Temperature set-point Thermostat Hallway °C 
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5.1.2 Data analysis 

Table 5-2 shows the summary for inputs between 02 January 2018 and 07 March 2019 

with a 15-min temporal resolution. The measured parameters are temperature set-points 

of the heating system and indoor air temperatures for the three rooms (bedroom 1, 

bedroom 2 and living room) in the test building. For room temperatures, the peaks are 

slightly different because the rooms face different directions and gain different levels of 

sunlight at different times. 

Figure 5-1 shows the probability density and normal distribution for the model inputs, 

which illustrate the most distributed value for each input parameter during the study 

period. The results point out that most of the temperature set-points fall into two ranges. 

The first one is from 16°C to 17°C, and the other is from 19°C to 21°C. The first one is 

the unoccupied temperature set-points which occur when occupants are not at home, 

and another one represents occupied temperature set-points when occupants stay at 

homes. The results also show that indoor temperatures in bedroom 1 and living room 

are similar, representing occupants require the same heating level in both rooms. 

However, indoor temperatures in bedroom 2 are slightly lower, with a decrease of 1 to 2 

°C. One of the reasons room temperatures are different is that occupants require less 

heating in this room or may use the room less frequently and sometimes turn off heating 

in this room. Another one is because the rooms face different directions and gain different 

levels of sunlight at different times, leading to different peaks of temperatures in different 

rooms. 
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Table 5-2 Summary of input data for the forecasting model. 

Parameter Unit Min Max SD1 Skewness Kurtosis 

setpoint °C 9.000 23.665 1.840 0.074 -1.326 

bed1-temp °C 16.463 27.308 1.541 0.997 1.443 

bed2-temp °C 16.320 27.998 1.683 0.979 1.228 

living-temp °C 16.606 28.617 1.652 0.584 0.028 

1 SD = Standard deviation. 

 

 

 

 

Figure 5-1 Probability density of controls and room temperatures. Red dashed lines indicate 
normal distribution. Data represents the period between 02 January 2018 and 07 March 2019. 
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5.2 Commercial building 

5.2.1 data 

The HVAC system on the 4th floor is used for testing MPC in this project. Figure 5-2 

describes the distribution of the rooms, indoor units and ventilating pipes on the 4th floor. 

There are 9 indoor units from U2-10 to U2-18 on this floor. Indoor unit U2-10 and U2-18 

are in the open space while other indoor units are in the office. The locations of indoor 

units and control panels are shown in Figure 5-2. 

 

Figure 5-2 Floor plan for floor 4 of the commercial building. It describes the locations of the 
indoor units on the floor. 

Table 2 listed all the number and type of devices on the 4th floor. The weather station is 

at the top of the building monitoring local weather parameters. Different types of indoor 

units have been installed in different places on the floor. From the table, we can find all 

the indoor units has the ‘Read’ and ‘Write’ function, which enables the indoor units to 

monitor the readings and change the control signals. 

Table 5-3 describes all the parameters monitored from the given list of the devices. They 

are used to create a system model and optimise the control signals for energy cost 

saving, power control and indoor thermal comfort. The required parameters include: 
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1. ‘energy_active’ of the ‘HVAC Floor 4 Meter’ - total energy consumption of the 

HVAC on the floor level; 

2. ‘power_active’ of the ‘HVAC Floor 4 Meter’ – the power of all indoor units on the 

floor level; 

3. ‘U2xx_hvac_unit_on’, ‘U2xx_hvac_unit_mode’, ‘U2xx_hvac_unit_set-point’, 

‘U2xx_hvac_unit_temperature’ - first three are used to control indoor units, last 

one is the indoor temperature as a result of control. 

4. ‘temperature_outdoor’, ‘humidity_outdoor’ and ‘solar_radiation’ of the ‘weather 

station’ – they are used to describe the disturbance of outdoor weather. 

 

Table 5-3 The list of monitoring devices for the HVAC system and weather. It listed all the 
devices that monitoring energy meter, power, indoor temperature and weather parameters.  

Device Device type Read(R)/ 
Write(W) 

Type 

HVAC Floor 4 Meter 3-phase Electricity meter R measurement 

Global Floor 4 Meter 3-phase Electricity meter R measurement 

Indoor Unit 2-10 Ceiling concealed Indoor unit R/W control 

Indoor Unit 2-11 Ceiling concealed Indoor unit R/W control 

Indoor Unit 2-12 Ceiling concealed Indoor unit R/W control 

Indoor Unit 2-13 Ceiling concealed Indoor unit R/W control 

Indoor Unit 2-14 Ceiling concealed Indoor unit R/W control 

Indoor Unit 2-15 Ceiling concealed Indoor unit R/W control 

Indoor Unit 2-16 Ceiling concealed Indoor unit R/W control 

Indoor Unit 2-17 Ceiling concealed Indoor unit R/W control 

Indoor Unit 2-18 Ceiling concealed Indoor unit R/W control 

T / RH - Floor 4 Temperature ang humidity sensor R measurement 

Weather Station Weather Station R measurement 
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Table 5-4 The parameters from the devices. It describes all the parameters that the devices 
measure and upload to the database. 

Parameter Description Min  Max  Units Device 
energy_active Active energy --- --- kWh HVAC Floor 

4 Meter energy_apparent Apparent energy --- --- kVAh 

energy_reactive_ind Inductive energy --- --- kVAh 

energy_reactive_cap Capacitive energy --- --- kVAh 

power_active Active power --- --- W 

power_apparent Apparent power --- --- VA 

power_reactive Reactive power --- --- VAr 

U2xx_hvac_unit_on2 On / Off 0 (Off) 1 (On) --- Indoor unit 
(U2-10 to 
U2-18) 

U2xx_hvac_unit_mode Operation mode 1 (Heat) 4 
(Cool) 

--- 

U2xx_hvac_unit_set-point Temperature set-point 17 30 ºC1 

U2xx_hvac_unit_temperature Ambient temperature 0 99.9 ºC 

temperature_indoor Temperature --- --- ºC T/RH - Floor 
4 humidity_indoor Relative humidity --- --- % 

pressure_outdoor Barometer 880 1080 mbar Weather 
station temperature_outdoor Outdoor temperature -40 65 ºC 

wind_speed Wind speed 3 241 kph 

wind_direction Wind direction 0 
(North)  

360 degrees 

humidity_outdoor Outdoor humidity 1 100 % 

uv_index UV index 0 16 --- 

solar_radiation Solar radiation 0 1800 W/m2 

rain_day Day rain 0 9999 mm 
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5.2.2 Data analysis 

 

Historical information for each input used in training the forecasting model of the HVAC 

system in the commercial building was obtained from the BMS system between the 1st  

of February and the 21st of October 2019 with 15-min temporal resolution.  

Table 5-5 lists the measured parameters from the indoor air units, including control 

commands of indoor units, temperature set-points, room temperatures, as well as the 

total HVAC energy consumption and power on the 4th floor. Other parameters such as 

outdoor conditions are also measured and used in the model, including air temperature, 

humidity and solar radiation. The table shows the statistical description for the data 

through the standard deviation, Skewness and Kurtosis, giving insights into the data 

distribution. The skewness is used to measure the data symmetry, and the kurtosis 

measures the “peakedness” of the data. Besides, Figure 5-3, Figure 5-4 and Figure 5-5 

illustrate the probability density and normal distribution for the model inputs, indicating 

the most distributed value for each input parameter. 

As shown in Figure 5-3, Figure 5-4 and Figure 5-5, they describe the probability and 

normal distribution of the status (-1, 0 and 1 for cooling, stop working and heating), 

temperature set-point and temperature measured from different indoor units (from U2-

10 to U2-18) deployed in the floor 4 of the commercial building. Apart from these control 

commands, outdoor temperature, outdoor humidity, solar radiation,floor-level energy and 

power are also described in the figures. The results show that most of the status of HVAC 

is at stop working due to no working during the night and weekend. The probability of 

cooling is more than heating because of the data collected between July and October. It 

is surprising that the temperature setpoints vary significantly in different indoor units for 

different rooms. One of the reason could be that the rooms face different direction gaining 

different level of solar heat. Indoor unit U2-10 locates in the open space. The results 

show that more heating and cooling are needed to condition the space. Indoor unit U2-

16 is in the middle of the floor. Therefore, the room also needs more heating and cooling 

as it has no window for natural ventilation and solar gain. Energy and power present 

similar patterns as they are related to each other.  
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Table 5-5 Summary of monitored parameters from the commercial building from the 1st of July 
to the 21 of October 2019. 

Parameter Unit Min Max SD 1 Skew 2 Kurt 3 

U210_hvac_command int -1 1 0.337 -2.058 3.152 

U210_hvac_unit_set-point °C 21 27 1.916 -0.610 -1.068 

U210_hvac_unit_temperature °C 21 29.5 1.314 0.498 0.825 

U211_hvac_command int -1 1 0.330 -0.635 5.943 

U211_hvac_unit_set-point °C 19 26 2.420 -0.369 -1.825 

U211_hvac_unit_temperature °C 18.8 30.5 2.714 -0.160 -1.295 

U212_hvac_command int -1 1 0.101 -5.829 93.182 

U212_hvac_unit_set-point °C 21 26 2.129 0.087 -1.655 

U212_hvac_unit_temperature °C 18.2 34.4 2.725 0.492 -0.003 

U213_hvac_command int -1 1 0.180 -4.732 25.388 

U213_hvac_unit_set-point °C 21 26 2.320 -0.274 -1.790 

U213_hvac_unit_temperature °C 17.8 30.5 1.940 0.335 -0.448 

U214_hvac_command int -1 1 0.224 -3.939 13.931 

U214_hvac_unit_set-point °C 21 26 2.332 -0.315 -1.806 

U214_hvac_unit_temperature °C 19.7 30.1 1.917 0.447 -0.391 

U215_hvac_command int -1 1 0.241 -3.365 11.619 

U215_hvac_unit_set-point °C 21 26 2.180 -0.194 -1.682 

U215_hvac_unit_temperature °C 18.9 30.5 1.886 0.464 -0.295 

U216_hvac_command int -1 0 0.356 -1.974 1.898 

U216_hvac_unit_set-point °C 21 27 2.025 -0.671 -1.114 

U216_hvac_unit_temperature °C 22 29 1.172 -0.094 -0.141 

U217_hvac_command int -1 0 0.219 -4.096 14.783 

U217_hvac_unit_set-point °C 21 26 2.289 -0.284 -1.790 

U217_hvac_unit_temperature °C 20.1 30.1 1.850 0.396 -0.352 

U218_hvac_command int -1 1 0.351 -1.827 2.690 

U218_hvac_unit_set-point °C 21 27 1.797 -0.714 -0.724 

U218_hvac_unit_temperature °C 19.5 32 1.920 0.470 0.726 

temperature_outdoor °C 7.3 37 4.848 0.356 -0.575 

humidity_outdoor % 11 92 12.949 -0.543 -0.129 

solar_radiation W/m2 0 1204 296.992 1.155 -0.061 

energy_active_hvac kWh 0 6.1 0.635 2.182 4.668 

power_active_global W 159 19949 4341.576 1.330 0.783 

1 SD = Standard deviation, 2 Skew = Skewness, 3 Kurt = Kurtosis. 
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Figure 5-3 Probability and normal distribution that is a continuous probability distribution for 
each parameter from the 1st of July to the 21 of October (part 1). 

 

 



 

91  

  

 

Figure 5-4 Probability and normal distribution that is a continuous probability distribution for 
each parameter from the 1st of July to the 21 of October (part 2). 
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Figure 5-5 Probability and normal distribution that is a continuous probability distribution for 
each parameter from the 1st of July to the 21 of October (part 3). 

 

5.3 Summary 
 

This chapter analyses the data collected from the two case study buildings. It illustrates 

the temperature set-points are highly related to the occupancy in the residential building. 

Additionally, it demonstrates that the location of the rooms can significantly affect heating 

and cooling in the buildings. In the test commercial building, open space and rooms 

without windows require more heating and cooling to condition the indoor condition. 
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Chapter 6 Data-driven forecasting models 

This chapter outlines the development of data-driven forecasting models for HVAC 

systems in residential and commercial buildings. Machine learning algorithm SVR, LSTM 

and RF were used to forecast indoor temperatures, energy consumption and power. 

More forecasting results can be found in Appendix A. 

6.1 Introduction 

Forecasting energy and thermal conditions in the buildings are vital for optimal control of 

the HVAC systems. It enables us to know how HVAC systems' operation responds to 

the disturbances such as weather, resulting in what levels of change in indoor comfort 

and energy performance. It also provides an opportunity to improve occupants' thermal 

comfort and the energy performance of the buildings and systems through optimisation 

of the controls. By integrating the forecasting models, optimisation aims to adjust the 

control actions with the forecast within finite time horizons. However, the optimisation 

needs to iteratively run the forecasting models to find an optimal solution, sometimes 

hundreds of thousands of times. Conventional simulation-based models such as 

physics-based simulation models require seconds (or minutes if the physics-based 

models are complex) to complete a simulation process, consuming hours or days for an 

optimisation. Such simulation-based models are not suitable for optimisation of HVAC 

controls, especially for near real-time optimal control that requires optimisation 

completed within a short time (such as 15 minutes) before taking the next control action.  

Data-driven models are used to predict the behaviour of the HVAC systems in the case 

study buildings. The models can learn from past patterns in historical data to predict 

future events. Such patterns or relations are mapped between the input and output 

variables in the training stage. In this section, weather parameters, previous indoor 

temperatures, previous energy consumption, previous temperature set-point and time 

(e.g., month, day, hour) are the input variables. The output variables are future indoor 

temperatures, power and energy consumption for forecasting thermal and energy 

performance in the buildings. After the model has been trained, it will be used in the 

optimisation process to predict the optimal inputs (e.g., temperature set-point) at the next 

time step. 

The data-driven model for the residential building is to forecast indoor temperatures, 

providing a thermal MPC to control the HVAC system to optimise the thermal comfort in 

the bedrooms and living rooms. The proposed MPC is to generate control signals for the 

next 15-minute temperature set-point for indoor thermal comfort. The data-driven 

forecasting model can predict indoor room temperatures with high accuracy in a short 
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time, normally in seconds or less than a second, making the near real-time MPC to 

produce optimised results within 15 minutes.  

6.2 Data preparation 

6.2.1 Residential building 

Before training the model, it is necessary to clean the data. Data clean is essential but 

could be time-consuming as it may take many steps, including eliminating anomaly data, 

removing or filling the gaps and reproducing the data in a new resolution. Besides, input 

parameters/variables are determined and chosen, considering their importance to the 

output variables. The programming language Python is used as the coding environment 

for developing the data-driven models, and the package Scikit-Learn is applied for 

selecting the features according to the relative importance for each input feature.  

Historical data are used to create data-driven models. These data are mostly time series 

data, and the inputs and outputs variables have been summarised in Table 6-1 and Table 

6-2. Unlike the physics-based simulation model, building physics parameters such as 

window to wall ratio are not required. Time parameters (month, day, hour and minute), 

historical indoor temperatures and temperature setpoints in high resolution (per 15 

minutes) are the inputs and outputs variables. Machine learning algorithms such as 

Neural Networks are used to create data-driven models. Input variables such as 

temperature set-points are also considered as the controllable variables or manipulated 

variables in the MPC for optimisation and control. 

Table 6-1 Input variables of the forecasting model for the residential building. 

Input Parameter Type Value type Min  Max  Unit 

𝑥𝑠 set_point manipulated continuous 15 35  °C 

𝑥𝑡
𝑏1 bed1_temp manipulated continuous 15 35  °C 

𝑥𝑡
𝑏2 bed2_temp manipulated continuous 15 35  °C 

𝑥𝑡
𝑙 living_temp manipulated continuous 15 35  °C 

𝑥𝑚 month measured Integer continuous 1 12 Month 

𝑥𝑑 day measured Integer continuous 1 31 Day 

𝑥ℎ hour measured Integer continuous 0 23 Hour 

𝑥𝑚𝑚 minute measured Categorical 0 45 Minute 

Table 6-2 The output variables of the forecasting model for the residential building. 

Output Parameter Type Value type Min  Max  Unit 

𝑦𝑡
𝑏1 next _bed1_temp manipulated continuous 15 35  °C 

𝑦𝑡
𝑏2 next_bed2_temp manipulated continuous 15 35  °C 

𝑦𝑡
𝑙 next_living_temp manipulated continuous 15 35  °C 
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6.2.2 Commercial building 

Table 6-3 Input variables of the forecasting model for the commercial building. 

Input Parameter Type Value type Min  Max  Unit 

𝑥𝑐
𝑢0 U210_hvac_command manipulated Categorical -1 1  N/A 

𝑥𝑠
𝑢0 U210_hvac_unit_set-point manipulated Integer continuous 20 26  °C 

𝑥𝑐
𝑢1 U211_hvac_command manipulated Categorical -1 1  N/A 

𝑥𝑠
𝑢1 U211_hvac_unit_set-point manipulated Integer continuous 20 26  °C 

𝑥𝑐
𝑢2 U212_hvac_command manipulated Categorical -1 1  N/A 

𝑥𝑠
𝑢2 U212_hvac_unit_set-point manipulated Integer continuous 20 26  °C 

𝑥𝑐
𝑢3 U213_hvac_command manipulated Categorical -1 1  N/A 

𝑥𝑠
𝑢3 U213_hvac_unit_set-point manipulated Integer continuous 20 26  °C 

𝑥𝑐
𝑢4 U214_hvac_command manipulated Categorical -1 1  N/A 

𝑥𝑠
𝑢4 U214_hvac_unit_set-point manipulated Integer continuous 20 26  °C 

𝑥𝑐
𝑢5 U215_hvac_command manipulated Categorical -1 1  N/A 

𝑥𝑠
𝑢5 U215_hvac_unit_set-point manipulated Integer continuous 20 26  °C 

𝑥𝑐
𝑢6 U216_hvac_command manipulated Categorical -1 1  N/A 

𝑥𝑠
𝑢6 U216_hvac_unit_set-point manipulated Integer continuous 20 26  °C 

𝑥𝑐
𝑢7 U217_hvac_command manipulated Categorical -1 1  N/A 

𝑥𝑠
𝑢7 U217_hvac_unit_set-point manipulated Integer continuous 20 26  °C 

𝑥𝑐
𝑢8 U218_hvac_command manipulated Categorical -1 1  N/A 

𝑥𝑠
𝑢8 U218_hvac_unit_set-point manipulated Integer continuous 20 26  °C 

𝑥𝑚 month measured Integer continuous 1 12 Month 

𝑥𝑑 day measured Integer continuous 3 1 Day 

𝑥ℎ hour measured Integer continuous 0 23 Hour 

𝑥𝑚𝑚 minute measured Categorical 0 45 Minute 

𝑥𝑡
𝑤 temperature_outdoor measured continuous 15 35  °C 

𝑥ℎ
𝑤 humidity_outdoor measured continuous 0 100  % 

𝑥𝑠
𝑤 solar_radiation measured continuous 0 1204  W 

𝑥𝑒 energy_active_hvac measured, 
controlled 

continuous 0 7  kWh 

𝑥𝑝 power_active_global measured, 
controlled 

continuous 0 20000  W 

𝑥𝑡
𝑢0 U210_hvac_unit_temperature measured, 

controlled 
continuous 15 35  °C 

𝑥𝑡
𝑢1 U211_hvac_unit_temperature measured, 

controlled 
continuous 15 35  °C 

𝑥𝑡
𝑢2 U212_hvac_unit_temperature measured, 

controlled 
continuous 15 35  °C 

𝑥𝑡
𝑢3 U213_hvac_unit_temperature measured, 

controlled 
continuous 15 35  °C 

𝑥𝑡
𝑢4 U214_hvac_unit_temperature measured, 

controlled 
continuous 15 35  °C 

𝑥𝑡
𝑢5 U215_hvac_unit_temperature measured, 

controlled 
continuous 15 35  °C 

𝑥𝑡
𝑢6 U216_hvac_unit_temperature measured, 

controlled 
continuous 15 35  °C 

𝑥𝑡
𝑢7 U217_hvac_unit_temperature measured, 

controlled 
continuous 15 35  °C 

𝑥𝑡
𝑢8 U218_hvac_unit_temperature measured, 

controlled 
continuous 15 35  °C 
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Table 6-4 The forecasting model output variables for the commercial building. 

Output Parameter Type Value  Min  Max  Unit 

𝒚
𝒆
 next_energy_active_hvac controlled continuous 0 7  kWh 

𝒚
𝒑
 next_power_active_global controlled continuous 0 20000  W 

𝒚
𝒕
𝒖𝟎 next_U210_hvac_unit_temperature controlled continuous 15 35  °C 

𝒚
𝒕
𝒖𝟏 next_U211_hvac_unit_temperature controlled continuous 15 35  °C 

𝒚
𝒕
𝒖𝟐 next_U212_hvac_unit_temperature controlled continuous 15 35  °C 

𝒚
𝒕
𝒖𝟑 next_U213_hvac_unit_temperature controlled continuous 15 35  °C 

𝒚
𝒕𝟏
𝒖𝟒 next_U214_hvac_unit_temperature controlled continuous 15 35  °C 

𝒚
𝒕
𝒖𝟓 next_U215_hvac_unit_temperature controlled continuous 15 35  °C 

𝒚
𝒕
𝒖𝟔 next_U216_hvac_unit_temperature controlled continuous 15 35  °C 

𝒚
𝒕
𝒖𝟕 next_U217_hvac_unit_temperature controlled continuous 15 35  °C 

𝒚
𝒕
𝒖𝟖 next_U218_hvac_unit_temperature controlled continuous 15 35  °C 

 

The next time step’s floor energy consumption, power and room temperatures are the 

output variables in the forecasting model as presented in Figure 6-4. They are also the 

controllable variables that are to be controlled by changing the manipulated variables in 

the MPC. 

It is important to evaluate the importance of features for a data-driven model. The higher 

percentage of the feature importance shows the higher correlation between the features 

and the forecasted outputs. Selecting the features can be carried out by using python 

functions such as ‘feature importance’, which automatically calculates the individual 

importance of each input parameters to the outputs.  

Table 6-5 presents the correlation between each input (last timestep) and output (next 

timestep) feature. The energy consumption in the next timestep is mostly correlated to 

the last timestep power as it contributes with 79 % of the feature importance to next 

timestep energy, while the last timestep energy also contributes 8 % that is the second 

most important feature for energy forecasting. Other input variables such as outdoor 

temperature have less correlation to energy with no more than 2 % of the importance. 

Power is mostly related to its last time step value which accounts for 88 %. The hour and 

energy consumption at the last timestep also contribute 2 % respectively to the power, 

showing that time and energy consumption can also influence the power.  

Regarding the indoor temperature, it is found that the last timestep for each room 

temperature has a significant impact on the next timestep of that room temperature. The 

correlation between indoor temperatures can reach up to 99 %. It can be explained that 

temperature changes slowly in a short time due to thermal inertia and heat exchange.  
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Table 6-5 The feature importance between the inputs and outputs. It shows the correlation 
between the input and output features. 

Input feature Output feature 

𝑦𝑒 𝑦𝑝 𝑦𝑡
𝑢0 𝑦𝑡

𝑢1 𝑦𝑡
𝑢2 𝑦𝑡

𝑢3 𝑦𝑡
𝑢4 𝑦𝑡

𝑢5 𝑦𝑡
𝑢6 𝑦𝑡

𝑢7 𝑦𝑡
𝑢8 

𝑥𝑑 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

𝑥ℎ 1% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

𝑥𝑚𝑚 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

𝑥𝑡
𝑤 2% 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 

𝑥ℎ
𝑤 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

𝑥𝑠
𝑤 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

𝑥𝑒 8% 2% 0% 0% 0% 0% 0% 0% 0% 0% 0% 

𝑥𝑝 79% 88% 1% 0% 0% 0% 0% 0% 1% 0% 1% 

𝑥𝑡
𝑢0 0% 0% 95% 0% 0% 0% 0% 0% 0% 0% 0% 

𝑥𝑡
𝑢1 1% 0% 0% 99% 0% 0% 0% 0% 0% 0% 0% 

𝑥𝑡
𝑢2 1% 1% 0% 0% 98% 0% 0% 0% 0% 0% 0% 

𝑥𝑡
𝑢3 1% 0% 0% 0% 0% 98% 0% 0% 0% 0% 0% 

𝑥𝑡
𝑢4 0% 0% 0% 0% 0% 0% 99% 0% 0% 0% 0% 

𝑥𝑡
𝑢5 0% 0% 0% 0% 0% 0% 0% 98% 0% 0% 0% 

𝑥𝑡
𝑢6 0% 0% 0% 0% 0% 0% 0% 0% 96% 0% 0% 

𝑥𝑡
𝑢7 1% 0% 0% 0% 0% 0% 0% 0% 0% 99% 0% 

𝑥𝑡
𝑢8 1% 1% 0% 0% 0% 0% 0% 0% 0% 0% 97% 
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6.3 Data-driven forecasting models 

6.3.1 Auto-Regressive Integrated Moving Average (ARIMA) 

ARIMA is used as a baseline model comparing with other three machine learning-based 

data-driven models. The forecasting models will be used in MPC for optimal control of 

the building HVAC systems. The models aim to forecast the temperature, energy and 

power in the two case study buildings. Compared to machine learning-based forecasting 

models, ARIMA model uses a single variable as its input and output, meaning that the 

forecast of temperature or energy is based on the historical temperature and energy. 

Other variables, such as weather, are not contributing to the forecasting results.  

The p, d and q are the most important hyper-parameters in ARIMA models. The d is the 

number of differencing transformations needed to get the time series data to be 

stationary. In Figure 6-1, the indoor temperature is overall stationary in short terms but 

is not stationary in the whole year due to the change of seasons. When d=0, the 

temperature increases significantly when the time step is around 5000 and 7000 when 

months are July and August. As the tested UK house has no mechanical cooling but only 

natural ventilation as the main cooling measurement. The indoor temperatures are 

obviously affected by outdoor temperatures. After differencing the time series data with 

d=1, the data is stationary. Increasing d from 1 to 2, no significant change has been 

found. Therefore, the chosen d value is 1 for the stationarity.  

 

Figure 6-1 Differencing order for indoor temperature data. 
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Table 6-6 The AIC and BIC for different (p, d, q) for ARIMA model for indoor temperature in 
residential building. 

ARIMA (p, d, q) AIC BIC 

(0, 1, 0) -36705.927 -36697.900 

(0, 1, 1) -40845.504 -40821.300 

(0, 1, 2) -42096.277 -42064.000 

(1, 1, 0) -42528.946 -42504.700 

(1, 1, 1) -43023.440 -42991.200 

(1, 1, 2) -43021.570 -42981.200 

(2, 1, 0) -42974.686 -42942.400 

(2, 1, 1) -43021.562 -42981.200 

(2, 1, 2) -43019.492 -42971.100 

The AIC and BIC values of indoor temperature time series data for different p and q have 

been indicated in Table 6-6. The lowest AIC and BIC are found when the values are both 

1 for p and q. Hence the ARIMA model is of order (1, 1, 1) for forecasting indoor 

temperature in the residential building and forecasting results have been compared with 

measured data in Figure 6-2 a. 

 

Figure 6-2 Correlations between measured and predicted values using ARIMA for (a). the 
residential building’s room temperature and (b). room temperature; (c). energy; (d). power in the 
commercial building 

Figure 6-2a illustrates the correlation between the measured and predicted indoor 

temperature in residential building. The R squared value (R2) is used to indicate the 

forecasting performance. The R2 is between 0 and 1, while the high R2 represents a more 

precise regression. The figure presents that ARIMA is accurate in forecasting the next 
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timestep indoor temperature in the residential building as the R2 reaches 0.994. The trend 

line and equation show the linear regression between the measured and predicted value. 

The closer the points to the trend line means the higher forecasting accuracy. In Figure 

6-2a, the scatter points are nearly overlapped with the red trend line showing the high 

accuracy of the forecasting results.  

The same methods have been applied in the ARIMA forecasting models for indoor 

temperature, energy and power in the commercial buildings, showing in Figure 6-2b, c 

and d. Figure 6-2b illustrates the ARIMA also performs well in forecasting indoor 

temperature in the commercial building with an R2 value of 0.924. It is less accurate 

compared to the forecasting performance on the indoor temperatures in the residential 

building. By investigating the actual temperatures in the commercial building, the indoor 

temperatures are grouped in an interval of 0.5 °C. The distribution of the actual indoor 

temperatures indicates that temperatures are controlled and maintained by the HVAC 

systems in the commercial building. The figure also shows that the largest difference 

between the measured and forecasted indoor temperatures is less than 2 °C. 

Additionally, the difference is slightly larger when the indoor temperature is between 24 

and 25 °C, and smaller when the actual indoor temperature is more than 26 °C.  

Figure 6-2c and d illustrate the correlation between the measured and predicted data for 

energy and power in the commercial building. The R2 values are 0.823 and 0.899, 

respectively, less than those in the indoor temperature forecasting models. The scatter 

points are spread in a wider band instead of concentrating around the trend line. There 

are more points distributed far away from the trend line, indicating the inaccurate 

forecasting of those points.  
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6.3.2 Support Vector Regression (SVR)  

SVR has been used to forecast the temperature, energy and power, and the results are 

demonstrated in Figure 6-3. The results show that SVR models have almost the same 

performance in forecasting indoor temperatures in both residential and commercial 

buildings. The correlations between the measured and predicted data are 0.99 and 

0.927, respectively, compared to 0.994 and 0.924 using ARIMA methods. The results 

also reveal that SVR performs better than ARIMA in forecasting energy consumption, 

resulting in a higher correlation of 0.907 compared to 0.823 using ARIMA. In Figure 6-3 

c, the scatter points are spreading in a narrower band, showing a smaller difference 

between the measured and predicted energy data. However, SVR has poor performance 

than ARIMA in forecasting power. The correlation is 0.83, which is much less than 0.899 

with ARIMA methods. 

 

Figure 6-3 Correlations between measured and predicted values using SVR for (a). the 
residential building’s room temperature and (b). room temperature; (c). energy; (d). power in the 
commercial building. 
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6.3.3 Long Short-Term Memory (LSTM) 

LSTM has been paid more attention to its sequence learning which enables it in capturing 

the temporal patterns (Kong, et al., 2017). In developing the LSTM models, learning rate 

and training epoch are two of the most important hyper-parameters. The optimisation of 

the two hyper-parameters is carried out to find out the best combination of them. Figure 

6-4 and Figure 6-5 illustrates how learning rate and epoch affect the model training using 

the loss of training and testing. The results find out that the learning rate of 0.01 is too 

big for the model to learn the problem. Even when the epoch is increased from 500 to 

1000, no significant improvement can be found. With the learning rate of 0.001, the 

volatility is much less compared to the training with the learning rate of 0.01. With the 

epoch increasing from 500 to 1000, the testing loss does improve and shows a smoother 

learning progression.  

 

 

Figure 6-4 Learning rate of 0.01 for 500 and 1000 epochs. 
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Figure 6-5 Learning rate of 0.001 for 500 and 1000 epochs. 

The correlation between the measured and predicted indoor temperature, energy and 

power in residential and commercial buildings are illustrated in Figure 6-6. The results 

present that LSTM is as accurate as ARIMA in forecasting indoor temperatures in both 

residential and commercial buildings. The differences in R2 are 0.002 and 0.004 

compared to ARIMA models. However, LSTM performs better than ARIMA in the 

forecast of energy and power. The R2 for measured and predicted energy reaches 0.903, 

which is much higher than 0.823 using ARIMA. The scatter figure also presents a higher 

density of points, showing less difference between the measured and predicted energy. 

For power forecasting, the correlation is slightly higher, with an increase of 0.1 in R2. 

LSTM shows higher accuracy than ARIMA in forecasting the environmental and energy-

related elements in this section. 
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Figure 6-6 Correlations between measured and predicted values using LSTM for (a). the 
residential building’s room temperature and (b). room temperature; (c). energy; (d). power in the 
commercial building. 
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6.3.4 Random Forest (RF) 

RF is proposed for time series forecasting. Figure 6-7 illustrates the correlation between 

the measured and predicted data from the four different models. As shown in Figure 6-7 

a and b, RF performs nearly the same as ARIMA in forecasting indoor temperatures. 

Compared to ARIMA, The R2 decreases slightly for predicted indoor temperatures in the 

residential building but increases the same amount of R2 in the commercial building. 

However, RF has the highest accuracy in forecasting energy and power, compared to 

ARIMA and the other two machine learning algorithms. The R2 is 0.922 from the energy 

forecasting model with RF, compared to 0.823 with ARIMA, 0.907 with SVR and 0.903 

with LSTM. For the power forecasting model with RF, the R2 is 0.92 compared to 0.899 

with ARIMA. 0.83 with SVR and 0.909 with LSTM. Figure 6-7 c and d also shows the 

distribution of scatter points is denser in a narrower band around the tend line, stating 

that RF is better for forecasting energy and power in the tested commercial building. 

 

Figure 6-7 Correlations between measured and predicted values using RF for (a). the residential 
building’s room temperature and (b). room temperature; (c). energy; (d). power in the commercial 
building. 
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6.4 Comparison of the machine learning algorithms  

Forecasting models have been developed using different machine learning algorithms, 

and the forecasting results have been compared with the ARIMA model. The models 

have been analyzed by investigating the correlations between the measured and 

predicted data to provide an estimation of forecasting performance using R2 value. The 

results present that all the machine learning-based models and ARIMA modes have high 

accuracy in forecasting indoor temperatures for both residential and commercial 

buildings. Other than the indoor temperature, machine learning-based models are more 

accurate than ARIMA in forecasting energy and power, except SVR, which shows less 

accuracy with a lower R2 value in forecasting power compared to ARIMA.  

Although R2 has been used to analyze the performance of the forecasting models, there 

are more error measures such as MAE, RMSE and MAPE for error analysis. These error 

measures can provide more angles to analyze the forecasting performance among the 

different machine learning-based data-driven models. 

6.4.1 Overall error analysis 

Table 6-7 illustrates different types of errors to measure the forecast accuracy for 

machine learning-based data-driven forecasting models. From the R2 scores, the results 

show that LSTM has the best performance in forecasting indoor temperatures in the 

residential building. RF model gains the highest accuracy in predicting indoor 

temperature, energy and power in the commercial building. As R2 is used to explain how 

well the models fit the data or how much percentage of the variance can be explained, 

higher R2 presents better forecasting performance. Compared to R2, MAE, RMSE and 

MAPE are used to analyze the errors between the forecasted and actual values. Lower 

values represent higher forecasting accuracy.  

Using MAE, RMSE and MAPE for error analysis, LSTM shows the highest accuracy in 

forecasting indoor temperatures in residential buildings. For forecasting indoor 

temperature in the commercial building, LSTM has the lowest MAE and MAPE value, 

but RF has the lowest RMSE and R2. For forecasting energy, RF methods show the least 

error with the smallest MAE, RMSE and MAPE scores. RF has the best performance in 

forecasting energy in commercial building. For forecasting power, RF has the least MAE 

and RMSE scores, but LSTM has the least MAPE score. Considering the highest R2 

score with the RF model, RF is better than LSTM in forecasting power in commercial 

building. Overall, LSTM has the best performance in forecasting indoor temperatures in 

the residential building, but RF performs better in predicting indoor temperature, energy 

and power in commercial buildings. 
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Table 6-7 Forecasting error for whole testing data. 

Element Algorithm R2 MAE RMSE MAPE 

Indoor temperature* 

SVR 0.990 0.069 0.096 0.337 

LSTM 0.992 0.063 0.084 0.308 

RF 0.988 0.075 0.105 0.364 

Indoor temperature** 

SVR 0.927 0.196 0.258 0.777 

LSTM 0.919 0.189 0.271 0.746 

RF 0.930 0.195 0.251 0.772 

Energy** 

SVR 0.907 0.132 0.224 27.187 

LSTM 0.903 0.122 0.229 32.627 

RF 0.922 0.115 0.206 26.836 

Power** 

SVR 0.830 1099.899 1977.659 65.104 

LSTM 0.909 707.847 1449.478 44.076 

RF 0.920 701.790 1357.284 47.777 
Note: * for the residential building and ** for the commercial building 

     

Time can play an important role in forecasting accuracy. For example, energy 

consumption can be different on weekdays and weekend. Table 6-8 and Table 6-9 

illustrate the errors of machine learning-based forecasting models on weekdays and 

weekend. The R2 scores decrease for all the models in forecasting indoor temperatures 

in the residential, revealing all the machine learning algorithms present more accurate 

results in forecasting weekdays’ indoor temperature in the residential building. However, 

the decreases in MAE, RMSE and MAPE show that the forecasting accuracy improves 

at the weekend.  

For the commercial building, the higher R2 scores are found in forecasting indoor 

temperature at the weekend, with an average of 0.94 compared to 0.89 on weekdays. 

The decrease of forecasting errors in the LSTM algorithm shows that the LSTM model 

has better performance in forecasting weekend’s indoor temperatures in the commercial 

building. However, the increase of errors in SVR and RF models at the weekend shows 

they are less capable of forecasting the weekend’s indoor temperature compared to the 

LSTM model. 

LSTM models continue to show their better performance in forecasting weekend’s 

energy and power, with higher R2 scores and lower MAE and RMSE values. Although 

R2 scores in SVR and RF models decrease in forecasting energy and power at the 

weekend, the MAE and RMSE values also decrease, showing an improving 

performance. Therefore, all machine learning algorithms have better performance in 

forecasting energy and power at the weekend with reduced errors of MAE and RMSE. 

Although R2 scores and various error measures (MAE, RMSE, MAPE) have been used 

to analyze the performance of the forecasting models with different machine learning 
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algorithms, there is no analysis for the details of the predicted results. For example, it is 

not possible to know how much difference is between the prediction and forecast. The 

difference between the predicted results and actual measurements can be used to 

enhance the understanding of the forecasting performance. The frequency distribution 

of the difference can be virtually investigated using a histogram, from which it is clear to 

see the difference and its distribution. The histogram aiming to compare the prediction 

and measurements for different forecasting models (regarding the indoor temperature, 

energy and power) has been demonstrated in Figure 6-8. 

Table 6-8 Forecasting error for weekdays. 

Element Algorithm R2 MAE RMSE MAPE 

Indoor temperature* 

SVR 0.991 0.070 0.098 0.342 

LSTM 0.993 0.063 0.086 0.312 

RF 0.989 0.076 0.108 0.369 

Indoor temperature** 

SVR 0.887 0.194 0.257 0.776 

LSTM 0.889 0.193 0.272 0.767 

RF 0.893 0.194 0.250 0.774 

Energy** 

SVR 0.897 0.161 0.265 26.011 

LSTM 0.892 0.146 0.257 31.473 

RF 0.912 0.147 0.245 27.374 

Power** 

SVR 0.790 1496.662 2377.279 55.629 

LSTM 0.890 890.218 1667.566 41.248 

RF 0.901 956.533 1631.553 44.948 

Note: * for the residential building and ** for the commercial building 

 

Table 6-9 Forecasting error for weekends. 

Element Algorithm R2 MAE RMSE MAPE 

Indoor temperature* 

SVR 0.987 0.067 0.093 0.327 

LSTM 0.990 0.062 0.081 0.300 

RF 0.985 0.073 0.100 0.352 

Indoor temperature** 

SVR 0.940 0.200 0.259 0.778 

LSTM 0.942 0.177 0.266 0.693 

RF 0.942 0.199 0.254 0.768 

Energy** 

SVR -0.540 0.069 0.076 153.085 

LSTM 0.935 0.074 0.131 37.094 

RF -0.025 0.046 0.062 84.417 

Power** 

SVR -0.923 229.499 305.470 85.889 

LSTM 0.929 358.901 895.190 50.259 

RF 0.095 142.948 209.525 53.982 

Note: * for the residential building and ** for the commercial building 
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Figure 6-8 Frequency distribution of the difference between the measurements and prediction 
using different machine learning algorithms. (Temperature_R and Temperarture_C represent for 
indoor temperatures in the residential building and commercial building, and energy and power 
are from the commercial building). 

Figure 6-8 illustrates the frequency distribution of the difference between the actual 

measurements and prediction for different elements (indoor temperature, energy and 

power) using SVR, LSTM and RF. The results found that the forecast for indoor 

temperatures is more accurate for residential building than for commercial building. Most 

of the differences between the measurements and the prediction are within 0.2 °C for 

residential building models. Compared to the residential building, there are some 

differences up to 0.6°C. For indoor temperatures in the residential building, although the 

LSTM has the highest R2 value, the SVR and RF show more results with errors within 

0.1 °C. For indoor temperatures in the commercial building, LSTM has a higher 

frequency of differences within 0.1 °C. However, the differences can reach up to 0.7 °C 

using LSTM while the other two have the most differences, less than 0.6 °C. For energy 

forecasting, SVR and RF show better performance as most of the differences are from -

0.2 to 0.2 °C while they are between -0.5 and 0 °C with LSTM. It has also been proved 

by the lowest R2 and the highest RMSE and MAPE scores that the LSTM is less accurate 

than the other two algorithms in forecasting energy. For power forecasting, although RF 

has the highest R2, the LSTM model shows that most of the differences are within 1.2 

kW. 
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6.4.2 The forecast for peaks 

The peaks in building environmental and energy measurements are important and more 

attention should be paid to forecasting these peaks. Peak indoor temperatures can be 

thermal risks to occupants if those temperatures are out of the thermal comfort range. 

Additionally, these peak temperatures may indicate unnecessary heating demand in the 

heating periods. The peak energy consumption is more important as those peaks 

indicate the highest energy consumption at certain points. With the time of use energy 

tariffs, occupants can shift some energy consumption to other points to save energy cost. 

For peak power, commercial buildings such as offices may use kWmax energy tariffs, 

which charge different rates of energy according to the highest power. Therefore, the 

energy cost is not only related to total energy consumption but also to the peak energy 

or power.  

Indoor temperatures in the residential building 

Figure 6-9 illustrates the indoor temperatures and the peaks in the residential building. 

Those peaks have been highlighted with ‘x’ labels in the figure. As the season of the 

testing sample is around Spring, the indoor temperatures change between 18 °C and 

24°C, while all the selected peaks are assumed to be over 20 °C. The number of the 

peaks are 304 out of the total number of 4740 measurements. By comparing the real 

measurements with the forecasted peaks using different algorithms, the errors have 

been illustrated in Table 6-10. The results show that LSTM has the best performance in 

forecasting the peak indoor temperatures in the residential building. It has the highest R2 

score of 0.988 compared to 0.982 by SVR and 0.980 by RF. Additionally, LSTM also has 

the least MAE, RMSE and MAPE values among the three algorithms. 

Table 6-10 The errors of forecasted peaks of indoor temperatures in the residential building. 

 Algorithm R2 MAE RMSE MAPE 

SVR 0.982 0.067 0.104 0.315 

LSTM 0.988 0.053 0.084 0.253 

RF 0.980 0.079 0.110 0.370 
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Figure 6-9 The peaks of indoor temperatures in the residential building. 

 

Indoor temperatures in the commercial building 

Figure 6-10 illustrates the indoor temperatures and the peaks in the commercial building. 

The number of the peaks are 333 out of the total number of 3066 measurements between 

September and November. These peaks have been highlighted with ‘x’ labels in the 

figure, and the highest ones are over 28 °C. Compared to the residential building, most 

of the peaks of indoor temperatures in the commercial building are much higher due to 

the season and location of the building. The high temperatures over 26 °C almost 

occurred during the weekend or several hours before the opening time on Monday. With 

the 26°C as the maximum temperature setpoint during these months, the indoor 

temperatures during the working hours are between 24 °C and 26 °C, controlled by the 

HVAC system. Due to the HVAC control, the indoor temperatures often stay in certain 

temperatures, resulting in most of the peaks with 0.5 °C intervals, including 25 °C, 25.5 

°C and 26 °C. 

By comparing the real measurements with the forecasted peak using different 

algorithms, the errors have been illustrated in Table 6-11. The results show that SVR 

has the best performance in forecasting the peak indoor temperatures in the commercial 

building. It has the highest R2 score of 0.864 compared to 0.803 by LSTM and 0.856 by 

RF. Additionally, SVR also has the least MAE, RMSE and MAPE values among the three 

algorithms. 
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Figure 6-10 The peaks of indoor temperatures in the commercial building. 

 

Table 6-11 The errors of forecasted peaks of indoor temperatures in the commercial building 

 Algorithm R2 MAE RMSE MAPE 

SVR 0.864 0.276 0.318 1.079 

LSTM 0.803 0.336 0.383 1.313 

RF 0.856 0.288 0.328 1.123 

 

Energy  

The peaks of energy consumption represent the increasing energy demand such as 

heating and cooling during the day in the office. The high demand for energy 

consumption normally requests a high supply of power, resulting in an increasing rate of 

energy. It is possible to shift these demand through methods such as pre-heating or 

cooling. Shifting demand to the time with a lower energy rate can also save energy cost. 

Therefore, the forecast for peak energy consumption is important and helpful to the 

optimisation of the operation of the building system.  

Figure 6-11 illustrates the floor level energy consumption and the peaks in the 

commercial building. The number of the peaks are 224 out of the total number of 3066 

measurements between September and November. The peaks have been highlighted 

with ‘x’ labels in the figure, while the highest peaks are above 4 kWh. The results show 

that almost half of the peaks are over 2 kWh, and some of them can even exceed 3 kWh.  
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Figure 6-11 The peaks of energy consumption in the commercial building. 

 

Compared with the forecast of peaks indoor temperatures, the forecast of the peak 

energy consumption is less accurate. By comparing the real measurements with the 

forecasted peaks with different algorithms, the errors have been illustrated inTable 6-12. 

The results show that RF has the best performance in forecasting the peak indoor 

temperatures in the residential building. It has the highest R2 score of 0.574 compared 

to 0.446 by SVR and 0.292 by LSTM. Additionally, RF also has the least MAE, RMSE 

and MAPE values among the three algorithms.  

 

Table 6-12 The errors of forecasted peaks of energy consumption in the commercial building. 

 Algorithm R2 MAE RMSE MAPE 

SVR 0.446 0.331 0.500 21.437 

LSTM 0.292 0.390 0.566 24.869 

RF 0.574 0.325 0.439 20.409 
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Figure 6-12 The peaks of power in the commercial building. 

 

Table 6-13 The errors of forecasted peaks of power in the commercial building. 

 Algorithm R2 MAE RMSE MAPE 

SVR 0.037 3634.906 4309.945 41.722 

LSTM 0.560 2126.266 2913.455 24.361 

RF 0.609 2079.282 2748.071 23.540 

 

Power 

Same as the peak energy consumption, the peaks of power generally represent for the 

increasing energy demand during the day in the office. Figure 6-12 presents the same 

patterns as energy peaks in Figure 6-11, indicating high energy consumption draw high 

power at the same time. High power results in not only higher energy consumption but 

also higher cost because the energy rate is increased if the maximum power exceeds a 

certain value. As shown in Table 7-2 and Table 7-3, the energy rate in peak hours 

increases from 0.105507  to 0.111586 €/kWh if the maximum power of the whole building 

exceeds 157.5 kW. By shifting energy demand to other time with lower power, the peak 

power can be reduced. With foreseen power peaks, it is possible to shift demand and 

reduce energy cost with a lower energy rate. Therefore, the forecast for peak power is 

vital and meaningful to the optimisation of the operation of the building system.  

Figure 6-12 illustrates the power and the peaks in the commercial building. The number 

of the peaks are 319 out of the total number of 3066 measurements between September 

and November. These peaks have been highlighted with ‘x’ labels in the figure, and the 

highest ones are exceeding 15000 W. The results show similar accuracy as the forecast 

of energy peaks. By comparing the real measurements with the forecasted peaks with 

different algorithms, the errors have been illustrated in Table 6-13. The results show that 



 

115  

  

RF has the best performance in forecasting the peak indoor temperatures in the 

commercial building. It has the highest R2 score of 0.609 compared to 0.037 by SVR and 

0. 0.560 by LSTM. Additionally, RF also has the least MAE, RMSE and MAPE values 

among the three algorithms. 

6.4.3 Day-ahead forecasting 

Day-ahead sub-hourly forecasting models for residential building’s indoor temperatures, 

commercial building’s indoor temperatures, energy and power have been developed. 

The needs of the day-ahead forecast are for developing MPC for the next 24 hours. The 

sub-hourly (per 15 minutes) models are repeated for 96 times (24 hours) to gain the day-

ahead forecasting. In this process, the outputs of the sub-hourly forecasting models for 

the last time step are used as the inputs in the next time step. In the residential building, 

the day-ahead forecast of indoor temperatures is integrated with the MPC for controlling 

heating to maintain the indoor temperatures. In the commercial building, the day-ahead 

forecast of indoor temperatures, energy and power are applied in the MPC for controlling 

indoor units to maintain the indoor temperatures and save energy cost. As the MPC for 

the next 24 hours is highly dependent on the day-ahead forecasting results, it is 

necessary to investigate the day-ahead forecasting performance of the models. 

Indoor temperatures in the residential building 

The day-ahead forecasts of indoor temperatures in the residential building using SVR, 

RF, and RNN have been illustrated in Figure 6-13. The results show that the SVR model 

has the best performance in forecasting day-ahead indoor temperatures in the residential 

building. The prediction by the RF model underestimates the actual values slightly 

compared to the SVR method. The worst performance is found in the forecast by the 

LSTM model, which is much lower than the actual values.  

Indoor temperature in the commercial building 

The day-ahead forecasts of indoor temperatures in the commercial building using SVR, 

RF and RNN have been illustrated in Figure 6-14. The results show that the SVR model 

has the best performance in forecasting day-ahead indoor temperatures in commercial 

building. The prediction by the LSTM model overestimates the actual values slightly 

compared to the SVR method. The worst performance is found in the forecast by the RF 

model, which is much higher than the actual values. The prediction by the RF is flat 

compared to the other two methods and can not capture the patterns. However, both 

SVR and LSTM are capable of following the patterns and capturing the valley in the 

prediction. 
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Figure 6-13 Day-ahead forecast of indoor temperature in the residential building. 

 

 

 

Figure 6-14 Day ahead forecast of indoor temperature in the commercial building. 

Energy 

Figure 6-15 presents the day-ahead forecast of energy in the commercial building using 

SVR, RF and RNN. The results indicate that both the SVR model has the best 

performance in predicting the day-ahead energy consumption. Although LSTM shows 

better performance in the time step from 80 to 96, its prediction gives zero energy 

consumption in the low consumption period (time step from 0 to 70), which underestimate 

the actual values and is not realistic in a commercial building. Compared to LSTM, SVR 

provides a prediction of reasonable non-zero energy consumption in this period. RF 

performs similarly to SVR in the low consumption time steps, but it can not capture both 

peaks. Therefore, RF has the worst performance in forecasting the day-ahead energy 

consumption in commercial building. 



 

117  

  

 

Figure 6-15 Day ahead forecast of energy in the commercial building. 

 

Power 

Figure 6-16 depicts the day-ahead forecast of power in the commercial building using 

SVR, RF and RNN. The results illustrate that the LSTM model has the best performance 

in predicting day-ahead power. Although both LSTM and SVR have a few time steps (2 

to 3 steps) delayed in predicting the peaks, LSTM performs better than SVR as its 

predicted peaks are closer to the actual values. RF performs similarly as SVR and LSTM 

in the low consumption time steps from 0 to 70, but the predicted peaks are much more 

delayed than using the other two methods. Therefore, RF has the worst performance in 

forecasting the day-ahead power in the commercial building. 

 

Figure 6-16 Day ahead forecast of power in the commercial building. 
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6.5 Summary 

This chapter developed data-driven models using different machine learning algorithms, 

including SVR, LSTM and RF. A statistical method ARIMA was used as a baseline model 

to compare with them. From the above comparison and analysis (Section 6.3 to 6.4), it 

is obvious that each machine learning algorithm has its advantages and disadvantages 

in certain cases. All the machine learning algorithms show high accuracy of up to 0.99 in 

R2 values in forecasting indoor temperatures in the residential building. The accuracy 

decreases slightly to up to 0.92 for forecasting indoor temperatures (1 of the 9 room 

temperatures as an example) in the commercial building. RF outperforms the other two 

algorithms in forecasting global energy and power for floor 4 in the commercial building, 

with both R2 values of 0.92. The accuracy of the forecast of power is decreased at 

weekdays and increased at weekends. In forecasting the peaks, the forecasting 

accuracy of indoor temperatures decreases slightly, but they drop significantly from up 

to 0.92 to up to 0.61 for forecasting energy and power. Increasing the forecasting steps 

from 1 to 96 for day-ahead forecasting, SVR performs better than the other two 

algorithms in matching the one-day patterns. 
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Chapter 7 Near real-time model predictive control 

This chapter introduces the development of data-driven MPC for HVAC systems in both 

case study buildings. Section 7.2 proposes an MPC for optimizing the heating system in 

a residential building for improving indoor thermal comfort. Section 7.3 develops an MPC 

for optimizing the heating and cooling in a commercial building for minimizing the energy 

cost by integrating the energy tariffs with the constraints in maximum power and indoor 

temperatures in a comfortable range.  

7.1 Introduction 

This chapter reports on the development of MPC controllers for the HVAC system in the 

commercial building. First, it introduces the background information for the test site, 

including the HVAC system and the methods for data collection are described. Secondly, 

the optimisation problem is defined after a brief review of building control approaches 

and the key MPC techniques, including the development of models, the considerations 

of disturbances and their applications. Then, the procedures and methodologies for the 

development of MPC are discussed, including the training and testing for the data-driven 

model. After that, the developed evolutionary algorithm based MPC is investigated on 

the control of modes and set-point temperatures of the HVAC units in the building. The 

results highlight the potential benefits of the application of MPC in achieving the 

optimisation objectives. 

7.2 Residential building 

7.2.1 Objective function 

The optimisation problem is identified through the design of the objective function and 

constraints. The thermal system in the Cardiff test site is a central heating system that is 

composed of a boiler and radiators in rooms in a residential house. 

The objective function, expressed in Equation 1, shows the optimisation target is to 

minimize the deviation of the actual indoor temperature from the reference comfort 

temperature at each time step. The goal is to improve the thermal comfort of occupants 

in the building. It demonstrated the difference between the indoor temperature (𝑇𝑘) and 

the reference temperature (𝑅𝑘) from time step k to N should be minimized. As there are 

three room temperature monitored, each monitored indoor temperature should be 

considered (𝑇 ∈ [𝑇1, 𝑇2, 𝑇3], 𝑇1 for bedroom 1, 𝑇2 for bedroom 2, and 𝑇3 for the living 

room). 
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 min ∑(| 𝑇𝑘− 𝑅𝑘 | )

𝑁

𝑘=1

 (1) 

s.t. 𝑇𝑙𝑏 ≤ 𝑇𝑘 ≤ 𝑇𝑢𝑏  

 

7.2.2 Constraints 

The constraints are described in Equation 2 and 3, illustrating the temperature 

constraints for each room (𝑇1, 𝑇2, 𝑇3 for bedroom 1, bedroom2 and the living room). The 

aim of the constraints is to limit indoor air temperatures within the given comfort ranges. 

 

 18 ≤ 𝑇𝑘 ≤ 23 (winter) (2) 

 22 ≤ 𝑇𝑘 ≤ 26 (summer) (3) 

 𝑇𝑘 = [𝑇1, 𝑇2, 𝑇3]  

7.2.3 Optimisation algorithm 

An evolutionary algorithm is used to solve the objective function by satisfying the 

constraints based on the forecasting model. The forecasting model is used for 

forecasting the change of the heating system or building environment in this case. A 

suitable optimisation algorithm should be adopted to solve the formed optimisation 

problem. Due to the use of a data-driven forecasting model, the evolutionary algorithm 

is selected to solve the nonlinear and black box model. The evolutionary algorithm-based 

method can be used to address the cost-effective problem by generating better solutions 

in new generation/ offspring.  

7.2.4 Results and discussion 

The MPC has been developed based on a data-driven model and evolutionary 

optimisation method. To test the performance of MPC in different seasons, a summer 

day in August and a winter day in March have been selected to represent a summer and 

winter scenario. Table 7-1 illustrates the settings of heating temperature set-points and 

design temperature ranges in MPC for summer and winter scenarios. These two 

scenarios are used to investigate the performance of MPC on a residential heating 

system in the two seasons. In winter scenario, the building requires intensive heating for 

thermal comfort. While in the summer scenario, few amounts of heating is needed. The 

results illustrate the MPC improves the indoor thermal comfort compared with original 

real controls in both scenarios. 
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Table 7-1 Summer and winter scenarios for testing MPC 

Scenario Heating 
temperature set-
points during the 
day (°C) 

Heating 
temperature set-
points during the 
night (°C) 

Design temperature 
range for thermal 
comfort (°C) 

Summer 19 – 23 17 – 19 22 – 26 

Winter 19 – 23 17 – 19 18 – 23 

In the winter scenario, MPC is tested on a winter day in March 2018. The aim of MPC is 

to allow more hours with the indoor temperatures falling into the design temperature 

range from 18 °C and 23 °C. In the MPC, the upper and lower temperature set-points 

are used as constraints for optimizing indoor temperatures. Through the temperature 

set-points, MPC has extra opportunities in turning on and off the heating in the residential 

building.  The temperature set-points are between 17 °C and 19 °C during the night, 

19 °C and 23 °C during the day. Figure 7-1 shows the comparison of indoor temperatures 

and temperature set-points between the MPC and real control in the winter test day with 

control per 15 minutes (total 96 time steps in a day). The results show that MPC provides 

a more comfortable indoor environment by increasing the number of hours within the 

design temperature range. First of all, room temperatures below 18 °C start to increase 

earlier with MPC, reducing hours of room temperatures under the lower limit. Secondly, 

MPC also reduces the chance of room temperatures over the upper limit. In addition, 

living room temperatures can exceed 23 °C in some time steps with real control, but such 

peaks are not found with MPC. Finally, the control with MPC has fewer fluctuating 

changes in the indoor temperature over the time horizon. 

In the summer scenario, MPC is tested on a winter day in August 2018. The aim of MPC 

is to achieve more indoor comfort by reducing hours of indoor temperatures out of the 

design temperature range from 22 to 26 °C. The temperature set-points are constrained 

between 17 °C and 19 °C during the night, 19 °C and 23 °C during the day. Figure 7-2 

illustrates a summer scenario with the room temperature controlled with and without 

MPC. The results show that MPC is capable of constraining the indoor temperatures 

within the design temperature range in more time steps. Without MPC, room 

temperatures are between 25 and 27 °C. There are many hours with room temperatures 

over 27 °C. By applying MPC, room temperatures fall below 26 °C in all three rooms. In 

the living room, it also reduces the chance of low temperatures under 22 °C. The results 

present that MPC maintains indoor temperatures well by constraining indoor 

temperatures not only below the upper limit (26 °C) but also above the lower limit (22°C).  

From the scenarios, MPC proves to maintain the indoor temperatures within the design 

temperature range. It can also reduce the fluctuation of indoor temperatures by changing 

room temperatures slowly. To optimise indoor thermal comfort, MPC takes advantages 
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of forecasting models to foresee the change of temperatures and optimises the controls 

per 15 minutes during the day. 
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Winter scenario 

 

 

Figure 7-1 Comparison between MPC and real control for the day ahead controls of a 
residential heating system and the resulting room temperatures on a winter day.  
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Summer scenario 

 

 

Figure 7-2 Comparison between MPC and real control for the day ahead controls of a 
residential heating system and the resulting room temperatures on a summer day. 
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7.3 Commercial building 

7.3.1 Time of use 

ToU optimisation is one of the most traditional DR by shifting loads from high-price 

intervals to low-price intervals. It has two objectives: (1) minimize the energy cost; (2) 

maintain indoor thermal comfort. As the HVAC system consumes a large part of the total 

energy in the building, ToU use case will consider the optimisation of the HVAC system 

in the office building. With the ToU, it provides different energy rates in a day. Load 

shifting can be implemented by rescheduling the operation of the indoor units to achieve 

the minimum energy cost. Thermal comfort can be maintained by restricting the indoor 

temperature within the comfort temperature zone.  

The daily energy prices for each ToU period are listed in Table 7-2. While the energy 

rate for office building has been shown in Figure 7-3, indicating the energy price rate in 

(1) winter from October to April; (2) and summer from April to October.  

Table 7-2 Prices of energy in each of the ToU periods. 

ToU periods Prices of energy (€/kWh) 
Peak hours 0.105507  

Partial-peak hours  0.091094  

Off-peak hours 0.062543  

 

 

 

 

 

Figure 7-3 Hourly energy tariff in winter and summer in different hours. 

7.3.2 Maximum power control (kWmax) 

kWmax has cross-effects with ToU as the energy rate can be influenced when the 

maximum power is exceeded. Besides the ToU for energy consumption, the kWmax is 

another use case about penalties for power demand. The penalties are that a higher rate 

of the energy price will be charged when the power exceeds the maximum power in the 

contract. The current contract that the office signed with the energy grid indicates the 
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maximum power of 150 kW in each time period. The demand charges based on the 

contract are demonstrated in the following table. 

Table 7-3 The demand charges for kWmax use case. 

Maximum power 
(kW) 

The rate of demand charges 

kWmax ≤127.5 127.5kW* (# of days in month) *(Time period rate) 

127.5 < kWmax < 157.5 (Max power demanded in month) *(# of days in month) *(Time period rate) 

kWmax > 157.5 [(Max power demanded in month) +2*(Max power demanded in month-
157.5kW)] *(# of days in month) *(Time period rate) 
New Time period rate: 
Peak hours: 0.111586  
Partial-peak hours: 0.066952  
Off-peak hours: 0.044634 

7.3.3 Objective function 

The objective is to find out the optimised future control signals (HVAC mode, on/off and 

temperature set-point) to minimise the energy cost of the HVAC. As the energy cost is 

the result of the energy price rate and energy consumption, the future total cost can be 

calculated through aggregating the energy cost at each time step in future. The variation 

of the energy price comes from the use case Time of Use (ToU), which makes the MPC 

consider not only energy consumption but also the energy tariff. 

The optimisation problem can be illustrated as:  

 

 𝑚𝑖𝑛 ∑( 𝐸𝑘 × 𝑅𝑘  )

𝑁

𝑘=1

 (1) 

s.t. 𝑃𝑘  ≤ 𝑃𝑚𝑎𝑥  

 𝑇𝑙𝑏 ≤ 𝑇𝑘 ≤ 𝑇𝑢𝑏  

  

Equation 1 shows the objective function for the MPC. It demonstrated that the total 

energy cost from time step k to N should be minimised. At time step k, the energy cost 

is equal to energy consumption(𝐸𝑘) multiplying the rate of the energy price (𝑅𝑘). There 

are two constraints: (1) the power (𝑃𝑘) is constrained to be less than maximum power 

(𝑃𝑚𝑎𝑥) and indoor temperature (𝑇𝑘) is within the comfort temperature band between lower 

bound temperature (𝑇𝑙𝑏) and upper bound temperature (𝑇𝑢𝑏). As there are 9 indoor unit 

thermostats, each monitored indoor temperature should be considered (𝑇 = [𝑇1, 𝑇2, 𝑇3, 

𝑇4, 𝑇5, 𝑇6, 𝑇7, 𝑇8, 𝑇9]; 𝑇1 to 𝑇9 are indoor temperature from each thermostat). 
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7.3.4 Constraints 

Use case kWmax provides a combination of the energy tariffs for building consuming 

different maximum power in a month. The contract signed with the grid allows the 

building to have a flexible energy rate. For example, the current contract mentioned 

maximum power is 150 kW, and the hourly energy price is € 0.105507 for peak hours. 

However, if the maximum power is over 157.5 kW, the hourly rate is increased to 

€ 0.111586. 

From kWmax use case, we found that maximum power has a significant influence on the 

energy cost. It provides the flexibility for demand response for shifting the power from 

peak periods to low periods. As the MPC is based on a floor-level model, the global 

power for the 4th floor is used as the constraint. The historical data shows that the 

maximum power can be up to 20000 W in the summer days. Equation 2 shows the 

maximum power of 10000 W has been set as the constraint for MPC to investigate if the 

MPC can reduce or shift the maximum power in future time steps. 

 𝑃𝑘  ≤ 10000 (2) 

Indoor temperature is the most important factor regarding the thermal comfort of the 

occupants. Therefore, the prioritised target for the user or building manager is to optimise 

the control of the indoor unit to maintain the indoor temperature within a comfortable 

range. 

As the indoor temperature is the most concerned thermal parameter, out of the comfort 

zone can result in health and safety issue. Therefore, the MPC is aimed at maintaining 

the indoor temperature within the lower and upper indoor temperature. In this case, 

Equation 3 illustrated the lower and upper temperatures are set up to 20 °C and 26 °C 

for temperature constraint for each room/space. 

 20 ≤ 𝑇𝑘 ≤ 26 (3) 

 𝑇𝑘 = [𝑇1, 𝑇2, 𝑇3, 𝑇4, 𝑇5, 𝑇6, 𝑇7, 𝑇8, 𝑇9]  

Where 𝑇𝑘 represent the indoor temperature for each unit as listed in the following table. 

The variable 𝑇𝑘 (from 𝑇1 to 𝑇9) represents the indoor temperature from room thermostat 

sensor U2-10 to U2-18 on the floor plan. 

7.3.5 Optimisation algorithm 

Optimisation of the control on indoor units for future time steps is built based on the 

system forecasting model, objective and constraints. The evolutionary algorithm has 
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been used as the optimisation method for optimising the future control of the indoor units 

based on the data-driven model. It can generate a group and evolve solutions generation 

by generation. The equally optimal solution is called Pareto non-dominated front. The 

selection of the optimal solution of the Pareto front is dependent on the objectives and 

constraints.  

The evolutionary algorithm initialises the population based on the identified type and 

range of the manipulated inputs. With the system model, the output variables such as 

next time step energy are forecasted. The forecasted results at time step k can be used 

as the inputs for time step k+1. Repeatedly, the model can forecast the next N (N = 96 

for a day ahead forecasting) time step system states. The sorting process is based on 

the non-domination criteria of the population. The objective of the optimisation algorithm 

is to improve the adaptive fit of a group of optimal solutions to a Pareto front.  

7.3.6 Results and discussion 

The MPC has been developed based on a data-driven model and evolutionary 

optimisation method. The aim is to minimize the energy cost of the commercial HVAC 

system. In order to test the performance of MPC on the heating and cooling periods, a 

summer day in July and a winter day in February have been selected. Since different 

temperature set-points and modes may cause a great difference in energy use, different 

scenarios are used to show different settings of temperature setpoints and modes in the 

MPC in the two test seasons, as shown in Table 7-4. 

Table 7-4 Scenarios for testing MPC with different settings in winter and summer days 

Scenario Season Temperature 
set-points at 
working hours 
(°C) 

Temperature 
set-points at 
non-working 
hours (°C) 

Mode at 
non-working 
hours (1 for 
heating, 0 for 
OFF, -1 for 
cooling) 

1 Summer 20 – 26 20 – 26 -1 

2 Summer 20 – 22 20 – 22  -1 

3 Summer 20 – 26 20 – 28 0 

4 Winter 20 – 26  20 – 22 1 

5 Winter 20 – 26 20 – 22 0 

It is important to find how MPC minimizes cost by shifting energy and power while 

maintaining indoor temperatures. In the listed 5 scenarios, the performance of MPC is 

investigated by looking into the resulting energy, power and indoor temperatures.  

In scenario 1, MPC is applied with a wide range of temperature set-points from 20 °C to 

26 °C and mode of -1 for turning on indoor units for cooling on a summer day. Figure 7-4 

compares MPC with real control by looking into the resulting floor-level energy, power 

and room temperatures in the next 96 time steps. The 96 time steps account for 24 hours 

as each time step represents 15 minutes. Compared with real control, the peak energy 
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consumption and power can be significantly reduced during the day. However, during 

the off-peak hours, such as time step from 0 to 20, the energy consumption with MPC is 

slightly more than real control. This is due to the energy consumption for pre-cooling in 

these time steps to maintain indoor temperatures. The results show indoor temperature 

can be well maintained as most of the rooms have temperatures below 26 °C with the 

MPC. In addition, the results also show MPC changes the indoor temperature in a more 

stable way than real control. With real control that relies on temperature setpoints to 

condition the space, the mode of indoor units is constantly -1, meaning indoor units are 

always turned on for cooling in the working hours. While during the night, the energy 

consumption is close to zero as indoor units are turned off at non-working hours. Results 

show MPC can shift load from peak hours to lower-load hours by turning on and off the 

indoor units at different times. 

In scenario 2, temperature set-points with 20 and 22 °C for lower and upper limits have 

been given in MPC for cooling on a summer day, as shown in Figure 7-5. Compared with 

scenario 1, it is a narrower range of temperature set-points. Because there are some 

indoor units, for example, indoor unit U211, showing that room temperatures are still out 

of the design comfort band. The guess here is that the upper limits of temperature set-

points and comfort band are both 26 °C which may lead to inadequate cooling as no 

cooling will be offered when temperatures are 26 °C. The results show the temperature 

in indoor unit U211 is reduced quickly from the temperatures above the 26 °C after time 

step 32, allowing more hours getting into the design comfort band between 20 and 26 °C. 

The results also find a significant change of average temperatures, showing more hours 

are within the design comfort band. It means that indoor temperature across the floor is 

more likely to be with the comfort band, showing an overall improvement of thermal 

comfort. 

In scenario 3, temperature set-points are set to be 20-26 °C between 6 am and 7 pm, 

but indoor units are turned off with the mode of 0 between 7 pm and 6 am on a summer 

day. As the building is normally closed between those non-working hours, cooling is not 

necessary during non-working hours. Although the upper limit of temperature set-point 

is 28 °C during non-working hours, no cooling is provided during these hours. This 

scenario is used to compare with scenario 1 to see if energy consumption can be reduced 

by turning off indoor units during non-working hours and how indoor temperatures are 

influenced. Figure 7-6 shows that the energy, power and indoor temperatures under 

MPC and real control. The results find that the peak energy and power have almost no 

change, but indoor temperatures from indoor units are slight higher during non-working 

hours. The average temperature also illustrates that indoor temperatures are nearly the 
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same as scenario 1 in working hours but slightly higher during non-working hours. The 

results also show that energy consumption is reduced during non-working hours. 

In scenario 4, a winter day was tested with MPC by setting temperature set-points to 

20-26 °C in working hours and 20-22 °C in non-working hours. Figure 7-7 shows the 

energy, power, indoor temperatures, temperature set-points and modes with and without 

MPC in scenario 4. Reducing the upper limit of temperature set-points from 26 to 22 °C 

is to reduce the heating times in non-working hours. The aim is to save energy but keep 

room temperatures at an acceptable level during the night in winter. The results show 

MPC significantly reduces peak energy consumption and power while improves indoor 

thermal comfort by constraining temperatures within the comfort band between 20 and 

26 °C. First of all, MPC reduces peak energy and power by shifting loads, resulting in 

the maximum power under the constraint of 10000W. Secondly, MPC maintains indoor 

temperatures well by constraining them within the comfort band. Thirdly, compared with 

real control, MPC changes the indoor temperature in a smoother way. Finally, it finds 

real control has both heating and cooling modes on the winter day, which may lead to 

energy waste. MPC provides only one mode that is heating in winter days to reduce 

energy waste caused by frequently changing the mode. 

In scenario 5, indoor units are turned off during non-working hours. Figure 7-8 shows 

that energy consumption and power are significantly reduced in the working hours, which 

are almost the same as scenario 4. There is a slight reduction in energy consumption in 

non-working hours. Also, the change in indoor temperatures is very small. Looking in to 

the indoor unit U211, it finds that the indoor temperature is slightly reduced. The reason 

for little change in indoor temperatures may be that the temperature set-points in non-

working hours in scenario 4 are between 20 and 22 °C. It only turns on heating when 

indoor temperatures are below 20 or 22 °C. However, most of the indoor temperatures 

during these hours are already higher than 20 °C, resulting in a similar performance in 

both scenarios.     
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Scenario 1  

 

Figure 7-4 The comparison between the MPC and real control in energy, power and indoor 
temperatures in scenario 1. 
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Scenario 2  

 

Figure 7-5 The comparison between the MPC and real control in energy, power and indoor 
temperatures in scenario 2. 

  



 

133  

  

Scenario 3 

  

Figure 7-6 The comparison between the MPC and real control in energy, power and indoor 
temperatures in scenario 3. 
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Scenario 4 

 

Figure 7-7 The comparison between the MPC and real control in energy, power and indoor 
temperatures in scenario 4. 
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Scenario 5 

 

Figure 7-8 The comparison between the MPC and real control in energy, power and indoor 
temperatures in scenario 5. 
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Time steps for optimisation 

The objective of the MPC is to minimise the energy consumption in N time steps while 

N = 1 is for 15 minutes and N = 96 is for a day. In order to investigate the influence of 

the time steps on the MPC, different time steps for optimisation are tested on energy 

consumption, power and average indoor temperature in scenario 5. 

Figure 7-9 presents the results of the MPC for different time steps from 16 to 96 on 

energy consumption. The mpc_16 represents the MPC for 16 timesteps, and mpc_96 

represents the MPC for 96 timesteps. From the real energy consumption, the peak 

energy consumption occurs between the time step 32 and 64. It is important to find if the 

MPC with more than 64 timesteps (mpc_64, mpc_80 and mpc_96) would have a 

significant influence on the peak energy consumption. The average energy consumption 

per time step for mpc_64 and mpc_80 are nearly the same with the value of 0.82 kWh, 

compared with mpc_96 with the value of 0.84 kWh. Compared to the mpc_96, the 

mpc_64 and mpc_80 have less energy used during peak time. Especially for time step 

between 64 and 80, the mpc_96 estimates an energy consumption of 9.2 kWh but the 

mpc_80 estimates 5.9 kWh, which is much less. The reason could be that the mpc_96 

tries to shift more load in the previous few time steps resulting in more estimated load 

after timestep 64 although the optimisation with more steps cannot overtake others with 

fewer optimisation steps. However, more optimisation steps would involve the 

optimisation or load shifting for more hours, covering the peak and low load period. 

Figure 7-10 shows the results of the MPC for different time steps from 16 to 96 on power. 

The results demonstrate that different time steps have little influence on power 

consumption. After time step 32, all the MPC (mpc_32, mpc_48, mpc_64, mpc_80 and 

mpc_96) can maintain the power under 10000 W.  

Figure 7-11 illustrates the results of the MPC for different time steps from 16 to 96 on the 

average indoor temperature. The mpc_96 shows that it tries to shift load earlier than 

other MPC with fewer optimisation steps, resulting in quick response in increasing the 

temperature. Besides, the change of the indoor temperature is smaller than mpc_64 and 

mpc_80. However, all of them can keep the indoor temperature within the comfort zone 

with a temperature range from 20 °C and 26 °C. 
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Figure 7-9 Energy consumption with the MPC and real in different time steps. 

 

Figure 7-10 Power with the MPC and real control in different time steps. 
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Figure 7-11 Average indoor temperature with the MPC and real control in different time steps. 
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Execution time 

The development and testing for MPC were carried on one computer with Intel® Core 

(TM) i7-6700 Processor 3.4 GHz and 8 GB DDR4, 2133 MHz memory. The computing 

time for MPC has been illustrated in Figure 7-12. Previous MPC scenarios are based on 

100 optimisation loops. With the same optimisation loops, the computing time for 96 

timesteps is around 7 minutes. Four-hour (16 timesteps) MPC requires about one and a 

half minutes. The MPC with 100 optimisation loops using EVOLUTIONARY can 

significantly reduce the energy consumption, at the same time, constrain the indoor 

temperature and power within the given constraints. 

Figure 7-13 shows the computing time for 96 timesteps MPC increases dramatically 

when the optimisation loops run more than 200 times. The MPC can consume more than 

70 minutes with 1000 loops. 

 

Figure 7-12 Computing time for MPC running for different time step with 100 optimisation loops. 

 

Figure 7-13 Computing time for 96 timesteps MPC with different optimisation loops. 
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7.4 Summary 

This Chapter detailed the development of MPC optimiser, which provides day-ahead 

schedules for the HVAC systems. Several key aspects related to the MPC are discussed 

in this chapter. The MPC has been developed based on an evolutionary optimisation 

method and is suitable to solve energy optimisation based on data-driven models. The 

MPC was developed to control the HVAC system to ensure indoor thermal performance. 

The results show that it can efficiently limit indoor air temperatures within the given 

thermal comfort range.  

Data-driven models have no algebraic function, most linear and non-linear optimisation 

method cannot be used to solve the optimisation problem. Due to its derivative-free, an 

evolutionary optimisation method is suitable to solve optimisation based on the data-

driven model. In the residential building, the MPC is developed to control the heating 

system. The results show that it can improve thermal comfort by allowing more 

temperatures falling in the comfort temperature range. In the commercial building, the 

MPC is developed to control 9 indoor units on the 4th floor in a commercial building. It is 

found that it can efficiently shift the peak load and power to lower periods. At the same 

time, the indoor temperature and power are well constrained with our identified 

constraints. With the data-driven MPC controller, the peak energy consumption could be 

reduced by up to 36% and 15% for the peak power. 
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Chapter 8 Conclusion and contribution 

This chapter revisits the proposed research questions and hypothesis in Chapter 1 and 

summarises the work and findings to answer them. Besides, a summary of key 

contributions to the body of knowledge will be presented. Following this, the limitations 

of the study will be discussed. 

8.1 Main research findings 

This section starts by answering the research questions raised in Chapter 1. Each 

research question will be addressed based on the findings from the previous chapters. 

The research hypothesis will be discussed in the following sub-section. 

8.1.1 Increasing overheating risk 

The first question was: 

What is the impact of climate change on existing buildings? 

This research question was identified in the literature review in Chapter 2 and further 

discussed in Chapter 4. Section 2.1 reviewed the impact of climate change and 

increasing overheating risk on buildings and occupants, shedding light on increasing 

overheating risk in non-air-conditioned buildings and the benefits of bringing controls to 

building elements such as windows. Chapter 4 carried out the study of overheating risk 

of UK dwellings in current and future climates, enhancing that control of window opening 

for natural ventilation is more effective than fixed scheduled natural ventilation. 

Additionally, it proved that natural ventilation is not enough to meet cooling demand, 

requiring additional cooling, such as installing HVAC systems for air conditioning in future 

climates due to climate change. The findings emphasised that HVAC installation could 

expand to meet higher cooling demand in future, and effective control strategies should 

be applied to HVAC operation for energy conservation and thermal comfort in buildings. 

8.1.2 Potential of the sensor network and IoT 

The second question was: 

What are the benefits of using the sensor network and IoT for HVAC controls? 

Chapter 2 presented the importance of building energy metering and environmental 

monitoring for improving the building environment and reducing energy cost. 

Additionally, it also suggested the data-driven models for developing MPC for the 

optimisation of HVAC operation. Collecting energy and environmental data was a basic 

need for developing data-driven models for the systems and buildings. A low-cost sensor 

network was built in the residential case study building for collecting high-resolution data, 
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comparing with the BMS system in the case study commercial building. Chapter 5 

presented the data collected from the sensor network and analysed the data for 

understanding the systems and occupants behaviours before applying the data-driven 

approaches. Information such as electricity profile and temperature patterns can help to 

validate the forecast of energy and indoor environment. It also demonstrated IoT devices 

such as Nest thermostats for controlling indoor temperatures. Such a smart device can 

be integrated within the sensor network monitoring system, providing a framework for 

developing data-driven models and experimenting with MPC in real buildings in Chapter 

6 and 7. Therefore, the sensor network and IoT provide an opportunity in developing a 

low-cost monitoring and control system for applying advanced control strategies such as 

MPC for HVAC control. 

8.1.3 Data-driven modelling for MPC 

The third question was: 

How are HVAC models and tools used for simulating the behaviour of HVAC 

systems while considering their scope and limitations? 

Having demonstrated the potential energy saving that could be achieved by optimising 

the control for operational systems such as HVAC systems in buildings, the focus then 

turns to discuss modelling techniques for HVAC systems. This research question was 

discussed in Chapter 2, which has reviewed widely-used modelling techniques for HVAC 

operation and highlighted the data-driven approach was better than physics-based and 

hybrid methods for optimation-based operational control of the HVAC systems. The 

limitations for physics-based and hybrid approaches are the complexity of modelling and 

cost in time and computing, which prevent MPC optimisation from completing the 

modelling for hundreds and thousands of runs to have an optimal solution.  

Data-driven models for HVAC systems were developed in Chapter 6, illustrating the 

forecast of indoor temperatures, energy and power in two case-study buildings. The 

forecasting accuracy could reach more than 0.99 in R2 values for indoor temperatures, 

0.92 for energy and power. Section 6.4.2 presents that machine learning algorithms are 

good at forecasting indoor temperatures, with R2 values of 0.99 and 0.86 for residential 

and commercial indoor temperatures. Compared with indoor temperatures, the forecast 

of peaks of power and energy are less accurate, with R2 values of around 0.6. Section 

6.4.2 found that data-driven models are capable of forecasting day-ahead (96 timesteps) 

temperatures, energy and power, providing supports for the optimation by using the MPC 

in Chapter 7. 
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8.1.4 Optimisation for near real-time control for HVAC 

The fourth question was: 

Can the optimisation of HVAC operational control lead to indoor comfort, energy 

efficiency and cost reduction? 

Chapter 6 tested the high performance of data-driven models for forecasting energy and 

indoor environment. Then Chapter 7 expanded the study to the optimisation of HVAC 

operational control in buildings for comfort and energy efficiency. Section 7.2 proposed 

an MPC to optimise the heating system for reducing the fluctuation of temperatures in a 

residential building to achieve additional thermal comfort. The results showed that the 

optimisation through MPC could start heating in advance to allow the indoor temperature 

to fall in the comfort temperature range in advance. Section 7.3 developed an MPC to 

optimise the HVAC system in a commercial building. It proved that MPC for HVAC 

operational control is effective in reducing energy consumption, managing maximum 

power, saving energy cost and sustaining thermal comfort.  

8.1.5 Scalability of the data-driven MPC 

The final question was: 

Can the integration of data-driven methods and MPC ease the deployment of 

energy management and control strategies for control systems in buildings on a 

wider scale and aid building automation? 

Chapter 3 (methodology) demonstrated a low-cost building monitoring and control 

system, providing an opportunity of using a sensor network and IoT devices for 

optimising the control systems in buildings. The work completed in Chapter 6 and 7 show 

how the data-driven models and MPC can be developed for near real-time optimal 

control of the HVAC systems in a residential building and a commercial building. The 

case studies in both types of buildings illustrated that the approach of data-driven MPC 

could utilize the flexibility and optimise the operation of control systems for the targets of 

energy, cost and comfort in different types of buildings. Therefore, the question was 

answered that the approach is scalable and adaptable for control systems such as HVAC 

systems in buildings for the conservation of energy and cost without compromising 

thermal comfort. 

8.1.6 Revisiting the Hypothesis 

Research questions are linked to the hypothesis. After discussing the research questions 

in previous sections, The conclusion comes to validate the research hypothesis, which 

is restated here. 



 

144  

  

Data-driven based model predictive control can allow near real-time optimal control 

of the HVAC systems through integrating machine learning, the Internet of Things 

and automated control to enhance the building performance by tackling the 

uncertainties of changing weather and dynamic system behaviours, and integrating 

demand response. 

By answering the research questions during the research, the hypothesis was verified. 

It can be concluded that the research hypothesis is true that the data-driven model 

predictive control can allow near real-time optimal control for the operation of the HVAC 

systems. Each stage of this research is a piece of study contributing to verifying the 

research hypothesis. Initially, it investigated the impact of future climates on the existing 

residential buildings and introduced the needs for optimisation of control systems in the 

building for energy efficiency and thermal comfort. Additionally, the research developed 

a building metering and environmental monitoring system for collecting high-resolution 

and high-quality data, preparing data for developing data-driven forecasting models for 

energy and indoor environment. Finally, MPC controllers were developed for near real-

time operational control for the HVAC systems in both types of buildings for thermal 

comfort and energy cost reduction. The MPC integrated IoT for building monitoring and 

automated control, utilizing machine learning methods for learning and forecasting 

energy and environmental parameters, and integrating demand response to make use 

of the flexibility of load and elasticity of the demand. 

8.2 Contribution to Knowledge 
 

This research has proposed a data-driven MPC for near real-time control of HVAC 

systems for thermal comfort, power management and energy cost reduction. The 

contributions can be stated as below. 

1. This study assesses the impact of climate change on UK dwellings that the 

overheating risks are increasing in future climates, identifying the need for 

optimization of control systems in the operation of buildings. Flat type dwellings 

can be overheated for the whole summer without opening windows for natural 

ventilation. Even with natural ventilation, overheating risk can be found in old 

dwellings built between the 1900s and 1950s in London and Birmingham. 

2. This study integrates the sensor network and IoT techniques in a residential 

building to implement a building monitoring system and control devices 

wirelessly, illustrating the potential of deploying an automated control system and 

opportunities for optimized control using a data-driven approach. 
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3. This study develops data-driven forecasting models using different machine 

learning algorithms, including SVR, LSTM and RF, comparing their forecasting 

performance in predicting peaks and day-ahead temperature, energy 

consumption and power. The forecasts of the peaks of energy and power are 

less accurate than the forecasts of the peaks of indoor temperatures, with R2 

values of 0.92 compared to 0.6. SVR performs better than the other two machine 

learning algorithms in day-ahead forecasting. 

4. This study develops data-driven MPC for taking into account weather forecasts, 

system behaviours, energy demand and energy tariffs in a residential building 

and a commercial building, providing near real-time optimal control in every 15 

minutes.  

5. This study demonstrates that the MPC can take advantages of energy tariffs and 

demand flexibility (by shifting load from the high-demand periods to low-demand 

periods) to save the total energy cost with the constraints of ToU, kWmax and 

comfort temperature range. With the data-driven MPC controller, the peak energy 

consumption could be reduced by up to 36% and 15% for the peak power. 

8.3 Research limitations 

The limitations of this research are outlined as follows: 

1. Occupant behaviour is one of the biggest challenges that influence the accuracy 

of the forecasts. In residential buildings, users might change their behaviour 

which is often an unpredictable factor. For instance, occupants may change their 

preferences, such as opening windows for extra air. Such change can influence 

indoor temperatures as extra cooling or heating is needed to balance the heat 

exchange. Occupant behaviour is often unpredictable and not recorded in the 

data. Therefore, forecasting performance can be influenced by the change of 

occupant behaviour. More information from occupants may be needed to improve 

forecasting performance.  

2. Another limitation of this study lies in the fact that the sensors for energy metering 

and environment monitoring can lose data due to the drop of the internet or have 

abnormal data from sensors. The sensor network is made by connecting different 

kinds of sensors from different suppliers. They are mostly wireless sensors, 

leading to interruption of signals sharing the same radio frequency, resulting in 

disconnection in monitoring and gaps in data. Frequent checks can reduce the 

chance of losing too much data due to the drop on the internet. Interpolation or 

imputation methods could be used to deal with missing data. 
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3. An additional limitation is due to the tuning of models. During the training stage, 

many factors will affect the accuracy, including the choice of inputs and length of 

the data. Especially in LSTM models, many hyper-parameters need to be tuned 

to find an optimal combination of hyper-parameters. Optimisation algorithms can 

be used to optimise the selection of parameters. For example, GA finds the 

optimised hyper-parameters to minimise the error by trying different 

combinations. Although optimisation has been applied to the training process, the 

hyper-parameters may not necessarily be the optimal one due to the time and 

the selection of optimisation algorithms. 
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Appendix A Forecasting results 

 

Indoor unit U2-10 

 

 

Figure A- 1 Forecasting results and errors of air temperature for indoor unit U2-10. 

 

 

 

 

 

 

 

Table A- 1 Statistics of the forecasting results of air temperature for indoor unit U2-10. 

Scenario Description MAE MSE RMSE R2 

A Total hours 0.215 0.077 0.277 0.928 

B One week 0.196 0.064 0.253 0.871 

C Weekday 0.198 0.069 0.264 0.857 

D Weekend 0.202 0.077 0.277 0.920 

E Working hours 0.223 0.080 0.283 0.870 

F Off hours 0.205 0.073 0.270 0.897 
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Figure A- 2 Forecasting results and errors of air temperature for indoor unit U2-10 during the 
different scenarios. 
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Indoor unit U2-11 

 

 

Figure A- 3 Forecasting results and errors of air temperature for indoor unit U2-11. 

 

 

 

 

 

 

 

 

Table A- 2 Statistics of the forecasting results of air temperature for indoor unit U2-11. 

Scenario Description MAE MSE RMSE R2 

A Total hours 0.203 0.125 0.353 0.908 

B One week 0.196 0.133 0.365 0.797 

C Weekday 0.371 0.290 0.538 0.526 

D Weekend 0.087 0.017 0.132 0.944 

E Working hours 0.332 0.245 0.495 0.831 

F Off hours 0.162 0.095 0.309 0.920 
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Figure A- 4 Forecasting results and errors of air temperature for indoor unit U2-11 during the 
different scenarios. 
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Indoor unit U2-12 

 

Figure A- 5 Forecasting results and errors of air temperature for indoor unit U2-12. 

 

 

 

 

 

 

 

 

 

Table A- 3 Statistics of the forecasting results for indoor air temperature for indoor unit U2-12. 

Scenario Description MAE MSE RMSE R2 

A Total hours 0.305 0.301 0.549 0.935 

B One week 0.307 0.253 0.503 0.887 

C Weekday 0.382 0.362 0.602 0.721 

D Weekend 0.200 0.073 0.271 0.987 

E Working hours 0.504 0.662 0.814 0.852 

F Off hours 0.194 0.120 0.346 0.949 
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Figure A- 6 Forecasting results and errors of air temperature for indoor unit U2-12 during the 
different scenarios. 
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Indoor unit U2-13 

 

Figure A- 7 Forecasting results and errors of air temperature for indoor unit U2-13. 

 

 

 

 

 

 

 

 

 

Table A- 4 Statistics of the forecasting results of air temperature for indoor unit U2-13. 

Scenario Description MAE MSE RMSE R2 

A Total hours 0.179 0.095 0.309 0.943 

B One week 0.113 0.031 0.175 0.922 

C Weekday 0.264 0.163 0.404 0.750 

D Weekend 0.150 0.039 0.197 0.490 

E Working hours 0.257 0.159 0.398 0.880 

F Off hours 0.163 0.090 0.300 0.954 
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Figure A- 8 Forecasting results and errors of air temperature for indoor unit U2-13 during the 
different scenarios. 
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Indoor unit U2-14 

 

Figure A- 9 Forecasting results and errors of air temperature for indoor unit U2-14. 

 

 

 

 

 

 

 

 

 

Table A- 5 Statistics of the forecasting results of air temperature for indoor unit U2-14. 

Scenario Description MAE MSE RMSE R2 

A Total hours 0.183 0.094 0.307 0.943 

B One week 0.171 0.071 0.266 0.877 

C Weekday 0.246 0.163 0.404 0.618 

D Weekend 0.107 0.023 0.150 0.865 

E Working hours 0.271 0.165 0.406 0.863 

F Off hours 0.148 0.073 0.271 0.965 
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Figure A- 10 Forecasting results and errors of air temperature for indoor unit U2-14 during the 
different scenarios. 
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Indoor unit U2-15 

 

Figure A- 11 Forecasting results and errors of air temperature for indoor unit U2-15. 

 

 

 

 

 

 

 

 

 

  

Table A- 6 Statistics of the forecasting results of air temperature for indoor unit U2-15. 

Scenario Description MAE MSE RMSE R2 

A Total hours 0.250 0.173 0.416 0.913 

B One week 0.208 0.122 0.350 0.932 

C Weekday 0.349 0.231 0.481 0.774 

D Weekend 0.154 0.038 0.194 0.663 

E Working hours 0.348 0.264 0.514 0.839 

F Off hours 0.239 0.191 0.437 0.920 
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Figure A- 12 Forecasting results and errors of air temperature for indoor unit U2-15 during the 
different scenarios. 
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Indoor unit U2-16 

 

Figure A- 13 Forecasting results and errors of air temperature for indoor unit U2-16. 

 

 

 

 

 

 

 

 

 

Table A- 7 Statistics of the forecasting results of air temperature for indoor unit U2-16. 

Scenario Description MAE MSE RMSE R2 

A Total hours 0.188 0.061 0.247 0.907 

B One week 0.206 0.070 0.265 0.781 

C Weekday 0.186 0.069 0.263 0.809 

D Weekend 0.115 0.027 0.163 0.696 

E Working hours 0.198 0.070 0.264 0.871 

F Off hours 0.182 0.060 0.244 0.924 
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Figure A- 14 Forecasting results and errors of air temperature for indoor unit U2-16 during the 
different scenarios. 

  



 

172 

 

Indoor unit U2-17 

 

Figure A- 15 Forecasting results and errors of air temperature for indoor unit U2-17. 

 

 

 

 

 

 

 

 

 

Table A- 8 Statistics of the forecasting results of air temperature for indoor unit U2-17. 

Scenario Description MAE MSE RMSE R2 

A Total hours 0.163 0.074 0.272 0.947 

B One week 0.127 0.035 0.187 0.946 

C Weekday 0.175 0.076 0.276 0.797 

D Weekend 0.111 0.017 0.131 0.873 

E Working hours 0.242 0.143 0.378 0.836 

F Off hours 0.135 0.051 0.227 0.970 
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Figure A- 16 Forecasting results and errors of air temperature for indoor unit U2-17 during the 
different scenarios. 
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Indoor unit U2-18 

 

Figure A- 17 Forecasting results and errors of air temperature for indoor unit U2-18. 

 

 

 

 

 

 

 

 

 

Table A- 9 Statistics of the forecasting results of air temperature for indoor unit U2-18. 

Scenario Description MAE MSE RMSE R2 

A Total hours 0.243 0.102 0.320 0.951 

B One week 0.246 0.099 0.315 0.857 

C Weekday 0.269 0.118 0.343 0.785 

D Weekend 0.224 0.075 0.274 0.970 

E Working hours 0.277 0.129 0.359 0.893 

F Off hours 0.236 0.096 0.310 0.920 
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Figure A- 18 Forecasting results and errors of air temperature for indoor unit U2-18 during the 
different scenarios. 

 


