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Abstract: COVID-19 (Corona Virus Disease 2019) is a severe respiratory syndrome currently 

causing a human global pandemic. The original virus, along with newer variants, is highly 

transmissible. Aerosol is a multiphase system consisting of the atmosphere with suspended solid and 

liquid particles, which can carry toxic and harmful substances; especially the liquid components. The 

degree to which aerosol can carry the virus and cause COVID-19 disease is of significant research 

importance. In this study, we have discussed the aerosol transmission as the pathway of SARS-CoV-

2 (Severe Acute Respiratory Syndrome Coronavirus 2), and the aerosol pollution reduction as a 

consequence of the COVID-19 lockdown. The aerosol transmission routes of the SARS-CoV-2 can 

be further subdivided into proximal human-exhaled aerosol transmission and potentially more distal 

ambient aerosol transmission. The human-exhaled aerosol transmission is a direct dispersion of the 

SARS-CoV-2. The ambient aerosol transmission is an indirect dispersion of the SARS-CoV-2 in 

which the aerosol act as a carrier to spread the virus. This indirect dispersion can also stimulate the 

up-regulation of the expression of SARS-CoV-2 receptor ACE-2 (Angiotensin Converting Enzyme 

2) and protease TMPRSS2 (Transmembrane Serine Protease 2), thereby increasing the incidence and 

mortality of COVID-19. From the aerosol quality data around the world, it can be seen that often 

atmospheric pollution has significantly decreased due to factors such as the reduction of traffic, 

industry, cooking and coal-burning emissions during the COVID-19 lockdown. The airborne 

transmission potential of SARS-CoV-2, the infectivity of the virus in ambient aerosols, and the 

reduction of aerosol pollution levels due to the lockdowns are crucial research subjects. 

Keywords: COVID-19, SARS-CoV-2, transmission routes, atmospheric aerosols, PM2.5 
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1. Introduction 

COVID-19 (Corona Virus Disease 2019) is another infectious disease caused by coronavirus 

following MERS (Middle East Respiratory Syndrome) and SARS (Severe Acute Respiratory 

Syndrome). The number and speed of COVID-19 infections significantly exceed those of MERS and 

SARS (Gautam et al., 2020; Javed et al., 2020). The virus that causes COVID-19 is named SARS-

CoV-2 (Severe Acute Respiratory Syndrome Coronavirus 2) (Gorbalenya et al., 2020). Since the first 

confirmed COVID-19 patient was identified on December 12th, 2019, the total number of patients 

diagnosed in the world has reached 91,293,732 cases by January 12, 2021, especially in the USA 

(23,143,197 cases) and India (10,479,179 cases) (https://covid19.who.int/), this number is still 

rapidly rising. In addition to the respiratory disease, SARS-CoV-2 can also cause other clinical 

symptoms, such as damage to the nervous system (Huang et al., 2020). COVID-19 has high 

infectivity with treatments being rapidly optimized, and it is typically most dangerous for the elderly 

(Pagani et al., 2020) or those with underlying health issues. Since SARS-CoV-2 was first identified a 

number of variants have been found in COVID-19 cases around the world (Weisblum et al., 2020), 

including the UK and South Africa (Koyama et al., 2020; Tang et al., 2021). Currently, the 501Y.V2 

variant is considered to be a more highly transmissible strain due to the rapidity with which it 

became the dominant circulating genotype in South African over a few weeks (Tegally et al., 2020). 

Thus, the variants of SARS-CoV-2 further challenged the campaign against the COVID-19 

pandemic. Studies have shown that close contact and respiratory droplets can’t explain all infections 

(Tabatabaeizadeh, 2021), and the environmental transmissions have become an important mechanism 

of COVID-19 spread, such as water (Sunkari et al., 2021), aerosol (Santarpia et al., 2020), and low-

temperature enhanced spread ‘cold chain’ (Zhang, 2020b). Among these, aerosol transmission is 

relatively difficult to prevent. 

Aerosol is a multiphase system consisting of the atmosphere with suspended solid and liquid 

particles, which can carry toxic and harmful substances; especially the liquid components (Mao et 
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al., 2002). According to their aerodynamic diameter, the airborne particles are divided into PM10, 

PM2.5, PM1 and nanoparticles (Chen et al., 2020; Boongla et al., 2020). The aerosol is considered 

potentially harmful to human health as it can contain not only hazardous elements and chemicals 

(Shao et al., 2006), but also pathogens such as bacteria, fungi, and viruses (Han et al., 2021). 

Airborne fine particles (PM2.5) are considered of greater health significance with their large surface 

area and strong adsorption capability (Ding and Zhu, 2003). 

In such a severe COVID-19 pandemic, it is essential to study the transmission routes of this 

virus. According to the National Health Commission of the People's Republic of China, the main 

transmission routes of SARS-CoV-2 are respiratory droplets and contact transmission, and in a 

relatively closed environment, long-term exposure to a high concentration of aerosol may cause 

aerosol transmission (www.gov.cn/zhengce/zhengceku/2020-08/19/content_5535757.htm). Before 

the 1930s, it was thought that respiratory infectious diseases could be transmitted by airborne 

substances, but there was no size division of these substances (Brown and Allison, 1937; Kramer et 

al., 1939). With the development of aerosol detection technology, more in-depth studies have been 

undertaken, and droplet transmission has been subdivided into large droplets and small droplets, and 

the small droplets are classified as aerosol (Bourouiba, 2020). This characterization is now widely 

used, but the critical diameter discriminating between droplets and aerosol is variable, ranging from 

5 μm to 10 μm (Bourouiba, 2020). The WHO (World Health Organization) considers 5 μm as the 

boundary, with the respiratory droplet having a diameter > 5 μm, and respiratory aerosol having a 

diameter < 5 μm (Tellier et al., 2019). Studies have shown that the large droplets are more easily 

dropped out of atmospheric suspension, whereas multiphase turbulent buoyant clouds, i.e., the small 

droplets or aerosol particles contained in a locally humid and warm atmosphere will stay airborne for 

a longer time (Bourouiba et al., 2014). These aerosol particles will take much longer to be removed 

from the atmosphere (Scharfman et al., 2016), and therefore have a greater potential to spread the 

virus. In addition to direct virus aerosol transmission, some virus-containing substances in the 

http://www.gov.cn/zhengce/zhengceku/2020-08/19/content_5535757.htm
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environment can generate aerosols for further transmission. For example, SARS-CoV-2 has been 

detected in feces and urine (Du et al., 2020; Perchetti et al., 2020), potentially allowing aerosol 

transmission caused by poor hygiene and practices with human excrement. 

The meteorological factors such as temperature and humidity have impacts on transmission of 

COVID-19. It is generally accepted that a higher temperature would inactivate SARS-CoV-2 (Guo et 

al., 2021; Notari, 2021) and a higher humidity is associated with spreading SARS-CoV-2 (Ratnesar-

Shumate et al., 2020; Crema, 2021; Fernandez-Raga et al., 2021) although there are very few cases 

which showed the opposite result (Ma et al., 2020). The uncertainty exists about the influence of 

temperature and humidity on the propagation of COVID-19, which requires more systematic 

investigation. 

 In response to the COVID-19 emergency, many countries over all the world in an attempt to 

curb the spread of the infection have introduced a range of social-distancing measures including 

shutdowns and traffic restrictions. Emission control measures initiated and enforced due to major 

events can have a significant effect on reducing ambient aerosol pollution. For example, after the 2008 

Olympic Games and the APEC meeting and, particulate pollutant levels have been reduced (Guo et al., 

2016). Air quality has also been significantly improved in Beijing in response to intensified control 

strategies over 2013–2019 (Shao et al., 2019; Chang et al., 2019; Li et al., 2020d). It is expected that 

the unprecedented pandemic lockdowns could have a considerable impact on ambient aerosol pollution.  

Although some phenomena demonstrate that there are mutual relationships between SARS-

CoV-2 and aerosols, the nature of these complicated relationships remains unclear. In order to 

provide a framework for future prevention strategies, it is necessary to study the relationship between 

SARS-CoV-2 and aerosols. In this review, we have considered the multiple pathways and 
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mechanisms of aerosol on the transmission of SARS-CoV-2, as well as the possible changes to 

aerosol pollution as a consequence of the COVID -19 lockdowns. Along with the airborne 

transmission potential of SARS-CoV-2, the infectivity of the virus in ambient aerosols requires 

further research.  

The relationship between aerosol and COVID-19 can be divided into two aspects (Figure 1). 

One is that SARS-CoV-2 spreads through aerosol. The other is that aerosol pollution decreased 

during COVID-19 lockdown. The aerosol exhaled by the COVID-19 patients can directly transmit 

the virus. Ambient aerosols affect the transmission of SARS-CoV-2 in two ways. One way is that 

ambient aerosols act as virus vectors indirectly; the other way is that ambient aerosols can stimulate 

the expression of SARS-CoV-2 receptor and protease, and increase the binding site of SARS-CoV-2, 

thus increasing the morbidity and mortality of COVID-19. As a result of the prevention and control 

measures during the lockdown, coupled with the self-constraint of people, human activities have 

been greatly reduced, which leads to a great decrease of the mass concentration of ambient aerosols. 

 

2. Influence of human-exhaled aerosol on the transmission of COVID-19 

2.1 Airborne transmission characteristics of the human-exhaled aerosol 

The aerosol produced by sneezing and coughing can travel for 7-8 m (Bourouiba, 2020). In a 

simulation test of a Laryngo-Tracheal Mucosal Atomization Device, which enables clinicians to 

deliver a fine mist of atomized medication across the mucosa membrane, the upper airways and 

beyond the vocal cords, the aerosol produced appeared on doctors' necks, face, hands, arms, goggles, 

masks, and protective clothing, and also around the operating room (Endersby et al., 2020). Studies 

have shown that when people sneeze or cough, the droplets larger than 10 μm will sediment nearby, 

pollute that environment, and risk direct and indirect transmission of the virus, whereas the droplets 

smaller than 10 μm when leaving the airway will become droplet nuclei or aerosols (Bourouiba, 

2020). These aerosols can stay airborne in the atmosphere much longer (Bourouiba, 2020), and 
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aerosol particles with an aerodynamic diameter less than 2.5 μm can enter the alveoli directly (Feng 

et al., 2020). When compared with the nasal cavity and trachea, when the virus accumulates in 

alveoli, small doses can cause infection (Lindsley et al., 2010). In contrast to sneezing or coughing 

that can produce a large amount of aerosol, breathing and speaking can produce finer particles (< 1.5 

μm) (Asadi et al., 2019), and these smaller aerosol particles can travel further in the air (Lindsley et 

al., 2014). 

 

2.2 Evidence of human-exhaled aerosol containing SARS-CoV-2 

The particle sizes of exhaled aerosol produced by COVID-19 patients during speaking and 

coughing ranged from < 0.25 μm (submicron) to about 10 μm, which has been shown to contain 

SARS-CoV-2 RNA and has the ability to transmit the virus in the air (Zou et al., 2020). Both 

symptomatic and asymptomatic patients have high SARS-CoV-2 viral load in their nasopharynx and 

trachea (Baggio et al., 2020), which provides the required conditions for exhaled aerosols to carry the 

virus. There are conflicting evidences for airborne transmission of SARS-CoV-2 (Falahi and 

Kenarkoohi, 2020). A study has detected SARS-CoV-2 virus RNA on the surface of an air vent, room 

air and corridor air in a COVID-19 ward (no patient cough was observed during sampling), and it is 

found that 63.2% of the samples were positive for SARS-CoV-2, and the concentration level reached 

2420 RNA copies / m3 (Santarpia et al., 2020). The presence of SARS-CoV-2 in aerosols was also 

monitored in the hospital environment, which accounted for 285-1130 RNA copies/m3 (Zhang et al., 

2020a). The viruses have also been detected in the samples collected on the surface and in the air of 

buses and subway trains (Moreno et al., 2020), and on the surface of an ICU ventilator (Ong et al., 

2020)  

Some medical procedures are more likely to produce human-exhaled aerosols. In March 2020, 

Public Health England defined AGP (Aerosol Generation Procedure) in the medical processes, such 

as intubation, dental surgery, high flow nasal oxygen and other related procedures (Simonds, 2020). 
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Transnasal drill and cautery use is associated with the production of the aerosol in the range of 1 to 

10 um under endonasal procedures (Workman et al., 2020). The SARS-CoV-2 has been detected in 

the submicron and ultra-micron aerosol of two hospitals in Wuhan (Liu et al., 2020c).  

SARS-CoV-2 RNA appeared inside the air conditioner and the air samplers, or on object 

surfaces more than 2m away from patients, within only 20 minutes after the patients registered into 

the ward (Santarpia et al., 2020), which shows that the airflow can take the virus aerosol particles 

from the patient bed to the edge of the room by ventilation. A full-scale test by (Ai et al., 2019) has 

revealed the transmission characteristics of the exhaled aerosol in the air and they have shown that 

people near the virus carriers have a relatively high exposure risk, especially those facing the 

infectious person. All these studies indicate that the SARS-CoV-2 infection may occur within a very 

short period after exposure to the COVID-19 patients. 

In summary, when compared with the large droplets, the human-exhaled aerosol has a stronger 

diffusion ability, and similarly, the aerosols carrying SARS-CoV-2 produced by COVID-19 patients 

have a higher transmissibility. In addition to the contact transmission and closed 

airborne transmission, SARS-CoV-2 may also be transmitted by aerosols in ventilation systems. The 

possibility of long-distance aerosol transmission needs further and urgent epidemiological and 

experimental studies. Aerosols carrying SARS-CoV-2 are likely to be produced in the common 

treatments of cardiopulmonary, oral and airway diseases. Hospitals are densely populated 

environments, where strict protective measures must be implemented to ensure the safety of medical 

staff and other personnel. 

 

2.3 Similarity of air transmission of SARS-CoV-2 and other viruses 

Phylogenetic analysis revealed that SARS-CoV-2 and SARS-CoV (Severe Acute Respiratory 

Syndrome Coronavirus) are both in the subgenus Sarbecovirus of the genus Betacoronavirusare (Lu 

et al., 2020), and therefore SARS-CoV-2 is similar to the SARS-CoV in terms of gene sequence 
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homology (Gorbalenya et al., 2020). On February 11th, 2020, ICTV (International Committee on 

Taxonomy of Viruses) stated that CSG (Coronaviridae Study Group) has recognized SARS-CoV-2 as 

a sister clade to SARS-CoV (Gorbalenya et al., 2020; Liu et al., 2020a). In terms of structure and 

function, both of them are the coronavirus associated with severe acute respiratory syndrome, and 

they are homologous RNA viruses that can cause human pneumonia.  

Table 1 provides some comparisons between SARS-CoV-2 and SARS-CoV, which illustrates 

our understanding of the transmission mechanism, prevention, and treatment of COVID-19. As 

shown in Table 1, SARS-CoV-2 and SARS-CoV belong to the same genera Betacoronavirus. Both 

have similar diameters, with the size of SARS-CoV-2 being 65 -125 nm, and the size of SARS-CoV 

being 80-120 nm (Shereen et al., 2020). The host cell receptors of both SARS-CoV-2 and SARS-

CoV are the ACE-2 protein, but the affinity between SARS-CoV-2 and receptor protein is higher 

which would facilitate a relatively fast transmission of corresponding diseases (Giron et al., 2020). 

van Doremalen et al. (2020) have established an experimental environment to test the stability of 

SARS-CoV-2 and SARS-CoV, and they have found that the survival time (aerosol half-life) of the 

two viruses in the air after artificial aerosolizing was similar, but the retention time of SARS-CoV-2 

on the surfaces of objects was relatively longer, which increased the risk of resuspension. SARS-

CoV has the known ability for airborne transmission and this virus was found in an air sampler 5 feet 

(1.52 m) away from the patient (Booth et al., 2005). SARS-CoV can also be transmitted between 

buildings (Yu et al., 2004) and aircraft passengers (Olsen et al., 2003). A study on a hospital in 

Beijing suggested that nosocomial, hospital-derived, infection could be the main cause of the early 

prevalence of SARS in the hospital (He et al., 2003). 

Other coronaviruses and common viruses can also have the ability of aerosol transmission. 

Studies on the human coronavirus 229E (a common cold virus) have shown that the experimental 

virus-carrying aerosol can persist at 20°C and 50% relative humidity for 6 days (Ijaz et al., 1985). 

Influenza patients emit aerosol particles containing the influenza virus when they are coughing, and 
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most of the virus RNA is incorporated into the particles within the respiratory size range (Lindsley et 

al., 2010). In seasonal influenza transmission, a large number of virus copies were detected in fine 

aerosol particles (Milton et al., 2013). 

In summary, there are similarities between SARS-CoV-2 and SARS-CoV in gene sequence and 

stability. The SARS-CoV-2 virus, other coronaviruses and common viruses also have aerosol 

transmission capacity. SARS-CoV-2 can be directly transmitted through human-exhaled aerosol. In 

future prevention and control research, the characteristics of SARS-CoV and other viruses, especially 

their airborne transmission potential needs to be further elucidated. 

 

3. Influence of ambient aerosols on the transmission of COVID-19 

3.1 Epidemiological relationship between ambient aerosol and COVID-19 

Long-term exposure to poor air quality can cause arrange of diseases (Guo et al., 2016). 

Epidemiological and in-vitro experimental evidence shows that aerosol pollution exposure has a 

positive correlation with respiratory diseases, such as COPD (Chronic Obstructive Pulmonary 

Disease), asthma (Kesic et al., 2012), ILI (Influenza Like Ill) (Su et al., 2019), ALI (Acute Lung 

Injury) (Li et al., 2019) and SARS (Yao et al., 2020).  

Since the outbreak of COVID-19, scholars in many parts of the world, including Europe, North 

America and Asia, have undertaken studies on the epidemiological relationship between air pollution 

indicators and COVID-19. Konstantinoudis et al. (2020) used high-resolution hierarchical spatial 

analysis to investigate 38573 cases of COVID-19 deaths in 32844 small areas in England as of June 

30th, 2020 and used the Bayesian hierarchical model to quantify the impact of air pollution. The 

results showed that the mortality of COVID-19 would increase by 1% for every 1μg/m3 increase of 

NO2 and PM2.5. The COVID-19 cases in Germany from February 24th to July 2nd, 2020 have been 

examined by correlation analysis and WTC (Wavelet Transform Coherence), and it has been found 

that the concentrations of PM2.5, O3, and NO2 were significantly associated with the prevalence of 
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COVID-19 (Bilal et al., 2020). The data from 55 Italian regional samples, as of April 7th, 2020 

showed that the rapid spread of COVID-19 in northern Italy was highly correlated with local air 

pollution (Coccia, 2020). In northern Italy, the geographical factors of the local mountains and the 

high densities of factories and transportation were the main causes of PM2.5, PM10, NO2 and O3 

pollution, which mirrored the higher occurrence frequency and severity of COVID-19 (Daniele and 

Francesco, 2020). Milan, located in the Po Valley Basin, is a recognized hot spot of aerosol pollution. 

Through comprehensive time series analysis, Zoran et al. (2020) found that the PM2.5 and PM10 in 

the metropolitan area of Milan from January 1st to April 30th, 2020 were significantly positively 

related with the prevalence of COVID-19. The association between air quality indicators and 

COVID-19 cases in California was analyzed using the Spearman and Kendall correlation test, and 

the results indicated that ambient pollutants including the mass concentrations of PM10, PM2.5, SO2, 

and NO2 were negatively correlated with the prevalence of COVID-19 and only the CO concertation 

showed a positive correlation with the COVID-19 (Bashir et al., 2020). In another study in 

California, the time-series analysis revealed that, in addition to the CO and O3, the concentration of 

PM2.5 was also positively correlated with increases in the incidence and mortality of COVID-19 

(Meo et al., 2021). A national cross-sectional study was conducted on more than 3000 counties (98% 

of the population) in the United States, and the results showed that the increase of PM2.5 by only 

1μg/m3 was associated with an 8% increase in the mortality rate of COVID-19 (Wu et al., 2020). 

Air pollution and meteorological data have been collected from January 25th to April 7th, 2020 

in Wuhan, China, and Pearson and Poisson regression models have been used to study the 

relationship between COVID-19 mortality and each risk factor; this research concluded that PM2.5 

was the only pollutant with positive correlation with COVID-19 mortality (Jiang and Xu, 2020). 

A longitudinal cohort study of 6529 patients from 28 urban areas of Japan has been conducted, 

and the results showed that short-term exposure to the suspended particulates may affect respiratory 

tract infection caused by SARS-CoV-2 (Azuma et al., 2020). The outpatient data of 21 Japanese 
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cities demonstrated a delayed association between PM2.5 and cardiopulmonary examination (Seposo 

et al., 2020). 

The positive association between aerosol and confirmed cases or deaths of COVID-19 in Zhu et 

al. (2020) has been questioned for lack of the study of population density (Copiello and Grillenzoni, 

2020). Therefore, when we analyze the relationships between the concentrations of airborne particles 

and the confirmed cases or deaths of COVID-19, we shouldn’t ignore the impacts from population 

density. The data of Bashir et al. (2020) showed the concentration of PM2.5, had a negative 

correlation with prevalence of COVID-19, while the study by Meo (2021) revealed a positive 

correlation between these two parameters. Therefore, the use of Spearman and Kendall correlation 

tests may not give a solid evidence, some of the associations resulted from the correlation analysis 

may still need to have proof from other parameters. 

The results described above have been summarized in Table 2, and most of these studies have 

supported the hypothesis that poor air quality increases the prevalence and mortality of COVID-19. 

In particular, a positive relationship has been observed between PM2.5 and COVID-19 morbidity or 

mortality. The consistently positive significant correlation provides further evidence that long-term 

exposure to relatively high concentrations of ambient aerosols is responsible for the increased 

transmission and pathogenicity of SARS-CoV-2 in the relevant population. Table 2 also showed the 

positive correlation between most gaseous pollutants and COVID-19. NO2, SO2, O3 and CO may 

play important roles in two possible ways; one is that exposure to high levels of gaseous pollutants 

can cause inflammation of the airways to affect lung function and respiratory symptoms (Huang and 

Brown, 2021), and the other is that the secondary reaction between aerosols and gaseous pollutants 

will be strengthened at lower temperature and higher relative humidity condition (Ding et al., 2021), 

which can enhance the harm of aerosols. 

It is important to study the relationship between air pollution and human health in order to help 

policy-makers to formulate positive strategies to reduce the pollution of ambient aerosols, especially 
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PM2.5, which would help to alleviate the rapid spread of COVID-19 and, potentially, to decrease the 

spread of epidemic viruses and diseases in the future. 

 

3.2 Mechanism of ambient aerosol affecting COVID-19 diffusion 

3.2.1 Ambient aerosols play a role as the carrier of SARS-CoV-2 

SARS-CoV-2 may enter the human body through aerosol; not only long-term but also short-term 

exposure will have a great adverse impact on the human immune system (Zoran et al., 2020). 

Although the atmospheric processes experienced by the aerosol particles after release from the 

human body could, to some extent, cause severe damage to SARS-CoV-2 (Zhen et al., 2013), SARS-

CoV-2 can survive in aerosols for 3 hours, and can survive on the surfaces of other contact materials 

for even longer times, i.e. copper (3.4 hours) < cardboard (8.45 hours) < stainless steel (13.1 hours) < 

plastic (15.9 hours) (van Doremalen et al., 2020). Under certain conditions, viruses on the surface of 

objects and in water can resuspend into the air and combine with existing aerosols (Ravi et al., 2020). 

Ambient aerosols play a carrier or enhancement role for SARS-CoV-2 (Martelletti and 

Martelletti, 2020). The morbidity and mortality of COVID-19 are related to air pollution emission 

sources. In addition to humans as the source of ambient aerosol transmission, TSDF (hazardous 

waste treatment, storage and disposal facilities) and RMP (Risk Management Plan) sites are potential 

air pollution sources (Hendryx and Luo, 2020; Tung et al., 2021). Under certain conditions, ambient 

aerosols, such as water-borne aerosols, can provide favorable surfaces for the adsorption of organic 

molecules and viruses, and facilitate higher transmission rate under certain ambient conditions 

(Manoj et al., 2020). Polluted water can be a source of viruses, and aerosols from this source can 

carry a variety of viruses, leading to a higher exposure rate for residents living around the 

contaminated area (Rocha-Melogno et al., 2020). In Australia, SARS-CoV-2 was detected in a 

wastewater treatment plant (Ahmed et al., 2020).  

Fecal-oral transmission could be an additional route for SARS-CoV-2 spread. After the virus 
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enters the body, the virus-specific RNA and protein are synthesized to assemble new viruses, which 

are then released into the gastrointestinal tract, and finally expelled from the body (Xiao et al., 

2020b), so the feces of COVID-19 patients have a high viral load (Xiao et al., 2020a). Aerosols in 

sanitary pipeline systems can carry viruses, resulting in a higher-risk of infection (Gormley et al., 

2017). It is postulated that there is a risk of SARS-CoV-2 infection through aerosol when using 

contaminated toilets (Wang et al., 2020b). Since fecal aerosol transmission may have caused the 

community outbreak of COVID-19 in high-rise buildings (Kang et al., 2020), understanding the 

transmission routes of aerosol-related sewage and fecal sources may be important for reducing the 

spread of COVID-19, especially in developing countries. 

The described evidence above shows that SARS-CoV-2 can combine with ambient aerosols and 

enter the human body, but there is little experimental evidence about the combination of the SARS-

CoV-2 and aerosols. Whether virus aerosol detected around patients are human-exhaled aerosol or 

ambient aerosol is worth further experimental verification. 

 

3.2.2 Ambient aerosols can up regulate SARS-CoV-2 receptor and related protease 

Aerosol pollution exposure is associated with various respiratory and cardiovascular diseases 

(Pun et al., 2017), and one of the mechanisms is the up-regulation of ACE-2 (Angiotensin 

Converting Enzyme 2) and TMPRSS2 (Transmembrane Serine Protease 2) (Lin et al., 2018). ACE-2 

is the main receptor protein of SARS-CoV-2, and the synaptic glycoprotein of the virus has a high 

affinity for ACE-2 in host cell targets (Vankadari and Wilce, 2020). TMPRSS2 is a protease that can 

cleave viral spike protein and make it combine with target cells to promote infection (Hayashi et al., 

2010). The up-regulation of ACE-2 is a protective mechanism when the respiratory system is 

exposed to aerosol, which can maintain the dynamic balance of RAS (Renin Angiotensin System) 

and reduce inflammatory reaction (Ye and Liu, 2020). ACE-2 is abundantly expressed not only in the 
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lung, but also in the glandular cells of gastric, duodenal, and rectal epithelia of the patients with 

COVID-19 (Xiao et al., 2020b). 

When PM2.5 invades the human body, ACE-2, as the receptor for SARS-CoV-2 to enter cells, 

will protect against renin–angiotensin system-induced lung injuries by cleaving Angiotensin II to 

limit substrate availability in the adverse AEC-Ang II-Ang II receptor 1 axis (Parajuli et al., 2014). 

Therefore, PM2.5 can increase the SARS-CoV-2 susceptibility for human body by enhancing the 

expression of AEC-2 and its cofactor TMPRSS2 (Kim et al., 2020). An in vivo experimental study 

has confirmed that the expression level of ACE-2 in the lung of experimental mice was significantly 

increased after being induced by PM2.5 (Lin et al., 2018). Statistical analysis suggests that PM2.5 may 

be the cause of the overexpression of ACE-2 in human epithelial cell surfaces of the respiratory tract 

(Paital and Agrawal, 2020). For smokers, a large number of aerosols with a particle size of less than 

1 μm will be generated by the process of smoking. After smoking, these aerosols can be suspended in 

the indoor atmosphere for a long time (Cao et al., 2018), and this would impact the secondhand 

(passive) smokers who would also show an increase in the expression of ACE-2 in their bronchi 

(Aliee et al., 2020). Compared with non-smokers, the expression of ACE-2 and TMPRSS2 in 

smokers and patients with chronic obstructive pulmonary disease (COPD) were significantly up-

regulated (Sharif-Askari et al., 2020). 

Overall, there was a significant correlation between aerosol concentration level, ACE-2 

expression, and severity of COVID-19 infection (Paital and Agrawal, 2020). Therefore, the decision-

makers should pay particular attention to the air pollution in areas where COVID-19 is prevalent, and 

appropriate measures should be implemented in order to reduce this air pollution. Smoking promotes 

the expression of ACE-2 and TMPRSS2 in the airway. Therefore, during the pandemic, the control of 
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smoking in public places needs more strict legislation, and non-smoking individuals should be 

advised to avoid proximity to smokers. It may be worthwhile to explore the therapeutic effects of 

recombinant ACE-2 protein in the early stage of COVID-19 infection (Li et al., 2020a). 

 

4. Changes in aerosol pollution during COVID-19 

Since Wuhan announced the implementation of COVID-19 lockdown on January 23rd, 2020, 

China and other regions in the world have taken measures to restrict travel and shut down industry 

and commerce to avoid crowd gathering and reduce the spread of COVID-19. The prevention and 

control measures taken by these countries have greatly reduced the transmission rates of COVID-19 

(Koyama et al., 2020). With the large-scale shutdowns and traffic restrictions, the aerosol pollution 

had a general corresponding decrease in levels (Zhou et al., 2012; Liu et al., 2021; Shi et al., 2021). 

The results of aerosol concentration changes in different regions during the COVID-19 lockdown are 

summarized in Figure 2, which demonstrates the impact of prevention and control measures on 

aerosol pollution. 

As shown in Figure 2, compared with the preceding period of COVID-19 lockdown, the 

average concentration of PM2.5 has decreased by 38% in California (Liu et al., 2020b), 21.8% in Hat 

Yai, Thailand (Stratoulias and Nuthammachot, 2020), 52% in Pearl River Delta (Wang et al., 2021) 

and 41.2% in Wuhan (Sulaymon et al., 2021) during COVID-19 lockdown, and the average 

concentration of PM10 has decreased by 31% in Barcelona, Spain (Tobias et al., 2020), 22.9% in Hat 

Yai, Thailand (Stratoulias and Nuthammachot, 2020) and 33.1% in Wuhan (Sulaymon et al., 2021). 

Compared with the preceding years, PM2.5 and PM10 mass concentrations of 22 cities in India 

decreased by about 43% and 31% during the lockdown (Sharma et al., 2020). The PM2.5 
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concentration in Almaty, Kazakhstan, during the lockdown, is 21% lower than the average level in 

the same period of 2018-2019 (Kerimray et al., 2020). Compared with the same period in the 

previous four years, the pollutants PM10 and PM2.5 in Singapore decreased by 23% and 29%, 

respectively (Li and Tartarini, 2020a). A survey was conducted in 19 countries in the South and 

Southeast Asian region, compared to the same period of 2019, the PM2.5 level decreased by an 

average of 20.25% (Roy et al., 2021). Compared with the same period last year, the PM2.5 

concentration in the regional Level I and Level Ⅱ response periods in the Yangtze River Delta 

region decreased by 33.7% and 29% respectively (Li et al., 2020c).  

The large reduction of human activities has significantly improved air quality in many areas 

during the control of COVID-19. Compared with the pre-lockdown period, the concentrations of 

PM10 (14-20%) and PM2.5 (7-16%) in 597 major cities in the world have decreased significantly (Liu 

et al., 2021). For the areas with more serious air pollution problems, the improvement of the aerosol 

is greater, and the decrease of PM2.5 is greater than that of PM10 (Figure 2). Therefore, the decrease 

of air pollutants in areas with high pre-lockdown levels is more obvious, and PM2.5 is more sensitive 

to emission reduction (Wang et al., 2021). 

Some studies have investigated the reasons for the decrease of atmospheric aerosol 

concentrations. Measures such as city closure and vehicle restrictions greatly reduced the types of 

primary aerosols related to traffic and reduced the levels of air pollution (Liu et al., 2021; Chen et al., 

2021), and at the same time, many factories shut down and stop production, and the emission of the 

secondary industry decreased (Wang et al., 2020c). In Beijing, the vast majority of restaurants were 

closed, and the aerosol emissions of cooking and gas burning decreased by 30-50% on average (Sun 

et al., 2020). The reduction of secondary aerosol species was very small (5-12%) (Sun et al., 2020). 
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These results indicate that the control of anthropogenic emissions will greatly improve air quality, 

but they may not be able to effectively suppress secondary aerosols under stagnant weather 

conditions. 

The studies discussed above are mostly focused on local small-scale cases. Future research 

should consider expanding time and space domains, combining satellite data and monitoring station 

data to better characterize the change of aerosol pollution. Also, meteorological factors need to be 

considered when studying the impact of ambient aerosols (Daniele and Francesco, 2020). The 

improvement of air quality caused by the epidemic prevention measures provide reference for 

policy-makers to formulate measures to reduce aerosol pollution. 

 

5. Concluding remarks 

(1) The relationship between aerosols and COVID-19 can be subdivided into three types; 

human-exhaled aerosols directly transmitting COVID-19; COVID-19 transmitted by ambient 

aerosols; ambient aerosol concentrations decrease as a result of the COVID-19 lockdowns. 

(2) The human-exhaled aerosol produced by breathing, speaking, and sneezing can survive for a 

significant time (3 hours), and the airborne transportation distance can reach 7-8 meters. The 

airborne transmission potential of SARS-CoV-2 must be considered in prevention and control work, 

and the transmission of virus aerosol should be effectively decreased by ventilation, disinfection and 

wearing protective devices. 

(3) Overexposure to ambient aerosols can cause respiratory diseases, and ambient aerosols are 

associated with increased morbidity and mortality by COVID-19. Two mechanisms have been 

discussed in this process. Firstly, SARS-CoV-2 may combine with ambient aerosols from 
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contaminated sites (such as medical waste treatment sites, polluted water bodies and toilet pipes) to 

enter the human body. Secondly, the ambient aerosol can stimulate the expression of ACE-2 and 

TMPRSS2, leading to the increase of SARS-CoV-2 binding sites and the acceleration of infection 

efficiency. The binding mechanism, survival time and residual activity of SARS-CoV-2 in ambient 

aerosols need to be further studied. The infectivity of the virus in ambient aerosols should be further 

researched. 

(4) Due to the epidemic minimizing measures during COVID-19 in numerous locations 

worldwide, traffic emissions and factory emissions were reduced. This has been an opportunity to 

observe the relationship between human factors and air quality. Compared with the same period in 

previous years before the epidemic, aerosol pollution, especially PM2.5, decreased significantly. The 

reduction of aerosols in areas with high air pollution is more obvious, and the levels of PM2.5 are 

more sensitive to emission reduction than PM10. 
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Figures 

 

 

Fig. 1 The relationship between aerosol and SARS-CoV-2 

 

   

  

 

Fig. 2 The decline in concentrations of PM2.5 and PM10 in various regions during COVID-19 lockdown 
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Tables  

Table 1 Comparison of SARS-CoV-2 and SARS-CoV 

 

Properties SARS-CoV-2 SARS-CoV References 

Genus Betacoronavirus Betacoronavirus Lu et al. 2020 

Species 

Severe acute respiratory 

syndrome-related 

coronavirus 

Severe acute respiratory 

syndrome-related 

coronavirus 

Lu et al. 2020 

Size 65-125 nm 80-120 nm Shereen et al. 2020 

The receptor of the 

host cell 
ACE-2（Higher affinity） ACE-2 Giron et al. 2020 

Infection rate Relatively fast Relatively slow Wang et al. 2020a 

Half-life period on 

aerosol 
0.64-2.64 hours 0.78-2.43 hours van Doremalen et al. 2020 

 

 

 

Table 2 Studies showing associations of air quality indicators with the COVID-19 in different regions of the world  

 

Region PM2.5 PM10 NO2 SO2 CO O3 References 

England 
+

（uncertain） 
+ + + +  

Konstantinoudis 

et al., 2020  

Germany +  +   + Bilal et al., 2020 

Italy + + +   + 
Daniele and 

Francesco, 2020 

Milan, Italy + +     Zoran et al., 2020 

California, 

USA 
+    + + Meo et al., 2021 

California, 

USA 
- - - - +  

Bashir et al., 

2020 

USA +      Wu et al., 2020 

Wuhan, 

China 
+ -  - -  

Jiang and Xu, 

2020 

Japan +      
Azuma et al., 

2020 

Japan +      
Seposo et al., 

2020 

Note: ‘+’ stands for promoting effect or positive correlation, ‘-’ stands for negative correlation, and blank space 

represents no research. 

 


