Blockchain Based Auditable Access Control for
Distributed Business Processes

Ahmed Akhtar
Computer Science Department
Lahore University of Management Sciences
Lahore, Pakistan
16030059 @lums.edu.pk

Ayesha Afzal

Computer Science Department
Air University
Multan, Pakistan
ayesha@aumc.edu.pk

Abstract—The use of blockchain technology has been proposed
to provide auditable access control for individual resources.
However, when all resources are owned by a single organization,
such expensive solutions may not be needed. In this work we
focus on distributed applications such as business processes and
distributed workflows. These applications are often composed
of multiple resources/services that are subject to the security
and access control policies of different organizational domains.
Here, blockchains can provide an attractive decentralized so-
lution to provide auditability. However, the underlying access
control policies may be overlapping in terms of the component
conditions/rules, and simply using existing solutions would result
in repeated evaluation of user’s authorization separately for
each resource, leading to significant overhead in terms of cost
and computation time over the blockchain. To address this
challenge, we propose an approach that formulates a constraint
optimization problem to generate an optimal composite access
control policy. This policy is in compliance with all the local
access control policies and minimizes the policy evaluation cost
over the blockchain. The developed smart contract(s) can then
be deployed to the blockchain, and used for access control
enforcement. We also discuss how the access control enforcement
can be audited using a game-theoretic approach to minimize
cost. We have implemented the initial prototype of our approach
using Ethereum as the underlying blockchain and experimentally
validated the effectiveness and efficiency of our approach.

Index Terms—Blockchain, XACML, Business Processes, Access
Control, Workflows

I. INTRODUCTION

The emerging cloud and edge computing infrastructure
has enabled development of next generation internet-centered
distributed applications that are autonomous, co-operative,
adaptive, evolvable, emergent, and trustworthy. Such Internet-
centered distributed applications include business processes
(BPs), distributed workflows, and web service mashups [1],
[2], [3]. Since these applications are architected and developed
using resources and services that may belong to different
organizational domains, access to the underlying resources and

Basit Shafiq
Computer Science Department
Lahore University of Management Sciences
Lahore, Pakistan
basit@lums.edu.pk

Shafay Shamail
Computer Science Department
Lahore University of Management Sciences
Lahore, Pakistan
sshamail @lums.edu.pk

Jaideep Vaidya
MSIS Department
Rutgers University
Newark, USA
jsvaidya@business.rutgers.edu

Omer Rana
School of Computer Science
& Informatics, Cardiff University
Cardiff, UK
RanaOF @cardiff.ac.uk

services is governed by the security and access control policies
of the respective resource owner domains [4], [5].

Access control ensures that resources are used only ac-
cording to the access control policies defined by the resource
owners. Typically, resources are protected by access control
systems deployed within the organization. However, this does
not directly provide auditability of the access control en-
forcement, and also causes significant organizational burden
since the organizations now need to bear the overhead of
configuration, deployment and management of the system
along with the hardware, software and manpower cost. A
recently proposed alternative solution is to use blockchain
technology [6] for access control. The basic idea here is to
transform the access control policy evaluation process into
a completely distributed smart contract execution. With this
transformation, the access control enforcement is at the same
time outsourced and auditable. However, existing solutions [6],
[7] focus on the access control policy for individual resources
and encode the access control policy for each resource within
a single smart contract on the blockchain. This smart contract
then needs to be executed in order to return the access decision
for that particular resource. This is quite expensive, and if all of
the resources are within a single organization, issues of trust do
not exist and alternative solutions exist (such as tamper proof
logs [8]) to provide auditability at lower cost. On the con-
trary, distributed applications, including BPs and distributed
workflows, are composed of multiple resources/services that
are subject to the security and access control policies of
different autonomous organizational domains. Consequently,
each of these services in a BP will have its own access control
policy and a corresponding smart contract to evaluate it.
Here, utilizing a blockchain is very attractive since it provides
auditability in a decentralized environment. However, directly
using existing blockchain based solutions to manage access
control for such distributed applications requires evaluating
the user’s authorization separately for each service that needs

to be accessed. This may have significant overhead in terms
of cost and computation time for blockchain transactions,
especially when the individual domain’s access control policies
are overlapping. The set of individual access control policies
of all services involved in a BP is likely to have some common
clauses, as shown in Example 1. If each of the smart contracts
evaluating the access control policy of every service is exe-
cuted separately, these common clauses/conditions will be re-
evaluated by their respective smart contracts, as many times
as they appear in the individual access control policies as,
illustrated in Example 1. This kind of re-evaluation causes cost
of evaluation to increase significantly for a blockchain based
access control system. This is due to the increased computation
and storage requirements, resulting in an increased transaction
fee being charged by the miners.

Example 1: Consider a distributed data analytics work-
flow of a Supply Chain Monitoring application that collects,
integrates, and analyzes real-time data from different data
sources (e.g., emergency reporting systems, social media) and
IoT devices (e.g., sensors — environmental, traffic, chemical,
fire detection, surveillance cameras, etc.). This data analytics
workflow is depicted in Figure 1 and is instantiated dynam-
ically in response to a highway accident in which a tractor
trailer carrying several drums of liquid acetone overturned and
exploded generating a smoke plume that spreads a large area.

= v.‘_ -) “i“
=" j [|
IR =2 ‘;%

Traffic-Congestion

w Cargo-truck

N R Location
Fire Incident l

Get Incident Situation
Information Assessment

I

e aﬁ\
9 g Data Buffering 5

Plume
Modeling

Data Buffering
and Integration
Service

L S

Re-route
Cargo-trucks

h and Integration ———
y Service

Fig. 1. Emergency Management Workflow

Now, consider the access control policies of some of the web

services used in the emergency management workflow.

o Traffic-Congestion Monitoring Service: This service takes
feeds from surveillance cameras at road intersections and
analyzes them to determine traffic congestion. The surveil-
lance cameras are owned by Smart City Project authority,
which requires that only officers from the transportation or
Police department can access their camera feeds. Therefore,
Traffic-Congestion Monitoring Service can only be accessed
by officers from the transportation or police department.

o Plume Modeling: This service takes the sensory data obser-
vations in the vicinity of the incident site and it identifies the
at-risk areas that could be affected by the plume. This sensor
data comes from the devices installed by the Environmental
Protection Department and they allow access to only officers

of at least grade 18 from the environmental or transportation
department. Therefore, Plume Modeling service can only be
accessed by officers of at least grade 18 belonging to the
environmental or transportation department.

o Cargo-truck Location: This service is used to retrieve the
locations of all the cargo trucks of the Supply Chain
Monitoring Company. According to the policy of the Supply
Chain Monitoring Company, location of its trucks can only
be accessed from within the same city by any officer
from the environmental, transportation or Police department.
Therefore, Cargo-truck Location service can can only be
accessed from within the same city by any officer from the
environmental, transportation or Police department.

Re-evaluation of Common Conditions: Now consider an

officer of grade 18 from the transportation department, who is

in the same city and wants to execute the emergency manage-
ment workflow. Clearly, the condition that the access subject
belongs to the transportation department, gets evaluated again
and again, for each of the aforementioned web services, before
the officer is granted access to execute the workflow. Even if
access is denied for a subject, still the conditions of police and
environmental department are re-evaluated across two services.

A composite access control policy, is hence needed to
reduce this cost of evaluation for a blockchain based access
control system, by removing these repetitive evaluations. Such

a plan should be designed keeping in view the access control

policy needs of the particular BP in question, and it should be

optimal with respect to cost in the form of mining fee incurred
due to blockchain transactions. This is precisely the problem
that we address in this work. Our key contributions are to:

o Propose an approach that formulates a constraint optimiza-
tion problem to generate a composite access control policy
for a BP that encapsulates the local access control policies
of component services and minimizes the policy evaluation
cost over the blockchain.

o Present a game-theoretic approach to reduce the cost of
auditing the access control enforcement.

o Implement and experimentally validate the proposed ap-
proach using Ethereum testnet Rinkeby.

II. PRELIMINARIES

Distributed applications requiring access to resources from
different autonomous organizational domains can be repre-
sented as distributed BP workflows. Typically the access
control policies of organizations governing these resources are
specified in XACML. We now present a brief review of BPs
and XACML.

A. Business Processes

A Business Process (BP) is a composition of interrelated
activities materialized in the form of web services to achieve
a well defined business outcome [9]. While the workflow
in Example 1 can be naturally expressed in the form of a
distributed BP, it is quite complicated and it would be difficult
to clearly explain all of the steps of the proposed approach
given the space limitation. Therefore, for the rest of the paper,

we consider a simple alternative example in the university
context which serves to comprehensively illustrate the access
control requirements in a multi-organizational environment,
though note that all of the work applies in general to any
distributed workflow.

Example 2: Consider an assignment grading BP (shown
in Figure 2) in a virtual university environment where three
universities (LUMS, Rutgers, and Cardiff) collaborate. An
instructor from one university can teach a course to students
of other universities. The first step in this BP is to download
the assignments of all the students in the course from the
Learning Management Systems (LMS) of their respective
universities. The LMS of the universities LUMS, Rutgers,
and Cardiff are accessed for downloading the assignments
using downloadLUMSAssignments, downloadRutgersAssign-
ments and downloadCardiffAssignments services respectively.
After downloading, these assignments need to be transferred
to a server machine on which an Auto Grader application runs.
There are two servers Codec and Rustam, each of which can be
used for running autograding service. Codec is the first choice,
which is available 90% of the times via transferToCodec
service, while the remaining 10% of the times, Rustam is used
via transferToRustam service. After grading the assignments,
the scores need to be uploaded to the grade management
systems, Zambeel of LUMS, Sakai of Rutgers, and SIMS of
Cardiff using uploadLUMSMarks, uploadRutgersMarks, and
uploadCardiffMarks services respectively. Finally, the students
are notified of their grades. The email notification service
(notifyViaEmail) is selected 80% of the time, while the SMS
notification service (notifyViaSMS) is selected 20% of the time.

The probabilities in Figure 2 represent the likelihood of
a service being called based on service availability statistics
and/or execution paths. The access control policies of some of
the services used in Example 2 are given in Figure 3.

B. XACML
The Extensible Access Control Mark-up Language
(XACML) is a published standard that defines: i) a

declarative fine-grained, attribute-based access control policy
language; ii) an architecture; and iii) a processing model
describing how to evaluate access requests according to the
rules defined in policies [10]. An XACML policy consists of
a Target, a Rule set, and a rule combining algorithm.

In XACML, the authorizations of subjects over resources
for a given action are specified as rules. A rule in an access
control policy is comprised of conditions, which defines the
requirement of specific attribute(s) that must be present in
the access request or could be inferred/derived from the
access request. We consider three type of conditions: Atomic
Condition, Composite Condition and Permit/Deny Condition,
each of which is defined below.

Definition 1: Atomic Condition: An Atomic Condition is a
boolean expression that compares the value of an attribute or
functions over attributes to another attribute or value.

Definition 2: Composite Condition A Composite Condition
is a boolean expression over atomic conditions and/or other

composite conditions, which can be joined by conjunction or
disjunction.

Definition 3: Permit/Deny Condition: A Permit/Deny Con-
dition is a composite condition that specifies the Resource as
well as the Action on that resource on which the permission
is granted or denied.

Definition 4: Authorization Rule: An authorization rule
can be represented as a Directed Acyclic Graph G = (V, E),
where V is the set of vertices corresponding to either Permit/-
Deny Condition, or Atomic Condition, or Composite Condi-
tion. E € V XV is a set of ordered pairs representing directed
edges between vertices in 'V

The XACML representation of the access control policy of
downloadLUMSAssignments service of Example 2 is shown
in Listing 1 and its corresponding graph is shown in Figure 3.

Listing 1. Sample XACML Policy
<Policy Policyld="downloadLUMSAssignments Policy” ...>
<Target><AnyOf><AllOf>
<Match Matchld="...function:string—equal”>
<AttributeValue DataType="...string”>LUMS_LMS </AttributeValue
>
<AttributeDesignator Attributeld="...resource—id” Category="...
— resource” .../></Match>
<Match Matchld="...string—equal’>
<AttributeValue DataType="...string”>Download Assignment</
— AttributeValue>
<AttributeDesignator Attributeld="...action—id” Category="...action”
— .../></Match>
</AlOf></AnyOf></Target>
<Rule Effect="Permit” Ruleld="Rule—1">
<Target><AnyOf><AllOf>
<Match Matchld="...string—equal”>
<AttributeValue DataType="...string”>inst123 </AttributeValue>
<AttributeDesignator Attributeld="...supervisor” Category="...
—» access—subject” .../></Match>
<Match Matchld="...string—equal”>
<AttributeValue DataType="...string”>CS101 </AttributeValue>
<AttributeDesignator Attributeld="...teaches” Category="...
< instructor” .../></Match>
<Match Matchld="...boolean—equal”>
<AttributeValue DataType="...boolean”>true</AttributeValue>
<AttributeDesignator Attributeld="...isPhDStudent” Category="...
<> access—subject” .../></Match>
</AIOf></AnyOf></Target>
<Condition>
<Apply Functionld="...any—of">
<Function Functionld="...double—less—than—or—equal’/>
<AttributeValue DataType="...double”>3.5</Attribute Value >
< AttributeDesignator Attributeld="...cgpa” Category="...access—
< subject” .../>
</Apply></Condition></Rule></Policy >

In the policy graph of downloadLUMSAssignments service,
“Permit{ LUMS_LMS, DownloadAssignments>” is a
permit condition that authorizes a subject satisfying the pre-
decessor conditions for the action “DownloadAssignment”
on the resource “LUMS_LMS”. The composite condition
“isSupervisorCourse” is a conjunction of two atomic
conditions: 1) “isSupervisor(roll Number,inst Number)”
— the instructor referred to by “instNumber” must be
the supervisor of the requesting student referred to by
“rollNumber”; i) “teaches(intNumber, courseCode)”
— the instructor teaches the course referred to by
“courseCode”. There are two other atomic conditions:
i) “isPhDStudent(roll Number, universityl D)”
— the requesting student is a PhDStudent; ii)

Download Rutgers
Assignments

Download LUMS
Assignments

Download Cardiff
Assignments

Legend:

O web Service

0.9 | Transfer To Notify Via

SMS

Upload Rutgers
Marks
Run Auto Upload LUMS
Grader Marks
Notify Via
Upload Cardiff Email
Marks

(8) Exclusive Decision / Merge (XOR) <-|> Parallel Fork / Join (AND)

Fig. 2. Assignment grading BP from virtual university domain

downloadLUMS Assignments:

A PhD student having a CGPA of at
least 3.5 can download assignments of
his/her Supervisor’s Course.
Supervisor’s Course: Instructor teach-
ing the course should be supervisor of

downloadRutgersAssignments:
A Graduate student can download
assignments of his/her Supervisor’s
Course.

Supervisor’s Course: Instructor teach-
ing the course should be supervisor of

downloadCardiffAssignments: A
senior PhD student can download as-
signments of a course that he/she has
studied earlier.

the requester. the requester.

isSupervisor(roll
Number,
instNumber)

isSupervisor(roll
Number,
instNumber)

teaches(inst
Number,
courseCode)

isSupervisor
Course

isSupervisor
Course

isPhDStudent
(rolINumber,
universitylD)

hasHighCGPA
(rolINumber,
universitylD)

Permit<LUMS_LMS,
Download Assignment>

Permit<Rutgers_LMS,
Download Assignment>

teaches(inst
Number,
courseCode)

hasStudied
(roliNumber,
courseCode)

isPhDStudent
(rolINumber,
universitylD)

isGradStudent
(roliINumber,
universitylD)

isSenior(rollINumber,
universitylD)

Permit<Cardiff_LMS,
Download Assignment>

Fig. 3. Access control policy graphs of a few services from assignment grading BP

“hasHighCGP A(roll Number, universityI D)” -
requesting student has CGPA of at least 3.5.

the

III. PROBLEM STATEMENT

Considering the access control policies associated with the
underlying web services, we can formally define a distributed
BP as follows:

Definition 5: Business Process: A business process is
denoted by a Graph, BP = (S,T,U, Q) where:

o S ={s1,...5n} is the set of web services represented as
vertices of BP;

o T'C S xS is the set of all edges in BP;

e U: T — [0,1] is the function defining probabilities of
edges in'T

e Q = {G1,...Gy}, where G; = (V},Ej;) is a graph
which encodes the rules based on Definition 4, and
represents the access control policy of service s; € S.

We consider a services cloud environment, where BPs are
composed using Web services from multiple organizational
domains as depicted in Figure 4. The cloud service provider
hosts such BPs and also ensures that the users executing the
BPs satisfy the access control policies of the underlying orga-
nizational domains. The cloud service provider has knowledge

of the access control policies of these organizational domains
and uses this knowledge to develop an optimal composite ac-
cess control policy for a BP and deploys it over the blockchain
as one or more smart contracts to ensure auditability. Here we
assume that the access control policies of these organizations
do not include sensitive information and are publicly available.

To ensure access control, the objective is to deploy one
or more smart contract(s) containing all the authorization
conditions of underlying web services on the blockchain.
However, deploying a single unified smart contract by taking
union of all the access control policies may not always be
optimal in terms of blockchain cost. Therefore, the unified
access control policy, denoted by G, can be partitioned in
many ways into a set of fragments, where each fragment
contains one or more authorization conditions. We refer to
such a partition of G as a composite access control policy
F ={F,F,...,}. The structure of the BP will determine
which partition of the unified policy may result in minimal cost
of deployment and evaluation. Formally, the optimal composite
access control policy generation problem can be defined as:

Definition 6 (Optimal Composite Policy Generation Prob-
lem): Given the BP, find a partition F* = {F},...,F,,} of
the global unified access control policy G such that:

Individual
policies of

N Devise optimal
service

composite access

e
:

m" ranslator N
'

Translate policy
elements from

LUMS Web Services providers control policy XACML to Solidity ||
= Download Assignments
= Upload Marks ...
- Deploy policy
H Policy Updates smart contract(s)
.)
— @ @ @ @B to blockchain
[iy]
Rutgers Web Services = " Deployment ® ' Blockchain !
= Download Assignments ‘]) Adaptation En yine =— !
= Upload Marks ... N \ @ Engine — g H i
H ' Detect changes in the BP or i i
. access control policy and H H
- B - | I
send them for re-composition Business b = mmm) i
Cardiff Web Services | ™ N, o/ e | Bmamm | ommmmmemeeeed
= Download Assignments [« Process @ Invoke smart contracts
= Upload Marks ... @ Register smart contracts \ Manager / Zgﬁzgzoj;g access

with service providers

Fig. 4. Architectural view of the proposed approach for BP access control over blockchain

i=1 j=1
o Sum of the costs of the smart contracts corresponding to
all fragments in F™* is minimum over all partitions of G.

IV. PROPOSED APPROACH

The proposed approach for finding the optimal composite
access control policy consists of five major components as
depicted in Figure 4. For a given BP and associated access
control policies, the Composer generates the composite ac-
cess control policy, which is an optimal partitioning of the
unified access control policy. The Translator is responsible
for transforming the composite access control policy into one
or more smart contract(s). The Deployment Engine deploys
these smart contracts over the blockchain, which are executed
to determine the access control decision for any given user
request. The composite access control policy may split the in-
dividual service provider’s policy into multiple smart contracts.
Moreover, a single smart contract may be part of multiple
service providers’ policies. The deployment engine keeps a
mapping between each web service and the set of smart
contracts satisfying its access control policy. The deployment
engine also registers the associated smart contracts for each
web service with the corresponding service provider. The
service provider may verify that the associated smart contracts
satisfy its local access control policy. The BP manager (BPM)
is responsible for evaluation and enforcement of the composite
access control policy through smart contracts. The Adaptation
Engine monitors changes in the service providers’ policies and
triggers revision of the composite access control policy with
minimum changes. We now discuss the proposed approach in
detail:

A. Optimal Policy Composition

The composer combines the multiple service views of the
access control policies @, for all services S in the BP, to
give a global unified view of the access control policy. To do
this, the first step is to merge all the access control policies
of the individual web services in the B P to obtain the global

mediated access control policy G. Note that G should not
have any duplicate conditions while all the conditions of each
individual access control policy in () are satisfied.

Next, the composer needs to partition G into the composite
access control policy such that the cost of deployment and
evaluation on the blockchain is minimal. To find the optimal
composite access control policy, the composer needs to es-
timate the combined cost for deployment and evaluation on
the blockchain. This cost depends on the size and number of
fragments of the partition and the probability that the smart
contract corresponding to each fragment gets executed, given
the structure of the underlying BP. The overall sequence of
steps is given in Algorithm 1. We now explain each step.

1) Global Mediated Access Control Policy: The global
mediated access control policy G = (V, E) is simply the union
of all of the underlying access control policy graphs G/, along
with two sink nodes, one for Permit and one for Deny. All of
the permit conditions are connected to the Permit sink node,
while all of the deny conditions are connected to the Deny
sink node. The steps to generate the global mediated access
control policy are given in Algorithm 1 (lines 1 - 8). Figure 5
depicts the global mediated access control policy graph (shown
in the outermost dashed rectangular box) for the BP in Figure
2. This global mediated policy also includes the assignment
download policies of Figure 3 depicted in bold.

2) Optimal Composite Access Control Policy: A composite
access control policy can be generated in multiple ways from
the global mediated access control policy G. In order to
find the optimal composite access control policy, we need to
decide whether to keep each of the conditions in G as an
independent smart contract, or make it part of a smart contract
of a composite condition. This decision needs to be made
for each condition in GG, keeping in view of the contribution
to the overall cost made by this decision. The selection of
conditions which incur the least cost will be considered as the
optimal composite access control policy for G. An example of
a possible composite access control policy is shown in Figure 5
where conditions selected for deployment, as a separate smart
contract, are shown in small rectangular boxes, while those

courseBelongsTo
(courseCode,
deptiD) @

isUniHEC
Recognized

(universitylD)

isGradStudent
©)

studentBelongs isEHEStudent

isSenior(rolINumber,
universitylD) @

hasStudied
(rolINumber,
courseCode)

isSupervisor(roll

Tc(rollNumber,@ isLL

deptID)

universitylD)

umversitv\d,@
schoollD)

N

rollNumber,

universityld)

teaches(inst

Number, @

courseCode]

Number, @
isPhDStudent instNumber)
(rollNumber,

universitylD)

Permit<Codec,
Transfer Files> @
N

isAnRA
(rolINumber,

|
|
|
|
|
|
|
|
|
|
|
|
| N S universitylD)
| N ~k
|
|
|
|
|
|
|
|
|
|
|
|

- D

1" N N
{ canMassSMS |

worksOn(roll

Number,

projectD)

worksIn(roll
Number,
labID)
Permit<Rustam,
Transfer Files>

Permit<Rutgers_LMS, @. ~
+ Download Assignment>~"’

®

. Send Notification>

Upload Marks>

Permit<Email Service,
Send Notification> @
v .

isSupervisor

Course @

hasHighCGPA
(rollNumber,
unlvershylb)®

hoGradTA(course | 1
N Code) @

(" Permit<Cardiff_LMS, @\ /Permit<Auto Grader,\“
. load Assignm Run> @

Fig. 5. Global mediated access control policy graph shown in outermost dashed rectangular box, and fragments of composite access control policy shown in

small rectangular boxes

Algorithm 1 Generate Optimal Composite Policy
Input: BP(S,T,U,Q) is the graph representing the
Business Process
Input: @ = {G, |V j3s; € S} is the set of graphs of
individual access control policies of services in BP
Input: d: V — R is the deployment cost function
Input: e: V — R is the evaluation cost function
Input: N is the number of evaluations
Output: F™ is the optimal partition
{Generate global mediated access control policy, G}
G = (V,E) — UjGj
V « VU {Permit{ All >} U {Deny< All >}
for each vertex v € V s.t. v is a permit condition
do
E < EU{(v, Permit{ All>)}
end for
for each vertex v € V s.t. v is a deny condition do
E «+ EU{(v, Deny<All»)}
end for
{For each condition, compute the probability that the
condition will be evaluated during execution of the
BP}
P < Ewval.Probabilities(BP, G)
{For each condition compute the cost of deployment
and evaluation over NV executions}
C < Ewval.Costs(G, P,d,e, N)
Wopt < FindOptimal Partition(G,C)
return F*

[95]

® x>0 os

10:
11:
12:

conditions that are not selected are shown as dotted ovals.

One step which is essential in finding the cost of deciding
to keep a condition, as a separate smart contract, is finding
the probability that it will be called upon when the underlying
BP is executed. This is necessary because there are two types
of costs associated with a smart contract i.e. the deployment
cost and the evaluation cost, of which the former is a one time
cost whereas the latter is a per call cost.

a) Finding Probabilities: The probability of each condi-
tion is computed considering the structure of the BP. We first
compute the probability of each path in the BP by taking the
product of the probabilities of each edge included in the path.
Let us denote the probability of the I*" path (path;) in the BP
as m;. Next, we compute the probability of each condition in
the global mediated access control policy graph G. We need
to find for each condition v € V the probability of it being
called when the BP is executed. Let G; = (V;, E;) denotes
the access control policy graph of service s;. The probability
of condition v is defined in equation (1) and explained below:

m if v is Atomic

VIVs; s.t. sjEpathiAveEV;

P(v) = P(w)

(D

max otherwise

Ywé€ Predecessors(v)

The probability of an atomic condition is found by summing
up the probabilities of all the paths of the BP in which at
least one of the services requiring that condition is present.
This is due to the fact that the atomic condition is needed
for all paths that have a service which requires that condition.
The probability of a composite condition or a Permit/Deny
condition is found by taking the maximum of the probabilities
of all the conditions contained in it. This is due to the fact that
a composite condition or a Permit/Deny condition is needed
if any of its contained conditions is required. Figure 5 shows
these probabilities annotated on each condition.

b) Computing Costs: Selecting a condition v € V for
partitioning of G means that it has to be deployed as a
separate smart contract on the blockchain. Hence, it will enatil
a deployment cost, given by the deployment cost function
d: V — R, and an evaluation cost, given by the evaluation cost
function e: V' — R and the number of evaluations. Note that
the deployment cost d(v), is a one time cost which is incurred
only when the smart contract is initially deployed, whereas
the evaluation cost e(v), is a recurring cost which is incurred
with every call to evaluate an access control policy. The total
cost, denoted by the function C: V' — R, is computed for
each condition v € V,, for N evaluations as:

C(v) =d(v) + N -e(v) - P(v)

c) Determining Optimal Partition: Having the cost func-
tion C' for every condition v € V enables us to formulate
the problem of finding an optimal partition as a 0-1 integer
programming problem, which can be formulated as follows:
Utility Function:

min Z C(v) xy

VvevV
Subject to:
Path Constraint:
for each path ¢ in G,Zwv >1 2)
vEP
and
x, € {0,1}

Where, z, is set to 1 if condition v € V is selected for
deployment as a separate smart contract and 0 otherwise. The
path constraints (2) ensures that all atomic conditions of the
global mediated access control policy G of BP are covered.
The solution to this optimization problem gives us the optimal
composite access control policy.

B. Policy Translation and Deployment

The job of the Translator is to transform the composite
access control policy, which is expressed in XACML, into
one or more smart contract(s) specified in the appropriate
language for the blockchain. In our implementation, we use
Solidity, the programming language of smart contracts for the
Ethereum blockchain. However, our approach is agnostic to
the underlying blockchain.

The deployment engine is responsible for deployment of
smart contracts corresponding to the composite access control
policy to the blockchain. In addition, the deployment engine
registers the smart contracts with relevant service providers.
This registration involves following steps.

1) Deployment engine sends the details of smart contracts
to relevant service providers for verification. Each service
provider checks whether the deployed smart contract(s)
satisfies its local access control policy.

2) The deployment engine and service providers agree on
a penalty, which needs to be paid by the BPM, if the

service provider’s policy is not correctly enforced. The
service provider may selectively audit the smart contract
executions to find violations of its access control policy
as discussed in Section IV-D.

3) For each smart contract, the deployment engine generates
a public/private key pair and shares the private key with
all the service providers whose access control policy is
evaluated using this smart contract. The attribute man-
agers use the public key to encrypt the attributes needed
for smart contract evaluation. The service providers can
use their private key to decrypt the attribute values stored
in blockchain transactions, of the corresponding smart
contract, for auditing.

O ==
ala =]
service E=—
Provider Resource
Policy
Enforcement

Point

BPM sends decisions to Busi
PEPs of resource owners usiness

Process

WELEEEEY BPM invokes relevant smart
@ contracts and informs

attribute managers to provide
input to smart contracts

@ User provides
P required credentials

<

User

BPM receives

Q- and combines@
O e toc@ evaluation results NG ------ '
= i >0
service = Hg | Evaluation of
Provider esource Attribute AMs provide@ H Smarl®:
Policy Contracts ! relevant smart

verified attribute |
values to smart
contracts

Managers *

Enforcement | conracts begins

Point

I
I
i I
i i
1 I
. I I
. 1 I
° 1 Blockchain |

Fig. 6. Policy evaluation and enforcement mechanism for BP over blockchain

C. Enforcement over the Blockchain

The BPM is responsible for evaluation and enforcement of
the composite access control policy through smart contracts.
Figure 6 depicts the architecture of the blockchain based
access control system for BPs. The specific steps for policy
evaluation and enforcement are discussed below.

1) The user selects the relevant view of the BP and provides
the needed credentials to the BPM. For example, the
view of an instructor for assignment grading BP will be
different from that of a PhD student, and requires different
credentials.

2) The BPM invokes the relevant smart contracts of the
composite access control policy to determine the user’s
authorization. The BPM also notifies the relevant attribute
managers to provide the verified attribute values for the
given user to the corresponding smart contracts.

3) For a given condition over an attribute (e.g., CGPA >
3.5), the attribute manager encrypts the attributes, their
values, and the user id with the public key for that smart
contract. It also includes the condition evaluation result as
true or false. This is together encoded in a single message
which is digitally signed by the attribute manager and
inputted to the smart contract.

4) Evaluation of all the relevant smart contracts begins af-
ter the the required inputs from attribute managers are
received.

5) The BPM receives the evaluation results of all the smart
contracts of the composite access control policy. The
BPM combines the evaluation results to determine the
authorization of the user for the given BP. In case of
conflicting authorizations, the BPM applies the appropriate
rule combining algorithm to resolve these conflicts.

6) If the authorization decision is permit, the BPM forwards
the user request to the policy enforcement points (PEPs) of
all participating service providers, along with the decision
and transaction identifiers of smart contracts used for
reaching this decision. The service provider(s) can use
these transaction identifiers for the sake of auditability.

D. Auditing

The primary benefit of using the blockchain for access
control is to provide auditability. We now discuss how auditing
can actually be done within our framework. Note that, as
discussed above, for every resource access, the BPM computes
the decision along with the supporting transaction identifiers
on the blockchain.

Typically, auditing might be requested by one of the service
providers for a specific service. In this case, one possibility
is to simply validate all of the corresponding transactions,
but this has a significant cost. Instead, we can use a game-
theoretic mechanism following the approach taken in [11],
[12] to reduce the cost of auditing, which we now discuss.
This is based on the fact that for effective validation, it is
not necessary to recheck all the accesses, but only a random
fraction of them.

We can model the interaction between the BPM and the
service providers as a game. Since each service provider
interacts independently with the BPM, its interaction with the
BPM can be modeled as an independent two party game.
For a given service s, denote the cost of correctly enforcing
the access control policies on the blockchain as Cj. This is
proportional to the number of smart contracts N, that need
to be evaluated for that service. Similarly, denote the revenue
obtained by the BPM for the use of a service s as R (note:
this is the total revenue from the user as well as the service
provider, it is unnecessary to consider what the split might be).
In that case, the payoff of the honest BPM will be Ry — Cs.

To consider the payoff of the BPM when cheating, we first
need to consider how the BPM might cheat. Essentially, a
BPM cheats by not evaluating the policy correctly on the
blockchain — this is done by not invoking the appropriate
smart contracts to save cost (and just reporting either incorrect
or different transaction identifiers to the service provider in
Figure 6. There are two independent possibilities: 1) all-or-
none: the BPM may decide to cheat on a fraction of the
service requests, but when it cheats, it does not evaluate any
of the smart contracts associated with the service request; 2)
partial: the BPM may cheat on every service request by only
evaluating some of the smart contracts associated with the
service request. Note that in either case, the reduction in cost
is proportional to the number of smart contracts that are not
actually evaluated. This can be parameterized by 0 < p < 1,

TABLE I
PAYOFFS FOR SERVICE S

Service Provider Service Provider Not
Verifying Verifying

Honest BPM Rs — Cs Rs — Cs

Cheating BPM | —P Rs — (1 —p)Cs

the fraction of smart contracts not evaluated by the BPM,
regardless of how they are chosen (note: p = 0 implies that
the BPM is fully honest, where as p = 1 implies that the
BPM fully cheats). If this cheating is not detected, the payoff
for the BPM is R; — (1 — p)Cs. However, if the cheating is
detected the service provider will enforce a penalty P on the
BPM. Thus, the payoff for the BPM in this case will be —P.
Table I gives the payoffs, assuming that verification leads to
detection of cheating in the case where the BPM cheats.

Since the BPM will try to choose the smart contracts to
cheat on in such a way that can maximize the chance of
detection failure, let us consider how verification can be done
by the service provider. The service provider can also choose
to verify only a fraction of service requests (but all of the
smart contracts in those requests) or verify some of the smart
contracts associated with every service request. These two
behaviors are denoted as all-or-none and partial as before.

Thus, there are four possible cases of Cheating/Verifica-
tion: 1) (all-or-none, all-or-none); 2) (all-or-none, partial);
3) (partial, all-or-none); and (partial, partial). Let us now
analyze all four cases. If the cheating is all-or-none, then
partial verification has a higher detection probability for the
same amount of effort than all-or-none verification. This is due
to the fact that even the verification of a single smart contract
is sufficient to detect cheating for the entire service request,
and thus it is better for the service provider to spread its
verification among the service requests to maximize detection.
If the cheating is partial then both all-or-none and partial have
the same degree of detection. Thus, it is clear that the service
provider will always prefer partial verification. Now, consider
the BPM. If the verification is all-or-none it makes sense to
concentrate the cheating on as few transactions as possible,
to minimize the chance of detection (again the reasoning is
the same as earlier, it doesnt matter whether you are detected
as cheating on one or more than one smart contracts — both
count equally as cheating and incur the same penalty). Thus,
in this case, the BPM would prefer all-or-none cheating.
Interestingly, if the verification is partial the BPM would
prefer partial cheating, since this reduces the possibility of
detection (with all-or-none cheating, the likelihood is larger
that the cheating would get detected). Together, this implies
that partial cheating and partial verification (i.e., (partial ,
partial) together is a Nash equilibrium [13] since neither
party would prefer to change its behavior. Therefore, in the
rest of the discussion below, we assume that this is the case.

Given that the verification is also partial it is easiest to
choose a fraction of the smart contracts uniformly at random
for verification. Now, let us compute the probability of detec-

08

0.6

0.4

0.2

00

2

#smart contracts checked

Fig. 7. Cheating Detection Probability for different levels of cheating and
different number of smart contracts checked

tion (denoted as ¢). Since the service has [V, smart contracts,
and p is the probability of cheating, if « smart contracts are
checked, ¢ = 1 — (1 — p)*. Figure 7 plots this cheating
detection probability for different p values (i.e., different levels
of cheating), and different number of smart contracts. It is
instructive to note that when the cheating level increases to
0.3, just checking 10 smart contracts is already sufficient to
give a cheating detection probability of over 95%.

Moreover, perfect detection is unnecessary to ensure hon-
esty. It is only necessary to have a high enough detection
probability to deter cheating. Specifically, note that to ensure
that the BPM does not cheat, the only pure strategy Nash
equilibrium is when, the payoff to the honest BPM is more
than the payoff obtained with cheating when (imperfect)
verification is done. Specifically, all we need to ensure is that:

Ry —Cs>(1 =€) (Rs = (1=p)Cs) —ePs ()
Rewriting and simplifying:
Ry —Cs > Ry —eRs — (1 = p)Cs + e(1 — p)Cs — P
= Cs<(1—p)Cs+€e(Rs— (1 —p)Cs + Ps)
= €> pCs/(Rs — (1 — p)Cs + Ps)

This can be further simplified by expressing the penalty in
terms of the revenue (for example P; = m - R;) and in turn,
the revenue is some multiple of the cost (i.e., Ry = m’ - Cy)
(note m,m’ > 0). Substituting for R, and P, we get:

= e> pCy/(m'Cs — (1 —p)Cs +m-m’-Cg)

p
:€>((1+m)m’fl+p) @

Note that the service provider does not know p (the degree
of cheating) of the server. However, it can simply substitute
different values of p and find the corresponding e necessary.
Since € can be derived for each p for the number of smart
contracts checked (see Figure 7), it is easy to find the smallest

= minimum verifications needed
0ns

0.7

0.6

0.4

03

#smart contracts

0.2

0.1

0.0 02 0.4 0.6 0.8 10

o)

Fig. 8. Minimum number of smart contracts that need to be verified to ensure
sufficient detection probability

number of smart contracts that must be checked to ensure that
€ is actually greater than what is necessary to deter cheating
as per equation 4.

For example, let us pessimistically assume that m = 1 and
m’ = 1.1 (i.e., the penalty is the same as the revenue and
the revenue is only 10% more than the cost — typically the
penalty is at least 10 times the revenue, and the profit margin
is at least 20%). In this case € > (1+1)1é171+p = 1'2"+p.
Now, for each value of p we can derive the corresponding €
and correspondingly determine the minimum number of smart
contracts that need to be checked to achieve this e. Figure
8 depicts this for all possible values of p from O to 1 in
increments of 0.01. It is clear, that even in the worst case,
when cheating is 0.01, no more than 1 smart contracts need
to be validated in order to ensure sufficient detection.

One question that can be legitimately posed with all of the
above analysis is what stops the BPM from choosing an even
lower value of p. To begin with, this does not help the BPM,
since the needed € also drops as p decreases. In fact, we can
simply obtain the derivative for e with respect to p and evaluate
it at the limit. Indeed, lim,_,o g—; = 0.83333. Furthermore,
note that in order to actually cheat, the BPM must not execute
at least one contract — which also provides a lower bound on
the cheating, if it occurs. For example, in the case where a
service request requires 10 smart contracts, the lowest level of
cheating corresponds to p = 0.1. Again, as shown in Figure 8,
no more than 1 smart contract needs to be validated to ensure
that the payoff of cheating will always be lower than that of
honesty.

V. EXPERIMENTAL EVALUATION

We analyzed the effectiveness and efficiency of the proposed
approach using the Ethereum testnet Rinkeby as underlying
blockchain. Specifically, we compared the cost of evaluating
the smart contracts corresponding to the optimal composite
access control policy with: 1) separate policies (access control
policy of each participating service is encoded as a separate

smart contract); and ii) the global-mediated access control
policy encoded as a single smart contract. Note that the
deployment cost and evaluation cost are computed using the
Etherium testnet Rinkeby instead of running the actual smart
contracts on the Etherium mainnet. Since the Etherium testnet
Rinkeby emulates the Etherium mainnet in terms of gas usage,
therefore the costs estimated this way are equivalent to the
costs in the Etherium mainnet. Both deployment cost and
evaluation cost are characterized in terms of the size and
storage requirements of the underlying smart contracts.

We first evaluated the costs of the approach considering the
workflow in Example 2 (the corresponding BP is in Figure 2).
Note that each web service in this BP has its own access
control policy. Figure 3 shows the access control policies
of downloadAssignments web service from the 3 different
universities. We do not show the access control policies of
the remaining web services due to space limitation.

1.8

16
1.2

0.8

Cost (Ether)

0.6
0.4

0.2

Separate Policies Global Mediated Policy Optimal Composite Policy

Fig. 9. Cost comparison of Assignment Grading BP for 2500 Evaluations

Figure 9 shows the cost (in Ethers) of evaluating the separate
policies, global mediated policy and optimal composite policy
for 2, 500 evaluations. As can be seen from this figure, the cost
of running separate policies is significantly higher as compared
to the global mediated policy and the optimal composite
policy. This is due to the overlap between the access control
policies of the component Web services of the BP, resulting in
the revaluation of overlapping conditions multiple times. The
degree of overlap between the web services in a BP can be

measured using the Jaccard Index (JI):
.\ __ |Intersection of conditions in s; and s |
JI(S“ SJ) ~ |Union of conditions in s; and s |

> Zj JI(si,55)
Degree of overlap = Vs;,s; € BP, No. of service pairs

The degree of overlap for the assignment grading BP of
Example 2 was 0.1765. The evaluation cost of global mediated
policy and the optimal composite policy is close. The cost
difference between the two policies depends on the number
of branches in the BP and branching probabilities. Indeed, in
case of a sequential BP, the global mediated policy is optimal.

To analyze the effect of the degree of overlap on the overall
cost, we next measure the cost for different degrees of overlap.
For this, we consider 5 randomly generated BPs with 11
services and varying structure in terms of the number of
branches and branching probabilities. We also consider a set

of 20 randomly generated access control policy graphs with
varying degree of overlapping conditions. We first randomly
select 11 policy graphs out of the 20 policy graphs. We then
randomly assign the same 11 policy graphs to the services
in each of the 5 BP graphs. This gives us 5 different BP
structures having the same degree of overlap. We then compute
the global mediated policy which again is the same for all
the 5 BPs. Next we compute optimal composite policy which
however will be different for the 5 BPs due to the structural
difference between the BPs. We compute the evaluation cost
for the optimal composite policy for each of the 5 BPs and
take the average. We repeat the above steps to generate policies
and BPs with different degrees of overlap.

Separate Policies m Global Mediated Policy E Optimal Composite Policy

14

)

12

0]
)
]

et
T
X

-
<

1

)

i
7

i
T
&

T

4

0553
"
oo

0.8

4
"
£

4
T
(o8

FH
4

o
55
et

2
"y
X

-
<

0.6

]
2

e e e e e
steetetelelely!

Cost (Ether)

el
L

%
el

0.4

%
355
T
%
o2ef
7,
5

I
5
pletele!
’,.
X

7
%
R

k!
T
K

0.2
o

"
2

%
%

bessl b

0.1765
Degree of Overlap

Fig. 10. Cost comparison of different degrees of overlap for 2500 Evaluations

Figure 10 shows the cost (in Ethers) of evaluating the
different policies obtained for varying degrees of overlap.
As can be seen from this figure, the cost improvement from
separate policies to global mediated policy and the optimal
composite policy increases proportionally to the degree of
overlap. This is as expected since we can avoid revaluation
of the overlapping conditions. The cost of optimal composite
policy is always lower than that of global mediated policy,
because it leverages the information of the structure of the BP
to minimize unnecessary evaluations.

VI. RELATED WORK

Blockchain technology has gained significant interest for
access control enforcement in distributed environment because
of the transparency and auditability properties [7], [14], [15],
[16], [17], [18], [19], [20]. The earlier work on this topic
[7], [14] used access tokens that are exchanged among users
through blockchain transactions for transfer of access rights.
These tokens are based on basic public/private key authentica-
tion scripts which can only be unlocked by the users who hold
the corresponding rights. A limitation of this body of work is
the lack of support for fine grained policies due to the limited
expressive capabilities of the scripting language.

Dorri et al. [21] considered access control enforcement
for smart home environment. This work uses blockchain as
immutable storage of access control policies, while the access
control policies are evaluated off-chain. Zhang et al. [16]
propose a framework with multiple access control contracts
(ACCs), one judge contract (JC) and one register contract

(RC). Each ACC implements static as well as dynamic access
right validation. The JC receives reports of misbehavior from
ACC and returns a penalty judgment. The RC registers access
control and judgment methods. Access control is manged by
IoT gateways serving as agents for the IoT devices. The
gateways need to be trusted by the IoT devices because they
work on their behalf for access control management, which
may not cater for transparency requirement.

The above approaches either consider simple access control
policies when evaluated on the blockchain or employ off-chain
mechanisms for policy evaluation. Maesa et al. [6] is the first to
propose an auditable blockchain based access control solution
that considers fine-grained access control policies represented
in XACML. In their solution, the access control policy is
transformed into a smart contract which is evaluated over the
blockchain for determining user authorizations. They have also
provided a reference implementation that uses XACML poli-
cies, transformed into Solidity smart contracts, and deployed
on the Ethereum blockchain for access control evaluation.
However, their solution as well as all of the above approaches
focus on the access control policy of individual resources,
whereas distributed applications, including BPs and distributed
workflows are composed of multiple resources/services that
are subject to the security and access control policies of
different organizational domains. Therefore, employing such
solutions to manage access control for distributed applications
requires evaluating the user’s authorization separately for each
resource, which may have significant overhead.

Weber et al. in [22] address the problem of trust in collab-
orative BP execution using blockchain. Specifically, they use
blockchain as a peer-to-peer infrastructure to coordinate BP
execution as well as to store BP logs. Therefore, the focus
of their work is on auditing the execution behavior of the BP
rather than access control enforcement.

VII. CONCLUSION

In this work we have examined the problem of enabling
auditable access control for distributed BPs. We have proposed
a solution based on blockchain technology that minimizes the
cost of deployment and enforcement. We also propose a game-
theoretic mechanism for auditing that reduces the auditing
cost while incentivizing honest behavior for the BPM. The
cost savings may benefit the service providers, users, or BPM
depending on who bears this cost. In the future, we plan to
analyze in detail the effect of different cost sharing models
where the cost is split between these parties in different ways.
We also plan to work on the adaptation problem which occurs
when the BP or policies may change, and propose incremental
solutions that are still efficient.

ACKNOWLEDGMENT

Research reported in this publication was supported by the
Higher Education Commission and Planning Commission of
Pakistan and LUMS FIF grant as well as the National Science
Foundation under awards CNS-1564034, CNS-1624503, CNS-
1747728 and the National Institutes of Health under awards

RO1GM118574 and R35GM134927. The content is solely the
responsibility of the authors and does not necessarily represent
the official views of the agencies funding the research.

REFERENCES

[11 H. Mei, G. Huang, and T. Xie, “Internetware: A software paradigm for
internet computing,” Computer, vol. 45, no. 6, pp. 26-31, 2012.

[2] A. Afzal, B. Shafig, S. Shamail, A. Elahraf, J. Vaidya, and N. R.
Adam, “Assemble: Attribute, structure and semantics based service
mapping approach for collaborative business process development,”
IEEE Transactions on Services Computing, 2018.

[3] J. Im, S. Kim, and D. Kim, “Iot mashup as a service: cloud-based
mashup service for the internet of things,” in 2013 IEEE International
Conference on Services Computing, pp. 462-469, IEEE, 2013.

[4] R. Ranchal, B. Bhargava, P. Angin, and L. B. Othmane, “Epics: A
framework for enforcing security policies in composite web services,”
IEEE Transactions on Services Computing, 2018.

[5] B. Shafig, S. Ghayyur, A. Masood, Z. Pervaiz, A. Almutairi, F. Khan,
and A. Ghafoor, “Composability verification of multi-service workflows
in a policy-driven cloud computing environment,” /[EEE Transactions on
Dependable and Secure Computing, vol. 14, pp. 478493, Sep. 2017.

[6] D. D. F. Maesa, P. Mori, and L. Ricci, “A blockchain based approach
for the definition of auditable access control systems,” Computers &
Security, vol. 84, pp. 93-119, 2019.

[71 A. Ouaddah, A. Elkalam, and A. Ouahman, “Fairaccess: a new
blockchain-based access control framework for the internet of things,”
Security and Comm. Networks, vol. 9, no. 18, pp. 5943-5964, 2016.

[8] B. Schneier and J. Kelsey, “Secure audit logs to support computer
forensics,” ACM Transactions on Information and System Security
(TISSEC), vol. 2, no. 2, pp. 159-176, 1999.

[9]1 M. Papazoglou, “Web services and soa: principles and technology 2nd,”

Harlow, Essex: Pearson Education Limited, 2012.

S. Godik and T. Moses, “Oasis extensible access control markup

language,” OASIS Specification cs-xacml-specification-1.0, 2002.

Y. Hong, J. Vaidya, and H. Lu, “Secure and efficient distributed linear

programming,” Journal of Computer Security, vol. 20, no. 5, pp. 583—

634, 2012.

J. Vaidya, I. Yakut, and A. Basu, “Efficient integrity verification for out-

sourced collaborative filtering,” in 2014 IEEE International Conference

on Data Mining, pp. 560-569, IEEE, 2014.

H. Gintis, Game Theory Evolving: A Problem-Centered Introduction to

Modeling Strategic Interaction. Princeton University Press, 2009.

D. D. F. Maesa, P. Mori, and L. Ricci, “Blockchain based access

control,” in IFIP international conference on distributed applications

and interoperable systems, pp. 206220, Springer, 2017.

A. Azaria, A. Ekblaw, T. Vieira, and A. Lippman, “Medrec: Using

blockchain for medical data access and permission management,” in

2016 2nd International Conference on Open and Big Data (OBD),

pp. 25-30, IEEE, 2016.

Y. Zhang, S. Kasahara, Y. Shen, X. Jiang, and J. Wan, “Smart contract-

based access control for the internet of things,” IEEE Internet of Things

Journal, vol. 6, no. 2, pp. 1594-1605, 2018.

C. Dukkipati, Y. Zhang, and L. C. Cheng, “Decentralized, blockchain

based access control framework for the heterogeneous internet of things,”

in Proceedings of the Third ACM Workshop on Attribute-Based Access

Control, pp. 61-69, ACM, 2018.

O. Novo, “Blockchain meets iot: An architecture for scalable access

management in iot,” IEEE Internet of Things Journal, vol. 5, no. 2,

pp. 1184-1195, 2018.

S. Ding, J. Cao, C. Li, K. Fan, and H. Li, “A novel attribute-based

access control scheme using blockchain for iot,” IEEE Access, vol. 7,

pp. 38431-38441, 2019.

R. Xu, Y. Chen, E. Blasch, and G. Chen, “Blendcac: A smart contract

enabled decentralized capability-based access control mechanism for the

iot,” Computers, vol. 7, no. 3, p. 39, 2018.

A. Dorri, S. S. Kanhere, R. Jurdak, and P. Gauravaram, ‘“Blockchain for

iot security and privacy: The case study of a smart home,” in 2017 IEEE

international conference on pervasive computing and communications

workshops (PerCom workshops), pp. 618-623, IEEE, 2017.

I. Weber, X. Xu, R. Riveret, G. Governatori, A. Ponomarev, and

J. Mendling, “Untrusted business process monitoring and execution

using blockchain,” in International Conference on Business Process

Management, pp. 329-347, Springer, 2016.

[10]

(1]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

