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Abstract

As well as nearly always belonging to the class of NP-complete problems, university timetabling
problems can be further complicated by the often idiosyncratic requirements imposed by the
particular institution being considered. It is perhaps due to this characteristic that in the
past decade-or-so, metaheuristics have become increasingly popular in the field of automated
timetabling. In this paper we carry out an overview of such applications, paying particular at-
tention to the various methods that have been proposed for dealing and differentiating between
constraints of varying importance. Our review allows us to classify these algorithms into three

general classes, and we make some instructive comments on each of these.

Keywords: Timetabling, Metaheuristics, Constraints.

1 Introduction

University timetabling problems belong to the larger family of general timetabling and scheduling
problems, where the aim is to assign a set of entities (such as tasks, public events, vehicles, or
people) to limited number of resources over time, in such a way as to meet a set of pre-defined
schedule requirements. Over the past decade-or-so there has been a large interest in applying
metaheuristic-based algorithms to university timetabling problems, perhaps due to the fact that

these problems can vary a great deal between institutions, and that metaheuristics are, by definition,
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types of “higher level” general-purpose algorithms that can be used with a wide range of different
problem types. Yet, although standard metaheuristic methodologies define a basic overall behaviour
of an algorithm, in this survey paper we will see that the various ways that timetabling algorithms
can operate within these frameworks can also vary a great deal. Our intention is therefore to
survey these differing features and to offer some useful comments about their relative strengths and
drawbacks.

The generic definition of a university timetabling problem can be considered the task of assigning
a number of events, such as lectures, exams, meetings, and so on, to a limited set of timeslots
(and perhaps rooms), in accordance with a set of constraints. It is suggested by Corne, Ross, and
Fang [34] that the different sorts of timetabling constraints (of which there many) can be categorised

into five main classes:

Unary Constraints that involve just one event, such as the constraint “event o must not take

place on a Tuesday”, or the constraint “event ¢ must occur in timeslot b”.

Binary Constraints that concern pairs of events, such the constraint “event a must take place
before event b”, or the event clash constraint, which is considered in more detail below. (Note
that chains of binary constraints can also be applied, such as the constraint “event a must

take place before b, which must take place before ¢”, etc..)

Capacity Constraints that are governed by room capacities, etc. For example “All events should

be assigned to a room which has a sufficient capacity”.

Event Spread Constraints that concern requirements such as the “spreading-out” or “clumping-
together” of events within the timetable in order to ease student/teacher workload, and/or

to agree with a university’s timetabling policy.

Agent Constraints that are imposed in order to promote the requirements and/or preferences of
the people who will use the timetables, such as the constraint “lecturer x likes to teach event

a on Mondays”, or “lecturer y must have have n free mornings per week”.

A fundamental constraint in timetabling is the “event-clash” binary constraint. This specifies
that if a person (or some other resource of which there is only one) is required to be present in
a pair of events, then these must not be assigned to the same timeslot, as such an assignment
will result in this person/resource having to be in two places at once. This particular constraint
can be found in almost all university timetabling problems, and its presence allows parallels to be
drawn with the well-known graph colouring problem (which we will look at in Section 2). Beyond
this near-universal constraint, however, timetabling problem-formulations will usually vary widely
from place-to-place due to the fact that different universities will usually have their own individual
needs and timetabling policies (and therefore set of constraints) that they need satisfied. From an
Operations Research point-of-view, this idiosyncratic nature can often make it difficult when trying

to formulate meaningful and universal generalisations about timetabling in general.
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Hi Dave - Professor Jones says that he can teach Monday

mornings, but he’ll need to finish early on Wednesdays,
and will need three free hours on Fridays to walk his dog.

Figure 1: When constructing a timetable, meeting the needs of all concerned may not always be
possible!

One convention in automated timetabling is to group the constraints being considered into two
categories: the hard constraints and the soft constraints. Hard constraints have a higher priority
than soft, and their satisfaction is usually mandatory. Indeed, timetables will normally only be
considered “feasible” if all of the imposed hard constraints have been satisfied. Soft constraints,
meanwhile, are those that we want to obey if possible, and more often than not they will describe
the criteria for a timetable to be “good” with regards to the timetabling policies of the university
concerned, as well as the experiences of the people who will have to use it.

It is also widely accepted that university timetabling problems can be arranged into two main
categories: exam timetabling problems and course timetabling problems. In reality, and depending
on the university involved, both types of problem can often exhibit similar characteristics, but
the main difference is that in exam timetabling, multiple events can be scheduled in the same
room at the same time (providing seating-capacity constraints are not exceeded), whilst in course
timetabling, we are generally only allowed one event per room, per timeslot. A second difference
also sometimes occurs concerning the timeslots: in course timetabling we will generally be looking
to assign all of the events to a fized number of timeslots (e.g. those occurring in exactly one week);
in exam timetabling though, we might have some flexibility in the number of timeslots that are
available. (However, as we will see later, this is not always the case.)

A further generalisation that we can make about timetabling problems at universities is that

they are NP-complete in almost all variants. What this means is that we cannot hope to find a



polynomially bounded algorithm for solving them in general (unless, of course, P=NP, which is
not generally considered to be the case — see the work of Garey and Johnson [48] for more infor-

! Cooper and Kingston [33], for example, have proved that NP-completeness exists for

mation).
a number of different problem interpretations that can arise in practice. This, they achieve, by
providing polynomially bounded transformations from various well-known NP-complete problems
such as graph colouring (see Section 2), bin packing, and three-dimensional matching to a number
of different timetabling problem variants. Even, Itai, and Shamir [45] have also shown a trans-
formation of the NP-complete 3-SAT problem into a timetabling problem. Of course, this general
NP-completeness of timetabling problems (or NP-hardness, if we are considering timetabling from
an optimisation perspective) tells us that if we wish to obtain anything that might be considered a
workable timetable in any sort of reasonable time, then this will depend very much on the nature of
the problem instance being tackled. If, for example, an instance is encountered where the require-
ments are fairly “loose” (perhaps rooms are in abundance, or only a very small number of events
actually need to be scheduled), then it might be that many acceptable timetables exist within the
problem’s search space, of which one or more can be discovered quite easily. On the other hand,
some universities’ requirements might be much more demanding, and perhaps only a very small
proportion of the search space (if any) will be occupied by workable timetables. (It should be noted
that, in practice, the combination of constraints that are imposed by timetabling administrators
could result in problems that are impossible to solve unless some of the constraints are relaxed).
Thus, in cases where “harder” timetabling problems are encountered, there seems an implicit need
for powerful and robust methods for tackling these sorts of problems.

It is widely accepted that one way of dealing with NP-hard problems is to make use of approz-
imation algorithms which, while not being able to guarantee an optimal solution, will hopefully
produce a solution that is “good enough” for practical purposes in the majority of cases. In this
paper we will conduct a review of works that have proposed such algorithms, paying particular
attention to those approaches that have used metaheuristic-based techniques. We will argue that
metaheuristics are indeed quite appropriate for this task, and will examine some of the different
problem formulations that have been put forward in the literature, together with the various ways
that metaheuristics have been proposed for solving them.

Note that other surveys on automated timetabling have also appeared in the literature in the
past, including those concentrating on exam timetabling by Carter and Laporte [25, 27] and Burke et
al. [13, 21, 16]. Other, more general timetabling surveys — including those that give information on
the related problem of timetabling in schools have also been contributed by Carter and Laporte [26],
De Werra [38], Ross et al. [69], and Schaerf [73].

!We use the word “solve” here in the strong sense: an algorithm only “solves” a problem when it is able to indicate
the presence (or lack of) an optimal solution for all instances of a given problem.
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Figure 2: Demonstrating the relationship between the graph colouring problem and a simple
timetabling problem where only the event-clash constraint is considered.

2 Comparison to Graph Colouring

Before conducting this review, it is first useful (as it will certainly assist with various explanations
within this paper) to provide a comparison between the timetabling problem and the well-known
problem of graph colouring. Given a simple and undirected graph G comprising a set of n vertices
V =w1,...,v, and a set of edges F which join various pairs of different vertices, the NP-hard graph
colouring problem involves finding an assignment of “colours” for each vertex in V' such that (a)
no pair of vertices with a common edge is assigned the same colour, and (b) the number of colours
being used is minimal.?

It is straightforward to convert the most simple of timetabling problems into a graph colouring
problem (and vice-versa) by considering each event as a vertex, and then simply adding edges
between any pair of vertices that correspond to pairs of events that cannot be assigned to the
same timeslot. Each timeslot that is available then corresponds to a colour, and the task (from a
graph colouring point-of-view) it to try and find a solution that uses no more colours than there
are available timeslots. (See figure 2 for an example.)

One useful parallel that we can draw between these problems involves the identification of
features known as “cliques”. (A “clique” is simply a collection of vertices that are mutually adjacent,
such as vertices 1, 3, 4, 6, and 7 in figure. 2, which is a clique of size 5.) This is because graph
colouring problems that reflect real-world timetabling instances will often contain large cliques,
because it is typical to encounter large collections of events that must not be scheduled together
(e.g. a first-year degree in Welsh might feature a large number of compulsory events that all first-

year Welsh students are required to attend). In the equivalent graph colouring problem, the vertices

2See the work of Garey and Johnson [48] (page 133) for further details of this problem’s NP-hardness. Also note
that the NP-complete version of this problem defines a similar task but, as usual, it is expressed as a decision problem.
Thus: given G = (V, E) and a positive integer k < m, is it possible to assign a colour to each vertex in V' so that
no pair of adjacent vertices has the same colour, and only k colours are used? A proof of this decision problem’s
NP-completeness can be found in [49].



that represent these events will form a clique, and it is easy to appreciate that all vertices within
this clique must be assigned to different colours (or equivalently, all of the corresponding events
will need to be assigned to different timeslots).

Some authors have also chosen to take this method of conversion one step further by incorporat-
ing other timetabling constraints into the graph colouring problem. For example, in the work of both
Balakrishnan [7], and Thompson and Dowsland [79], the authors have converted their timetabling
problems into a graph colouring problem in the usual manner, but have then also introduced &
additional vertices representing each of the k available timeslots (in this case k needs to be fixed
in advance). Edges are then added between each pair of these “timeslot-vertices” to form a clique
of size k, and further edges are then also added between any event-vertices and timeslot-vertices
where the corresponding event is unavailable. (For example, if we have the constraint “event a
cannot be taught in timeslot ” then an edge is added between event-vertex a and timeslot-vertex
b in the corresponding graph).

Beyond these examples, however, it is worth noting that conversions to graph colouring are
only usually conducted when relatively simple constraints are being considered. Indeed, when
other real-world constraints are considered in a problem (particularly those relating to the ordering
of events within a timetable), then often the simple graph colouring model will not be sufficient on
its own. Regardless of this factor though, it is still the case that nearly all timetabling problems do
feature the underlying graph colouring problem in some form or another in their definitions, and it
is certainly the case (as we will see) that many current timetabling algorithms do use various bits
of heuristic information extracted from this underlying problem as a driving force in their searches

for a timetabling solution.

3 Heuristic Algorithms for University Timetabling

Given the close relationship between graph colouring and university timetabling problems, it is
unsurprising that many of the early algorithmic techniques for timetabling were derived directly
from graph colouring-based heuristics. The algorithms of White and Chan [81], and Carter, La-
porte, and Lee [27], are prime examples of this.> Other timetabling approaches, meanwhile, have
made use of constraint programming-based techniques, such as the work of Deris et al. [39], La-
jos [57], Boizumault et al. [10], Guéret et al. [52], and Goltz and Matzke [51]. Further studies have
also explored the application of integer programming, such as the algorithms of Carter [24] and
Tripathy [80] in the 1980s, and Daskalaki et al. [37] in 2004. A particularly noteworthy example
of integer programming can also be found in the recent study of Schimmelpfeng and Helber [74],
who have taken an interesting real-world timetabling problem from the School of Economics and
Management at Hanover Univeristy, Germany, and have solved the resultant integer model using

both an open source mixed-integer solver and the commercial CPLEX solver. The results reported

3The latter example was also the study that introduced a set of problem instances that have since become somewhat
of a benchmark in the exam timetabling community. Hereon, we will refer to these particular instances as the “Carter
Instances”.



in this paper indicate that their methods, which require only very short run times, “can be used to
create substantially better timetables than the school ever had” [74].

As we have mentioned, in the past decade-or-so there has also been a surge in interest of applying
metaheuristic algorithms to timetabling problems. According to the website of the Metaheuristics
Network [2], a pan-European research project that was run between 2000 and 2004, a metaheuristic
“...can be seen as a general algorithmic framework which can be applied to different optimization
problems with relatively few modifications [being needed] to make them adapted to a specific
problem.” Given these characteristics, and remembering the idiosyncratic nature of timetabling
problems that we have noted, it seems that metaheuristics are therefore quite suitable in this
problem domain. On their website, the Metaheuristics Network also state that there are five
main metaheuristic paradigms — namely Evolutionary Algorithms, Ant Colony Optimisation, Tabu
Search, Simulated Annealing, and (Iterated) Local Search — and it will be these five methods that
we will be concentrating on in this review. However, we appreciate that other techniques, such as
Neural Networks and Hyper-heuristics, might also be considered metaheuristics by some, and it
is worth mentioning that there have also been successful applications of these latter techniques to
various timetabling problems in the past [17, 18, 23, 50, 56, 75]

Considering timetabling proUniversityeneral, it is apparent that one aspect that separates these
problems from many other types of combinatorial optimisation problems is the presence of both
hard and soft constraints. In practical terms, for a metaheuristic approach to be worthwhile, it is
therefore necessary for such an algorithm to be supplied with some sort of system for distinguishing
the two. A survey of the timetabling literature with regards to this matter indicates that most

metaheuristic algorithms for timetabling fall into one of three categories:

(1) One-Stage Optimisation Algorithms: where a satisfaction of both the hard and soft con-
straints is attempted simultaneously [4, 5, 22, 30, 31, 32, 34, 35, 41, 43, 53, 61, 71, 72, 75];

(2) Two-Stage Optimisation Algorithms: where a satisfaction of the soft constraints is at-
tempted only once a feasible timetable has been found [6, 11, 28, 29, 55, 58, 59, 76, 77, 79, 82];

(3) Algorithms that allow Relaxations: where violations of the hard constraints are disal-
lowed from the outset by relaxing some other feature of the problem, and attempts are then
made to try and satisfy the soft constraints, whilst also giving consideration to the task of
eliminating these relaxations [8, 12, 14, 15, 19, 20, 36, 44, 62, 65, 67, 81].

We will now conduct a survey of the field of metaheuristics and timetabling using these three
categories in order to classify the various algorithms. For each case we will first provide a simple
and general overview of the method, and will then provide a description of various works that have
used this basic approach. Note that although this method of classification might be instructive for
our reviewing purposes, it should not be interpreted as a definitive taxonomy, and it is arguable

that some of the algorithms that will be mentioned could belong to more than one of the categories.



3.1 One Stage Optimisation Algorithms

In general, one-stage optimisation algorithms allow the violation of both hard and soft constraints
within a timetable, and the aim is then to search for a solution that features an adequate satisfaction
of both. Ordinarily, this is achieved through the use of some sort of weighted sum function intended
for giving violations of the hard constraints much higher penalties than violations of the soft
constraints. The following function is typical. Given a problem with k types of constraint, where
the penalty weighting associated with each constraint i is w;, and where v;(T') represents the number
of constraint violations of type 4 in a timetable 7', the quality of T can be calculated using the

formula:

k
F(T) =) wini(T) (1)
=1

There are two main advantages of this sort of approach. First, because the aim is to simply
search for a candidate solution that minimises a single objective function, it can, of course, be used
with any reasonable optimisation technique. Second, this approach is, in general, very flexible and
easy to implement, because any sensible constraint can be incorporated into the problem provided
that an appropriate penalty weighting (which indicates its relative importance compared to others)
is stipulated. In particular, this second factor is highly convenient for timetabling problems where
we can often encounter an abundance of different constraint combinations in practice.

It is perhaps for these reasons that there have been a large number of timetabling algorithms of
this type proposed in the literature. Possibly, one of the earliest examples was provided by Colorni
et al. in [30, 31, 32] using an evolutionary algorithm (EA). In this particular approach, a number
of hard and soft constraints are considered, and a weighted sum function is used to distinguish
between the two types. Additionally, the priorities that are implied by the weightings are also
complemented by a genetic repair procedure (that the authors call the filtering procedure), which
is used to “fix” a particular timetable if the number of hard constraint violations is seen to rise
above a predefined level. The authors also report that improvements are gained when the EA’s
operators are used in conjunction with a local search procedure that moves an offspring to its local
optimum when it is first constructed. In [32] the authors compare this algorithm against a simulated
annealing and tabu search approach and report that their EA produces better results (with respect
to the minimal objective value found within a pre-defined cut-off point) than simulated annealing
but slightly worse results than tabu search. However, they also note the obvious advantage that
the EA possesses in that it is able to produce a large number of different, good quality timetables
in a single run.

Another early approach using EAs was reported by Corne, Ross, and Fang in [34]. In their
studies, weights are again used in the fitness function, and three different representations are
proposed. The most notable of these is the so-called clash-rich encoding whereby each event is
assigned an integer that represents the particular timeslot that it has been assigned to. Thus a

chromosome such as 9273453, for example, is interpreted as “event 1 is to be scheduled in timeslot



9”7, “event 2 is to be scheduled into timeslot 2”7, “event 3 into timeslot 7”7, and so on. As the authors
note, it is likely that the vast majority of chromosomes in the search space defined by this encoding
will probably feature some hard constraint violations — especially due to event-clashes (hence the
name “clash-rich”). However, one noted benefit is that because of its simplicity, the authors are
able to define various specialised mutation operators (what the authors call “violation-directed” and
“event-freeing” mutation operators) in which problematic areas of the chromosome are identified
and then mutated in such a way so that constraint violations are hopefully rectified during evolution.
Such operators are shown to to improve the performance of the algorithm in general, and using
this approach, Corne et al. have reported good results for a number of randomly generated test
instances, as well as some real-world problem instances taken from Edinburgh University.

Another one-stage EA for course timetabling has been proposed Carrasco and Pato in [22].
In this work the authors consider a particular problem originating from the Department of Hotel
Management and Tourism at the University of the Algarve, Portugal. They also decide that two
distinct measures should be used to evaluate a particular solution: the number of soft constraint
violations from the students perspective (the class-oriented objective), and the number of soft
constraint violations from the point-of-view of the teaching staff (the teacher-oriented objective).
As the authors note, in their problem these two measures of quality conflict, and so they decide to
apply a multi-objective evolutionary algorithm to the problem, so that upon completion of a run,
a user might be provided with a range of trade-off solutions with regards to these two competing
objectives. The proposed algorithm operates as follows. First, an initial population is constructed
using a constructive heuristic procedure. The resultant candidate solutions (which may or may
not also contain violations of the hard constraints) are then evaluated according to both objective
functions. Extra penalties are also applied to both of these measures if the candidate solutions
feature any hard constraint violations. Next, using their own specialised evolutionary operators
(together with a selection pressure determined by the Non-Dominated Sorting approach of Srinivas
and Deb [78]), the population is then evolved, and non-dominated solutions that are discovered
during this process are copied into an archive population. Upon completion of a run, the final
archive contains a collection of timetables that can be both feasible and infeasible. The authors
report that this algorithm, which in this case is only tested on one problem instance, is able to
produce feasible solutions that are better than the previous manually produced timetables with
regards to both of the competing objectives.

Moving away from EAs, various other authors including Abramson [4, 5], Melicio et al. [61],
and Elmohamed et al. [43] have reported one-stage optimisation algorithms that make use of sim-
ulated annealing [54]. In the approach of Elmohamed et al., for example, the authors consider the
timetabling problem of Syracuse University in the USA and use a weighted-sum scoring function
that penalises hard constraints violations more heavily than soft constraint violations. As well as
using general simulated annealing practices to try and optimise these timetables, the authors also
point out that good results can be gained if three modifications are made to their system: (1)

the introduction of adaptive cooling, (2) the use of a rule-based pre-processor to intelligently build



good starting solutions for the annealing phase, and (3) the use of specialised methods for choosing
appropriate neighbourhood moves — that is, small perturbations to the candidate solution.

Meanwhile, other authors, such as Costa [35], Hertz [53], and Schaerf [71] have chosen to
implement one-stage optimisation algorithms using the tabu search metaheuristic. In Schaerf’s
approach, for example, the author suggests inserting periods of local search in-between phases of
tabu search, with the best results of each stage then being passed into the next stage until no further
progress can be made through the search space. For this approach the author makes use of two
neighbourhood operators, with the first simply moving some events between timeslots. However, it
is noted that this operator often causes violations of the hard constraints to occur, and so a second
neighbourhood operator is also used which specifically choses moves that have a good chance of
canceling out any infeasibilities occurring as a result of the first move. Weights are also used in
the evaluation function in order to deal with any other hard constraint violations that occur. The
results from this paper (with some experiments being performed on some real data taken from some
Italian schools) show that the algorithm is able to produce feasible solutions that are better than
the hand-made ones originally used in the schools in reasonable amounts of time. In later work, Di
Gaspero and Schaerf [40] have also made use of similar methods (i.e. using tabu search, together
with a weighted evaluation function) for the examination timetabling problem. A comparison with
other algorithms proposed for the same problem, however, reveals that this approach is not always
able to perform as well in some instances; although the authors do make note of a number of
possible improvements that could be made in the future.

Di Gaspero and Schaerf [41] have also taken a look at the applicability of multi-neighbourhood
search to a course timetabling problem. In this work, the authors show how various combinations of
different neighbourhood operators can be combined in order to produce effective searches through
the search space (in this case only two operators are considered). The combinations suggested are
neighbourhood-union, neighbourhood-composition and token-ring search. A macro-perturbation
operator (that the authors call a “kick” operator) is also used to help reinvigorate the search from
time-to-time in order to help the algorithm avoid getting stuck in local optima. In this work the
authors once again make use of weights in the objective function in order to penalise the occurrence
of hard constraint violations.

At this point, we have reviewed a number of different algorithms that, in one way or another,
have made use of weightings in their objective functions in order to penalise more heavily the
occurrence of hard constraint violations within a candidate solution. It is worth noting here,
however, that although the one-stage approach has some advantages (noted at the beginning of this
subsection), it also has some inherent disadvantages. Firstly, it has been argued by various authors,
such as Richardson et al. [68], that the weighted evaluation scheme does not work well in problems
that are sparse (i.e. where only a few solutions exist in the search space). Secondly, although
the choice of weights for discriminating between different sort of violations will often critically
influence an algorithm’s navigation of the search space (and therefore its timing implications and

solution quality), there does not actually seem to be any standardised method for choosing them. In
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practice, what this means is that, often, a rather unsatisfactory amount of ad hoc reasoning will be
required from the user when encountering different problem versions (and even different instances
of the same problem version). Thirdly, the use of weights in an evaluation function will often
mean that when applying a small change to a candidate solution (which is what neighbourhood
operators typically do), this could result in an overly large change to its cost. Thus, it would seem
that weights are problematic as they can magnify the already naturally existing discontinuity in a
problem’s fitness landscape, making it even more difficult for an algorithm to navigate.

With regards to timetabling, however, it is worth noting that some of the algorithms that we
have reviewed above have had automated methods built into them in order to try and alleviate
some of these problems. For example, in both [40] and [72], Schaerf and Di Gaspero have used
a method by which the penalties awarded to hard constraint violations can actually be altered
dynamically during the search. In [72], for example, Schaerf uses a weighting value W that is
initially set to 20. However, at certain points during the search, the algorithm increases W when it
is felt that the search is drifting into search-space regions that are deemed too infeasible. Similarly,
W can also be reduced when the search consistently finds itself in feasible regions. It is proposed
that such a scheme allows a better quality search than simply keeping W fixed throughout the
run. As a second example, the Tatties timetabling system of Paechter et al. [65] (which we will
also look at in Section 3.3) also allows weights to be altered during a run. However, this time the
adjustment is performed manually by the users themselves by means of a graphical interface that
allows him-or-her to specify a target and a weight for the various different problem measures that

are considered, and then change these values during a run as they see fit.

3.2 Two-stage Optimisation Algorithms

The operational characteristics of two-stage optimisation algorithms for timetabling may be sum-
marised as follows: in stage-one, the soft constraints are generally disregarded and only the hard
constraints are considered for optimisation (i.e. only a feasible timetable is sought). Next, assum-
ing feasibility has been found, attempts are then made to try and minimise the number of the
soft constraint violations, using techniques that only allow feasible areas of the search space to be
navigated.

Obviously, an immediate benefit of this technique is that it is no longer necessary to define
weightings in order to distinguish between hard and soft constraints, because we no longer need to
directly compare feasible and infeasible timetables. In practical situations, such a technique might
also be more fitting when achieving timetable feasibility is the primary objective, and where we
only wish to make allowances toward the soft constraints if this feasibility is not compromised.
Indeed, there are two main reasons why the use of a one-stage optimisation algorithm might turn
out to be inappropriate in a situation such as this. First, whilst searching for a feasible timetable, a
weighted-sum evaluation function will always take the soft constraints into account to some extent,
and therefore it might provoke the adverse effect of leading the search away from attractive (i.e. in

this case fully feasible) regions of the search space. Second, the operational characteristics of the
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one-stage optimisation approach also suggest that such an algorithm will often allow a timetable to
move away from feasibility in order to eliminate some soft constraint violations. However, in this
particular case this strategy might be unwise, because there would, of course, be no guarantee that
feasibility could then be re-established at a different point in the search space later on.

An early example of the two-stage approach was provided by Thompson and Dowsland in [79].
In this study, the authors consider a simple exam timetabling problem in which a feasible timetable
is deemed one that contains no event-clashes and that obeys all of the room-capacity constraints.
However, soft constraints are also considered concerning the desirability of having each students
exams “spread out” within the pre-specified exam period in order to decrease student stress and
to aid revision. Thompson and Dowsland choose to relate their exam timetabling problem directly
to the underlying graph colouring problem and suggest a two-phase approach whereby a feasible
colouring/timetable is first obtained, and then various neighbourhood operators that always pre-
serve feasibility (but, at the same time, are still able to alter the other characteristics of solution)
are used. Although, as we noted earlier, the graph colouring problem is NP-hard, the authors state
that the instances they use (data taken from the exam requirements at the University of Wales,
Swansea, as well as some other universities) are loose enough to ensure that feasible timetables can
always be found fairly easily using standard graph-colouring heuristics.

A feasible colouring timetable having been found, Thompson and Dowsland then attempt to
satisfy the soft constraints of their problem using simulated annealing. In their tests, three different
neighbourhood operators are proposed, each which is designed to only allow movements from one

feasible timetable to another:

(1) The Standard Neighbourhood: whereby the colour of a particular vertex is changed to a
new colour (i.e. an event is moved to a new timeslot) in such a way so that feasibility is

preserved.

(2) Kempe Chain Neighbourhood: whereby the colours of all the vertices contained in a ran-

domly selected Kempe chain are switched. (See figure. 3)

(3) S-chain neighbourhood: which is, in essence, very similar to the Kempe chain neighbour-
hood, but which involves more colours. Thus S > 2 colours are identified, and using an
ordered list of these colours together with a recursive procedure to produce the S-chain, we
are able to identify various sub-graphs whose colours, when swapped, will result in a different
but still feasible solution. (In this case only 3-chain neighbourhoods are considered. For

further reference see the work of Morgenstern [63, 64].)

The conclusions of Thompson and Dowslands work in [79] is that the Kempe chain neighbour-
hood operator produces significantly better results than the standard neighbourhood due to its
increased flexibility. They also note that there is little difference in the results between Kempe

chain neighbourhoods and 3-chain neighbourhoods.
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(1) Select two adjacent nodes at (2) Determine the corresponding
random. (In this case we have Kempe chain of these vertices by
selected vertices 5 and 8). identifying all of the connected vertices
Assuming that the graph contains that are reachable from vertices 5 and
no colour conflicts then these two 8 and which are assigned either of the
vertices will be different in colour. two selected colours.

(3) Swapping all of the colours
within the Kempe chain will
result in a different feasible
colouring that uses no more
colours than the original.

Figure 3: Example of a Kempe chain neighbourhood operator.

A two-stage style approach for exam timetabling has also been proposed by Casey and Thomp-
son in [28]. This particular algorithm is based upon a Greedy Randomised Adaptive Search Proce-
dure (GRASP) and operates as follows: In stage-one, a feasible, clash-free timetable is first gained
using a probabilistic-based constructive algorithm that works by taking events one at a time and
attempts to place these into feasible timeslots, using backtracking when necessary (in the same
fashion as Carter et al.’s algorithm in [27]). Once feasibility has been achieved, the algorithm then
moves onto the second phase and attempts to satisfy the soft constraints whilst always remaining
in feasible areas of the search space (this is again achieved using Kempe chain interchanges and
simulated annealing). After a period, the algorithm then returns to stage one, using the information
gained in the previous iteration to aid the constructive algorithm. This then continues for a set
number of iterations. This algorithm is tested on the Carter Instances [3] and the results reported
are generally good.

A number of good two-stage algorithms have also been proposed for the course timetabling
problem-version that was used for the International Timetabling Competition, which was run in
2003 [1]. The basic idea in this competition was for participants to design algorithms for a simple
pre-defined course timetabling problem, which were then compared against each other using a
common set of benchmark instances and a fixed time limit. Upon the close of the competition, the
participant whose algorithm was deemed to perform best across these instances (and a number of
unseen instances only available to the organisers) was then awarded a prize.

An important aspect of this competition — and one which almost certainly influenced the choices
of algorithmic methods used by many of the competition entrants — was the way in which the or-
ganisers chose to evaluate the timetables. The official rules of the competition stated that timetable
quality would only be measured by looking at the number of soft constraint violations. Thus, if
a timetable (a) contained any hard constraint violations, (b) used any extra timeslots beyond the
pre-defined limit of 45, or (c) left any events unplaced, then it would immediately be considered

worthless. Indeed, the organisers imposed a strict rule that stated that participants would only
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be allowed to submit an entry to the competition if their algorithms could find feasibility on all
twenty instances. (This also meant that the problem instances were generated so that feasibility
was always achievable and relatively easy to find.) Given these factors, it is perhaps unsurprising
that many of the entrants to this competition therefore elected to use the two-stage timetabling ap-
proach. One successful algorithm was the two-stage tabu search-based approach given by Arntzen
and Lokketangen in [6]. In the first stage, their algorithm used a constructive procedure to build
an initial feasible timetable. The algorithm then used tabu search in conjunction with simple
neighbourhood operators to satisfy the soft constraints. In the latter stage, feasibility was always
maintained by making use of neighbourhood operators that were restricted so as never to break
any of the hard constraints.

Another approach similar to this was proposed by Burke, et al. in [11]. In this paper the authors
make use of the Great Deluge algorithm of Dueck [42] in order to try and reduce the number of soft
constraint violations. Again, this is done whilst always remaining in feasible areas of the search
space. In essence, Great Deluge is a type of neighbourhood search algorithm that is similar in
style to methods such as simulated annealing and tabu search. However, a useful feature of this
approach is that only one parameter needs to be defined before running the algorithm: the amount
of available search time. Given this value, the algorithm then adapts the intensity of the search so
that it only starts to converge on local (or global) optima when this time limit is being approached.
As can be expected, the algorithm is reported to return better quality results when the amount
of available search time is increased, and the algorithm is reported to return good results on the
competition benchmark instances.

Socha, Knowles, and Sampels have also suggested ways of applying the ant colony optimisation
metaheuristic to the competition problem-version. In [76, 77], the authors present two ant-based
algorithms — an Ant Colony System and a MAX-MIN system — and provide a comparison between
them. At each step in both algorithms, every ant first constructs a complete assignment of events
to timeslots using heuristics and pheromone information (the latter which is accumulated in pre-
vious iterations of the algorithm). Timetables are then further improved by way of a local search
procedure, originally proposed in [70]. (A description of the MAX-MIN algorithm — which was
actually entered unofficially to the timetabling competition — can also be found at [1], where good
results are reported for the competition benchmark instances.)

Another successful two-stage algorithm for this particular problem-version is offered by Chiaran-
dini et al. in [29]. Here, an initial feasible solution is first found using a combination of constructive
heuristics, local search, and tabu search. Once this is achieved, the algorithm then moves onto sat-
isfying the soft constraints by first using variable neighbourhood search, and then using simulated
annealing. A simple reheating function is also used during this phase which resets the temperature
to its initial starting value when it is felt that the run is starting to stagnate. The authors also make
use of the F-Race method (Birattari et al. [9]) to automatically tune the algorithm’s parameters
toward the competition instances.

Kostuch has also used simulated annealing as the main construct in his timetabling algorithm,
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described in [55]. Based upon his winning entry to the timetabling competition, this method works
by first gaining feasibility via simple graph colouring heuristics (plus a series of improvement steps
if these heuristics prove inadequate) and then uses simulated annealing to try and satisfy the soft
constraints, first by ordering the timeslots, and then by swapping events between timeslots. One
of the interesting aspects of Kostuch’s approach is the way in which the cooling schedule for the
simulated annealing stage is determined: in this case, the algorithm’s time limit is used in order to
calculate a temperature decrement rule that allows a cooling that is as slow as possible, but which
will still spend enough time at low temperatures for sufficient movements toward the optimal to
be possible. (This is similar to the Great Deluge approach of Burke et al. [11] that we mentioned
earlier.)

Having now examined a number of two-stage timetabling algorithms, it should be clear that
for this approach to work effectively, it is essential that two criteria are met. First, timetable
feasibility must be obtainable in a reasonable amount of time. Second, a practical amount of
movement within the resultant feasible-only search space must be attainable. With regards to the
latter requirement, if the search space of the problem is quite unconstrained and a reasonable part
of this space is made up of feasible solutions, then this may be so. However, it is also possible that
if the “constrainedness” of this space is quite high, then searches of this kind might potentially turn
out to be extremely inefficient and/or ineffective at times, because it may simply be too difficult
for the algorithm to move about and explore the feasible parts search space in any sort of useful
way (see the work of Lewis [58] for empirical evidence of this); indeed, in these cases, perhaps, a
method that allows the search to take “shortcuts” across infeasible parts of the search space might
allow a better search to be conducted in some cases.

Additionally, as we mentioned earlier, whether this technique turns out to be appropriate in a
practical sense will also depend on the user requirements: if a completely feasible timetable is an
absolute necessity and the user is only interested in satisfying the soft constraints if this feasibility
is assured (as was the case for the International Timetabling Competition), then the two-stage
approach may well be fitting. On the other hand, if, for example, we were to be presented with
a problem instance where feasibility was very difficult (or impossible) to achieve, then it could
be the case that users might actually prefer to be given a solution timetable in which a suitable
compromise between the number of hard and soft constraint violations has been achieved, suggesting

that, perhaps one of the other two types of algorithm might be more appropriate instead.

3.3 Algorithms that allow Relaxations

Our final category of metaheuristic timetabling algorithm contains those methods in which some
aspect of the problem is “relaxed” so that the algorithm can attempt to satisfy the soft constraints,
but not at the expense of violating any of the hard constraints. Typically these relaxations are

achieved in one of two ways:

1. Events that cannot be feasibly assigned to any place in the current timetable are left to one
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side unplaced. The algorithm then attempts to satisfy the soft constraints and will hope to

insert these unplaced events into the timetable at a later stage.

2. Extra timeslots are opened in order to deal with events that have no existing feasible timeslot
available. If necessary, efforts are then made to try and reduce the number of timeslots
down to the required amount, whilst also taking into consideration the satisfaction of the soft

constraints.

An early example of the second type above was proposed by Burke, Elliman, and Weare in [14]
and followed an evolutionary-based approach applied to exam timetabling. In this method each
individual in the initial population is first created by feeding a random permutation of the events
into a greedy graph colouring-style algorithm. This takes each event in turn and places it into the
first timeslot where no clash occurs and where capacity constraints are not exceeded. Extra times-
lots are then opened for exams that cannot be placed into existing timeslots. Having constructed
the initial population, the algorithm is then concerned with meeting two requirements: (a) lowering
the number of timeslots being used to a suitable level; and (b) spreading the exams of each student
within the timetable in a similar manner to Thompson and Dowsland [79] mentioned earlier. In
their approach, the authors choose to combine these two objectives into a single numerical function
using weights. Knowledge augmented evolutionary operators are also used for producing offspring
that contain no infeasibilities. The results from this paper indicate the following trade-off: if, in the
fitness function, a large emphasis is placed upon keeping the timetable short, then this will usually
be to the detriment of the secondary objective, because there will be less opportunity for events
to be spread out. Conversely, if a larger emphasis is placed upon the secondary objective, this will
lead to the production of a longer timetable. In [15] Burke, Elliman, and Weare have continued
this work, this time with research being directed toward the design of more specialised recombi-
nation operators for the problem. The authors define a basic scheme for recombination, and then
experiment with various heuristics used in conjunction with this scheme in order to identify the
most effective one. Good results to a real-world timetabling problem taken from Carter’s problem
instance set [3] are claimed.

A similar strategy for exam timetabling has also been proposed by Erben in [44], who chooses
to use a modified version of his Grouping Genetic Algorithm (GGA) for graph colouring (which
is presented in the same paper). In this case, an initial population of feasible exam timetables is
made in a similar way to Burke et al. above; however, this time the population is evolved using
GGA-based operators instead (see the work of Falkenauer [46, 47] and also Lewis [58, 60] for further
explanations of these operators). As with Burke et al., Erben then concerns himself with satisfying
two objectives: shortening the timetable (i.e. decreasing the number of timeslots), and spreading
the exams to ease student workloads. Once again, these two objectives are combined into one
fitness function, with heavier weightings being placed upon the former objective.

It is noticeable that in the exam timetabling problem-version tackled by Burke et al. [14, 15] and

Erben [44], a compromise will usually have to be struck between (a) keeping the timetable short
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and (b) spreading-out each of the students events within the timetable. In this sense, this particular
formulation might be considered a type of Multi-objective problem. It is for these reasons that Cote,
Wong, and Sabourin [36] have chosen to make use of multi-objective optimisation techniques for this
problem-version. In essence, their approach involves the use of a hybrid multi-objective EA that
ranks each member of the population using the concepts of “Pareto Strength” used in the SPEA-IT
multi-objective EA of Zitzler et al. [83]. The algorithm functions by first producing a population
of timetables that use various numbers of timeslots between some fixed bounds (and which may or
may not be feasible) and then evolves these timetables using two local search procedures intended
for eliminating timetable infeasibilities and making improvements on the spreading of the events.
The algorithm then stores any non-dominated solutions that are found in an archive population
and, upon completion of a run, the user is presented with a number of alternative timetables
of different length and differing levels of event spread. In practical applications the use of an
archive population might be considered an advantage, because the user will be able to choose
from a variety of solutions along the Pareto front, without there being any need for the manual
specification of weights beforehand. (Presumably the task of choosing one of these timetables is
easier than manually defining the weights in the first place.) Other notable examples of multi-
objective techniques applied to timetabling have also been provided by Burke, Bykov, and Petrovic
in [12]; Petrovic and Bykov in [67]; and in an extended abstract by Paquete and Fonseca in [66].
In the first two of these works, the authors consider exam timetabling problems, and, again, the
problem instances used in experiments are taken from the Carter instance set. In both cases
the authors choose to impose nine different soft constraints on these problems, dealing with factors
concerning room capacities, the spreading-out of exams, and the ordering of exams. Neighbourhood
search techniques are then used in order to try and optimise these timetables and, in the case of
Petrovic and Bykov, weights that are adjusted automatically during the run are used in order to
help influence the direction of the search.

Moving away from the field of multi-objective metaheuristics, another evolutionary-based ap-
proach to exam timetabling that uses methods slightly different to those discussed thus far has
been proposed by Burke, Newall, and Weare in [20]. In this case the number of timeslots that are
to be used in the timetable is defined explicitly in advance, and events that cannot be inserted into
any timeslot are then deliberately kept to one side unplaced. Consequently, an evaluation function
is then used that reflects (a) the number of unplaced events (to which a large weighting is applied)
and (b) how spread-out each students exams are in the timetable. During a run of the algorithm
the authors then make use of three operators in order to evolve this population: their so-called light
and heavy mutation operators, and a deterministic hill-climbing procedure. (No recombination is
used.) In particular, the latter operator, as well as attempting to optimise the spreading of exams,
also places a special preference on inserting the unplaced exams if this is possible. The authors
then test this algorithm using an instance from Nottingham University and the Carter problem
instances [3], over a range of timeslot limits. In experiments the algorithm is reported to eventually

schedule all of the unplaced exams, as well as making significant improvements in the spread of
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the exams in the timetable. Further work has also been carried out using this algorithm by Burke
and Newall in [19]. In this paper, however, the authors choose to investigate the idea of problem
decomposition and show ways in which a timetabling problem might be broken up into smaller
sub-problems, each of which is then “solved” in sequence. The results indicate that their method
of decomposition allows good results to be gained in much less time than when using the same
evolutionary-based algorithm on the entire problem in one go. This same decomposition method
has also been used with a parallel tabu search-based algorithm by Batenburg and Palenstijn in [8].

Merlot et al. have also looked at exam timetabling in [62]. Here, the authors suggest an
approach involving constraint programming, simulated annealing, and then hill climbing. In the
first stage the constraint programming part of the algorithm formally combines constraints in
order to reduce the search space, and uses this information to try and construct an initial feasible
timetable (however, if events cannot be placed, these are placed into a so-called dummy slot at the
end of the timetable). Optimisation then follows in the next two stages, where attempts are made
to try and improve the timetable by (a) satisfying the soft constraints and (b) moving any events
in the dummy slot back into the timetable. An evaluation function that places a large emphasis on
emptying the dummy slot (through weights) is also used. In experiments, the algorithm is tested
using real-world problem instances from the University of Melbourne, to which it is said to find
substantially better results than the universitys existing methods. Various benchmark problem
instances such as the Carter instances are also used, the results of which compare well to other
methods.

Finally, another evolutionary approach — this time for university course timetabling — has been
proposed by Paechter et al. in [65]. Here, the authors describe a memetic approach whereby an EA
is supplemented with an additional local search routine that aims to improve each timetable when
it is being built, with the results then being written back into the chromosome. Like the approach
of Burke, Newall, and Weare [20] this algorithm then disallows the violation of any hard constraints
by leaving certain events to one side unplaced if necessary. Violations of the soft constraints — of
which there are a large variety — are then also penalised through the use of weightings that can be
adjusted by the user during the search (as we mentioned in Section 3.1). This algorithm has been
successfully used for module timetabling at Napier University in Scotland: a problem that involves
the scheduling of 2000+ events into 45 timeslots and around 180 rooms. To our knowledge, this is
one of the largest practical problems that has been successfully tackled using a metaheuristic.

One further aspect of Paechter et al.’s approach is the use of sequential evaluation. During a
run, the user is given a choice as to whether he-or-she wants to give special priority to the task of
inserting the unplaced events into the timetable. If this option is not taken, then unplaced events
are simply treated as an additional soft constraint by the algorithm; however, if it is taken, then
when two candidate timetables are compared, the algorithm always deems the one with the least
number of unplaced events as the fitter. Ties are then broken by looking at the penalties caused
by each of the timetable’s soft constraint violations. This particular approach means that many

of the problems encountered when judging a timetables quality through a single numerical value
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alone (as is the case with one-stage optimisation algorithms for timetabling — see Section 3.1) can
be avoided. Note, however, that this method of evaluation is only useful for algorithms where it
is sufficient to know the ordering of a set of candidate solutions, rather than an explicit numerical
quality-score for each (in this case, the authors use binary tournament selection with their EA).

Such a method is thus less well suited to other types of optimisation algorithms.

4 Summary and Discussion

Concluding this review, it is apparent that timetabling problems can be — and indeed have been
— addressed using a variety of different computational approaches. In this review we have focused
our discussions on the application of metaheuristics to these problems, and have taken special
note of the different ways in which these sorts of algorithm might be adapted for dealing with and
distinguishing between the hard and soft constraints of a particular problem. Consequently, we have
suggested that metaheuristic algorithms for timetabling can be loosely separated into three main
classes — one stage optimisation algorithms, two-stage optimisation algorithms, and algorithms that
allow relaxations. It is worth stressing that although each scheme seems to have its advantages
and disadvantages, it is not the case that any particular class of algorithm is universally superior
to any other. Indeed, it is only likely that certain approaches are more suited to certain types of
problem-situations and certain types of user requirements. It seems reasonable to assume that when
choosing a particular approach for one’s own timetabling problem, these issues should therefore be
given the most consideration, especially bearing in mind that the solutions to practical problems
will inevitably have to be used by real people. It goes without saying, however, that it is also
desirable for an algorithm to be fast, reliable, and robust whenever possible.

One noticeable trait from our review is the fact that in some cases, the algorithms that have
been proposed for a particular timetabling problem may have only been tested on a small number of
the authors’ own problem instances. From a practical perspective, this situation is understandable,
because if a timetabling problem needs to be solved at the authors own institution, they will, of
course, be more motivated in solving this problem, rather than spending their time trying to solve
other peoples’. However, from a research point-of-view, this characteristic will, of course, often make
it very difficult to assess how well an algorithm is capable of performing in comparison to other
algorithms. Also, in many cases, other researchers will have no idea whether or not the problem
instances used in the study were actually “hard” or not. It is also quite common in these cases
for authors to state that their algorithm was able to produce better timetables than the manually-
produced solutions previously used by their institution. However, there are actually a number of
potential pitfalls in using an argument such as this to justify an algorithm. First, this sort of
claim involves making the explicit assumption that the institution’s criteria of measuring timetable
“goodness” (whatever these might be) have all been effectively captured by the algorithm’s objective
function. However, it could be the case that, often, the people who construct the timetables by

hand may well make certain choices subconsciously and, consequently, may not be able to describe
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these processes and criteria to the algorithm designer. Secondly — and perhaps more obviously
— the statement that an algorithm is better than a human-designed timetable is, of course, only
actually meaningful when the reader is also given some indication of the skill-level of the human in
question. This information is not normally provided, however.

On the other hand, whilst the use of publicly available timetabling instances (such as Carter’s
exam problems and also the competition instance set) can be helpful for comparing and contrasting
different timetabling algorithms, in doing so there will always be a slight risk of researchers focusing
too much of their efforts on these particular problem instances and “over-fitting” their algorithms.
For example, it is arguable that the problem-version and instances used for the timetabling com-
petition has tended to direct authors’ design choices towards two-stage optimisation algorithms.
However, as has been shown by Lewis in [58], when considering highly constrained problem in-
stances, movements in the feasible-only search space (which is the space that will be explored
during the second phase of the two-stage process) will often be too restricted to allow significant
improvements to be gained. It is likely, therefore, that for different problem versions — or, indeed,
simply different instances of the same problem version — that other types of algorithm might prove
more fruitful in some cases.

More generally, there also seems to be come confusion in the field about how different timetabling
algorithms should be formally tested and evaluated against one another. As we have seen in this
review, different approaches and problem formulations will often seek to achieve different sets
of objectives, making it difficult to perform meaningful comparisons in many cases. However,
difficulties in comparisons also exist in many of the studies where existing benchmark instances
have been used as, often, different performance measures will be looked at, different stopping
criteria will be imposed, and/or different numbers of trials will be performed in the testing and
analyses of the algorithms.

Concerning these latter points, in 2007-8 the author and colleagues will be organising a second
International Timetabling Competition. The intention of this is to extend the knowledge gained
from the first competition, and also to facilitate, as far as possible, a formal comparison of submitted
algorithms using pre-defined evaluation criteria and a new set of benchmark problem instances.
Entry to the competition is free, and we encourage researchers with an interest in timetabling to
download our problem instances and submit their best algorithms. The competition website can

be found at www.cs.qub.ac.uk/eventmap.
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