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We combined continuous theta-burst stimulation (cTBS) and resting state (RS)-fMRI
approaches to investigate changes in functional connectivity (FC) induced by right dorso-
lateral prefrontal cortex (DLPFC)–cTBS at rest in a group of healthy subjects. Seed-based
fMRI analysis revealed a specific pattern of correlation between the right prefrontal cor-
tex and several brain regions: based on these results, we defined a 29-node network to
assess changes in each network connection before and after, respectively, DLPFC–cTBS
and sham sessions. A decrease of correlation between the right prefrontal cortex and right
parietal cortex (Brodmann areas 46 and 40, respectively) was detected after cTBS, while
no significant result was found when analyzing sham-session data.To our knowledge, this
is the first study that demonstrates within-subject changes in FC induced by cTBS applied
on prefrontal area. The possibility to induce selective changes in a specific region without
interfering with functionally correlated area could have several implications for the study
of functional properties of the brain, and for the emerging therapeutic strategies based on
transcranial stimulation.

Keywords: functional connectivity, cTBS, resting state fMRI, dorsolateral prefrontal cortex, fronto-parietal network

INTRODUCTION
Brain connectivity has been non-invasively assessed in human
subjects using techniques focused on three general network prop-
erties: anatomical connectivity, functional connectivity (FC), and
response to perturbation/stimulation (1).

Resting state (RS) fMRI is becoming one of the most popular
techniques for assessing FC at rest (2, 3), while non-invasive brain
stimulation methods can be used to probe how brain connectivity
varies in response to an external perturbation. The combination
of these techniques holds great promise for addressing important
clinical issues (4–6).

Different approaches have been used to investigate the effect of
a perturbation on fMRI FC; some studies have been performed to
assess the influence of tDCS on RS-fMRI data (7–10). Other work
focused on the influence of TMS on task-based effective connectiv-
ity (11–14). Just few studies investigated so far the effects of repet-
itive TMS (rTMS) on RS-fMRI. In one study, rTMS was applied
over the left dorsolateral prefrontal cortex (DLPFC), resulting in
distal changes of neural activity within the default mode net-
work (DMN) (15). Similarly, two different frequencies of rTMS
applied over the left posterior inferior parietal lobule (IPL) were
tested to evaluate the effect on the DMN: high-frequency rTMS
decreased functional correlations between cortical DMN nodes,
but not between these nodes and the hippocampal formation.
In contrast, low frequency rTMS increased functional correla-
tions between IPL and the hippocampal formation (16). Another

study tested the effects of rTMS on prefrontal–hippocampal cou-
pling during both a working memory task and at rest. Seeded
FC analyses demonstrated significant effects of rTMS on the pre-
frontal network dynamics in the n-back task that were not evident
during rest (17). All these studies were performed with a strong
working hypothesis, either testing only one resting state network
(RSN) (15, 16) or using coupling analyses within a specified
connection (17). Moreover, all of them compared the effects of
rTMS in two separate sessions performed on different days, which
could have increased the intrinsic variability of the FC measured
by fMRI.

Here, for the first time we compared RS-fMRI data recorded
before and after real continuous theta-burst repetitive stimulation
(cTBS), a powerful protocol, resulting in long-lasting decreases
of cortical excitability (18). In contrast with previous studies, we
conducted a novel network based statistics (NBSs) (19) approach
to include all the most relevant nodes of the areas interconnected
with the stimulated site (the right DLPFC). We chose to stimulate
the right DLPFC, since TMS of this area is known to modulate sev-
eral cognitive functions and has a potential role in treating various
clinical conditions (20, 21).

MATERIALS AND METHODS
The study was approved by the ethics committee of Santa Lucia
Foundation, and written informed consent was obtained from all
subjects before study initiation.
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FIGURE 1 | Experimental set up. RS-fMRI was acquired before and after cTBS stimulation in half of the participants.

We recruited 36 healthy volunteers [m/f= 18/18; mean (SD)
age= 26.88 (3.5) years] with no history of medical or psychiatric
disorders, autonomic dysfunction, or other major clinical condi-
tions. The experimental session included an MRI scan, followed
by either cTBS or sham stimulation, and a post-intervention MRI
scan (Figure 1). Each participant was randomly assigned to either
group, resulting in 18 participants receiving cTBS, and 18 receiving
the sham.

MRI ACQUISITION PROTOCOL
All imaging was obtained using a head-only 3.0 T MR scan-
ner (Siemens Magnetom Allegra, Siemens Medical Solutions,
Erlangen, Germany). The acquisition protocol included the fol-
lowing sequences: (1) a magnetization-prepared rapid gradi-
ent echo (MPRAGE) sequence (TR= 2500 ms; TE= 2.74 ms;
TI= 900 ms; flip angle= 8°; matrix= 256× 208× 176; slab thick-
ness= 1 mm; FOV= 256 mm× 208 mm× 176 mm). (2) A series
of T2* weighted echo planar imaging (EPI) scans, sensi-
tized to blood oxygenation level dependent contrast (BOLD)
(TR= 2080 ms; TE= 30 ms; 32 axial slices parallel to AC–PC
line; matrix= 64× 64; pixel size= 3 mm× 3 mm; slice thick-
ness= 2.5 mm; flip angle= 70°) for RS-fMRI. BOLD EPIs were
collected during rest for a 7 min and 20 s period, resulting in a
total of 220 volumes.

cTBS PROTOCOL
A MagStim Super Rapid magnetic stimulator (MagStim Company,
Whitland, Wales, UK), connected with a figure-of-eight coil with
a diameter of 90 mm was used to deliver cTBS over the scalp site
corresponding to the right prefrontal cortex (F4 electrode Inter-
national 10–20 system). The magnetic stimulus had a biphasic
waveform with a pulse width of about 300 µs. Three-pulse bursts
at 50 Hz repeated every 200 ms for 40 s were delivered at 80% of
the active motor threshold (AMT) over right DLPFC (600 pulses).
AMT was tested over the motor cortex of the right hemisphere.
AMT was defined as the lowest intensity that produced MEPs of
>200 µV in at least 5 out of 10 trials when the subject made a 10%
of maximum contraction using visual feedback (22).

Dorsolateral prefrontal cortex was targeted using a neuronav-
igation system (SofTaxic) to precisely position the coil over the
cortical site, using individual T1-weighted magnetic resonance

imaging volumes as anatomical reference; this technique has been
previously described in detail (23, 24). The stimulation points
were determined before the experiment and were marked on the
adherent plastic cap worn by the subject. To target DLPFC, the coil
was positioned over the middle of the line separating the anterior
and middle thirds of this gyrus, following the algorithm proposed
by Mylius and collaborators (25). According to the anatomical
data reported by Rajkowska and Goldman-Rakic (26), this target
is localized at the junction between BA9 and BA46. This location
is in agreement with meta-analyses of neuroimaging studies on
working memory (27, 28). The center of the coil was positioned
tangentially to the skull with the handle pointing backward angled
at 45° (Figure 1). For sham cTBS, the coil was positioned over the
same scalp site, but angled away so that no current was induced in
the brain.

fMRI PRE-PROCESSING
The RS-fMRI data were processed using MATLAB R2007B (Math-
Work, Natick, MA, USA) and SPM81. The first four volumes
of the functional images were discarded for signal equilibrium
and adaptation of participant to scanning noise. Next, slice tim-
ing and head motion correction were performed. Participants
exhibiting head motion of >2 mm maximum translation of
2° rotation throughout the course of scan were excluded. The
images were then normalized using the EPI template provided
with SPM8.

In-house software was used to remove the global temporal drift
using a third order polynomial fit, the realignment parameters, and
the signal averaged over whole brain voxels. Data were band-pass
filtered (between 0.01 and 0.08 Hz).

SEED-BASED CONNECTIVITY ANALYSIS
Seed-based connectivity analysis (SBA) was performed to iden-
tify the cortical areas functionally connected with the stimulated
region. For each subject the mean time course (TC) of the right
DLPFC was extracted for each subject using the prefrontal cortex
region defined in Harvard Oxford atlas2, available with FSL.

1http://www.fil.ion.ucl.ac.uk/spm/software/spm8/
2http://www.cma.mgh.harvard.edu/
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FIGURE 2 | Brain regions functionally correlated to the right prefrontal cortex used as seed in seed-based analysis. The color bar represents the t -scores.

Each participant’s TC was then used as regressor in a first-level
analysis in SPM8, in order to identify the degree of correlation, for
every voxel in the brain, with the prefrontal region, adjusting for
the motion parameters. Contrast images for positive correlation
were fed into a second level analysis using a one-sample T -Test.
Results were considered significant for p < 0.05 FWE corrected at
voxel level.

NETWORK BASED STATISTIC
The clusters that resulted to be significantly connected to the right
prefrontal cortex (Figure 2) were then defined as the nodes of
the network of interest. Using MarsBaR3, we created 29 spheres,
with a diameter of 8 mm each (see Table 1; Figure 3), centered at
the center of gravity of each of the nodes, from which mean TCs
were extracted to estimate a connectivity matrix for each subject.
The number of rows and columns in this matrix is the total num-
ber of nodes in the network, and the elements are defined as the
correlation coefficient between the TC of each pair of nodes.

Once each participant connectivity matrix was obtained, we
used the NBS toolbox (19)4 to compare the correlation between
each node of the network before and after cTBS, using a paired
T -test design. The false discovery rate (FDR) was used to adjust
for multiple comparisons, with 25,000 permutations. Results
were considered significant for p < 0.05. The same analysis was
performed on the data acquired before and after sham stimulation.

RESULTS
Four participants who received sham stimulation were excluded
due to excessive motion during fMRI, thus resulting in the fol-
lowing two groups: 18 subjects receiving cTBS [m/f= 9/9; mean
(SD) age= 26.72 (3.8) years] and 14 receiving sham stimulation
[m/f= 6/8; mean (SD) age= 27.07(3.6) years].

Seed-based connectivity analysis revealed a specific pattern
of correlation between right DLPFC and several brain regions,
including the right and left prefrontal, parietal, temporal cortex,
precuneus, posterior cingulated cortex, thalamus, caudate nucleus,

3http://marsbar.sourceforge.net/
4http://www.cmtk.org/viewer/documentation/users/tutorials/tut_nbs.html

Table 1 |The table shows the regions used to create the 29-sphere

network, their corresponding Brodmann area and MNI coordinates of

the center of each sphere.

Region Brodmann

area

X Y Z

Cingulate gyrus (posterior division) 2 −34 40

RIGHT

Frontal pole BA10 32 56 6

Intracalcarine cortex BA17 6 −62 12

Middle temporal gyrus (posterior division) BA20 60 −22 18

Paracingulate gyrus (anterior division) BA32 8 44 20

Middle temporal gyrus (temporoccipital part) BA37 62 −50 −10

Supramarginal gyrus (posterior division) BA40 48 −44 50

Frontal pole BA46 30 50 24

Frontal orbital cortex BA47 38 22 −4

Precuneous cortex BA7 8 −66 46

Middle frontal gyrus BA9 38 24 46

Caudate nucleus 12 14 6

Cruz I (medial cerebellum) 10 −82 −28

Cruz II (lateral cerebellum) 32 −72 30

Thalamus 8 −10 6

LEFT

Frontal pole BA10 −32 56 6

Intracalcarine cortex BA17 −6 −62 12

Middle temporal gyrus (posterior division) BA20 −60 −22 18

Paracingulate gyrus (anterior division) BA32 −8 44 20

Middle temporal gyrus (temporoccipital part) BA37 −62 −50 −10

Supramarginal gyrus (posterior division) BA40 −48 −44 50

Frontal pole BA46 −30 50 24

Frontal orbital cortex BA47 −38 22 −4

Precuneous cortex BA7 −8 −66 46

Middle frontal gyrus BA9 −38 24 46

Caudate nucleus −12 14 6

Cruz I (medial cerebellum) −10 −82 −28

Cruz II (lateral cerebellum) −32 −72 30

Thalamus −8 −10 6

Every sphere had an 8 mm radius.
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FIGURE 3 | Spherical ROIs (radius = 8mm) defining the nodes of the network investigated before and after cTBS.

and cerebellum (Figure 2). The corresponding network nodes are
shown in Table 1 and Figure 3. We detected a striking decreased
correlation between the right DLPFC and the right posterior
parietal cortex (Brodmann areas 46 and 40, respectively) after
stimulation (p < 0.05) (Figures 4 and 5). The same analysis per-
formed on the data acquired before and after sham stimulation did
not show any difference among the tested connectivity matrices.

DISCUSSION
In this study, we provide new evidence for the role of RS-fMRI in
detecting changes in brain activity associated with TMS. Through
RS-fMRI it is possible to identify functional connections that
reflect temporal coupling between distant regions. Thus, char-
acterizing the covariance of the BOLD signal in anatomically
distant areas of the brain can be useful to measure the degree
to which the network properties are affected by TMS. Here,
RS-fMRI was carried out before and immediately after TMS to
provide direct measures of the functional organization of the
DLPFC-correlated network and its plastic reorganization induced
by stimulation.

To assess the influence of the perturbation induced by TMS on
FC, we used NBS. It is a novel network based approach to identify
functional correlations between different brain regions known to
be part of a specific pattern of co-activation. This methodology
is based on graph theory, which provides a theoretical framework
to examine complex networks, thus revealing important informa-
tion about their local and global organization (5, 16). NBS was
used after the identification of a specific network of right DLPFC-
correlated regions, in order to restrict the analysis to the nodes
showing functional connections to the stimulation site. Such net-
work was identified using SBA, and it strictly resembles a network
previously described as the right fronto-parietal network (FPN) by
several groups (5, 29–32). Accordingly, we found that DLPFC cTBS
induced a selective modulation of the ipsilateral posterior parietal
cortex. This finding could be interpreted on the basis of the well
known functional interactions strongly linking the activity of the
DLPFC with that of the PPC (33). These two areas are jointly impli-
cated in a variety of cognitive functions and are thereby considered
two main nodes of the FPN. Indeed, throughout the literature,
two strongly lateralized RSNs have consistently been reported, one

FIGURE 4 | 3D graph representing the investigated network. The green
nodes indicate the ROIs whose connectivity (represented by the red edge)
was decreased after stimulation. The radius of each of the red nodes
reflects the node strength (i.e., the sum of the weights of each edge
connected to the node). The thickness of the edges reflect the strength of
correlation between each node. Only connections with correlation
coefficient >0.3 are displayed.

predominantly in the right hemisphere and the other in the left
hemisphere usually with a specular pattern involving the middle
frontal and orbital cortex (BA 6/9/10), the superior parietal cortex
(BA 7/40), the middle temporal gyrus (BA 21), and the posterior
cingulate cortex (BA 23/31) (30). These two networks are known
to be closely coupled in a wide range of cognitive processes, such as
working memory, both in adults (30, 34–36) and in children and
adolescents (37–39), language (40), attention (41–44), and visual
processes (45).

Consistently, recent tDCS literature suggests that low-intensity
electrical stimulation over the DLPFC can result in transient
improvements in a variety of cognitive functions including declar-
ative (46) and working memory (47, 48), planning (49), language
learning (46), attention (50), and decision making (51).

To better understand the substrate of these changes, the inter-
action between the nodes of the FPNs has been investigated using

Frontiers in Psychiatry | Neuropsychiatric Imaging and Stimulation August 2014 | Volume 5 | Article 97 | 4

http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Mastropasqua et al. cTBS induces functional connectivity changes

FIGURE 5 | Investigated network: the red nodes indicate the ROIs whose connectivity was decreased after stimulation.

tDCS. A previous study (8) examined how active tDCS over the
left or right DLPFC in comparison with sham tDCS modulates TC
fluctuations within and across the DMN and the anti-correlated
network (AN) on RS-fMRI. One of the main results emerg-
ing from this work is that active anodal tDCS over the DLPFC
results in a stronger temporal FC between prefrontal and pari-
etal regions, supporting our current findings. Similar results were
obtained by Keeser et al. (7), who measured significant changes in
regional brain connectivity for nodes of the DMN and the right
and left FPNs. Such changes were detected after DLPFC–tDCS
both, close to the primary stimulation site, and in connected brain
regions.

On the other hand, the effects of TMS (as opposed to tDCS)
have been mainly evaluated in combination with task-active fMRI,
instead of RS-fMRI. Only recently, a number of studies attempted
to assess the effect of TMS on FC at rest (11, 13–16, 52, 53). Most
of these works were performed with a strong working hypothe-
sis, either testing only one RSN (15, 16) or using coupling analyses
within a specified connection (17). Crucially, all of them evaluated
the effects of rTMS by comparing post-stimulation vs. post-sham
data recorded on separate days, introducing a bias due to the
intrinsic variability of RS-fMRI. In contrast, in order to reduce
the effect of intrinsic individual variability, we compared for the
first time RS-fMRI data recorded within the same session before
and after TMS, with a short interval between MRI sessions.

Our data indicate a selective influence of right DLPFC–cTBS
on the ipsilateral posterior parietal cortex, while no connectiv-
ity change was detected after sham stimulation. As it is known
that cTBS is able to induce prolonged cortical inhibition (18), the
decreased correlation between BA46 and BA40 we observed after
stimulation could be explained by two alternative hypotheses: (i)
cTBS is able to induce cortical inhibition just in the stimulated
site with a consequent disruption of the co-activation of the two
areas; (ii) the inhibition of cortical activity occurs immediately
in the stimulation site, subsequently spreading to distant con-
nected area. The propagation of inhibitory signal at microscopic
level induces a de-synchronization of normal coupling activity
of the areas involved. So the de-coupling of neuronal activity
we observed through the BOLD signal could reflect an undergo-
ing mechanism of signal propagation. Thus, we hypothesize that

cTBS does not solely produce focal effects by selectively affecting
an isolated patch of cortex. Rather, target sites should be consid-
ered as nodes within a widespread network of interacting brain
regions, where perturbing or boosting processing of one element
can also influence several others. We can only speculate on why
we found a selective modulation of the DLPFC–PPC connec-
tion. The DLPFC and PPC neuronal assemblies have a strong
functional coupling that could be more sensible to an external
perturbation such as that induced by the low-intensity cTBS pro-
tocol applied in the current study (33). However, it is likely that by
simply increasing the intensity of the magnetic field or changing
the frequency of stimulation it could be possible to affect the cou-
pling among other interconnected nodes. Notably, recent evidence
suggests that an individual approach based on FC MRI could pro-
vide the most reliable approach to detect the effects of DLPFC
TMS (1, 54).

Our results could also have several implications for clinical
applications, as it has been demonstrated the role of rTMS of
the DLPFC in the treatment of major depressive disorder (MDD).
This therapeutic effect can be achieved by either excitatory stimu-
lation of the left (52, 55–57) or inhibitory stimulation of the right
DLPFC (58–60). A recent meta-analysis study conducted by Chen
and collaborators (20), demonstrated that, despite the compara-
ble efficacy of both methodology, the latter (inhibitory TMS) may
be a more acceptable treatment for MDD than the former (exci-
tatory TMS), based on patients reporting less headaches, and on
the decrease risk of inducing adverse events such as seizures (61).
The present results could also be important for other conditions
in which the non-invasive modulation of the FPN can provide
notable clinical improvements, such as the case of post-stroke
hemispatial neglect (62).

In conclusion, our findings provide new insights into the
mechanisms of stimulation-induced brain plasticity by demon-
strating that the network communication at rest shapes the brain
reorganization induced by cTBS. The use of TMS and RS-fMRI
allows to characterize both local (i.e., in the cortical tissue directly
under the TMS coil) and remote (i.e., distant from the origi-
nal cortical target site) effects of TMS in more detail, leading to
a better understanding of TMS-induced modulations in neural
processing.
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