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Objective markers of disease sensitive to the clinical activity, symptomatic progression,

and underlying substrates of neurodegeneration are highly coveted in amyotrophic lateral

sclerosis in order to more eloquently stratify the highly heterogeneous phenotype and

facilitate the discovery of effective disease modifying treatments for patients. Magnetic

resonance imaging (MRI) is a promising, non-invasive biomarker candidate whose

acquisition techniques and analysis methods are undergoing constant evolution in

the pursuit of parameters which more closely represent biologically-applicable tissue

changes. Neurite Orientation Dispersion and Density Imaging (NODDI; a form of

diffusion imaging), and quantitative Magnetization Transfer Imaging (qMTi) are two such

emerging modalities which have each broadened the understanding of other neurological

disorders and have the potential to provide new insights into structural alterations

initiated by the disease process in ALS. Furthermore, novel neuroimaging data analysis

approaches such as Event-Based Modeling (EBM) may be able to circumvent the

requirement for longitudinal scanning as a means to comprehend the dynamic stages

of neurodegeneration in vivo. Combining these and other innovative imaging protocols

with more sophisticated techniques to analyse ever-increasing datasets holds the

exciting prospect of transforming understanding of the biological processes and temporal

evolution of the ALS syndrome, and can only benefit from multicentre collaboration

across the entire ALS research community.

Keywords: motor neuron disease, MRI—magnetic resonance imaging, event-based model, quantitative

magnetization transfer imaging, neurite orientation dispersion and density imaging (NODDI)

Neuroimaging modalities sensitive to the dynamics and patterns of tissue degeneration in
amyotrophic lateral sclerosis (ALS) are required as objective biological markers of disease activity in
vivo. Standard clinical assessment is usually adequate for diagnosis, however there is a pressing need
for non-invasive neuroimaging biomarkers that may differentiate between the various phenotypes
within the ALS syndrome, provide more accurate prognostic information, and monitor responses
to therapeutic interventions. There is also a need for neuroimaging techniques which have the
potential to interrogate the specific mechanisms of neurodegeneration, given that conventional
MRI primarily aims to exclude alternative diagnoses (1). As such, it will be important to integrate
new modalities of structural and functional imaging (including MRI and PET) with molecular
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biomarkers of neuronal damage, and indicators of
neuroinflammation if the therapeutic impasse for more
effective disease treatments is to be broken. Diffusion MRI,
particularly diffusion tensor imaging (DTI), has been extensively
researched in patients with ALS to infer structural alterations
within the brain and spinal cord by virtue of the movement of
water molecules induced by magnetic field gradients. Fractional
anisotropy (FA) is consistently reduced, often alongside increased
mean or radial diffusivity (MD or RD, respectively), within the
corticospinal tracts (CSTs) (2–15) and body of the corpus
callosum through which pass the fibers connecting hemispheric
motor areas (3, 5–8, 10, 12, 16, 17). Indeed, DTI changes are
perhaps most reliably encountered within the posterior limb of
the internal capsule (18, 19) which forms a common conduit
for several descending motor pathways including the CST,
cortico-rubro-spinal, and cortico-reticulo-spinal connections
(20). Additional areas within the frontal, temporal (11, 21, 22),
and parietal areas (11, 23) have shown reduced FA, all of which
is consistent with the multisystem motor and extra-motor
regions involved clinically and neuropathologically (24–26).
Nevertheless, establishing the precise substrate or substrates
underlying these changes observed onMRI is not straightforward
and may be complimented by novel magnetic resonance imaging
techniques and emerging big data analysis methods.

NEURITE ORIENTATION DISPERSION AND
DENSITY IMAGING (NODDI)

Diffusion MRI is sensitive to the motion of water molecules
at microscopic level. Nevertheless the signal it measures is
averaged across volumes of 1–2 mm3 (the so-called “voxel”).
For this reason, any interpretation of the signal and its origin
requires some degree of “modeling.” More than one model has
been proposed and each typically incorporates slightly differing
mathematical assumptions to interpret andmodel the signal, thus
providing only indirect inferences on anatomical configurations.
For instance, DTI assumes that water movement will obey
Gaussian properties and is widely accepted to lose consistency
when neuronal fibers bend or fan out within a voxel, or where
otherwise aligned fiber tracts are crossing each other (5) which is
common to areas such as the centrum semiovale and even regions
of the foliated corpus callosum (27, 28). Moreover, a reduction
in FA signifies changes in both neurite density and orientation
dispersion without distinguishing their individual contributions
(28, 29). Therefore, variations on the diffusion tensor model have
been created in an attempt to address these limitations. One
such model is neurite orientation dispersion and density imaging
(NODDI).

NODDI requires acquisition over a longer time than DTI
and compartmentalizes non-Gaussian water diffusion into three
geometric spaces encompassing isotropic (or free), hindered
anisotropic and restricted anisotropic components. These are
known as VISO, VIC, and VEC and each broadly correspond
to free water/CSF, intra-neurite water (of axons and dendrites),
and extra-neurite water (but potentially including glial cells and
neuronal somata), respectively (29–31). The NODDI parameters

ISO, NDI (neurite density index), and ODI (orientation
dispersion index; a marker of the geometric complexity of
neurites) can then be derived, the latter two of which are
considered to provide a more structurally useful breakdown of
single FA values (29) (see Figure 1). NODDI is able to better
delineate white from gray matter, in which normal white matter
displays higher NDI and lower ODI with the reverse in gray
matter (33), and differentiate between different gray matter
structures although might be more susceptible to changes in field
strength in these areas (31). Compared to DTI, NODDI indices,
particularly ODI, have been shown to correlate with histological
measures of orientation dispersion in the spinal cord and might
also display more inter-subject variability with implications for
the sample sizes required for group analyses (33, 34). However,
this may not necessarily be an inaccuracy in modeling rather a
more accurate depiction of tissue composition (31). In addition,
regions which might be expected to demonstrate considerable
axon density and higher NDI values might counterintuitively
show higher ISO due to the larger diameter axons enabling more
freedom of water movement (31, 34).

NODDI has been used to demonstrate tissue alterations
associated with normal aging (35–37) and in a range of
conditions including focal cortical dysplasia (38), stroke (39),
Wilson’s disease (40), multiple sclerosis (33), neurofibromatosis
type 1 (38, 41), and neurodegenerative diseases. Reduction in
NDI and ODI of the contralateral substantia nigra pars compacta
has been shown to correlate negatively with clinical severity of
Parkinson’s disease (42) whereas in pre-manifest Huntington’s
disease reductions in NDI and ODI are seen in a range of
white matter tracts with reduced NDI in the corpus callosum
correlating positively with markers of severity (43). In patients
with young onset Alzheimer’s disease reduction in NDI and ODI
is seen corrected for reduced thickness within several relevant
cortical areas, with lower NDI values in patients scoring less well
on cognitive tests (44), while in a rodent model NODDI indices
correlate more consistently than DTI parameters with the burden
of tau pathology harbored by the cortex, corpus callosum, and
hippocampus (45).

Use of NODDI imaging in ALS has only recently been
undertaken. Whole brain analysis in patients with manifest
disease has demonstrated a significant NDI reduction throughout
the intracranial CSTs up to the subcortical matter of the
precentral gyri and across the corpus callosum, with increased
ODI in the anterior limb of right internal capsule and increased
ISO adjacent to the right lateral ventricle relative to healthy
controls (46). NDI within the right corona radiata and precentral
subcortical white matter was decreased to a greater extent in
those patients with both limb and bulbar involvement compared
to limb alone, and longer disease durations correlated with
reduced ODI in the precentral gyri, dorsolateral prefrontal
cortices, and precuneus. Furthermore, at the statistical threshold
used, FA was reduced as expected within the CSTs but less
extensively than NDI, and changes were not observed within
the corpus callosum, implying NODDI may be more sensitive
than DTI. Indeed, combined NODDI and DTI has also been
performed in pre-manifest C9orf72 mutation carriers alongside
first degree relatives not possessing the pathological repeat
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FIGURE 1 | Models of diffusion for neurite orientation dispersion and density imaging (NODDI) and diffusion tensor imaging (DTI). The diffusion tensor model of DTI is

based upon three orthogonal axes of diffusion (V1, V2, and V3) yielding radial, axial, and mean diffusivity from which fractional anisotropy (FA) can be estimated.

NODDI considers diffusion within three compartments: restricted diffusion in the intracellular compartment, hindered diffusion in the extracellular compartment, and

free diffusion in cerebrospinal fluid (CSF), from which parameter maps representing neurite density (NDI), orientation dispersion (ODI), and isotropic fraction (ISO)

indices can be estimated. Yellow circles highlight a region where changes in FA can be accompanied by changes in both NDI and ODI. Adapted from Rae et al. (32).

expansion (47). The effect size relating to detectable reductions
of NDI within 7 of 11 white matter tracts, including the CSTs,
is greater than that for DTI metrics (in this case increased
axial diffusivity, RD, and MD rather than decreased FA) albeit
statistically significant in just two. Therefore, the results appear
to corroborate the implication that lowered FA (or increased
diffusivity) in the CSTs and corpus callosum results from the
loss of axon fibers rather than increased complexity or dispersion
within tracts. Longitudinal NODDI scans have not yet been
investigated although results from an ancillary imaging study
to the Modifying Immune Response and Outcomes in ALS

(MIROCALS) trial of low dose Interleukin-2 treatment are
awaited.

In any case, neuroimaging techniques are constantly evolving
with a raft of acronyms and employing different protocols aiming
to reflect the true histological framework of gray and white
matter. Although NODDI is considered non-inferior to other
MRI modalities of high-angular resolution in this regard (48), it
may be that acquisition protocols orMRI data modeling methods
undertaken in NODDI, such as spherical (rather than linear)
tensor encoding (49) along with tract-based (50), gray matter
based (37), and gray matter surface based (51) spatial statistics
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are further refined in due course to overcome its own recognized
limitations.

QUANTITATIVE MAGNETIZATION
TRANSFER IMAGING (QMTI)

Magnetization transfer imaging, unlike the NODDI model of
diffusion MRI, essentially utilizes a “two pool” model in which
hydrogen protons are either free or bound to macromolecules
(lipids and proteins) within the semisolid tissue. The latter
protons do not directly contribute to the MRI signal and
are “silent” in diffusion sequences (increased radial diffusivity
with DTI is not specific for demyelination) (52), but can be
indirectly probed thanks to their interaction with the free protons
following off-frequency radiofrequency pulses. The exchange
in magnetization between the two compartments allows the
state of the semisolid pool (saturated) to affect that of the free
protons, resulting in partial saturation and in a decrease of its
overall magnetization (53). The magnetization transfer (MT)
effect can thereby produce a qualitative magnetization transfer
tissue contrast (MTC) image and is already clinically utilized as
part of MR angiography and gadolinium-enhanced T1-weighted
sequences, for instance. Indeed, MTC T1 images in patients
with ALS have shown hyperintensity along the CST (54, 55)
and CC (54) in a proportion of cases (and more conspicuously
than FLAIR) (55) compared to control subjects which was
significantly related to the degree of reduced FA in the same
regions and presumed to reflect damage to the white matter
tracts, although with no clear association with clinical rating
scales or disease duration (54). Acquiring a proton-density image
with and without a MT pulse renders it possible to semi-quantify
the MT effect and produce a voxel-wise magnetization transfer
ratio (MTR) to reflect changes in macromolecular integrity.
Accordingly, reduced MTR within the brain has been reported
within the CSTs (56), the precentral and other frontal and
extramotor gyri (57, 58), in patients with ALS compared to
healthy controls, and independently of gray matter atrophy as
measured by voxel-basemorphometry (57). Significantly reduced
average MTR within the spinal cord has also been reported with
respect to controls (59–61), accompanied by diminished cord
cross-sectional area and average FA (60), and with a longitudinal
decline between sequential scans (59). More recent segmentation
of the cord into gray and white matter areas, and using a
particular adjusted MT protocol called inhomogeneous MT, has
demonstrated localized reductions in MTR to the CSTs and
dorsal columns in addition to the anterior horns at several non-
contiguous cervical levels (62). However, the MTC and MTR are
dependent on a range of imaging variables and their biophysical
basis is undefined (53).

The development of mathematical models able to describe
the MT-weighted signal as a function of the saturating
pulses has enabled more biologically applicable parameters to
be derived from quantitative magnetization transfer imaging
(qMTi), including the macromolecular pool fraction [f; modeled
to essentially represent myelin content], forward exchange rate
of magnetization transfer [kf], and transverse relaxation time
of the free pool [T2

F]. Although qMTi is yet to be explored

in patients with ALS, studies in multiple sclerosis (MS) have
demonstrated reductions in f and kf, and increased T2

F in acute
inflammatory lesions with a subsequent return to baseline over
several months (63). Compared to healthy controls, normal
appearing white matter (NAWM) has reduced f, kf, and MTR
(64), and reduced MTR in chronic MS plaques and has been
shown to correlate with greater disability (65). Incidentally,
reduced MTR in the context of MS is generally considered to
be a marker of demyelination, although a small study subdivided
NAWM according to distance from a T2 hyper-intense plaque
and degree ofMTR reduction and found that, whereas at the edge
of plaques reduced MTR correlates with reduced myelin content
reducedMTR in NAWMmay be result from to swollenmicroglia
and, perhaps, axons (66), thus highlighting the uncertainty of
its interpretation. MTR in normal appearing gray matter is also
reduced in patients with relapsing-remitting MS (67–69) and
may also correlate with disability, although variable results are
reported (68). Acute increases in kf (but without change in f
or T2f) on qMTi have also been induced within the insula in
the context of a systemic inflammatory stimulus comprising
intramuscular injection of typhoid vaccination and are associated
with increased levels of reported fatigue, in addition to a co-
localized increase in glucose metabolism measured by FGD-
PET (70). Although the mechanisms underlying changes in
magnetization transfer parameters are likely to be very different
between diseases, it is plausible that qMTi would be sensitive to
structural alterations in ALS given the likely role for the immune
system in its pathogenesis (71, 72).

MULTIMODAL MRI

Furthermore, it may be that performing simultaneous qMTi with
several other MR neuroimaging sequences, such as diffusion
and (resting state) functional MRI, will be most helpful in
building a better understanding how both tissue structure and
function are affected by the disease process and, ultimately,
the difference between certain phenotypes to guide more
personalized treatments. Indeed, this is exemplified by the
estimations of the myelinated fiber “g-ratio,” the axon diameter
divided by the diameter of its ensheathing myelin, which is
estimated to ideally be around 0.7 in the central nervous system
(73). As diffusion MRI is insensitive to myelin, the combination
of intraneurite and isotropic fractions from NODDI and the
f value from qMTi is required to calculate the g-ratio across
the brain. Following adolescence, white matter g-ratio tends to
steadily increase with age inferring myelin reduction and knock
on effects with respect to the velocity of neuronal conduction
(74) and premature increases in the g-ratio are accordingly seen
within MS plaques (75, 76). Although ALS is not primarily a
demyelinating disease, new insights into the secondary effects
of the neurodegenerative process may be revealed with these
techniques and correlate with clinical measures.

EVENT-BASED MODELING

Aside from interpreting the deviations of imaging parameters
in terms of current tissue configuration, collecting longitudinal
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FIGURE 2 | Illustration of how the event-based model (EBM) aims to extract temporal information from a cross-sectional data set. Gaussian distributions of fractional

anisotropy (FA) biomarker readings within a tract affected early in the course of the disease, such as the corticospinal tract, would be expected to demonstrate

substantial separation between ALS and Control imaging data (A). However, FA from another area affected at later stages demonstrates much less separation

between distributions (B). By exploiting and characterizing these differences across all biomarkers, the EBM attempts to order the change from “normal” to “diseased”

across the entire disease course.

data is, at least conceptually, the most straightforward approach
to understanding the temporal evolution of neurodegenerative
pathology. However, patient tolerability for repeated MRI
acquisition remains challenging in ALS, particularly, due to
the rapid accumulation of symptoms and perhaps accounts for
the relatively few studies conducted to date (5). Furthermore,
it can be argued that participants who are included would
be those harboring more slowly-progressing disease, and
therefore may not be representative of the majority of patients
with ALS.

Given these limitations, alternative methods such as “big
data” analysis techniques and new modeling approaches
have the potential to greatly increase our understanding of
the mechanisms of disease progression. One such approach
is the Event-Based Model (EBM) (77–79), a generative
probabilistic model originally developed for use in Alzheimer’s
disease (AD) for which it has been validated in addition
to Huntington’s disease (80) and recently in ALS using
oculomotor data (81). The EBM is designed to extract
temporal information from cross-sectional data sets and,
unlike traditional models of disease progression, does not rely
on a priori staging of patients but instead extracts the event
ordering directly from the data, thereby minimizing subjective
bias.

The EBM defines a disease as a series of “events,” where
each event is the change of a biomarker reading from a
“healthy” to a “diseased” state. Crucially, biomarker cut-off
points are not determined beforehand, but are derived from
the data during the modeling process. This not only reduces
subjective bias, but also allows for much finer temporal
characterization of disease progression than is possible under
existing clinically-based staging systems. Healthy control data
are used as a fixed reference, and each biomarker is modeled
as a mixture of two Gaussian distributions (Figure 2). In order
to perform temporal modeling, the EBM assumes that the
disease progression is monotonic for individual biomarkers
(i.e., the severity of disease burden can only increase). Thus,
for biomarkers affected early on in the course of the disease,
there will be larger differences between patient and control
readings, while biomarkers that are affected late on will have

smaller differences between patients and controls. Markov
Chain Monte Carlo (MCMC) techniques can then be used
to determine the most likely event order across the entire
cohort (77).

As with any modeling approach, the EBM has strengths
and weaknesses. The ability to extract fine-grained temporal
information from cross-sectional data is exceptionally novel and
valuable. Use of MCMC techniques also enables the model to
quantify the positional variance of individual biomarkers across
the cohort, thereby allowing a comparison of their relative
importance and variability. In its current form, the EBM reveals
aspects of disease progression that are common across the entire
cohort (an “average” disease progression). The heterogeneity of
ALS means that EBM analyses of stratified subgroups, based
on genetic/prognostic factors, are an important future area for
investigation.

The accuracy of the EBM output, as with any modeling
process, will depend on the quality of the input biomarker
data. As a consequence, ALS event-based modeling can require
large quantities of data, particularly as individual mean cerebral
CST FA values are known to have modest diagnostic power
for ALS [found to have a pooled sensitivity and specificity of
0.68 and 0.73, respectively, in a meta-analysis (82)]. Current
applications of the EBM to ALS data in progress include
analysis of mean FA of white matter (WM) fiber bundles,
modeling of patterns of cortical thinning, volumetric changes
of brain structures, and oculomotor data. Future areas for
development include the application of the EBM to multi-
modal ALS biomarker data. Excitingly, the application of the
EBM to higher order models of diffusion such as NODDI has
the potential to give greater insight into ALS degeneration by
simultaneously modeling the changes within ISO, NDI, and ODI
parameters.

CONCLUSION

Ultimately, all modeling is an attempt to separate meaningful
information from randomness. MRI techniques differentially
model the signal to derive parameters that plausibly relate to
tissue microstructure properties; these parameters can then be
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modeled further using the EBM to reveal patterns that exist
within the data, but which still require human assessment and
interpretation (as well as clinical and histological validation).
Although the innovative imaging and data analysis techniques
presented here constitute a selection of available methods or
protocols, their use singly and in combination has the potential
to transform our understanding of the biological processes and
temporal evolution of ALS, which is likely to benefit further
from multicenter collaboration across the entire ALS research
community.
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