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Abstract
Objectives
To apply advanced diffusionMRI methods to the study of normal-appearing brain tissue in MS
and examine their correlation with measures of clinical disability.

Methods
Amulti-compartment model of diffusion MRI called neurite orientation dispersion and density
imaging (NODDI) was used to study 20 patients with relapsing-remitting MS (RRMS), 15
with secondary progressive MS (SPMS), and 20 healthy controls. Maps of NODDI were
analyzed voxel-wise to assess the presence of abnormalities within the normal-appearing brain
tissue and the association with disease severity. Standard diffusion tensor imaging (DTI)
parameters were also computed for comparing the 2 techniques.

Results
Patients with MS showed reduced neurite density index (NDI) and increased orientation
dispersion index (ODI) compared with controls in several brain areas (p < 0.05), with patients
with SPMS having more widespread abnormalities. DTI indices were also sensitive to some
changes. In addition, patients with SPMS showed reduced ODI in the thalamus and caudate
nucleus. These abnormalities were associated with scores of disease severity (p < 0.05). The
association with the MS functional composite score was higher in patients with SPMS com-
pared with patients with RRMS.

Conclusions
NODDI and DTI findings are largely overlapping. Nevertheless, NODDI helps interpret
previous findings of increased anisotropy in the thalamus of patients withMS and are consistent
with the degeneration of selective axon populations.
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The factors triggering the transition from relapsing-remitting
MS (RRMS) to secondary progressive MS (SPMS) are still
largely unknown. The time to transition and the degree of
long-term disability show only limited correlation with white
matter (WM) lesion number or volume,1,2 suggesting that the
accumulation of tissue damage outside of macroscopic lesions
contributes to the determination of clinical disability, partic-
ularly in SPMS.1,3–5 Damage to the normal-appearing WM
(NAWM) has been extensively studied using quantitative
MRI techniques,3,6–8 and particularly diffusionMRI (dMRI).1,8

dMRI indirectly measures WM orientation and integrity by
probing the random motion of water molecules within tissue.8

The most popular model of diffusion, diffusion tensor imaging
(DTI),9 assumes a single water compartment and a dominant
tissue orientation per voxel. The indices derived from this
model, and in particular mean diffusivity (MD) and fractional
anisotropy (FA), have been used as surrogate measures of
microstructural tissue change, although their specificity is
limited.8 Gray matter (GM) damage including lesions in the
cortex and subcortical structures is a prominent aspect of MS
pathology,2,10–13 which might be associated with disease
progression. Because of the structure of GM, DTI is less
sensitive to changes occurring within this tissue, where par-
tial volume effects with CSF (in the cortex) can also act as
a confound. Neurite orientation dispersion and density im-
aging (NODDI)14 was recently proposed to overcome the
limitations of DTI and to capture the morphology of den-
drites and of axons. The NODDI model is a simplified ver-
sion of a diffusion model of neurite morphology,15 shown to
correlate well with histologic analyses of neuropil orientation
in vitro. NODDI was designed to work with data acquired
within a clinically feasible scan time, thus enabling clinical
applications. NODDI assumes that each MRI voxel may
contain CSF and tissue and that the tissue itself comprises
intra- and extracellular water. The main parameters derived
from NODDI are neurite density index (NDI), quantifying
neurite concentration, and neurite orientation dispersion in-
dex (ODI).14 The intracellular component of NODDI is
designed to be representative of both axons and dendrites, thus
providing an improved description of GM microstructure. In
addition, NODDI enables changes to tissue density and tissue
ODI (both expressed by FA changes when using DTI) to be
disentangled, ultimately offering superior sensitivity to tissue
changes. This ability to distinguish between neurite loss and
changes to fiber arrangement can shed light on the mecha-
nism underpinning the pathology observed in MS brains. A

recent postmortem study16 highlighted significant changes
in ODI within spinal cord lesions, supported by histopa-
thology. Therefore, we hypothesize that reduced NDI
should reflect decreased axonal and myelin density, whereas
changes to ODI could reflect secondary fiber degeneration,
but also morphological changes to single axons in the WM,
and altered dendritic arborization in the GM. Initial obser-
vations in relatively small MS cohorts suggest that NDI is
reduced in both lesions and NAWM, whereas changes in
ODI can occur in both directions.17–19 This study aimed to
identify MRI-derived hallmarks to distinguish between
patients with RRMS and SPMS, exploiting the close re-
lationship between NODDI metrics and brain microstruc-
ture. The main hypothesis was that SPMS would present
more widespread changes in both NDI and ODI and that
such changes would involve both the white and the GM. We
first compared the ability of NODDI indices to characterize
tissue abnormalities inMS brains with those of standard DTI
indices, and we assessed the relationship between NODDI
metrics in the GM and clinical scales. Ultimately, we tested
NODDI for its potential ability in clarifying the mechanisms
beyond relapsing-remitting and secondary progressive phe-
notypes and in providing clinical utility for biomarking MS
progression. Our expectation was that specific patterns of
ODI and NDI changes in the GM might help characterizing
the pathophysiologic substrate for the transition from RR to
SPMS.

Methods
Participants
Twenty patients with RRMS (mean ± SD, age 42.9 ± 6.1,
male/female 8/12) and 15 patients with SPMS (mean ± SD,
age 50.7 ± 7.2, male/female 8/7)20,21 were included. No pa-
tient experienced any clinical relapse or underwent any ste-
roid treatment over the 3 months preceding recruitment.
Twenty age- and sex-matched healthy participants (mean ±
SD age 44.5 ± 11.7, male/female 8/12) were also recruited
and served as healthy controls (HCs). All patients were rated
with the Expanded Disability Status Scale (EDSS) score22 and
the MS functional composite (MSFC) score.23 For each
patient, the z-scores of the MSFC subtests were created with
reference to the control participants. Patients were defined
as impaired when their score was at least 2 SD below that of
HC. Patients underwent MR scanning within 1 week after
enrolment.

Glossary
ANT = advanced normalization tool;DTI = diffusion tensor imaging; EDSS = Expanded Disability Status Scale; FA = fractional
anisotropy; FLAIR = fluid-attenuated inversion recovery; FOV = field of view; GM = gray matter; HARDI = high angular
resolution diffusion imaging; HC = healthy control; MD = mean diffusivity; MSFC = MS functional composite; NAWM =
normal appearing WM; NDI = neurite density index; NODDI = neurite orientation dispersion and density imaging; ODI =
orientation dispersion index; RRMS = relapsing-remitting MS; SPMS = secondary progressive MS; TE = echo time; TI = inversion
time; TR = repetition time; TSE = turbo spin echo; WM = white matter.
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Standard protocol approvals, registrations,
and patient consents
This study was approved by the local Ethics Committee of the
Santa Lucia Foundation. All participants provided written
informed consent before study initiation.

MRI acquisition
MRI data were acquired at 3T (Philips Achieva, Philips, Best,
The Netherlands), including (1) dual-echo turbo spin echo
(TSE) (TR = 2,000 ms, TE1 = 10 ms, TE2 = 80 ms; TSE
factor = 10; matrix = 400 × 250 × 28; slice gap = 1mm; field of
view [FOV] = 230 × 184 × 139 mm3; slice thickness = 4 mm;
total number of slices = 28); (2) fast fluid-attenuated in-
version recovery (FLAIR) (repetition time [TR] = 11,000ms,
echo time [TE] = 125 ms, inversion time [TI] = 2,800 ms;
TSE factor = 31; matrix = 288 × 211 × 28; slice gap = 1 mm;
FOV = 230 × 192 × 167 mm3; slice thickness = 5 mm; total
number of slices = 28); (3) T1-weighted inversion-recovery
fast field echo (TR = 11 ms; TE = 5.3 ms; Flip angle = 8°;
matrix = 256 × 228 × 190; slab thickness = 0.9 mm; FOV =
230 × 192 × 167 mm3); and (4) 2-shell high angular resolu-
tion diffusion imaging (HARDI) scheme, optimized for the
NODDI protocol.14 The optimized protocol consists of 1
shell with 30 gradient directions at b = 711 s/mm2 and the
other with 60 directions at b = 2,855 s/mm2. The HARDI
shells were acquired using diffusion-weighted spin-echo echo-
planar imaging (TR = 12.5 s, TE = 91 ms, isotropic resolu-
tion = 2.3mm3, SENSE reduction factor = 2). Nine b = 0 images
were also acquired, with the same imaging parameters as the
dMRI. The scan time for the NODDI component of this
protocol was approximately 20 minutes.

Lesion volume assessment
T2-hyperintense lesions were identified by the consensus
of 2 expert observers (B.S. and M.B.) on FLAIR and T2-
weighted images, for every patient, and outlined on FLAIR
scans using semi-automated local thresholding contouring
software (Jim 5.0; Xinapse System, West Bergholt, Essex,
UK, xinapse.com/), yielding the total lesion volume. A
lesion mask was then created for each patient by assigning
a value of 1 to every voxel corresponding to a lesion and
a value of 0 elsewhere. A diffeomorphic transformation was
computed using the advanced normalization tools (ANTs)
24 to warp FLAIR images into standard space, and the same
transformation was then applied to the corresponding le-
sion mask. A probabilistic lesion map, indicating the per-
centage of patients with a lesion in a given area, was
obtained by combining every patient’s lesion mask in
standard space (figure 1, A). Then, a population lesion
mask was created by thresholding the probabilistic lesion
mask at 10% and binarizing it (i.e., setting the value equal
to 1 for voxels where at least 10% of the patients had
a lesion and 0 elsewhere). This threshold was chosen to
match with previous studies.25 The population lesion mask
was subtracted from the statistical parametric mapping
(fil.ion.ucl.ac.uk/spm/) brain mask, and the resulting im-
age was used to confine the statistical analysis of quanti-
tative data (i.e., NODDI) to the normal-appearing brain
tissue, thus excluding the areas where at least 10% of
patients had lesions. Figure 1, B shows the binary mask
used for the analysis (thresholded at 10%) compared with
the lesion distribution across all patients (i.e., thresholded
at 1%).

Figure 1 Lesion distribution in patients

(A) Probabilistic lesion map showing the absolute number and percentage (in brackets) of patients with MS with a lesion in a given area. The map is overlaid
onto a T1-weighted image in Montreal Neurological Institute space. (B) Binarized lesion mask after thresholding at 10% (purple) and 1% (blue). This
comparison shows the extent of tissue included in the analysis, which was partially affected by macroscopic lesions.
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Computation of the NODDI maps
For every participant, dMRI data were corrected for eddy cur-
rent effects and involuntary movement by affine coregistration
using the FLIRT tool (part of the FMRIB Software Library;
FSL21), as described elsewhere.26 NODDI fitting was then
performed using the accelerated microstructure imaging via the
convex optimization (github.com/daducci/AMICO/)27 tool-
box, which is a linear implementation of theNODDImodel. To
obtain DTI maps comparable with the existing literature, we
used the inner shell (b = 711) and the b0 images to estimate the
tensor by multivariate linear regression in CAMINO (camino.
cs.ucl.ac.uk). MD and FA maps were derived for every partici-
pant. The resulting NODDI (NDI and ODI) and DTI (FA and
MD) maps were normalized into standard space, warping the
skull-stripped mean b0 images to the skull-stripped T2 MNI
atlas available in FSL (JHU-ICBM-T2-2 mm) and then ap-
plying the same nonlinear transformation to the NODDI and
DTI maps. To compute this space transformation, we used the
diffeomorphic transformations algorithm as implemented by
ANTs,21 which is able to compensate for the spatial distortions
shown by the diffusion-weighted images. Finally, the normal-
ized images were smoothed using an 8 mm3 Gaussian kernel
before statistical analysis.

Statistical analysis
The statistical analyses on demographic, clinical, and con-
ventional MRI data were performed using SPSS 21.0 for
Windows (SPSS Inc). Chi-square tests and one-way analyses
of variance with post hoc Tukey comparisons (to assess
specific group differences) were used to compare all groups
for sex and age, respectively. Disease duration, MSFC score,
and T2-L volume were compared between patient groups
using 2-sample t tests (2-tailed). Between-group EDSS score
differences were assessed using a Kruskal-Wallis test. Voxel-
wise statistical analyses of MRI data were performed using
SPM8. Between-group comparisons of NODDI (NDI and
ODI) and DTI (MD and FA) metrics were performed using 4
separate full factorial designs, in which 3 groups weremodeled
(HC, RRMS, and SPMS). Age and sex were always added as
covariates of no interest. T-contrasts were used for testing
between-group differences. Linear correlation was used to
assess the potential relationship between each clinical score
(EDSS and MSFC) and NODDI (NDI and ODI) and DTI
(FA and MD) metrics in the brain. First, we tested for the
presence of any group-by-score interaction, by modeling 2
groups (RRMS and SPMS). If no significant interaction was
present, the analysis was repeated by grouping all patients
together. If a significant result was found, scatterplots of the
diffusion index averaged across all significant voxels vs the
clinical scores were examined to support the interpretation.
All voxel-wise analyses were adjusted for age and sex, explicitly
masking for normal-appearing brain tissue (i.e., using the 10%
thresholded mask). For detection of results on whole-brain
level, we always used a cluster-forming threshold of p = 0.001,
with cluster-level whole brain corrected (family wise error)
p < 0.05 as the statistical significance threshold. These
thresholds are based on current recommendations.28

Results
Demographic, clinical, and conventional
MRI data
Participants’ demographic, clinical, and conventional MRI
(lesion volume) data are reported in table. There were no
significant differences between HC and either patient group
with respect to age and sex distribution. As expected, patients
with SPMS were older and more disabled than those with
RRMS and had higher T2-L volumes.

Voxel-wise NDI comparisons
Patients with RRMS compared with HC showed bilateral
reductions of NDI in the tail of the hippocampus, fornix and
fimbria, cingulate and lingual gyri, corpus callosum, thalamus,
cerebellum, and brainstem (figure 2, A, upper panel, in red).
More extensive NDI reductions were observed in patients
with SPMS compared with HC involving the pre- and post-
central gyri, inferior and orbitofrontal gyri, operculum, supe-
rior, middle and inferior temporal gyri, supramarginal and
angular gyri, cuneus and precuneus, insula, lingual gyrus,
parahippocampal and fusiform gyri, hippocampus, fornix and
fimbria, corpus callosum, paracingulate and cingulate gyri,
thalamus, internal/external capsule, caudate, putamen, cere-
bellum, and brainstem (figure 2, B, upper panel, in red).
Despite at a lesser extent, a similar pattern of NDI reductions
was found when comparing patients with SPMS with patients
with RRMS (figure 2, C, upper panel, in red). No areas of
increased NDI were found in either patient group compared
with HC and in patients with SPMS compared with patients
with RRMS.

Voxel-wise ODI comparisons
Across the brain, we observed areas of both increased and
reduced ODI in patients with MS compared with HC.
Patients with RRMS showed significant ODI increase in the
left supramarginal and angular gyri, in the left cingulate and
paracingulate gyri, in the left corpus callosum anteriorly, in
the right cingulate and precuneus gyri, and in the fornix,
thalamus, and cerebellum bilaterally (figure 2, A, bottom row,
in red). Patients with SPMS showed a more widespread and
bilateral pattern of ODI increase including all these anatomic
regions plus the orbitofrontal gyrus, operculum, hippocampal,
parahippocampal and fusiform gyri, insula, caudate, and
brainstem (figure 2, B, middle row, in red). Patients with
SPMS compared with HC showed also significant ODI
reductions in the caudate nucleus, in the anterior and poste-
rior limb of the internal capsule, and in the thalamus bi-
laterally (figure 2, B, bottom row). When looking at the
differences between patient groups, increased ODI was ob-
served in patients with SPMS in the hippocampus and para-
hippocampus, in the superior and middle temporal gyri,
cingulate and paracingulate gyri, and in the anterior corpus
callosum bilaterally (figure 2, C, middle row, in red). In ad-
dition, patients with SPMS compared with patients with
RRMS showed significant ODI reductions in the right thal-
amus (figure 2, C, bottom row).
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Voxel-wise DTI differences across groups
Between-group differences in FA and MD that are shown in
figure 2 are overlaid onto the same sections as the NODDI
parameters, to ease the comparison. For all the categorical
comparisons, MD increases were broadly overlapping with
NDI reductions, whereas reductions in FA-mapped areas
were ODI was found to be increased. No areas of increased
FA in either patients with RRMS or patients with SPMS
compared with HC and in patients with SPMS compared with
patients with RRMS were found.

NDI correlations
When looking at the relationship between EDSS or MSFC
scores and NDI, no significant interaction for both EDSS and
MSFC score by group (RRMS vs SPMS) was observed. By
contrast, significant correlations were found between NDI
and EDSS, as well as MSFC scores across all patients withMS.
The areas of significant correlation are shown in figure 3, A (in
red for EDSS and green for MSFC). NDI was found to cor-
relate negatively with EDSS and positively with MSFC scores
in several areas of the brain. These clusters, which were largely
overlapping (yellow areas in the figure), but were larger for
the MSFC scores, are localized in the pre- and postcentral
gyri, inferior and orbitofrontal frontal gyri, operculum, supe-
rior, middle and inferior temporal gyri, supramarginal and
angular gyri, cuneus and precuneus, insula, lingual gyrus,
parahippocampal and fusiform gyri, hippocampus, fornix and
fimbra, corpus callosum, paracingulate and cingulate gyri,

thalamus, internal/external capsule, caudate, putamen, cere-
bellum, and brainstem. The scatterplots suggest that such
correlations are driven by the SPMS group.

ODI correlations
No areas of significant score by group interaction were
found for EDSS and ODI. Increased EDSS scores were as-
sociated with increased ODI, bilaterally, in the cingulate
gyrus, precuneus, insula, corpus callosum, cerebellum, and
brainstem, other than the left superior and middle temporal
gyri and the right orbito-frontal gyrus (figure 3, B). In ad-
dition, reduced ODI changes in the right caudate nucleus
and thalamus were associated with increased EDSS scores
(figure 3, C). To support the interpretation of these results,
scatterplots of the average ODI from the areas of significant
association vs the clinical scores are presented alongside.
When looking at the relationship between MSFC scores and
ODI, a significant interaction for the MSFC score by group
(RRMS vs SPMS) was observed in the right thalamus, in-
dicating an association between increased MSFC scores and
increased ODI values in SPMS, which is not present in
patients with RRMS (figure 3, C). By contrast, reduced ODI
values were associated with increased MSFC across all
patients in the anterior portion of caudate and cingulate gyri,
as well as in the left insula, orbito-frontal, superior, and
medial temporal gyri (figure 3, B). Again, the scatterplots
indicate that these correlations are mainly driven by SPMS
(figure 3, B).

Table Participants’ demographic, clinical, and conventional MRI characteristics

HC (n = 20)
RRMS
(n = 20)

SPMS
(n = 15)

Group comparisons

HC vs RRMS HC vs SPMS RRMS vs SPMS

Sex, M/Fa 8/12 8/12 8/7 χ(2) = 0.789, p = 0.674b

Age, yc 44.5 ± 11.7 42.9 ± 6.1 50.7 ± 7.2 F(2,54) = 3.689, p = 0.032d

t = 1.600; p = 0.834;
95% CI = −5.12 to 8.32e

t = −6.283;
p = 0.102; 95%
CI = −13.55 to 0.98e

t = −7.883; p = 0.030;
95% CI = −15.15 to −0.62e

Disease duration, yc — 10.3 ± 8.2 19.9 ± 9.5 — — t(33) = −3.178; p = 0.003;
95% CI = −15.67 to −3.44f

EDSSg — 2.0 (1.0–4.0) 5.0 (3.5–6.5) — — KW(1) = 22.636; p < 0.001h

MSFCc — −0.4 ± 1.3 −4.4 ± 2.0 — — t(33) = 6.889; p < 0.001;
95% CI = 2.93 to 5.18f

Impaired participantsa — 3 (15%) 13 (87%) — — χ(1) = 24.792; p < 0.001b

T2-L volume, mLc — 6.0 ± 6.5 27.0 ± 19.0 — — t(33) = −4.099; p = 0.001;
95% CI = −30.23 to −11.72f

Abbreviations: HC = healthy control; RRMS = relapsing-remitting MS; SPMS = secondary progressive MS.
95% CI = 95% CI for the size of each test effect, expressed as lower and upper bound, respectively.
a Value are expressed as number (%).
b Group comparisons were performed with χ2 tests.
c Value are expressed as mean ± SD.
d Group comparisons were performed with ANOVA.
e Group comparisons were performed with post hoc Tukey HSD tests.
f Group comparisons were performed with independent-sample t tests.
g Value are expressed as median (minimum–maximum).
h Group comparisons were performed with Kruskal-Wallis tests.
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Figure 2 Voxel-wise differences across groups

NODDI indices are shown in red, DTI indices in green, and the overlap in yellow. NDI/MD and ODI/FA are shown on the same overlay, respectively.
(A) Differences between HC and RRMS. (B) Differences between HC and SPMS. (C) Differences between RRMS and SPMS. Significant clusters are shown at
p value < 0.05 (FWE corrected), overlaid onto a template in Montreal Neurological Institute space. DTI = diffusion tensor imaging; FA = fractional anisotropy;
FWE = familywise error; HC = healthy control; MD=mean diffusivity; NDI = neurite density index; NODDI = neurite orientation dispersion and density imaging;
ODI = orientation dispersion index; RRMS = relapsing-remitting MS; SPMS = secondary progressive MS.
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DTI correlations
Significant associations with clinical scores were found also for
DTI indices. In particular, disability was mainly associated
with FA of the corpus callosum, inferior longitudinal fascic-
ulus, and orbito-frontal WM. MD showed broader areas of
association, including medial-temporal structures, insular
cortex, thalamus, and parietal lobe. These are shown in the
figure e-1 (links.lww.com/NXI/A76).

Data availability
All relevant data are available on request addressed to the
corresponding author.

Discussion
So far, NODDI has been applied to several neurologic and
psychiatric conditions, including Alzheimer disease,29 focal

cortical dysplasia,30 idiopathic Parkinson disease,31 and psy-
chosis.32 One of the main advantages of NODDI over DTI is
in its ability to disentangle the contributions of axonal/
dendritic density and fiber orientation to microscopic
changes, by contrast both represented by FA changes. As
discussed below, NODDI thus allows a better definition of the
neurobiological substrate underlying brain tissue damage in
MS and, possibly, its relationship with clinical aspects of the
disease. Our data indicate the presence of diffuse brain ab-
normalities in patients with MS, with RRMS showing only
localized changes and patients with SPMS showing a signifi-
cantly more widespread involvement, particularly in the GM.
Both DTI and NODDI indices have proven to be sensitive to
these changes; however, NODDI provides valuable insights
into the likely nature of these abnormalities. GM pathology
(including demyelinated cortical lesions and diffuse cortical
and deep GM degeneration) has emerged as an important
feature of long-term disability and disease progression in

Figure 3 Areas of significant association

Areas of significant association between NODDI metrics and EDSS (in red) and MSFC (in green). The overlap is shown in yellow. (A) Areas of significant
association between NDI and EDSS/MSFC. (B) Areas of significant association between ODI and EDSS (positive) and MSFC (negative). (C) Areas of significant
correlation between ODI and EDSS (negative) and MSFC (positive). For each panel, the scatterplot shows the trends for RRMS and SPMS separately. In all
scatterplots NDI, ODI, and FA are averaged across all significant voxels, ranging from 0 to 1, and are dimensionless. Significant clusters are shown at p value <
0.05 (FWE corrected) overlaid onto a template in Montreal Neurological Institute space. EDSS = Expanded Disability Status Scale; FA = fractional anisotropy;
FWE = family wise error; MSFC = MS functional composite; NDI = neurite density index; NODDI = neurite orientation dispersion and density imaging; ODI =
orientation dispersion index; RRMS = relapsing-remitting MS; SPMS = secondary progressive MS.
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MS.33 Indeed, pathologic evidence suggests that the WM is
predominantly involved in inflammatory demyelination of
RRMS, whereas cortical and subcortical GM is predominantly
involved in neurodegenerative processes of SPMS.33 We
found that patients with SPMS exhibited a widespread loss of
neurite integrity (i.e., decrease of NDI) along with a loss of
fiber coherences (i.e., an increase of ODI) in the GM (cortical
and subcortical). Conversely, neurite/fiber abnormalities in
the GM of patients with RRMS were less extensive. This fits
with the hypothesis that GM pathology is subclinical in the
early RR phase of MS, but dominates the clinical picture of
SPMS by causing irreversible disability.5,12,34 In concert with
our results, a recent postmortem study35 evaluated axonal and
dendritic alterations in different cortical brain regions
(i.e., insular, fronto-temporal, and occipital lobe) of patients
with MS and long disease duration. The authors found
a widespread loss of dendritic spines across the whole GM and
of cortical axons within the demyelinated GM.35 Changes to
the status of local microglia have also been proposed as
a possible contributor to the observed dMRI changes in the
GM.12,36 This is still a matter of debate because a recent
postmortem study has failed to demonstrate a significant
presence of activated microglia in the cortex, thus suggesting
that inflammation is not prominent in GM lesions.37 Consis-
tent with that, a recent study combining 7T postmortem MRI
data with histopathologic examination38 was designed specif-
ically to test the hypothesis that microglial activation may
explain the increased FA in cortical GM lesions and concluded
that such an explanation is unlikely. Based on comparison with
histology, it was recently shown that NDI reflects both axonal
and myelin loss,16 whereas ODI reflects morphologic changes
to axons and dendrites. Our results suggest that the changes to
ODI are confined to specific regions of the brain and might
have a relationship with disease progression. We found both
increased and decreased ODI in different areas of the brain.
This apparently counterintuitive result can be explained by the
fact that ODI reflects a complex combination of structural
changes, which range from axonal loss, dendritic pruning, and
tissue reorganization. Some of these changes will result in an
increase, whereas others in a decrease of this parameter. This
will also be partially determined by the original tissue config-
uration (i.e., whether the area of the change is characterized by
a high or low dispersion in the healthy brain). In other words,
areas that in the normal brain exhibit a high ODI, such as the
GM, are more likely to show a decrease inODI, if, for example,
they experience a loss of dendrites. By contrast, highly co-
herent WM fibers might show an increase in ODI after tissue
disruption. A range of other scenarios can also occur. Indeed,
we observed a significantly reduced ODI in the caudate nuclei
and thalami in patients with SPMS when compared with both
HC and patients with RRMS.More importantly, in the areas in
which ODI was reduced, this same parameter was strictly as-
sociated with patients’ EDSS and MSFC scores. Both these
associations were significant in patients with SPMS but not in
those with RRMS (in the case of MSFC, with a significant
interaction). Although we can only speculate on the pathology
underpinning these findings, we argue that the lower neurite

ODI in the caudate nuclei and thalamus of patients with SPMS
can be due to targeted degeneration of a single axon pop-
ulation, which would result in diminished dispersion. Al-
though we did not find evidence of increased FA in the same
area, this might be due to the fact that FA reflects both loss of
NDI and changes in dispersion, which might cancel each other
out.39 Other authors have previously reported increased FA in
the thalamus and basal ganglia of patients with MS,12,40 as
discussed below. The presence of profound neuronal loss in
the thalamus and other deep GM nuclei has already been
previously implicated in MS pathophysiology, often in asso-
ciation with clinical measures of disability.2 This neuronal loss
in the deep GM could, in part, be explained by anterograde
and/or retrograde neuronal degeneration due to lesions within
connecting fiber tracts.34,41 With respect to diffusion anisot-
ropy, the caudate nucleus and the thalamus are characterized
by differing structures: the cells in the caudate (cell bodies and
dendrites) tend to show near-isotropy at the voxel scale,
whereas the presence of myelinated fibers between thalamic
nuclei tend to result in higher anisotropy of the latter structure.
The caudate nucleus receives information from multiple cor-
tical regions and transmits it via the globus pallidus and the
thalamus back to the neocortex,40,42,43 thus exhibiting a large
ODI. If the fibers that connect cortical areas with these sub-
cortical structures are selectively affected by Wallerian de-
generation or neuronal dysfunction (diaschisis), this could
result in decreased ODI. Such an interpretation has been
previously suggested by Ciccarelli et al.,40 who showed a par-
adoxical increase in FA of the normal-appearing basal ganglia
(caudate and putamen) along with a MD reduction in patients
with MS. These authors excluded a contribution from gliosis,
which would have caused a more marked tissue disorganiza-
tion (i.e., reduced anisotropy and increased T2) and attributed
this apparently paradoxical finding to axonal degeneration due
to fiber transection in remote focal MS lesions. Later on, other
authors also reported paradoxical increases of tissue anisot-
ropy in the basal ganglia and in the thalamus of patients with
MS, together with correlations with scores of disease
severity.2,10,12,36 A recent study12 speculated that an increase in
FA of both caudate and thalamic nuclei might reflect pro-
gressive GM degeneration in patients with RRMS and SPMS
and that this measure might constitute a sensitive biomarker of
specific pathologic processes, such as the loss of dendrites. The
increased specificity of NODDI confirms these earlier spec-
ulations and suggests that such pathologic processes might be
closely associated with disability, specifically in SPMS. As
a consequence, deep GM ODI might provide a valuable bio-
marker, and its ability to predict the risk of transition from
RRMS to SPMS should be evaluated with longitudinal designs.

This study also suffers from a series of limitations. First, we
chose to exclude from our analysis voxels where at least 10%
of the patient cohort had a lesion. On the one hand, this led to
the exclusion of a large proportion of the WM, which might
explain the specific location of the changes we found. On the
other hand, by not excluding all the lesions, we are unable to
draw conclusions about the independent contributions of
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lesions and NAWM to the abnormalities we detected. One
possible way to assess this would be to include the total lesion
load as an additional covariate to our clinical correlation
analysis. However, in this heterogeneous patient cohort, le-
sion load and disability are highly likely to be correlated
(SPMS tends to have a higher lesion load), and therefore,
adding T2L volume as a covariate is bound to account for
a large part of the variance without necessarily informing the
underlying processes. Another potential confound is atrophy.
Partial volume with CSF can bias the voxel-wise comparison
of dMRI parameters; however, as NODDI models separately
the isotropic component of diffusion (free water), it should be
less sensitive to atrophy than DTI. To ensure that atrophy was
not the main driver for our findings, we repeated the analysis
adjusting for GM volume. As expected, the results were vir-
tually identical (figure e-2, links.lww.com/NXI/A76). Al-
though NODDI arguably provides advantages compared with
DTI, its limitations must also be considered. Similar to all
models, it provides a simplified representation of tissue
complexity, and to enable the use of a clinically friendly ac-
quisition time, it makes a series of assumptions, which might
not always hold true.44 Despite this, increasing evidence
supports the concordance of NODDI with histology.16 Our
data show widespread microscopic abnormalities in the GM
of MS brains and support the notion that different substrates
(i.e., neuropil, axons, dendrite proliferation, and connections)
are likely to contribute to neurodegenerative progression of
disease and global disability of the patients. GM abnormalities
are more prominent in SPMS than RRMS and correlate
strictly with patients’ clinical disability. Although confirmation
from larger studies is needed, this indicates that NODDI may
provide reliable information of prognostic value in MS and
might in future be used for clinical trial monitoring and,
hopefully, for clinical routine. This will be facilitated by the
advent of increasingly faster acquisition schemes, such as
those based on simultaneous multislice.45 The changes we
observed in the basal ganglia and in the thalamus might result
from the selective degeneration of a single axonal population.
Future work should focus on relating NODDI changes di-
rectly with histopathologic findings and comparing them with
other, complementary, MRI contrasts.

Authors contributions
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