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Abstract: Negative and positive partial discharge inception voltages and breakdown measurements
are reported in a needle-plane electrode system as a function of pressure under AC voltage for natural
gases (N2, CO2, and O2/CO2), pure NovecTM gases (C4F7N and C5F10O) and NovecTM in different
natural gas admixtures. For compressed 4% C4F7N–96% CO2 and 6% C5F10O–12% O2–82% CO2 gas
mixtures, the positive-streamer mode is identified as the breakdown mechanism. Breakdown and
negative partial discharge inception voltages of 6% C5F10O–12% O2–82% CO2 are higher than those
of 4% C4F7N–96% CO2. At 8.8 bar abs, the breakdown voltage of 6% C5F10O–12% O2–82% CO2 is
equal to that of 12.77% O2–87.23% CO2 (buffer gas). Synergism in negative partial discharge inception
voltage/electric field fits with the mean value and the sum of each partial pressure individually
component for a 20% C4F7N–80% CO2 and 6% C5F10O–12% O2–82% CO2, respectively. In 9% C4F7N–
91% CO2, the comparison of partial discharge inception electric fields is Emax (CO2) = Emax(C4F7N),
and Emax (12.77% O2–87.23% CO2) = Emax(C5F10O) in 19% C5F10O–81%(12.77% O2–87.23% CO2).
Polarity reversal occurs under AC voltage when the breakdown polarity changes from negative to
positive cycle. Polarity reversal electric field EPR was quantified. Fitting results show that EPR (CO2)
= EPR(9% C4F7N–91% CO2) and EPR(SF6) = EPR (22% C4F7N–78% CO2). EPR (4% C4F7N–96% CO2)
= EPR (12.77% O2–87.23% CO2) and EPR (6% C5F10O–12% O2–82% CO2) < EPR (4% C4F7N–96% CO2)
< EPR (CO2).

Keywords: N2; O2/CO2; C4F7N; C4F7N/CO2; C5F10O; C5F10O/O2/CO2; gaseous breakdown;
divergent electric fields; partial discharge inception voltage/electric field; polarity reversal pres-
sure/electric field

1. Introduction

In compressed SF6 [1–5], the propagation mechanism (leader criterion) is the break-
down mode in the presence of conducting particles fixed/floating on conductors or insula-
tors. In the presence of invasive pollutants, the streamer inception level is lower than the
leader inception level. The conventional partial discharge (PDs) measurement technique
constitutes a means to detect the presence of defects without conducting destructive tests.

On the other hand, for C4F7N/CO2 mixtures [6], the PDs activity under AC voltage
varies as a function of pressure and the magnitude of the electric field, including breakdown
polarity reversal (PR), when the AC breakdown polarity changes from negative half-cycle
to positive half-cycle with the increase of pressure. At the reversal critical pressure (PR
pressure), breakdowns occur on positive or negative half-cycles. Before PR, PDs are
observed during the negative half-cycle, and current pulses occur on the positive cycle. For
the same electric field distribution, increasing the pressure leads to an increase of the partial
discharge inception voltage (PDIV) and an increase of the intensity of the maximum electric
field on the tip of the needle. The latter causes inception of a denser PDs activity on the
positive cycle and an attenuation of the PDs on the negative cycle. For pressures above PR,
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negative PDs activity decreases until being hidden by the background noise of the current
sensing circuit. In this case, only higher positive polarity PDs activity is detectable, and the
positive PDIV is close to breakdown. It was reported that the breakdown voltage is equal
under positive and negative polarities under lightning impulse voltage waveform in quasi-
uniform fields and at PR pressure [7,8]. The PR pressure increases linearly with the increase
of field utilization factor η given by Equation (1). It should be noted that η = Emean/Emax,
Emax being the maximum electric field for a given electrode configuration; it is computed
using finite element method simulation using COMSOL MultiphysicsTM software.; and
Emean is the mean electric field given by Emean = V/d where V is the applied voltage and d
is the electrodes gap. The linear increase is characterized by a constant polarity reversal
electric field EPR calculated according to Equation (1), where Vi is the positive PDIV for
divergent electric fields and the breakdown voltage for quasi-uniform electric fields, d is
the electrode gap. Table 1 reports EPR for different gas/gas mixtures [6–8].

(EPR or Emax) =
Vi

d · n
(1)

Table 1. Reported polarity reversal electric field EPR according to Equation (1) [6–8].

Gas/Gas Mixture EPR (kV/mm) Pressure (bar abs) η

SF6 [7,8] 86 7.5 0.17
CO2 [6] 64 2.5 0.0385

3.7% C4F7N–96.3% CO2 [8] 47 9.5 0.33
10% C4F7N–90% CO2 [7] 66 5.5 0.22

The present work investigates both the negative/positive-inception and breakdown
voltages of a classic defect in GIS (fixed particle on the live conductor) under AC voltage
waveform for different gases and gas mixtures. Natural gases, such as N2, CO2, and
O2/CO2, are also assessed since they constitute the buffer gas(es) when mixed with the
fluorinated SF6 replacement candidates (C4F7N or C5F10O). The main purpose of adding
natural gases is to lower the boiling point of the final fluorinated/natural gas mixture
to reach operating temperatures similar to SF6 for indoor and outdoor high voltage ap-
plications. In addition, pure C4F7N and C5F10O were studied at the sub-atmospheric
pressure level without liquefaction. Then, including minimal working temperature and its
corresponding concentrations [7–9], the addition of highly electronegative gases to natural
gases is investigated, and the synergism of the constituents is quantified. Inception electric
field was calculated in positive/negative polarities for pure/gas mixtures, and synergism
laws are deducted. The polarity reversal electric fields are calculated for the C4F7N/CO2
and C5F10O/O2/CO2 gas mixtures.

2. Materials and Methods

To study pure gas/gas mixture pre-breakdown and breakdown characteristics under
non-uniform fields, a needle/plane defect model was utilized as described in previous
work [6]. The needle was placed between two plane electrodes of Bruce profile to provide
homogeneous background electric field conditions. The plane electrodes were made of
aluminum and the 100 µm tip radius needle from tungsten of 99.99% purity. The electrode
set was placed inside a vessel made of stainless steel (volume = 12 L, max pressure = 12 bar
abs). The high voltage needle electrode that was connected to the bushing was fixed and
was connected to a high voltage AC source (3.75 kVA) with a maximum output voltage of
50 kV rms. The high voltage bushing installed on the test vessel was rated at 38 kV AC rms.
The grounded plane electrode, however, was vertically moveable within the test chamber
so that the desired gap length can be achieved with an accuracy of 0.1 mm. Current sensing
was performed by coupling a high-frequency current transformer (HFCT), of 500 MHz
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upper cutoff frequency, to the lower (grounded) plane electrode, while the recording of the
generated signals was performed through a 500 MHz, 2 GS/s oscilloscope (see Figure 1).
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Figure 1. Experimental circuit.

Figure 2 shows the field utilization factor η given by Equation (1) of the experimental
arrangement as a function of gap distance. Such an electrode configuration gives a constant
field utilization factor η = 0.0385 for gaps between 10 mm and 20 mm. For a 60 kV
peak AC applied voltage, η = 0.0385 and d = 10 mm, the maximum electric field Emax is
≈156 kV/mm.
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Figure 2. Calculated field utilization factor η at various gap distances.

The different investigated gas/gas mixtures are listed in Table 2. A Dilo (mini-series
C5 and mini-series C4) was used to circulate the NovecTM 5110 (C5F10O) and NovecTM 4710
(C4F7N) mixtures in the gaseous state. For a 6% C5F10O/12% O2/82% CO2 gas mixture [9],
a premixed 12.77% O2/87.23% CO2 gas mixture was used for the preparation of the gas
mixture and representing the buffer gas.

The inception voltage of pre-breakdown discharges, which originated from the needle
tip, was investigated optically in the visible and ultraviolet light emission spectrum. The
optical detection system consisted of a UV image intensifier, incorporating an S20 photo-
cathode, mounted on the front of an 8-bit high-speed camera with a maximum resolution of
1024 × 1024 px. A chromatically corrected Nikon UV-105, 105 mm f/4.5 lens was installed
on the optical input of the intensifier. Observations were performed through a UV-grade
fused silica side viewport installed on the pressure vessel. The entire camera system was
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aligned to and focus adjusted towards the installed electrode configuration. A UV band-
pass filter mounted on the front of the UV lens was used to absorb the visible spectrum
light emitted by glow discharge. While current detection was difficult and sometimes
impossible in the high-pressure range (at pressure levels between 5 and 10 bar abs), using
a high-frequency current transformer (500 MHz) of high gain ratio (5 V/A), combined
with the camera system described above, consisted an effective method to detect PDIV in
the UV and VIS spectral range. Figure 3 shows an example of a negative-streamer light
emission image of N2 at 5 bar abs.

Table 2. List of investigated gases and gas mixtures.

Gas/Gas Mixture Maximum Pressure (bar abs)

CO2 8.8
N2 8.8

12.77% O2–87.23% CO2 10
C5F10O 0.6

6% C5F10O–12% O2–82% CO2 10
C4F7N 1

4% C4F7N–96% CO2 10
20% C4F7N–80% CO2 5
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Figure 3. Negative-streamer propagation in N2 (d = 10 mm, 5 bar abs).

A new needle was used for each gas/gas mixture to prevent deformation in the radius
of the needle and biased results. No erosion effect on needle tips was observed after partial
discharge inception voltage (PDIV) measurements. Initially, the PDIV was investigated,
followed by breakdown voltage (BDV) measurements. No difference in BDV results was
observable between new and used needles up to a certain limit; however, the needle was
replaced frequently (see Figure 4). In contrast, one single BDV caused a decrease in PDIV.
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For breakdown measurements, an AC voltage ramp was increased at a rate of 2 kV/s
up to 90% of the voltage level that initiated electrical discharges, and then 0.1 kV/s was
used. For each breakdown event, measurement series of 10 individual discharges were
performed. Three minutes were kept in between the individual electrical discharges. The
test rig bushing flashover limit was 60 kV peak. The ramp method was employed to
identify the inception voltage of partial discharge. The voltage was increased with the rate
of 1 kV/s until the first pulse, or a light emission image (UV-vis spectrum), was detected.

3. Results
3.1. Natural Gases

N2, CO2, O2/CO2 mixtures are interesting because they are perfectly ecologically
compatible, and they constitute a major part of the atmosphere. The pure nitrogen used
contains around 0.01% oxygen. Here, negative and positive-inception voltages and AC
breakdown measurements are reported for N2 at various pressures up to 8.8 bar abs (see
Figure 5). The effect of needle condition (non-arced vs. arced) was investigated. After
breakdown measurements (arced needle), a change in negative-inception voltage was ob-
served at high pressure, and a saturation trend occurs. To prevent this deviation, inception
voltage was measured first, followed by breakdowns for all the following measurements.
For each gas/gas mixture, a new needle was used. The negative-inception voltage increases
linearly as the gas pressure increases. An example of negative-inception voltage–current
characteristics and its visual proof (UV vs. UV + VIS) at 8.8 bar abs is shown in Figure 6.
The captures show that it contained combined ultraviolet and visible emitted light. The
glow discharge is detectable across the pressure range (see Figure 7).

Figure 5 shows a deviation between breakdown and negative-inception voltages at
5 bar abs, corresponding to an electric field of 67 mkV/mm according to Equation (1).
By increasing the pressure, deviation increased. Positive-current pulses were detectable for
pressures above 6 bar abs (see Figures 5 and 8).
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(N2, d = 10 mm).
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The breakdown voltage of N2 showed a linear dependence on increasing gas pressure
in contrast to electronegative gas/gas mixtures that present nonlinear tendency for the
same needle-plane configuration, such as CO2 and 4% C4F7N–96% CO2 [6]. The breakdown
occurred exclusively under a negative AC voltage peak for the pressure range. According
to the pre-breakdown current measurements (see Figure 8) and the optical observations
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(see Figures 3 and 8), the negative glow streamer mode was identified as the breakdown
mechanism for compressed N2. These findings agree with previous investigations [10–15].
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Figure 9 summarizes the negative and the positive-inception voltage and AC break-
down measurement for 12.77% O2–87.23% CO2 at various pressures up to 10 bar abs.
The negative-inception voltage increased linearly with the increase of gas pressure. An
example of negative and positive partial discharge voltage–current characteristics and its
emission image (UV + VIS) at 8.8 bar abs are shown in Figure 10. The intensity of negative
partial discharge current decreased with an increase of pressure (see Figure 11a). The
breakdown characteristic of 12.77% O2–87.23% CO2 showed a nonlinear behavior when
the gas pressure increased. The breakdown occurred under the negative AC voltage peak
for pressures below 1.6 bar abs and on the positive AC voltage peak above. The polarity
reversal (PR) cross point at 1.6 bar abs corresponds to a positive-inception electric field of
50 kV/mm, calculated according to Equation (1). At pressures below PR, only negative



Energies 2021, 14, 1065 8 of 23

PDs were detectable up to breakdown. At PR pressure, similar partial discharge activities
occurred on positive and negative cycles (see Figure 10a). The luminosity of the positive
cycle was lower than that of the negative cycle (see Figure 10b,c). At pressures above
PR [3,6], the needle tip was covered with a cloud of charge carriers, which were stabilized
by negative ions formed by the attachment of electrons. Consequently, the negative space
charges generate a reduction of the electric field on the side of the tip. This causes an
increase in the breakdown voltage. For high pressure (8.8 bar abs), one positive-current
pulse was detectable before the breakdown; the positive-streamer channels transited to
leader channels and arrived at the opposite electrode instantly. The space charge near the
needle tip resulted in a reduced electric field. The electrode was virtually elongated, the
gap width was reduced, and the electric field was enhanced in the remaining gap, resulting
in a reduction in breakdown voltage. It established an electrical conduction path between
the two electrodes. Heating and expansion of the conductive channel occurred, and mul-
tiple branches were created (see Figure 11c). The negative partial discharge inception
voltage (PDIV) was identified with current and emission light images. The negative partial
discharge inception electric field (PDIEF) Emax was calculated according to Equation (1) for
different natural gases as a function of pressure. The results are shown in Figure 12. Along
the pressure range investigated, PDIEF of N2 and 12.77% O2–87.23% CO2 exhibits a linear
trend. On the other hand, PDIEF of CO2 evolved linearly and presented a saturation trend
at higher pressure levels (>5 abs). As a result, at the highest and lowest pressures (8.8 bar
abs and 1 bar abs), PDIEF (12.77% O2–87.23% CO2) > PDIEF (CO2) > PDIEF (N2). However,
at the intermediate pressures, PDIEF (CO2) was higher than PDIEF (12.77% O2–87.23%
CO2 and N2) and PDIEF (N2) = PDIEF (12.77% O2–87.23% CO2).
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gain of the recording system in the VIS + UV range for (b) negative cycle and (c) positive cycle.
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of the image recording system).

3.2. C4F7N Gas Based

C4F7N or NovecTM 4710 was combined with a simple dilution natural gas/gas mixture
(CO2, O2 and/or N2). For quasi-homogeneous and divergent electric field distributions,
the dielectric strength of the 20% C4F7N/80% CO2 mixture was equivalent to that of pure
SF6 at equivalent pressure [7,8]. In practical applications, a reduction in the concentration
of C4F7N was required to enable an increase in the filling pressure of the apparatus without
liquefaction. Figure 13 summarizes the measured negative and the positive-inception
and AC breakdown voltages for 20% C4F7N–80% CO2 at various pressures up to 5 bar
abs. The negative-inception voltage increased linearly with the increase of gas pressure.
The breakdown characteristic of 20% C4F7N–80% CO2 showed a nonlinear behavior over
the gas pressure levels. The breakdown occurred under a negative AC voltage peak for
pressure below 1.6 bar abs and on a positive AC voltage peak. The polarity reversal (PR)
cross point at 1.6 bar abs corresponded to a positive-inception electric field of 84 kV/mm,
calculated according to Equation (1). Below PR, negative and positive PDs were detectable
until breakdown occurs. An example of negative and positive partial discharge voltage–
current characteristics and its emission image (UV vs. UV + VIS) at 1.3 bar abs are shown
in Figure 14.

Negative PDIV detection was possible via current measurement (current transformer
5-1) and via emission image. For high pressure (5 bar abs), multiple pulses around the
positive cycle peak were detectable before the breakdown (see Figure 15). While negative
partial discharge amplitude decreases with pressure increases, the intensity of positive
partial discharge current increases. Increasing the applied voltage level induced denser
current activity and consequently increased light emission (see Figures 14a and 15a); in
turn, this generated a sufficient critical space charge avalanche to create a discharge. The
positive glow streamer mode was identified as the breakdown mechanism for compressed
20% C4F7N–80% CO2. The findings agreed with previous investigations on a 4% C4F7N–
96% CO2 gas mixture [6]. The streamer criterion was proven to fit the breakdown values
for different electric field distributions [16]. The critical space charge size was given by
the natural logarithm of the number of electrons Ncritical in the critical avalanche; Table 3
summarizes Ln (Ncritical) for different C4F7N based gas mixtures. Increasing C4F7N content
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led to an increase in the breakdown critical space charge and a larger gap between positive
PDIV and breakdown, leading to a higher rate of gas molecules decomposition.
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Table 3. Streamer criterion mechanism: critical breakdown space charge for different C4F7N based
gas mixtures [17].

Gas/Gas Mixture Ln (Ncritical)

3.7% C4F7N–96.3% CO2 6.228768
20% C4F7N–80% CO2 8.448

C4F7N 14.56

To clarify the synergism between components of 20% C4F7N–80% CO2 gas mixture,
negative PDIV was identified for each pure component separately, i.e., C4F7N up to 1 bar
abs (20% of the mixture), CO2 up to 4 bar abs (80% of the mixture) and the final mixture
of them up to 5 bar abs. The negative partial discharge inception electric field (PDIEF)
Emax was calculated for each component according to Equation (1), reported to the final
mixture pressure and plotted in Figure 16. For all the pressure ranges, PDIEF (C4F7N)
was higher than PDIEF (20% C4F7N–80% CO2), which in its turn was higher than PDIEF
(CO2). Synergism on PDIEF of 20% C4F7N–80% CO2 gas mixture fits with the mean value
of each individual component according to Equation (2). Based on PDIEF data of pure CO2
(up to 8.8 bar abs, Figure 12) and pure C4F7N (up to 1 bar abs, Figure 15), three different
variations with the increase of C4F7N content in a C4F7N–CO2 gas mixture were identified.
Table 4 summarizes the comparison between PDIEF (Emax) of CO2 and C4F7N separately
in C4F7N–CO2 gas mixtures. At 9±1

0% C4F7N concentration, Emax (CO2) = Emax (C4F7N).
When C4F7N concentration < 9±1

0, Equation (2) was no longer applicable. Concerning
polarity reversal, when the breakdown polarity changed from negative to positive half-
cycle, the polarity reversal electric field EPR was calculated according to Equation (1) for
CO2, SF6, and different C4F7N–CO2 gas mixtures and plotted in Figure 17. Fitting results
show that EPR (CO2) = EPR (9% C4F7N–91% CO2) and EPR(SF6) = EPR (22% C4F7N–78%
CO2). At the same time, the pressure of polarity reversal increased linearly with the increase
of field utilization factor η. Increasing C4F7N content improved EPR and polarity reversal
pressure at the same time at a constant field utilization factor η (see Table 5). This variation
was governed by a constant EPR intrinsic characteristic for each gas/gas mixture.
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Emax(20% C4F7N − 80% CO2) =
Emax(C4F7N − Partial pressure) + Emax(CO2 − Partial pressure)

2
(2)
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Table 4. Negative partial discharge inception electric field (PDIEF) (Emax) comparison between CO2

and C4F7N as a function of component concentration.

Case
C4F7N/CO2 Gas Mixture

% C4F7N % CO2

Emax (CO2) > Emax (C4F7N) <9 ±1
0 >91 ±0

1
Emax (CO2) = Emax (C4F7N) 9 ±1

0 91 ±0
1

E max (CO2) < Emax (C4F7N) >9 ±1
0 <91 ±0

1
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Figure 17. Synergistic effect on polarity reversal electric field of C4F7N–CO2 gas mixtures compared
to pure CO2 and SF6.
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Table 5. Polarity reversal electric field EPR according to Equation (1) (current work).

Gas/Gas Mixture EPR (kV/mm) Pressure (bar abs) η

20% C4F7N–80% CO2 84 1.6 0.0385
4% C4F7N–96% CO2 50 0.7 0.0385

3.3. C5F10O Gas Based

The vaporization of C5F10O or Novec TM 5110 was obtained above 26.9 ◦C. C5F10O
could only be used as an additive at a pressure below the saturated vapor pressure and
could not be used in a pure state for insulation applications where the minimum operating
temperature of an HV apparatus may drop to −25 ◦C or below. A mixture with a low con-
centration of a C5F10O (4–6%) and a buffer gas (O2/N2/CO2) resulted in an improvement
of the dielectric strength [9].

Figure 18 reports AC breakdown measurements for 12.77% O2–87.23% CO2, 6% C5F10O–
12% O2–82% CO2, and 20% C4F7N–80% CO2 at various pressures and for a gap distance of
5 mm. All the gas mixtures show nonlinear behavior as a function of pressure and with
different peak values. At 8.8 bar abs, the breakdown voltage of 6% C5F10O–12% O2–82%
CO2 was equal to that of 12.77% O2–87.23% CO2. A saturation trend of the breakdown
voltage was observed for 12.77% O2–87.23% CO2 and 6% C5F10O–12% O2–82% CO2 above
8.8 bar abs, while the increase for 20% C4F7N–80% CO2 was linear. At 5 bar abs, the
breakdown voltage of 20% C4F7N–80% CO2 was 2 times higher compared to that of 6%
C5F10O–12% O2–82% CO2 at 8.8 bar abs.
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Figure 18. Vmean breakdown voltage as a function of gas pressure (12.77% O2–87.23% CO2 vs. 6%
C5F10O–12% O2–82% CO2 vs. 20% C4F7N–80% CO2, d = 5 mm).

The breakdown occurred under a negative AC voltage peak for pressures below
0.5 bar abs and on a positive AC voltage peak. The polarity reversal (PR) cross point
at 0.5 bar abs corresponds to a positive-inception electric field of 36 kV/mm, calculated
according to Equation (1). In terms of partial discharge activity, the 6% C5F10O–12% O2–
82% CO2 exhibited a similar behavior compared with that of 12.77% O2–87.23% CO2 or
20% C4F7N–80% CO2. Unlike 12.77% O2–87.23% CO2 and below PR, negative and positive
PDs were detectable up to breakdown for the 6% C5F10O–12% O2–82% CO2. To explain the
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latter behavior, pure C5F10O at 0.54 bar abs, which corresponds to a 6% molar fraction of
9 bar abs total pressure, was evaluated separately, and the results are shown in Figure 19.
High amplitude and positive polarity current pulses were detected during the positive
cycle (see Figure 19a) before breakdown on the negative cycle (see Figure 19b), and a
positive-inception electric field of 60 kV/mm was calculated according to Equation (1). On
the other hand, C4F7N at 0.352 bar abs, which corresponds to a 4% molar fraction of 8.8
bar abs total pressure, exhibits similar behavior to C5F10O with less dense positive polarity
discharge activity (see Figure 19c). The corresponding positive-inception electric field was
70 kV/mm calculated according to Equation (1). The breakdown voltage of the C5F10O
(0.54 bar abs) was 1.09 times of C4F7N at 0.352 bar abs.
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Figure 19. Voltage–current waveform for measuring partial discharge, and breakdown voltages (C5F10O vs. C4F7N,
gap distance d = 10 mm): (a) partial discharge (C5F10O, p = 0.54 bar abs), (b) breakdown on a negative cycle (C5F10O,
p = 0.54 bar abs, Vb = 57.75 kV peak) and (c) breakdown on a negative cycle (C4F7N, p = 0.352 bar abs, Vb = 53 kV peak.

Above PR, the intensity of negative partial discharge current decreased with the
increase of pressure. For high pressure (7 bar abs, see Figure 20), negative PDIV detection
was not possible via current measurement (current transformer 5-1); however, the detection
was performed via emission image. Before breakdown at high pressure (p = 6 bar abs),
positive partial discharge appears in multiple pulsed within the positive AC half-cycle (see
Figures 21a and 22). Increasing the applied voltage levels induced more current activity
and a brighter emission image. The breakdown on the positive cycle was led by a positive-
streamer sufficient space charge. 6% The 6% C5F10O–12% O2–82% CO2 presents denser
positive partial discharge activities before the breakdown compared to the 4% C4F7N–96%
CO2 [6].

Negative partial discharge inception electric field (PDIEF) Emax was calculated accord-
ing to Equation (1) for pure C5F10O and C4F7N at sub-atmospheric pressures corresponding
to the operational molar fraction without liquefaction in real indoor/outdoor high voltage
applications and the results are shown in Figure 23. For this pressure range, PDIEF(C4F7N)
was higher than PDIEF(C5F10O) and, at 0.6 bar abs, PDIEF(C4F7N) was 2.18 times higher
than PDIEF(C5F10O). Figure 24 shows (PDIEF) Emax for 4% C4F7N–96% CO2, 6% C5F10O–
12% O2–82% CO2, and 20% C4F7N–80% CO2 as a function of pressure. For all the gas
mixtures, PDIEF was linear as a function of pressure, and PDIEF (6% C5F10O–12% O2–
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82% CO2) was higher than PDIEF (4% C4F7N–96% CO2). Above 3 bar abs, PDIEF (20%
C4F7N–80% CO2) > PDIEF (4% C4F7N–96% CO2 and 6% C5F10O–12% O2–82% CO2).
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Figure 20. Negative inception voltage in 6% C5F10O–12% O2–82% CO2: d = 10 mm, p = 7 bar abs, V = 40 kV, GI = 60%
is the relative luminous gain of the recording system in the: (a) visible + ultraviolet light (VIS + UV) and (b) associated
voltage–current waveform (inception voltage).
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Figure 21. Voltage–current waveform for measuring partial discharge, and breakdown voltages (6% C5F10O–12% O2–82%
CO2, P = 6 bar abs, gap distance d = 5 mm): (a) partial discharge and (b) breakdown on a positive cycle.
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Figure 22. Partial discharge in 6% C5F10O–12% O2–82% CO2: d = 5 mm, p = 6 bar abs, V = 45 kV,
GI = 60% is the relative luminous gain of the recording system in the: (a) visible +ultraviolet light
(VIS + UV) and (b) ultraviolet (UV) radiation along the electromagnetic spectrum.

To study the synergism between components of 6% C5F10O–12% O2–82% CO2 gas
mixture, negative PDIV was identified for each pure component separately, i.e., C5F10O
up to 0.6 bar abs (6% of the mixture), 12.77% O2–87.23% CO2 up to 9.4 bar abs (94% of the
mixture), and the final mixed gas up to 10 bar abs. The negative partial discharge inception
electric field (PDIEF) Emax was calculated for each component according to Equation (1),
reported to the final mixture pressure and plotted in Figure 25. For all the pressure ranges,
PDIEF (6% C5F10O–12% O2–82% CO2) was higher than PDIEF (12.77% O2–87.23% CO2),
which, in its turn, was higher than PDIEF (C5F10O). Synergism on PDIEF of 6% C5F10O–
12% O2–82% CO2 gas mixture fits with the sum of each negative partial discharge inception
electric field Emax individually component according to Equation (3).
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Figure 23. Negative-inception electric field as a function of gas pressure (C5F10O vs. C4F7N,
d = 10 mm).
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Figure 24. Negative-inception electric field as a function of gas pressure (6% C5F10O–12% O2–82%
CO2 vs. 4% C4F7N–96% CO2 vs. 20% C4F7N–80% CO2, d = 10 mm).

Based on PDIEF data of pure 12.77% O2–87.23% CO2 (up to 9.4 bar abs) and pure
C5F10O (up to 0.6 bar abs), three different variations with the increase of C5F10O content
in a C5F10O–(12.77% O2–87.23% CO2) gas mixture were identified. Table 6 summarizes
the comparison between PDIEF (Emax) of 12.77% O2–87.23% CO2 and C5F10O separately
in C5F10O–(12.77% O2–87.23% CO2) gas mixtures. At 19±1

0 C5F10O concentration, Emax
(12.77% O2–87.23% CO2) = Emax(C5F10O).

Regarding polarity reversal, when the breakdown polarity changes from negative to
positive cycle, the polarity reversal electric field EPR was calculated according to Equation
(1) for CO2, 12.77% O2–87.23% CO2, and 6% C5F10O–12% O2–82% CO2 gas mixtures (see
Table 7). At a constant field utilization factor η, decreasing the concentration of CO2 reduces
final EPR and polarity reversal pressure. A linear trend was observed between polarity
reversal pressure and final polarity reversal electric field EPR. Comparing data in Tables 5
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and 7, it could be observed that EPR (4% C4F7N–96% CO2) = EPR (12.77% O2–87.23% CO2)
and EPR (6% C5F10O–12% O2–82% CO2) was less than EPR (4% C4F7N–96% CO2).

Emax(6%C5F10O − 12%O2 − 82%CO2) = Emax(C5F10O − Partial pressure)+
Emax(12.77%O2 − 87.23%CO2 − Partial pressure)

(3)
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vs. partial pressure (C5F10O), d = 10 mm).

Table 6. PDIEF (Emax) comparison between 12.77% O2–87.23% CO2 and C5F10O as a function of
component concentration.

Case
C5F10O/12.77% O2–87.23% CO2 Gas Mixture

% C5F10O %(12.77% O2–87.23% CO2)

Emax (12.77% O2–87.23% CO2) > Emax
(C5F10O) <19 ±1

0 >81 ±0
1

Emax (12.77% O2–87.23% CO2) = Emax
(C5F10O) 19 ±1

0 81 ±0
1

Emax (12.77% O2–87.23% CO2) < Emax
(C5F10O) >19 ±1

0 <81 ±0
1

Table 7. Polarity reversal electric field EPR according to Equation (1) for different gas mixtures-based
CO2.

Gas/Gas Mixture EPR (kV/mm) Pressure (bar abs) η

CO2 64 2.5 0.0385
12.77% O2–87.23% CO2 50 1.6 0.0385

6% C5F10O–12% O2–82% CO2 36 0.5 0.0385
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4. Discussion

Compared to CO2, the addition of O2 (12.77% O2–87.23% CO2) increased the critical
reduced electric field strength from 82 Td to 90 Td (1 Td = 10−21 V.m2) with ≈10% improve-
ment [18,19]. N2-O2 gas mixtures exhibited better critical reduced electric field strength
than CO2–O2 for oxygen content higher than 8% (see Figure 26). At 15 Td, the mixture 16%
O2–84% CO2 exhibited the same value of reduced attachment Townsend coefficient as pure
O2 [18]. Compared to N2 or N2-O2 gas mixtures, CO2 or CO2–O2 mixtures had better arc-
breaking capabilities. Oxygen was selected to be part of the gas mixture (C4F7N/CO2/O2)
to reduce the generation rate of both carbon monoxide (main decomposition product) and
fluorinated byproducts during arc quenching [20].
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Figure 26. Density-reduced critical electric field of N2–O2 and CO2–O2 gas mixtures [19].

The analysis of the effective ionization coefficients in C5F10O/O2/CO2 [21,22] and
C4F7N/CO2 [23] gas mixtures showed a strong dependence of the effective ionization coef-
ficient on the gas density. C5F10O is characterized by an intrinsic dielectric strength highly
dependent on the pressure, i.e., the increase of pressure increases the limiting dielectric
strength. For a stationary value E/N of density reduced electric field (see Equation (4)),
where:

• V: DC applied voltage;
• d: Insulation distance; and
• N: gas density, increasing the pressure decreases the applied voltage V, resulting in a

decrease of the velocity and the energy of the emitted electrons.

The decrease of the energy of the swarm inhibits the generations in fractional negative
ions result of dissociative attachment. The pure C5F10O and C4F7N exhibit PDs activities
on the AC positive half-cycle when the breakdown occurs on the negative half-cycle
(see Figure 19b,c). The pure C5F10O shows denser PDs activity than that of pure C4F7N.
Moreover, for similar breakdown voltages, negative partial discharge inception electric field
of C4F7N at 0.352 bar abs is 1.75 times higher than that of C5F10O at 0.54 bar abs, as shown
in Figure 23. The positive PDs incept by dissociative attachment of electrons in C5F10O or
C4F7N. Thynne and Harland [24] reported negative ions formed by low energy electron
impact and attachment to C4F7N, using a Bendix time of flight spectrometer. Multiple
dissociative attachment ions are formed (F−, CN−, CF3

−, C2F5
− and C3F7

−) in the range of
appearance potential 0.3–12 eV. The appearance potential is defined as the energy required
to produce the ion and its accompanying neutral fragment from a given molecule. The
attachment cross-section of C4F7N is continuous and higher than SF6 in the energy range
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between 0.1 eV and 1 eV [25]. Hösl et al. [23] proved the existence of three types of anions
(F− or CN− and/or C4F7N−) at low energies and developed a model, including the anions
electron detachment to fit their experimental breakdown data. Ranković et al. [26] detected
and identified the C4F7N fragments (F−, CN−, C3F4N−, C4F6N−) by the electron energy
loss spectroscopy and the dissociative electron attachment spectroscopy created at energies
around ~1 eV.

The attachment cross-section C5F10O [25] is similar to that of SF6 for electron energies
below 0.7 eV, and that it is substantially larger than that of SF6 in the region between
0.7 eV and 10 eV. The formation of anions is governed by dissociative attachment to
C5F10O. Dissociative electronic attachment leads to fragmentation of the C5F10O molecules;
different chemical species appear in the gas phase. The species generated in the gas phase
cause a destabilization of the molecular texture and a weakening of the dielectric behavior
of gas or gas mixture.

E
N

=
V

Nd
(4)

The SF6 presents different behaviors of the electron attachment cross-section [27] in
the incident energy of the electron Ei between 0 and 10 eVas shown in Figure 27. Electrons
with low-energy < 0.6 eV and low-speed are generally absorbed by SF6 molecules to form
SF6

− anion in a stable state. For unstable SF6
− anions, the electrons auto-detaches after

68 ± 0.2 µs [28]. Dissociative attachment of electrons in SF6 is dependent on the incident
energy of the electrons Ei. For Ei between 0.6 eV and 2 eV, SF5

− anions are produced by
fragmentation of the parent SF6 molecule. For Ei between 2 eV and 3.5 eV, no dissociative
attachment occurs. For Ei between 3.5 eV and 10 eV, SF4

−, SF3
− and SF2

− anions are
produced. The previous dissociative attachment patterns in SF6 result in multiple polarity
reversal (at least 2) (+)/(−) and (−)/(+) as a function of the maximum electric field given
by Equation (1) [7,8,14,29,30].
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Only one polarity reversal happens in C4F7N/CO2 mixtures and pure CO2. The
breakdown voltage in positive polarity becomes constraining and goes below the voltage
in negative polarity when the pressure increases and/or the field tends to be divergent.

5. Conclusions

The breakdown characteristic as a function of pressure under non-uniform elec-
tric field distribution is linear for N2 and strongly nonlinear for weak electronegative
gas/gas mixture (CO2, 12.77% O2–87.23% CO2) or strong electronegative gas/gas mixture
(C4F7N, C5F10O, 4% C4F7N–96% CO2, 20% C4F7N–80% CO2, 6% C5F10O–12% O2–82%
CO2). The negative glow streamer mode is identified as the breakdown mechanism for
compressed N2.

For compressed 4% C4F7N–96% CO2 and 6% C5F10O–12% O2–82% CO2 gas mixtures
under non-uniform electric field distribution, the positive-streamer mode is identified as
the breakdown mechanism. Breakdown and negative partial discharge inception voltages
of 6% C5F10O–12% O2–82% CO2 are higher than those of 4% C4F7N–96% CO2. For high
pressure, negative PDIV detection is not possible via current measurement; the detection
is feasible via emission image. At 8.8 bar abs, the breakdown voltage of 6% C5F10O–12%
O2–82% CO2 is equal to that of 12.77% O2–87.23% CO2 (buffer gas). At 5 bar abs, the
breakdown voltage of 20% C4F7N–80% CO2 is 2 times higher compared with that of 6%
C5F10O–12% O2–82% CO2 at 8.8 bar abs.

For 20% C4F7N–80% CO2 gas mixture, synergism in negative partial discharge incep-
tion voltage/electric field fits with the mean value of each individual partial pressure com-
ponent (C4F7N and CO2). Based on partial discharge inception voltage/electric field data
of pure CO2 (up to 8.8 bar abs) and pure C4F7N (up to 1 bar abs), three different variations
with the increase of C4F7N content in a C4F7N–CO2 gas mixture was identified. At 9 ±1

0
C4F7N concentration, partial discharge inception electric field Emax (CO2) = Emax(C4F7N).
When C4F7N concentration < 9 ±1

0, the mean value of each partial pressure individual
component (C4F7N and CO2) is no longer applicable.

For 6% C5F10O–12% O2–82% CO2 gas mixture, synergism in negative partial discharge
inception voltage/electric field (Emax) fits with the sum of each individual partial pressure
component (C5F10O and 12.77% O2–87.23% CO2). Based on partial discharge inception
voltage/electric field data of 12.77% O2–87.23% CO2 (up to 9.4 bar abs) and pure C5F10O (up
to 0.6 bar abs), three different variations with the increase of C5F10O content in a C5F10O–
(12.77% O2–87.23% CO2) gas mixture was identified. At 19 ±1

0 C5F10O concentration, Emax
(12.77% O2–87.23% CO2) = Emax(C5F10O).

Polarity reversal occurs under AC voltage when the breakdown polarity changes from
negative to positive cycle. Polarity reversal electric field EPR was quantified. Fitting results
show that EPR (CO2) = EPR(9% C4F7N–91% CO2) and EPR(SF6) = EPR (22% C4F7N–78%
CO2). The pressure of polarity reversal increases linearly with the increasing field utilization
factor η. At a constant field utilization factor η, increasing C4F7N content improves EPR and
polarity reversal pressure. This variation is ruled by a constant EPR intrinsic characteristic
for each gas/gas mixture. The addition of O2 in 12.77% O2–87.23% CO2 and C5F10O in
C5F10O–(12.77% O2–87.23% CO2) reduces final EPR and polarity reversal pressure, EPR (4%
C4F7N–96% CO2) = EPR (12.77% O2–87.23% CO2) and EPR (6% C5F10O–12% O2–82% CO2)
< EPR (4% C4F7N–96% CO2) < EPR (CO2).
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