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Abstract We performed a systematic analysis of blood DNA methylation profiles from 4483

participants from seven independent cohorts identifying differentially methylated positions (DMPs)

associated with psychosis, schizophrenia, and treatment-resistant schizophrenia. Psychosis cases

were characterized by significant differences in measures of blood cell proportions and elevated

smoking exposure derived from the DNA methylation data, with the largest differences seen in

treatment-resistant schizophrenia patients. We implemented a stringent pipeline to meta-analyze

epigenome-wide association study (EWAS) results across datasets, identifying 95 DMPs associated

with psychosis and 1048 DMPs associated with schizophrenia, with evidence of colocalization to

regions nominated by genetic association studies of disease. Many schizophrenia-associated DNA

methylation differences were only present in patients with treatment-resistant schizophrenia,

potentially reflecting exposure to the atypical antipsychotic clozapine. Our results highlight how

DNA methylation data can be leveraged to identify physiological (e.g., differential cell counts) and

environmental (e.g., smoking) factors associated with psychosis and molecular biomarkers of

treatment-resistant schizophrenia.
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Introduction
Psychosis is a complex and heterogeneous neuropsychiatric condition characterized by a loss of con-

tact with reality, whose symptoms can include delusions and hallucinations. Episodic psychosis and

altered cognitive function are major features of schizophrenia, a severe neurodevelopmental disor-

der that contributes significantly to the global burden of disease (Whiteford et al., 2013). Schizo-

phrenia is highly heritable (Hilker et al., 2018; Sullivan et al., 2003) and recent genetic studies have

indicated a complex polygenic architecture involving hundreds of genetic variants that individually

confer a minimal increase on the overall risk of developing the disorder (Purcell et al., 2009). Large-

scale genome-wide association studies (GWAS) have identified approximately 160 regions of the

genome harboring common variants robustly associated with the diagnosis of schizophrenia, with

evidence for a substantial polygenic component in signals that individually fall below genome-wide

levels of significance (Pardiñas et al., 2018; Ripke et al., 2014). As the majority of schizophrenia-

associated variants do not directly index coding changes affecting protein structure, there remains

uncertainty about the causal genes involved in disease pathogenesis and how their function is dysre-

gulated (Maurano et al., 2012).

A major hypothesis is that GWAS variants predominantly act to influence the regulation of gene

expression. This hypothesis is supported by an enrichment of schizophrenia-associated variants in

core regulatory domains (e.g., active promotors and enhancers) (Hannon et al., 2019a). As a conse-

quence, there has been growing interest in the role of epigenetic variation in the molecular etiology

of schizophrenia. DNA methylation is the best-characterized epigenetic modification, acting to influ-

ence gene expression via disruption of transcription factor binding and recruitment of methyl-bind-

ing proteins that initiate chromatin compaction and gene silencing. Despite being traditionally

regarded as a mechanism of transcriptional repression, DNA methylation is actually associated with

both increased and decreased gene expression (Wagner et al., 2014) and other genomic functions

including alternative splicing and promoter usage (Maunakea et al., 2010). We previously demon-

strated how DNA methylation is under local genetic control (Hannon et al., 2018a; Hannon et al.,

2016b), identifying an enrichment of DNA methylation quantitative trait loci (mQTL) among genomic

regions associated with schizophrenia (Hannon et al., 2016b). Furthermore, we have used mQTL

associations to identify discrete sites of regulatory variation associated with schizophrenia risk var-

iants implicating specific genes within these regions (Hannon et al., 2016a; Hannon et al., 2018a;

Hannon et al., 2016b; Hannon et al., 2017). Of note, epigenetic variation induced by environmen-

tal exposures has been hypothesized as another mechanism by which non-genetic factors can affect

risk for neuropsychiatric disorders including schizophrenia (Dempster et al., 2013).

The development of standardized assays for quantifying DNA methylation at specific sites across

the genome has enabled the systematic analysis of associations between methylomic variation and

environmental exposures or diseases (Murphy and Mill, 2014). Because DNA methylation is a

dynamic process, these epigenome-wide association studies (EWAS) are more complex to design

and interpret than GWAS (Mill and Heijmans, 2013; Rakyan et al., 2011; Relton and Davey Smith,

2010). As for observational epidemiological studies of exposures and outcomes, a number of poten-

tially important confounding factors (e.g., tissue or cell type, age, sex, lifestyle exposures, medica-

tion, and disorder-associated exposures) that can directly influence DNA methylation need to be

considered along with the possibility of reverse causation. Despite these difficulties, recent studies

have identified schizophrenia-associated DNA methylation differences in analyses of post-mortem

brain tissue (Jaffe et al., 2016; Pidsley et al., 2014; Viana et al., 2017; Wockner et al., 2014), and

also detected disease-associated variation in peripheral blood samples from both schizophrenia-dis-

cordant monozygotic twin pairs (Dempster et al., 2011) and clinically ascertained case-control

cohorts (Aberg et al., 2014; Hannon et al., 2016a; Kinoshita et al., 2014). We previously reported

an EWAS of variable DNA methylation associated with schizophrenia in >1700 individuals, meta-ana-

lyzing data from three independent cohorts and identifying methylomic biomarkers of disease

(Hannon et al., 2016a). Together these data support a role for differential DNA methylation in the

molecular etiology of schizophrenia, although it is not clear whether disease-associated methylation

differences are themselves secondary to the disorder itself or a result of other schizophrenia-associ-

ated factors.

In this study we extend our previous analysis, quantifying DNA methylation across the genome in

a total of 4483 participants from seven independent case-control cohorts including patients with
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schizophrenia or first-episode psychosis (FEP) (Figure 1). This represents the largest EWAS of schizo-

phrenia and psychosis, and one of the largest case-control studies of DNA methylation for any dis-

ease phenotype. In each cohort, genomic DNA was isolated from whole blood, and DNA

methylation was quantified across the genome using either the Illumina Infinium HumanMethyla-

tion450 microarray (‘450K array’) or the HumanMethylationEPIC microarray (‘EPIC array’) (see ’Mate-

rials and methods’). We implemented a stringent pipeline to meta-analyze EWAS results across

datasets to identify associations between psychosis cases and variation in DNA methylation. We

show how DNA methylation data can be leveraged to identify biological (e.g., differential cell

counts) and environmental (e.g., smoking) factors associated with psychosis, and present evidence

for molecular variation associated with clozapine exposure in patients with treatment-resistant

schizophrenia (TRS).

Results

Study overview and cohort characteristics
We quantified DNA methylation in samples derived from peripheral venous whole blood in seven

independent psychosis case-control cohorts (total n = 4483; 2379 cases and 2104 controls). These

cohorts represent a range of study designs and recruitment strategies and were initially designed to

explore different clinical and etiological aspects of schizophrenia (see Materials and methods and

Table 1); they include studies of FEP (EU-GEI and IoPPN), established schizophrenia and/or cloza-

pine usage (UCL, Aberdeen, Dublin, IoPPN), mortality in schizophrenia (Sweden), and a study of

Figure 1. Overview of the sample cohorts and analytical approaches used in this study of altered DNA methylation in psychosis and schizophrenia.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Forest plot showing the difference in mean age between psychosis cases and controls across each cohort.

Figure supplement 2. Scatterplot of the relationship between the first two genetic principal components merged with HapMap phase 3 data for

individual cohorts.

Figure supplement 3. Scatterplots of DNAmAge derived from the DNA methylation data against actual chronological age for each of the cohorts.

Figure supplement 4. Scatterplots of PhenoAge derived from DNA methylation data against actual chronological age for each of the cohorts.

Figure supplement 5. Scatterplots of DNAmAge derived from the DNA methylation data against actual chronological age for each of the cohorts.

Figure supplement 6. Scatterplots of PhenoAge derived from the DNA methylation data against actual chronological age for each of the cohorts.
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twins from monozygotic pairs discordant for schizophrenia (Twins). All cohorts were characterized by

a higher proportion of male participants (range = 52.1–71.1% male, pooled mean = 62.6% male,

Table 1) than females. Although there was an overall significantly higher proportion of males among

cases compared to controls (c2 = 37.5, p=9.35�10�10), consistent with reported incidence rates

(Aleman et al., 2003; van der Werf et al., 2014), there was significant heterogeneity in the sex by

diagnosis proportions across different cohorts (c2 = 348, p=4.86�10�63) with the overall excess of

male patients driven by two cohorts (UCL [c2 = 52.7, p=3.81�10�13] and EU-GEI [c2 = 25.9,

p=3.68�10�7]). Most cohorts were enriched for young and middle-aged adults, although there was

considerable heterogeneity across the studies reflecting the differing sampling strategies (Table 1).

For example, the IoPPN cohort has the lowest average age, reflecting the inclusion of a large num-

ber of FEP patients (mean = 34.9 years; SD = 12.42 years) (Di Forti et al., 2009). In contrast, individ-

uals in the Sweden cohort were older (mean = 60.0 years; SD = 8.9 years) (Kowalec et al., 2019).

There was no overall difference in mean age between cases and controls (mean difference = 0.076

years; p=0.975) (Figure 1—figure supplement 1), although differences were apparent in individual

cohorts; in UCL (mean difference = 6.8 years; p=6.55�10�9) and IoPPN (mean difference = 6.2 years;

p=1.46�10�11), patients were significantly older than controls, while in the EU-GEI (mean

difference = �7.9 years; p=1.24�10�22) and the Sweden cohort (mean difference = �7.3 years;

p=1.05�10�16), the cases were significantly younger. With the exception of individuals in the IoPPN

and EU-GEI cohorts, which are more ethnically diverse, individuals included in this study were pre-

dominantly Caucasian. SNP array data from each donor was merged with HapMap phase 3 data,

and genetic principal components (PCs) were calculated with GCTA (Yang et al., 2011) to further

confirm the ethnicity of each sample (Figure 1—figure supplement 2).

Psychosis patients are characterized by differential blood cell
proportions and smoking levels using measures derived from DNA
methylation data
A number of robust statistical classifiers have been developed to derive estimates of both biological

phenotypes (e.g., age [Hannum et al., 2013; Horvath, 2013; Zhang et al., 2019] and the propor-

tion of different blood cell types in a whole blood sample [Houseman et al., 2012; Koestler et al.,

2013]) and environmental exposures (e.g., tobacco smoking [Elliott et al., 2014; Sugden et al.,

2019]) from DNA methylation data. These estimates can be used to identify differences between

groups and are often included as covariates in EWAS analyses where empirically measured data is

not available. For each individual included in this study, we calculated two measures of ‘epigenetic

age’ from the DNA methylation data; DNAmAge using the Horvath, 2013 multitissue clock, which

was developed to predict chronological age, and PhenoAge, which was developed as biomarker of

Table 1. Summary of cohort demographics included in the psychosis epigenome-wide association study (EWAS) meta-analysis.

Cohort UCL Aberdeen Twins IoPPN Dublin EU-GEI Sweden Total

Total sample 675 847 192 800 679 912 378 4483

% Cases 52.3 48.9 45.3 74.6 51.3 42.9 50.0 53.1

% Schizophrenia 52.3 48.9 45.3 36.3 51.3 0.0 50.0 37.5

% First-episode psychosis 0.0 0.0 0.0 38.4 0.0 42.9 0.0 15.6

% Males All 58.7 71.1 52.1 63.0 71.0 54.4 59.5 62.6

Cases 72.0 68.4 54.0 65.3 71.6 64.2 60.3 66.8

Controls 44.1 73.7 50.5 56.2 70.4 47.0 58.7 57.8

Chi-square test p-value 3.81E-13 0.103 0.730 0.024 0.804 3.68E-07 0.834 9.35E-10

Age (years) Mean 40.4 44.6 35.3 28.8 41.7 35.3 60.0 40.5

SD 15.0 12.9 10.8 9.46 12.0 12.8 8.86 14.7

Mean in controls 43.7 44.2 37.9 27.8 41.4 30.7 56.3 41.6

Mean in cases 36.8 44.9 33.3 30.3 42.0 38.7 63.7 39.4

t-test p-value 6.55E-09 0.529 0.033 0.007 0.505 1.24E-22 1.05E-16
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advanced biological aging (Levine et al., 2018). We found a strong correlation between reported

age and both derived age estimates across the cohorts (Pearson’s correlation coefficient range

0.821–0.928 for DNAmAge and 0.795–0.910 for PhenoAge) and no evidence for age acceleration –

that is, the difference between epigenetic age and chronological age – between patients with psy-

chosis and controls (Kowalec et al., 2019; Figure 1—figure supplements 3 and 4).

Because of the importance of considering variation in the composition of the constituent cell

types in analyses of complex cellular mixtures (Mill and Heijmans, 2013; Relton and Davey Smith,

2010), we used established methods to estimate the proportion (Houseman et al., 2012;

Koestler et al., 2013) and abundance (Horvath, 2013) of specific cell types in whole blood. Using a

random effects meta-analysis to combine the results across the seven cohorts, which were adjusted

for age, sex, and DNAm smoking score, we found that psychosis cases had elevated estimated pro-

portions of granulocytes (mean difference = 0.0431; p=5.09�10�4) and monocytes (mean differ-

ence = 0.00320; p=1.15�10�4), and significantly lower proportions of CD4+ T-cells (mean

difference = �0.0177; p=0.00144), CD8+ T-cells (mean difference = �0.0144; p=0.00159), and natu-

ral killer cells (mean difference = �0.0113; p=0.00322) (Table 2 and Figure 2). Interestingly, the dif-

ferences in granulocytes, natural killer cells, CD4+ T-cells, and CD8+ T-cells were most apparent in

cohorts comprising patients with a diagnosis of schizophrenia (Figure 2), with cohorts including FEP

patients characterized by weaker or null effects. Limiting the analysis of derived blood cell estimates

to a comparison of schizophrenia cases and controls did not perceivably change the estimated dif-

ferences of our random effects model but did reduce the magnitude of heterogeneity compared to

including the FEP cases (Supplementary file 1). This indicates that changes in blood cell proportions

may reflect a consequence of diagnosis, reflecting the fact that people with schizophrenia are likely

to have been exposed to a variety of medications, social adversities, and somatic ill-health – and for

longer periods – than FEP patients. Finally, we used an established algorithm to derive a quantitative

DNA methylation ‘smoking score’ for each individual (Elliott et al., 2014), building on our previous

work demonstrating the utility of this variable for characterizing differences in smoking exposure

between schizophrenia patients and controls, and using it as a covariate in an EWAS (Hannon et al.,

2016a). We observed a significantly increased DNA methylation smoking score (Figure 3) in psycho-

sis patients compared to controls across all cohorts (mean difference = 3.89; p=2.88�10�11).

Although of smaller effect, this difference was also present when comparing FEP and controls in the

EU-GEI cohort (mean difference = 2.38; p=2.68�10�8). As expected, for individuals where self-

reported smoking data was available, the DNA methylation smoking score was significantly elevated

in current and former smokers compared to never smokers (Figure 3—figure supplement 1).

Table 2. Results of a meta-analysis of differences in blood cell composition estimates derived from DNA methylation data between

schizophrenia cases and controls.

Cell type
Measure
type

Number of
cohorts

Random effects model Fixed effects model

Heterogeneity
p-Value

Mean
difference SE p-Value

Mean
difference SE p-Value

Monocytes Proportion 7 0.00320 0.00083 0.000115 0.00320 0.00083 0.000115 0.6490

Granulocytes Proportion 7 0.04312 0.01241 0.000509 0.03930 0.00315 1.21E-35 2.22E-16

Natural killer cells Proportion 7 �0.01135 0.00385 0.003221 �0.00827 0.00133 4.48E-10 2.43E-08

CD4+ T-cells Proportion 7 �0.01767 0.00555 0.00144 �0.01569 0.00196 1.15E-15 1.23E-07

CD8+ T-cells Proportion 7 �0.01444 0.00457 0.001586 �0.01443 0.00148 1.31E-22 8.13E-10

B-cells Proportion 7 �0.00495 0.00280 0.077103 �0.00477 0.00102 2.75E-06 2.25E-07

PlasmaBlast Abundance 5 0.05626 0.02987 0.059671 0.05332 0.00722 1.55E-13 8.45E-13

CD8pCD28nCD45RAn Abundance 5 0.06280 0.22674 0.781792 0.10797 0.14981 0.4711 0.0826

CD8 naive T-cells Abundance 5 7.21687 3.12594 0.02096 8.03957 1.89169 2.14E-05 0.0443

CD4 naive T-cells Abundance 5 11.77240 4.72532 0.012726 11.77240 4.72532 0.0127 0.824
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Figure 2. Blood cell-type proportions derived from DNA methylation data are altered in psychosis. Shown are forest plots from meta-analyses of

differences in blood cell proportions derived from DNA methylation data between psychosis patients and controls for (A) monocytes, (B) granulocytes,

(C) natural killer cells, (D) CD4+ T-cells, and (E) CD8+ T-cells. TE: treatment effect (i.e., the mean difference between cases and controls); seTE: standard

error of the treatment effect.

Figure 2 continued on next page
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An EWAS meta-analysis identifies DNA methylation differences
associated with psychosis
To identify differentially methylated positions (DMPs) in blood associated with psychosis, we per-

formed an association analysis within each of the seven schizophrenia and FEP cohorts controlling

for age, sex, derived cellular composition variables (from DNA methylation data), derived smoking

score (from DNA methylation data), and experimental batch (see ’Materials and methods’). We used

a Bayesian method to control p-value inflation using the R package bacon (van Iterson et al., 2017)

before combining the estimated effect sizes and standard errors across cohorts with a random

effects meta-analysis, including all autosomal and X-chromosome DNA methylation sites analyzed in

at least two cohorts (n = 839,131 DNA methylation sites) (see ’Materials and methods’). Using an

experiment-wide significance threshold derived for the Illumina EPIC array (Mansell et al., 2019)

(p<9�10�8), we identified 95 psychosis-associated DMPs mapping to 93 independent loci and anno-

tated to 68 genes (Figure 4A and Supplementary file 1). Across these DMPs, the mean difference

in DNA methylation between cases and controls was relatively small (0.789%, SD = 0.226%) and

there was a striking enrichment of hypermethylated DMPs in psychosis cases (n = 91 DMPs [95.8%]

hypermethylated; p=1.68�10�22). A number of the top-ranked DMPs are annotated to genes that

have direct relevance to the etiology of psychosis including the GABA transporter SLC6A12

(Park et al., 2011) (cg00517261, mean difference = 0.663%; p=1.53�10�8), the GABA receptor

Figure 2 continued

The online version of this article includes the following figure supplement(s) for figure 2:

Figure supplement 1. Treatment-resistant schizophrenia patients prescribed clozapine are characterized by altered blood cell proportions.

Figure supplement 2. Additive effect of schizophrenia and treatment resistance on granulocyte proportions.

Figure supplement 3. Additive effect of schizophrenia and treatment resistance on CD8+ T-cell proportions.
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Figure 3. Smoking scores derived from DNA methylation data highlight that psychosis patients are characterized by an elevated exposure to tobacco

smoking. Forest plot from a meta-analysis of differences in smoking score derived from DNA methylation data between psychosis patients and

controls. The smoking score was calculated from DNA methylation data using the method described by Elliott et al., 2014. TE: treatment effect (i.e.,

the mean difference between cases and controls); seTE: standard error of the treatment effect.

The online version of this article includes the following figure supplement(s) for figure 3:

Figure supplement 1. Current and former smokers are characterized by a significantly higher smoking score derived from DNA methylation data than

non-smokers.

Figure supplement 2. Treatment-resistant schizophrenia is associated with significantly higher DNA methylation-derived smoking scores.

Figure supplement 3. Treatment-resistant schizophrenia (TRS) patients show an elevated exposure to tobacco smoking relative to non-TRS and

controls in a model testing both schizophrenia diagnosis status and TRS status simultaneously.
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GABBR1 (Le-Niculescu et al., 2007) (cg00667298, mean difference = 0.619%; p=5.07�10�9), and

the calcium voltage-gated channel subunit gene CACNA1C (cg01833890, mean difference = 0.458%;

p=8.42�10�9) that is strongly associated with schizophrenia and bipolar disorder (Cross-

Disorder Group of the Psychiatric Genomics Consortium, 2013; Psychiatric GWAS Consortium

Bipolar Disorder Working Group, 2011; Ripke et al., 2011; Figure 5).

A specific focus on clinically diagnosed schizophrenia cases identifies
more widespread DNA methylation differences
We next repeated the EWAS focusing specifically on the subset of psychosis cases with diagnosed

schizophrenia (schizophrenia cases = 1681, controls = 1583). Compared to our EWAS of psychosis,

we identified more widespread differences in DNA methylation (Figure 4B), with 1048 schizophre-

nia-associated DMPs (p<9�10�8) representing 1013 loci and annotated to 692 genes

(Supplementary file 1). Although the list of schizophrenia-associated DMPs included 61 (64.21%) of

the psychosis-associated DMPs, the total number of significant differences was much larger, poten-

tially reflecting the less heterogeneous clinical characteristics of the cases. Schizophrenia-associated

DMPs had a mean difference of 0.789% (SD = 0.204%) and, like the psychosis-associated

A

B

Figure 4. Differential DNA methylation at multiple loci across the genome is associated with psychosis and schizophrenia. Manhattan plots depicting

the –log10 p-value from the epigenome-wide association study meta-analysis (y-axis) against genomic location (x-axis). (A) presents results from the

analysis comparing psychosis patients and controls, and (B) presents results from the analysis comparing diagnosed schizophrenia cases and controls.

The online version of this article includes the following figure supplement(s) for figure 4:

Figure supplement 1. Including genetic principal components (PCs) into DNA methylation analysis models has little effect on the results in ethnically

heterogeneous cohorts.
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Figure 5. Psychosis-associated differential DNA methylation at sites annotated to genes previously implicated in disease etiology. Shown are forest

plots for differentially methylated positions (DMPs) annotated to the GABA transporter SLC6A12 (cg00517261; p=1.53�10�8), the GABA receptor

GABBR1 (cg00667298; p=5.07�10�9), and the calcium voltage-gated channel subunit gene CACNA1C (cg01833890; p=8.42�10�9). TE: treatment effect

(i.e., the mean difference between cases and controls); seTE: standard error of the treatment effect.
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differences, were significantly enriched for sites that were hypermethylated in cases compared to

controls (n = 897 [87.4%]; p=1.27�10�129). A number of the top-ranked DMPs are annotated to

genes that have direct relevance to the etiology of schizophrenia and gene ontology (GO) analysis

highlighted multiple pathways previously implicated in schizophrenia including several related to the

extracellular matrix (Berretta, 2012) and cell-cell adhesion (O’Dushlaine et al., 2011;

Supplementary file 1). Given the large range of ages across the samples included in this study, we

tested whether there was evidence for a relationship between age and differential DNA methylation

at the 1048 schizophrenia DMPs by refitting our analysis model using an additional interaction term

between age and schizophrenia status individually for each cohort prior to the interaction effects

being meta-analyzed (see ’Materials and methods’). Overall, we found limited evidence for a rela-

tionship between age and DNA methylation at schizophrenia-associated DMPs; controlling for multi-

ple testing (p<0.00004771), only two (0.002%) DMPs were identified as showing a significant

interaction with age (Supplementary file 1). We used the same approach to explore for an interac-

tion between sex and DNA methylation, finding no evidence for sex differences at these sites or evi-

dence for a significant interaction between sex and DNA methylation (p<0.00004771)

(Supplementary file 1). Finally, although most of the cohorts included in this study were predomi-

nantly Caucasian, there was some ethnic heterogeneity in the IoPPN and EU-GEI cohorts. To explore

the extent to which this diversity might be influencing our results, we merged SNP array data from

each donor with HapMap phase 3 data and calculated genetic PCs using GCTA (Yang et al., 2011;

Figure 1—figure supplement 2). We re-analyzed data from individual cohorts including increasing

numbers of genetic PCs to the model, finding that even in the most ethnically diverse cohort (IoPPN)

the inclusion of up to five genetic PCs had negligible effects, with a very strong correlation in test

statistics between models (Figure 4—figure supplement 1).

Schizophrenia-associated DNA methylation differences show overlap
with previous analyses of schizophrenia and other traits
Two of our experiment-wide significant schizophrenia-associated DMPs (cg00390724 and

cg09868768) overlapped with those reported in a previous smaller whole blood schizophrenia

EWAS performed by Montano et al., 2016 with the same direction of effect; of note, 119 (71.3%) of

the 167 replicated DMPs reported by this study were characterized by a consistent direction of

effect in our meta-analysis, representing a significantly higher rate than expected by chance

(p=3.83�10�8). Unfortunately, we could not check the extent to which our schizophrenia-associated

DMPs were replicated in the Montano et al. dataset because the full results from their analysis are

not publicly available. We next compared our results with those from a prefrontal cortex EWAS

meta-analysis of schizophrenia also performed by our group (Viana et al., 2017), finding that 627

(60.2%) of the 1042 DMPs tested in both analyses had the same direction of effect, a significantly

higher rate than expected by chance (p=5.43�10�11). Finally, we also explored the extent to which

DMPs associated with schizophrenia overlapped with other traits using the database of results in the

online EWAS catalog (http://ewascatalog.org/); across EWAS undertaken using blood DNA (isolated

from whole blood or cord blood), this resource includes 101,091 significant DMPs (at p<1�10�7)

associated with 87 traits. Of the 1048 schizophrenia-associated DMPs identified in our meta-analysis,

219 (20.9%) were present in the database and significantly associated with 18 different traits

(Supplementary file 1). Where effect sizes for individual DMPs were available in the EWAS catalog,

we tested for an enrichment of consistent (or discordant) associations to those identified with schizo-

phrenia. Schizophrenia DMPs also associated with C-reactive protein (CRP) and gestational age, for

example, were significantly enriched for a consistent direction of effect (CRP: 10 overlapping DMPs,

10 consistent direction of effect, p=0.001953; gestational age: 105 overlapping DMPs, 72 consistent

direction of effect, p=0.000178). In contrast, schizophrenia DMPs also associated with age and high-

density lipoprotein (HDL) cholesterol were enriched for discordant effect directions (age: 30 overlap-

ping DMPs, 28 same direction of effect, p=8.68�10�7; HDL: 12 overlapping DMPs, 12 same direc-

tion of effect, p=0.00049) (Figure 6).
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Figure 6. Comparison of effect sizes for schizophrenia-associated differentially methylated positions (DMPs) overlapping with epigenome-wide

association study (EWAS) results for other traits. Shown for each overlapping DMP is the association effect size for the other trait (x-axis) taken from the

online EWAS catalog (http://ewascatalog.org/) compared to the effect size identified in our meta-analysis of schizophrenia (y-axis).
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Schizophrenia-associated DMPs colocalize to regions nominated by
genetic association studies
As the etiology of schizophrenia has a large genetic component, we next sought to explore the

extent to which DNA methylation at schizophrenia-associated DMPs is influenced by genetic varia-

tion. Using results from a quantitative genetic analysis of DNA methylation in monozygotic and dizy-

gotic twins (Hannon et al., 2018c), we found that DNA methylation at schizophrenia-associated

DMPs is more strongly influenced by additive genetic factors compared to non-associated sites

matched for comparable means and standard deviations (Figure 7) (mean additive genetic compo-

nent across DMPs = 23.0%; SD = 16.8%; p=1.61�10�87). Using a database of blood DNA mQTL

previously generated by our group (Hannon et al., 2018a), we identified common genetic variants

associated with 256 (24.4%) of the schizophrenia-associated DMPs. Across these 256 schizophrenia-

associated DMPs, there were a total of 455 independent genetic associations with 448 genetic var-

iants, indicating that some of these DMPs are under polygenic control with multiple genetic variants

associated. Of note, 31 of these genetic variants are located within 12 schizophrenia-associated

GWAS regions (Supplementary file 1) with 19 genetic variants associated with schizophrenia DMPs

located in the MHC region on chromosome 6. To further support an overlap between GWAS and

EWAS signals for schizophrenia, we compared the list of genes identified in this study with those

from the largest GWAS meta-analysis of schizophrenia (Pardiñas et al., 2018) identifying 21 schizo-

phrenia-associated DMPs located in 11 different GWAS regions. To more formally test for an enrich-

ment of differential DNA methylation across schizophrenia-associated GWAS regions, we calculated

a combined EWAS p-value for each of the GWAS-associated regions using all DNA methylation sites

within each region identifying 21 significant regions (p<3.16�10�4, corrected for testing 158

regions; Supplementary file 1). Three of these regions also contained a significant schizophrenia-

associated DMP and a genetic variant associated with that schizophrenia-associated DMP. These

include a region located within the MHC, another located on chromosome 17 containing DLG2,

TOM1L2, and overlapping the Smith-Magenis syndrome deletion, and another on chromosome 16

containing CENPT and PRMT7.

0.0 0.2 0.4 0.6 0.8 1.0

0
1

2
3

4
5

6
7

A estimate

D
e
n
s
it
y

Schizophrenia DMPs

Matched background

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

C estimate

D
e
n
s
it
y

0.0 0.2 0.4 0.6 0.8 1.0

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

E estimate

D
e
n
s
it
y

Figure 7. DNA methylation at sites associated with schizophrenia is more strongly influenced by genetic factors and common environmental influences

than equivalent matched sites across the genome. A series of density plots for estimates of additive genetic effects (A, left), common environmental

effects (C, middle), and non-shared environmental effects (E, right) derived using data from a dataset generated by Hannon et al., 2018b:

schizophrenia DMPs (red) and matched background sites (green).
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Schizophrenia-associated patterns of DNA methylation are observed in
individuals with FEP
To explore whether schizophrenia-associated differences in DNA methylation are present before a

formal diagnosis of schizophrenia, we next performed an EWAS of FEP in the IoPPN and EU-GEI

cohorts (total n = 698 FEP cases and 724 controls), meta-analyzing the results across 384,217 com-

mon DNAm sites. Although we identified no significant DMPs at our stringent experiment-wide sig-

nificance threshold, this is not surprising given the greatly attenuated sample size and the high

phenotypic heterogeneity among individuals with FEP compared to diagnosed schizophrenia; both

factors negatively influence power to detect effects. We next repeated our EWAS of diagnosed

schizophrenia, excluding the IoPPN cohort to ensure that there were no overlapping samples

between the schizophrenia vs. control analysis and the FEP vs. control analysis, identifying 125 signif-

icant DMPs of which 101 were also tested in the FEP EWAS. To see if there was any evidence for dif-

ferential DNAm at these sites prior to a diagnosis of schizophrenia, we compared the estimated

differences between schizophrenia cases and controls and FEP cases and controls

(Supplementary file 1). Strikingly, 96 (95.0%) of the tested DMPs had a consistent direction of effect

in the FEP EWAS, a significantly higher rate than expected by chance (p=6.58�10-23). While this

result is consistent with schizophrenia-associated differences being present prior to diagnosis, it is

not sufficient to state that they are causal; they may still reflect some underlying environmental risk

factor or be a consequence of FEP (e.g., medication exposure).

TRS cases differ from treatment-responsive schizophrenia patients for
blood cell proportion estimates and smoking score derived from DNA
methylation data
Up to 25% of schizophrenia patients are resistant to the most commonly prescribed antipsychotic

medications, and clozapine is a second-generation antipsychotic often prescribed to patients with

such TRS who may represent a more severe subgroup (Ajnakina et al., 2018). Using data from four

cohorts for which medication records were available (UCL, Aberdeen, IoPPN, and Sweden), we per-

formed a within-schizophrenia analysis comparing schizophrenia patients prescribed clozapine

(described as TRS cases) and those prescribed standard antipsychotic medications (total n = 399

TRS and 636 non-TRS). Across each of the four cohorts, the proportion of males prescribed cloza-

pine was slightly higher than the proportion of males on other medications (c2 = 7.04; p=7.96�10�3;

Supplementary file 1) consistent with findings from epidemiological studies that report increased

rates of clozapine prescription in males (Bachmann et al., 2017), although there was statistically sig-

nificant heterogeneity in the sex distribution between groups across cohorts (c2 = 20.5; p=0.0150).

TRS cases were significantly younger than non-TRS cases (mean difference = �5.48 years;

p=0.00533), although there was significant heterogeneity between the cohorts (I2 = 89%;

p=7.40�10�32). There was no evidence of accelerated epigenetic aging between TRS and non-TRS

patients (Figure 1—figure supplement 5 and Figure 1—figure supplement 6). Interestingly, cellu-

lar composition variables derived from the DNA methylation data suggest that TRS cases are charac-

terized by a significantly higher proportion of granulocytes (meta-analysis mean

difference = 0.00283; p=8.10�10�6) and lower proportions of CD8+ T-cells (mean

difference = �0.0115; p=4.37�10�5; Supplementary file 1 and Figure 2—figure supplement 1)

compared to non-TRS cases. Given the finding of higher derived granulocyte and lower CD8+ T-cell

levels in the combined psychosis patient group compared to controls described above, a finding

driven primarily by patients with schizophrenia, we performed a multiple regression analysis of gran-

ulocyte proportion to partition the effects associated with schizophrenia status from effects associ-

ated with TRS status. After including a covariate for TRS, schizophrenia status was not significantly

associated with granulocyte proportion using a random effects model (p=0.210) but there was signif-

icant heterogeneity of effects across the four cohorts (I2 = 91%, p=4.93�10�7). Within the group of

patients with schizophrenia, however, there were notable differences between TRS and non-TRS

groups (mean difference = 0.0275; p=3.22�10�6; Figure 2—figure supplement 2). In contrast, a

multiple regression analysis found that both schizophrenia status (mean difference = �0.0113;

p=0.00818) and TRS status (mean difference = �0.0116; p=2.82�10�5) had independent additive

effects on CD8+ T-cell proportion (Figure 2—figure supplement 3). Finally, TRS was also associated

with significantly higher DNA methylation-derived smoking scores than non-TRS in all four cohorts
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(mean difference = 2.16; p=7.79�10�5; Figure 3—figure supplement 2). Testing both schizophrenia

diagnosis status and TRS status simultaneously, we found that both remained significant; schizophre-

nia diagnosis was associated with a significant increase in smoking score (mean difference = 3.98;

p=2.19�10�8) with TRS status associated with an additional increase within cases (mean differ-

ence = 2.15; p=2.22�10�7) (Figure 3—figure supplement 3).

There are widespread DMPs between TRS patients and treatment-
responsive patients
We next performed an EWAS within schizophrenia patients comparing TRS cases to non-TRS cases,

including each autosomal and X-chromosome DNA methylation site analyzed in at least two cohorts

(n = 431,659 DNA methylation sites). We identified seven DMPs associated with clozapine exposure

(p<9�10�8; Supplementary file 1) with a mean difference of 1.47% (SD = 0.242%) and all sites

being characterized by elevated DNA methylation in TRS cases (p=0.0156). We were interested in

whether the DNA methylation differences associated with TRS overlapped with those identified

between all schizophrenia cases and non-psychiatric controls. Although there was no direct overlap

between the clozapine associated DMPs and the schizophrenia-associated DMPs identified for each

analysis, the direction of effects across the 1048 schizophrenia-associated DMPs were enriched for

consistent effects (n = 738 [70.4%] DMPs with consistent direction; p=7.57�10�41). Given these

observations, we formally tested whether the schizophrenia-associated differences are driven by the

subset of TRS cases on clozapine by fitting a model that simultaneously estimates the effect of

schizophrenia status and TRS status across all 1048 sites (Supplementary file 1). While the vast

majority of schizophrenia-associated DMPs remained at least nominally significant (n = 1003, 95.7%;

p<0.05) between schizophrenia patients and controls; among those that did not, 25 (2.39%) had a

significant effect associated with TRS status. For example, differential DNA methylation at the

schizophrenia-associated DMP cg16322565, located in the NR1L2 gene on chromosome 3 (schizo-

phrenia EWAS meta-analysis: mean DNA methylation difference = 0.907%; p=3.52�10�9), is driven

primarily by cases with TRS (Figure 8; multiple regression analysis mean DNA methylation difference

between schizophrenia cases and controls = 0.323%; p=0.123; mean DNA methylation difference

between TRS cases and non-TRS controls = 1.01%; p=8.71�10�5). One hundred and fifty-two

(14.5%) of the schizophrenia-associated DMPs were associated with a significant effect between

schizophrenia cases and controls and a significant effect within schizophrenia patients between TRS

and non-TRS patients, with the majority (128 [84.2%]) characterized by the same direction of effect

in both groups and indicative of an additive effect of both schizophrenia diagnosis and TRS status

(e.g., Figure 8—figure supplement 1). Of particular interest are 24 DMPs which are significantly

associated with both schizophrenia and TRS but with an opposite direction of effect, highlighting

how that at some DNA methylation sites, TRS counteracts changes induced by schizophrenia (e.g.,

Figure 8—figure supplement 2). Taken together, 177 (16.9%) of the schizophrenia-associated

DMPs identified in our EWAS meta-analysis are influenced by TRS and reflect either differences

induced by exposure to a specific antipsychotic therapy or other differences (e.g., treatment resis-

tance) in individuals who are prescribed clozapine.

Discussion
We report the most comprehensive study of methylomic variation associated with psychosis and

schizophrenia, profiling DNA methylation across the genome in peripheral blood samples from 2379

cases and 2104 controls. We show how DNA methylation data can be leveraged to derive measures

of blood cell counts and smoking that are associated with psychosis. Using a stringent pipeline to

meta-analyze EWAS results across datasets, we identify novel DMPs associated with both psychosis

and a more refined diagnosis of schizophrenia. Of note, we show evidence for the colocalization of

genetic associations for schizophrenia and differential DNA methylation. Finally, we present evi-

dence for differential methylation associated with TRS, potentially reflecting differences in DNA

methylation associated with exposure to the atypical antipsychotic drug clozapine.

We identify robust psychosis-associated differences in cellular composition estimates derived

from DNA methylation data, with cases having increased proportions of monocytes and granulocytes

and decreased proportions of natural killer cells, CD4+ T-cells and CD8+ T-cells, compared to non-

psychiatric controls. This analysis extends previous work based on a subset of these data, which
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reported a decrease in the proportion of natural killer cells and increase in the proportion of granu-

locytes in schizophrenia patients, with the large number of samples enabling us to identify additional

associations with other cell types. We also confirm findings from an independent study of schizo-

phrenia which reported significantly increased proportions of granulocytes and monocytes, and

decreased proportions of CD8+ T-cells using estimates derived from DNA methylation data

(Montano et al., 2016). Of note, because we can only derive proportion of cell types from whole

blood DNA methylation data, and not actual counts, an increase in one or more cell types must be

balanced by a decrease in one or more other cell types and an apparent change in the proportion of

one specific cell type does not mean that the actual abundance of that cell type is altered. Despite

this, the results from DNA methylation-derived cell proportions are consistent with previous studies

based on empirical cell abundance measures which have reported increased monocyte counts

(Beumer et al., 2012; Moody and Miller, 2018), increased neutrophil counts (Garcia-Rizo et al.,

2019; Núñez et al., 2019), increased monocyte-to-lymphocyte ratio (Mazza et al., 2020;

Steiner et al., 2019), and increased neutrophil-to-lymphocyte ratio (Karageorgiou et al., 2019;

Mazza et al., 2020) in both schizophrenia and FEP patients compared to controls. Previous studies

have also shown that higher neutrophil counts in schizophrenia patients correlate with a greater
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Figure 8. Differences in DNA methylation between schizophrenia cases and controls are partially influenced by a subset of cases with treatment-

resistant schizophrenia (TRS). Forest plots from a meta-analysis of differences in DNA methylation at cg16322565 located in the NR1L2 gene on

chromosome 3 between (A) schizophrenia patients and controls and (B) TRS patients prescribed clozapine and non-TRS prescribed other medications.

TE: treatment effect (i.e., the mean difference between cases and controls); seTE: standard error of the treatment effect.

The online version of this article includes the following figure supplement(s) for figure 8:

Figure supplement 1. Forest plot of a site where DNA methylation is significantly associated with schizophrenia and within cases, with treatment-

resistant schizophrenia.

Figure supplement 2. Forest plot of a site where DNA methylation is significantly associated with schizophrenia and within cases, with treatment-

resistant schizophrenia but with an opposite directions of effect.
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burden of positive symptoms (Núñez et al., 2019) suggesting that variations in the number of neu-

trophils is a potential marker of disease severity (Steiner et al., 2019). Our sub-analysis of TRS,

which is associated with a higher number of positive symptoms (Bachmann et al., 2017), found that

the increase in granulocytes was primarily driven by those with the more severe phenotype, support-

ing this hypothesis. Importantly, the differences we observe may actually reflect the effects of various

antipsychotic medications that have been previously shown to influence cell proportions in blood

(Steiner et al., 2019) or a recruitment bias whereby patients with low levels of granulocytes are not

prescribed clozapine given the risk of agranulocytosis.

We also identified a highly significant increase in a DNA methylation-derived smoking score in

patients with schizophrenia, replicating our previous finding (Hannon et al., 2016a). The smoking

score captures multiple aspects of tobacco smoking behavior including both current smoking status

and the quantity of cigarettes smoked; our results therefore reflect existing epidemiological evi-

dence demonstrating that schizophrenia patients not only smoke more, but also smoke more heavily

(de Leon et al., 2002; de Leon and Diaz, 2005; McClave et al., 2010). We also report an increased

smoking score in patients with FEP, although not to the same extent as seen in schizophrenia, con-

sistent with a meta-analysis reporting high levels of smoking in FEP (Myles et al., 2012). In the sub-

set of treatment-resistant patients, we found that there was an additional increase in smoking score

relative to schizophrenia cases prescribed alternative medications, supporting evidence for higher

rates of smoking in TRS groups relative to treatment-responsive schizophrenia patients

(Kennedy et al., 2014). These results not only highlight physiological (i.e., cell proportions) and envi-

ronmental (i.e., smoking) differences associated with psychosis and schizophrenia and the utility of

DNA methylation data for deriving these variables in epidemiological studies, but also highlight the

importance of controlling for these differences as potential confounders in analyses of disease-asso-

ciated DNA methylation differences.

Our EWAS, building on our previous analysis on a subset of the sample cohorts profiled here

(Hannon et al., 2016a), identified 95 DMPs associated with psychosis that are robust to differences

in measured smoking exposure and heterogeneity in blood cellular composition derived from DNA

methylation data. Of note, we identified a dramatic increase in sites characterized by an increase in

DNA methylation in patients. A key strength of our study is the inclusion of the full spectrum of

schizophrenia diagnoses, from FEP through to treatment-resistant cases prescribed clozapine. While

this may introduce heterogeneity into our primary analyses, we used a random effects meta-analysis

to identify consistent effects across all cohorts and diagnostic subtypes. We also performed an addi-

tional analysis focused specifically on cases with a more refined diagnosis of schizophrenia excluding

those with FEP, which identified over 1000 DMPs. A number of the top-ranked DMPs are annotated

to genes that have a direct relevance to the etiology of schizophrenia, and GO analysis highlighted

multiple pathways previously implicated in schizophrenia, including several related to the extracellu-

lar matrix (Berretta, 2012) and cell-cell adhesion (O’Dushlaine et al., 2011). Given the known

genetic component to the etiology of schizophrenia, it is interesting that schizophrenia-associated

DMPs were found to colocalize to several regions nominated by genetic association studies. Our

results suggest that this analysis of a more specific phenotype in a smaller number of samples is

potentially more powerful and that schizophrenia cases have a more discrete molecular phenotype

that might reflect both etiological factors but also factors associated with a diagnosis of schizophre-

nia (e.g., medications, stress, etc.). The mean difference in DNA methylation between cases and con-

trols for both psychosis and schizophrenia was small, consistent with other blood-based EWAS of

schizophrenia (Montano et al., 2016) and complex traits (Hannon et al., 2018c; Hannon et al.,

2019b; Marioni et al., 2018) in general. While individually they may be too small to have a strong

predictive power as a biomarker, together they may have utility as a molecular classifier (Chen et al.,

2020).

To explore whether schizophrenia-associated differences in DNA methylation are present before

a formal diagnosis of schizophrenia, we also performed an EWAS of individuals with FEP. Strikingly,

the majority of our schizophrenia-associated DMPs were found to have a consistent direction of

effect in the EWAS of individuals with FEP. While this result is consistent with schizophrenia-associ-

ated differences being present prior to a formal diagnosis of schizophrenia, it is not sufficient to

state that they are causal; they may still reflect some underlying environmental risk factors or be a

consequence of having FEP (e.g., medication exposure or other psychiatric condition). Further work
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is needed to explore the extent to which the DMPs associated with psychosis and schizophrenia in

this meta-analysis might have a causal role in disease.

Finally, we also report the first systematic analysis of individuals with TRS, identifying seven DMPs

at which differential DNA methylation was significantly different in the subset of schizophrenia cases

prescribed clozapine. These data are informative for the interpretation of our schizophrenia-associ-

ated differences, because a number of these DMPs are driven by the subset of patients on cloza-

pine. Furthermore, a number of sites show opposite effects in our analyses of TRS vs. our analysis of

schizophrenia, suggesting they might represent important differences between diagnostic groups.

Because the prescription of clozapine is generally only undertaken in patients with TRS, we are

unable to separate the effects of clozapine exposure from differences associated with a more severe

sub-type of schizophrenia such as the influence of polypharmaceutical treatment.

Our results should be considered in light of a number of important limitations. First, our analyses

were constrained by the technical limitations of the Illumina 450K and EPIC arrays, which assay only

~ 3% of CpG sites in the genome. Second, this is a cross-sectional study and it was not possible to

distinguish cause from effect. It is possible, and indeed likely, for example, that the differences asso-

ciated with both schizophrenia and TRS reflect the effects of medication exposure or other conse-

quences of having schizophrenia, for example, living more stressful lives, poorer diet, and health.

The importance of such confounding variables is demonstrated by our findings of differential smok-

ing score and blood cell proportions derived directly from the DNA methylation data, although

these examples also highlight the potential utility of such effects for molecular epidemiology. Third,

although our aim was not to make inferences about mechanistic changes in the brain associated with

psychosis, it is important to note that our study analyzed DNA methylation profiled in peripheral

blood and therefore can provide only limited information about variation in the primary tissue associ-

ated with disease (Hannon et al., 2015). Although this limits mechanistic conclusions about the role

of DNA methylation in schizophrenia, biomarkers, by definition, need to be measured in an easily

accessible tissue and do not need to reflect the underlying pathogenic process. Furthermore,

because most classifiers used to quantify variables such as smoking exposure and age have been

trained in blood, this represents the optimal tissue in which to derive these measures. Of course,

blood may also be an appropriate choice for investigating medication effects, particularly given the

known effects on white blood cell counts associated with taking clozapine (Alvir et al., 1993).

Fourth, while we have explored the potential effects of clozapine on DNA methylation by assessing

a sub-group of individuals with TRS, this is just one of a range of antipsychotics schizophrenia and

psychosis patients are prescribed. The fact that the TRS group show more extreme differences for

many of the schizophrenia-associated DMPs suggests that the polypharmaceutical treatment regi-

mens often prescribed to schizophrenia patients may produce specific DNA methylation signatures

in patients, akin to the effect seen for smoking. Fifth, although we found no evidence for a significant

interaction between sex and DNA methylation at DMPs associated with schizophrenia, it is possible

that there are other DNA methylation differences associated with disease only in males or females.

Finally, although we found some evidence that schizophrenia-associated DMPs colocalize to regions

nominated by GWAS, the integration of our DNA methylation data with genetic data was beyond

the scope of this analysis. Of note, we have previously used mQTL associations to identify discrete

sites of regulatory variation associated with schizophrenia risk variants to prioritize specific genes

within broad GWAS regions (Hannon et al., 2016a; Hannon et al., 2018a; Hannon et al., 2016b;

Hannon et al., 2017), and future work will aim to further explore interactions between genetic and

epigenetic risk factors.

In conclusion, our analysis of 4483 participants represents the largest study of blood-based

DNA methylation in schizophrenia and psychosis yet performed, and one of the largest EWAS stud-

ies for any disease phenotype. Our study also includes the first within-case analysis of TRS yet per-

formed, providing important molecular insights into genomic differences associated with poor

outcome to standard therapeutic approaches. Our results highlight differences in measures of blood

cellular composition and smoking behavior derived from methylomic data between not just cases

and controls, but also between TRS patients prescribed clozapine and those prescribed alternative

medications. We report widespread differences in DNA methylation in psychosis and schizophrenia,

a subset of which are driven by the more severe treatment-resistant subset of patients. On a practi-

cal level, our study not only demonstrates the utility of DNA methylation data for deriving measures

of specific physiological phenotypes (e.g., blood cell-type proportions) and environmental exposures
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(e.g., exposure to tobacco smoke) that can be used to identify epidemiological associations with

health and disease, but also highlights the importance of properly controlling for these potential

confounders in EWAS analyses. Our results are important because they suggest there are also clear

molecular signatures of schizophrenia and psychosis that can be identified in whole blood DNA.

Although it is unlikely these differences are mechanistically related to neuropathological changes in

the brain, they may have utility as diagnostic and prognostic biomarkers in individuals with FEP and

may potentially be used to differentiate individuals with TRS at an early stage of disease. Future

work should aim to prospectively profile DNA methylation in individuals at risk for FEP and schizo-

phrenia to explore how methylomic variation at baseline can predict outcome and the extent to

which longitudinal changes at psychosis-associated DMPs map on to clinical trajectories.

Materials and methods

Cohort descriptions
University College London samples
Four hundred and forty-seven schizophrenia cases and 456 controls from the University College Lon-

don schizophrenia sample cohort were selected for DNA methylation profiling. A full description of

this cohort can be found elsewhere (Datta et al., 2010) but briefly comprises unrelated ancestrally

matched cases and controls from the United Kingdom. Case participants were recruited from UK

NHS mental health services with a clinical ICD-10 diagnosis of schizophrenia. All case participants

were interviewed with the Schedule for Affective Disorders and Schizophrenia-Lifetime Version

(SADS-L) (Spitzer and Endicott, 1977) to confirm Research Diagnostic Criteria (RDC) diagnosis. A

control sample screened for an absence of mental health problems was recruited. Each control sub-

ject was interviewed to confirm that they did not have a personal history of an RDC-defined mental

disorder or a family history of schizophrenia, bipolar disorder, or alcohol dependence. UK National

Health Service multicenter and local research ethics approval was obtained and all subjects signed

an approved consent form after reading an information sheet.

Aberdeen samples
Four hundred and eighty-two schizophrenia cases and 468 controls from the Aberdeen schizophre-

nia sample were selected for DNA methylation profiling. The Aberdeen case-control sample has

been fully described elsewhere (International Schizophrenia Consortium, 2008) but briefly contains

schizophrenia cases and controls who have self-identified as born in the British Isles (95% in Scot-

land). All cases met the Diagnostic and Statistical Manual for Mental Disorders-IV edition (DSM-IV)

and International Classification of Diseases 10th edition (ICD-10) criteria for schizophrenia. Diagnosis

was made by Operational Criteria Checklist (OPCRIT). Controls were volunteers recruited through

general practices in Scotland. Practice lists were screened for potentially suitable volunteers by age

and sex and by exclusion of subjects with major mental illness or use of neuroleptic medication. Vol-

unteers who replied to a written invitation were interviewed using a short questionnaire to exclude

major mental illness in individual themselves and first-degree relatives. All cases and controls gave

informed consent. The study was approved by both local and multiregional academic ethical

committees.

Monozygotic twins discordant for schizophrenia
The Twins cohort is a multicenter collaborative project aimed at identifying DNA methylation differ-

ences in monozygotic twin pairs discordant for a diagnosis of schizophrenia. Ninety-six informative

twin pairs (n = 192 individuals) were identified from European twin studies based in Utrecht (The

Netherlands), Helsinki (Finland), London (United Kingdom), Stockholm (Sweden), and Jena (Ger-

many). Of the monozygotic twin pairs utilized in the analysis, 75 were discordant for diagnosed

schizophrenia, 6 were concordant for schizophrenia, and 15 twin pairs were free of any psychiatric

disease. Each twin study has been approved; ethical permission was given by the relevant local

ethics committee and the participating twins have provided written informed consent.
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Dublin samples
Three hundred and sixty-one schizophrenia cases and 346 controls were selected from the Irish

Schizophrenia Genomics consortium; a detailed description of this cohort can be found in

Morris et al., 2014. Briefly, participants from the Republic of Ireland or Northern Ireland were inter-

viewed using a structured clinical interview, and diagnosis of schizophrenia or a related disorder

(schizoaffective disorder; schizophreniform disorder) was made by the consensus lifetime best esti-

mate method using DSM-IV criteria. Control subjects were ascertained with written informed con-

sent from the Irish GeneBank and represented blood donors from the Irish Blood Transfusion

Service. Ethics Committee approval for the study was obtained from all participating hospitals and

centers.

IoPPN samples
The IoPPN cohort comprises 290 schizophrenia cases, 308 FEP patients, and 203 non-psychiatric

controls recruited from the same geographical area into three studies via the South London and

Maudsley Mental Health National Health Service (NHS) Foundation Trust. Established schizophrenia

cases were recruited to the Improving Physical Health and Reducing Substance Use in Severe Mental

Illness (IMPACT) study from three English mental health NHS services (Gaughran et al., 2019). FEP

patients were recruited to the GAP study (Di Forti et al., 2015) via in-patient and early intervention

in psychosis community mental health teams. All patients aged 18–65 years who presented with an

FEP to the Lambeth, Southwark, and Croydon adult in-patient units of the South London and Mauds-

ley Mental Health NHS Foundation Trust between May 1, 2005, and May 31, 2011, who met ICD-10

criteria for a diagnosis of psychosis (codes F20–F29 and F30–F33). Clinical diagnosis was validated

by administering the Schedules for Clinical Assessment in Neuropsychiatry (SCAN). Cases with a

diagnosis of organic psychosis were excluded. Healthy controls were recruited into the GAP study

from the local population living in the area served by the South London and Maudsley Mental Health

NHS Foundation Trust, by means of internet and newspaper advertisements, and distribution of leaf-

lets at train stations, shops, and job centers. Those who agreed to participate were administered the

Psychosis Screening Questionnaire (Bebbington and Nayani, 1995) and excluded if they met criteria

for a psychotic disorder or reported to have received a previous diagnosis of psychotic illness. All

participants were included in the study only after giving written informed consent. The study proto-

col and ethical permission was granted by the Joint South London and Maudsley and the Institute of

Psychiatry NHS Research Ethics Committee (17/NI/0011).

Sweden samples
One hundred and ninety schizophrenia cases and 190 controls from the Sweden Schizophrenia Study

(S3) were selected for DNA methylation profiling, as described previously (Kowalec et al., 2019).

Briefly, S3 is a population-based cohort of individuals born in Sweden including 4936 schizophrenia

cases and 6321 healthy controls recruited between 2004 and 2010. Schizophrenia cases were identi-

fied from the Sweden Hospital Discharge Register with �2 hospitalizations with an ICD discharge

diagnosis of schizophrenia or schizoaffective disorder . Controls were also selected through Swedish

Registers and were group-matched by age, sex, and county of residence and had no lifetime diagno-

ses of schizophrenia, schizoaffective disorder, or bipolar disorder or antipsychotic prescriptions.

Blood samples were drawn at enrollment. All subjects were 18 years of age or older and provided

written informed consent. Ethical permission was obtained from the Karolinska Institutet Ethical

Review Committee in Stockholm, Sweden.

The European Network of National Schizophrenia Networks Studying Gene-
Environment Interactions cohort (EU-GEI)
Four hundred and fifty-eight FEP cases and 558 controls from the incidence and case-control work

package (WP2) of the European Network of National Schizophrenia Networks Studying Gene-Envi-

ronment Interactions (EU-GEI) cohort were selected for DNA methylation profiling (Jongsma et al.,

2018). Patients presenting with FEP were identified, between May 1, 2010, and April 1, 2015, by

trained researchers who carried out regular checks across the 17 catchment area Mental Health Serv-

ices across six European countries. FEPs were included if (1) age 18–64 years and (2) resident within

the study catchment areas at the time of their first presentation and with a diagnosis of psychosis
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(ICD-10: F20–33). Using the Operational Criteria Checklist algorithm (McGuffin et al., 1991;

Quattrone et al., 2019), all cases interviewed received a research-based diagnosis. FEPs were

excluded if (1) previously treated for psychosis, (2) they met criteria for organic psychosis (ICD-10:

F09), or for a diagnosis of transient psychotic symptoms resulting from acute intoxication (ICD-10:

F1X.5). FEPs were approached via their clinical team and invited to participate in the assessment.

Random and Quota sampling strategies were adopted to guide the recruitment of controls from

each of the sites. The most accurate local demographic data available were used to set quotas for

controls to ensure the samples’ representativeness of each catchment area’s population at risk. Con-

trols were excluded if they had received a diagnosis of, and/or treatment for, a psychotic disorder.

All participants provided written informed consent. Ethical approval was provided by relevant

research ethics committees in each of the study sites.

Genome-wide quantification of DNA methylation
Approximately 500 ng of blood-derived DNA from each sample was treated with sodium bisulfite in

duplicate, using the EZ-96 DNA methylation kit (Zymo Research, CA, USA). DNA methylation was

quantified using either the Illumina Infinium HumanMethylation450 BeadChip (Illumina Inc, CA, USA)

or Illumina Infinium HumanMethylationEPIC BeadChip (Illumina Inc) run on an Illumina iScan System

(Illumina) using the manufacturers’ standard protocol. Samples were batched by cohort and ran-

domly assigned to chips and plates to ensure equal distribution of cases and controls across arrays

and minimize batch effects. For the Twins cohort, both members of the same twin pair were run on

the same chip. A fully methylated control sample (CpG Methylated HeLa Genomic DNA; New Eng-

land BioLabs, MA, USA) was included in a random position on each plate to facilitate plate tracking.

Signal intensities were imported in R programming environment using the methylumIDAT function in

the methylumi package (Davis et al., 2015). Our stringent quality control pipeline included the fol-

lowing steps: (1) checking methylated and unmethylated signal intensities, excluding samples where

this was <2500; (2) using the control probes to ensure the sodium bisulfite conversion was success-

ful, excluding any samples with median <90; (3) identifying the fully methylated control sample was

in the correct location; (4) all tissues predicted as of blood origin using the tissue prediction from the

Epigenetic Clock software (https://DNAmAge.genetics.ucla.edu/) (Horvath, 2013); (5) multidimen-

sional scaling of sites on X and Y chromosomes separately to confirm reported gender; (6) compari-

son with genotype data across SNP probes; (7) pfilter function from wateRmelon package

(Pidsley et al., 2013) to exclude samples with >1% of probes with detection p-value>0.05 and

probes with >1% of samples with detection p-value>0.05. PCs were used (calculated across all

probes) to identify outliers, samples >2 standard deviations from the mean for both PC1 and PC2

were removed. An additional QC step was performed in the Twins cohort using the 65 SNP probes

to confirm that twins were genetically identical. Normalization of the DNA methylation data was per-

formed using the dasen function in the wateRmelon package (Pidsley et al., 2013). As cell count

data were not available for these DNA samples, these were estimated from the 450K DNA methyla-

tion data using both the Epigenetic Clock software (Horvath, 2013) and Houseman algorithm

(Houseman et al., 2012; Koestler et al., 2013), including the seven variables recommended in the

documentation for the Epigenetic Clock in the regression analysis. For cohorts with the EPIC array

DNA methylation data, we were only able to generate the six cellular composition variables using

the Houseman algorithm (Houseman et al., 2012; Koestler et al., 2013), which were included as

covariates. Similarly as smoking data was incomplete for the majority of cohorts, we calculated a

smoking score from the data using the method described by Elliott et al., 2014 and successfully

used in our previous (phase 1) analyses (Hannon et al., 2016a). Raw and processed data for the

UCL, Aberdeen, Dublin, IoPPN, and EU-GEI cohorts are available through GEO accession numbers

GSE84727, GSE80417, GSE147221, GSE152027, and GSE152026, respectively.

Data analysis
All analyses were performed with the statistical language R unless otherwise stated. Custom codes

for all steps of the analysis are available on GitHub https://github.com/ejh243/SCZEWAS/tree/mas-

ter/Phase2; Hannon, 2021; copy archived at swh:1:rev:

006e92b11dbd3eb7e75dcc173853010fa93461a5.
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Comparison of estimates of cellular composition and tobacco smoking
derived from DNA methylation data
A linear regression model was used to test for differences in 10 cellular composition variables esti-

mated from the DNA methylation data, reflecting either proportion or abundance of blood cell

types. These estimated cellular composition variables were regressed against case/control status

with covariates for age, sex, and smoking. Estimated effects and standard errors were combined

across the cohorts using a random effects meta-analysis implemented with the meta package

(Schwarzer, 2007). The same methodology was used to test for differences in the smoking score

derived from DNA methylation data between cases and controls including covariates for age and

sex. p-Values are from two-sided tests.

Within-cohort EWAS analysis
A linear regression model was used to test for differentially methylated sites associated with schizo-

phrenia or FEP. DNA methylation values for each probe were regressed against case/control status

with covariates for age, sex, derived cellular composition scores (from the DNA methylation data),

derived smoking score (from the DNA methylation data), and experimental batch. For the EU-GEI

cohort, there was an additional covariate for contributing study. For the Twins cohort, a linear model

was used to generate regression coefficients, but p-values were calculated with clustered standard

errors using the plm package (Croissant and Millo, 2008), recognizing individuals from the same

twin pair.

Within-patient EWAS of clozapine prescription
Four individual cohorts (UCL, Aberdeen, IoPPN, and Sweden) had information on medication and/or

clozapine exposure and were included in the TRS EWAS. TRS patients were defined as any case that

had ever been prescribed clozapine, and non-TRS patients were defined as schizophrenia cases that

had no record of being prescribed clozapine. Within each cohort, DNA methylation values for each

probe were regressed against TRS status with covariates for age, sex, cell composition, smoking sta-

tus, and batch as described for the case-control EWAS.

Multiple regression analysis of schizophrenia and clozapine prescription
Using the four cohorts that were included in the TRS EWAS (UCL, Aberdeen, IoPPN, and Sweden),

we fitted a multiple regression model with two binary indicator variables: one that identified the

schizophrenia patients and a second that identified the TRS patients. Within each cohort, DNA meth-

ylation values for each probe were regressed against these two binary variables, with covariates for

age, sex, derived cellular composition scores (from the DNA methylation data), derived smoking

score (from the DNA methylation data), and experimental batch as described above for the other

EWAS analyses.

Meta-analysis
The EWAS results from each cohort were processed using the bacon R package (van Iterson et al.,

2017), which uses a Bayesian method to adjust for inflation in EWAS p-values. All probes analyzed in

at least two studies were taken forward for meta-analysis. This was performed using the metagen

function in the R package meta (Schwarzer, 2007), using the effect sizes and standard errors

adjusted for inflation from each individual cohort to calculate weighted pooled estimates and test

for significance. p-Values are from two-sided tests and significant DMPs were identified from a ran-

dom effects model at a significance threshold of 9 � 10�8, which controls for the number of inde-

pendent tests performed when analysis data generated with the EPIC array (Mansell et al., 2019).

DNA methylation sites were annotated with location information for genome build hg19 using the

Illumina manifest files (CHR and MAPINFO).

Overlap with schizophrenia GWAS loci
The GWAS regions were taken from the largest published schizophrenia GWAS to date by

Pardiñas et al., 2018 made available through the Psychiatric Genomics Consortium (PGC) website

(https://www.med.unc.edu/pgc/results-and-downloads). Briefly, regions were defined by performing

a ‘clumping’ procedure on the GWAS p-values to collapse multiple correlated signals (due to linkage
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disequilibrium) surrounding the index SNP (i.e., with the smallest p-value) into a single associated

region. To define physically distinct loci, those within 250 kb of each other were subsequently

merged to obtain the final set of GWAS regions. The outermost SNPs of each associated region

defined the start and stop parameters of the region. Using the set of 158 schizophrenia-associated

genomic loci, we used Brown’s method (Brown, 1975) to calculate a combined p-value across all

probes located within each region (based on hg19) using the probe-level p-values and correlation

coefficients between all pairs of probes calculated from the DNA methylation values. Briefly, correla-

tion statistics were calculated and (along with the p-values) were inputted into Brown’s formula. As

correlations between probes could only be calculated using probes profiled on the same array, this

analysis was limited to probes included on the EPIC array. Correlations between probes were calcu-

lated within the EU-GEI cohort as this had the largest number of samples.

Enrichment analyses
Enrichment of the heritability statistics of DMPs was performed against a background set of probes

selected to match the distribution of the test set for both mean and standard deviation. This was

achieved by splitting all probes into 10 equally sized bins based on their mean methylation level and

10 equally sized bins based on their standard deviation, to create a matrix of 100 bins. After count-

ing the number of DMPs within each bin, we selected the same number of probes from each bin for

the background comparison set. This was repeated multiple times, without replacement, until all the

probes from at least one bin were selected giving the maximum possible number of background

probes (n = 42,968) such that they matched the characteristics of the test set of DMPs.

GO analysis
Illumina UCSC gene annotation, which is derived from the genomic overlap of probes with RefSeq

genes or up to 1500 bp of the transcription start site of a gene, was used to create a test gene list

from the DMPs for pathway analysis. Where probes were not annotated to any gene (i.e., in the case

of intergenic locations), they were omitted from this analysis, and where probes were annotated to

multiple genes, all were included. A logistic regression approach was used to test if genes in this list

predicted pathway membership, while controlling for the number of probes that passed quality con-

trol (i.e., were tested) annotated to each gene. Pathways were downloaded from the GO website

(http://geneontology.org/) and mapped to genes including all parent ontology terms. All genes with

at least one 450K probe annotated and mapped to at least one GO pathway were considered. Path-

ways were filtered to those containing between 10 and 2000 genes. After applying this method to

all pathways, the list of significant pathways (p<0.05) was refined by grouping to control for the

effect of overlapping genes. This was achieved by taking the most significant pathway and retesting

all remaining significant pathways while controlling additionally for the best term. If the test genes

no longer predicted the pathway, the term was said to be explained by the more significant path-

way, and hence these pathways were grouped together. This algorithm was repeated, taking the

next most significant term, until all pathways were considered as the most significant or found to be

explained by a more significant term.
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René S Kahn, Jaakko Kaprio, Gunter Kenis, Kaarina Kowalec, James MacCabe, Colm McDonald,

Andrew McQuillin, Derek W Morris, Kieran C Murphy, Colette J Mustard, Igor Nenadic, Michael C

O’Donovan, Diego Quattrone, Alexander L Richards, Bart PF Rutten, David St Clair, Sebastian Ther-

man, Timothea Toulopoulou, Jim Van Os, John L Waddington, Patrick Sullivan, Evangelos Vassos,

Resources, Writing - review and editing; Gerome Breen, David Andrew Collier, Resources, Funding

acquisition, Writing - review and editing; Robin M Murray, Conceptualization, Resources, Supervi-

sion, Funding acquisition, Methodology, Writing - original draft, Project administration, Writing -

review and editing; Leonard S Schalkwyk, Conceptualization, Resources, Funding acquisition, Meth-

odology, Writing - review and editing; Jonathan Mill, Conceptualization, Supervision, Funding acqui-

sition, Methodology, Writing - original draft, Project administration, Writing - review and editing

Author ORCIDs

Eilis Hannon http://orcid.org/0000-0001-6840-072X

Georgina Mansell http://orcid.org/0000-0003-2620-1786

Jaakko Kaprio https://orcid.org/0000-0002-3716-2455

Andrew McQuillin https://orcid.org/0000-0003-1567-2240

Colette J Mustard https://orcid.org/0000-0001-5834-2765

Bart PF Rutten http://orcid.org/0000-0002-9834-6346

Sebastian Therman https://orcid.org/0000-0001-9407-4905

Jonathan Mill https://orcid.org/0000-0003-1115-3224

Decision letter and Author response

Decision letter https://doi.org/10.7554/eLife.58430.sa1

Author response https://doi.org/10.7554/eLife.58430.sa2

Additional files

Supplementary files
. Supplementary file 1. Supplementary Tables 1-14.

. Transparent reporting form

Hannon et al. eLife 2021;10:e58430. DOI: https://doi.org/10.7554/eLife.58430 25 of 31

Research article Genetics and Genomics

http://orcid.org/0000-0001-6840-072X
http://orcid.org/0000-0003-2620-1786
https://orcid.org/0000-0002-3716-2455
https://orcid.org/0000-0003-1567-2240
https://orcid.org/0000-0001-5834-2765
http://orcid.org/0000-0002-9834-6346
https://orcid.org/0000-0001-9407-4905
https://orcid.org/0000-0003-1115-3224
https://doi.org/10.7554/eLife.58430.sa1
https://doi.org/10.7554/eLife.58430.sa2
https://doi.org/10.7554/eLife.58430


Data availability

Raw and processed data for the UCL, Aberdeen and Dublin cohorts are available through GEO

accession numbers GSE84727, GSE80417, and GSE147221, respectively.
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