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Abstract

In this paper, the important (but so far unrevealed) usefulness of the extended generalized partially

linear single-index (EGPLSI) model introduced by Xia et al. (1999) in its ability to model a

flexible shape-invariant specification is elaborated. More importantly, a control function approach

is proposed to address the potential endogeneity problems in the EGPLSI model in order to enhance

its applicability to empirical studies. In this process, it is shown that the attractive asymptotic

features of the single-index type of semiparametric model are still valid in our proposed estimation

procedure, given the intrinsic generated covariates. Our newly developed method is then applied

to address the endogeneity of expenditure in the semiparametric analysis of a system of empirical

Engel curves using the British data, which highlights the convenient applicability of our proposed

method.
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1. Introduction

Xia et al. (1999) introduced the extended generalized partially linear single-index

(EGPLSI) model of the form

Yi = X ′
iβ0 + g(X ′

iα0) + ǫi, (1.1)

where (i) (X, Y ) is a set of Rq ×R-valued observable random vectors; (ii) β0 and α0

are vectors of unknown parameters such that β0 ⊥ α0, showing the orthogonality of

β0 and α0 for identifiability, with ||α0|| = 1 and (iii) g(·) is an unknown structural

link function such that g(·) : R → R and g′′(·) 6= 0. In addition, it is assumed

that E(ǫ|X) = 0, a usual exogeneity assumption suggesting that E(ǫ|V0) = 0 where

V0 = X ′α0. In fact, the EGPLSI model is an extended version of the generalized

partially linear single-index (GPLSI) model of Carroll et al. (1997) and Xia and

Härdle (2006) and hence a number of non- and semiparametric models are special

cases of the EGPLSI model.

The current paper refines the usefulness of the EGPLSI model in modelling the

kind of flexible shape-invariant specification often considered in pooling nonpara-

metric regression curves (see Härdle and Marron (1990), and Robinson and Pinkse

(1995) for examples). Furthermore, the paper also aims to address a breakdown of

the exogeneity assumption in the EGPLSI model, particularly the endogeneity prob-

lems that cause unidentification of the structural link function, in order to enhance

the applicability of the EGPLSI model to empirical studies.

Recently, a number of methods have been discussed in the literature on how the

endogeneity problems can be best addressed in non- and semiparametric models.

Among these, two of the most popular alternatives are nonparametric instrumental

variable estimation (NPIV) and the control function (CF) approach (see Blundell

and Powell (2003) for an excellent review of endogeneity in non- and semiparamet-

ric models). The NPIV estimation relies on different stochastic assumptions from

the CF approach and is performed without estimating a first-stage reduced-form

equation. Nonetheless, there are a few well-known difficulties that are intrinsic to

the NPIV estimation, particularly the so-called ill-posed inverse problem (see Ai

and Chen (2003), and Blundell et al. (2007) for details). On the other hand, the

CF approach allows the specification of endogeneity, which is based on the intuitive
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triangular structure of a model (see Blundell et al. (1998), and Blundell and Pow-

ell (2003) for details). This triangular structure of the CF approach also provides

an accessible way of addressing the weak instruments problem in a nonparametric

regression model by translating the weak instruments problem into a simpler one,

namely the multicollinearity problem (see Han (2012) for details). Hence, the de-

velopment of the CF approach in the EGPLSI model also provides a foundation for

addressing the presence of weak instruments in semiparametric regression models.

This paper also aims to develop the CF approach, mainly for the reasons given

above. Although the generated covariates issue is intrinsic in the development of the

CF approach, similar to the study of Mammen et al. (2016), the proposed method

maintains the attractive features of the single-index (SI) model with the relatively

mild conditions seen in the literature and shows an accessible extension to strictly

stationary and strongly mixing (α-mixing) process. In a SI model, Härdle et al.

(1993) showed that the optimal bandwidth for estimating a structural link function

(in the sense of the integrated mean square error (IMSE)) can be used for the
√
n-

consistent estimation of the index coefficients. Xia et al. (1999) then extended the

optimization technique and asymptotic results of Härdle et al. (1993) to estimation

of the EGPLSI model for a strictly stationary and strongly mixing process. The

current paper proceeds one step further by showing that under-smoothing for es-

timating a first-stage reduced-form equation is not required in the newly proposed

CF’s two-stage nonparametric/EGPLSI estimation in order to achieve
√
n-consistent

estimation of α0. These results are developed in details with the simplest data struc-

ture, namely an independently and identically distributed (i.i.d.) random sample,

then extended to a strictly stationary and strongly mixing case. Furthermore, the

convenient applicability of our newly developed CF approach to an empirical study

is explored by analyzing empirical Engel curves based on British data.

The structure of the rest of the paper is as follows. In Section 2, the useful-

ness of the EGPLSI model for modelling a flexible shape-invariant specification is

elaborated. In addition, the development of the CF approach in the EGPLSI model

and a Monte Carlo exercise assessing the finite-sample performance of the proposed

estimation procedure are also presented. In Section 3, the implementation of the

empirical study of the cross-sectional relationships between specific goods and the
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level of total expenditure is investigated. Finally, Section 4 concludes the paper

with a summary of the main findings and further issues to be investigated. All

mathematical proofs of the main theoretical results of the paper are presented in

the Appendix.

2. EGPLSI Model, Shape-Invariant Specification and Endogeneity

In this section, the usefulness of the EGPLSI model introduced by Xia et al.

(1999) is firstly elaborated for specifying a flexible shape-invariant specification.

This section then introduces endogeneity into the EGPLSI model, establishes the

CF approach to address the endogeneity problems and presents the asymptotic

properties and finite sample performances of a Monte Carlo simulation exercise for

the proposed estimators.

2.1. Shape-Invariant Specification within EGPLSI Model Framework

A shape-invariant specification in modelling an aggregate structural relationship

incorporating individual heterogeneity is easily found in various areas of economics.

For instance, Blundell and Stoker (2007) suggested modelling consumption patterns

with the demographic differences of individual households, and Nagin and Odgers

(2010) and LaFree et al. (2009) proposed specifying group-based trajectories in,

respectively, clinical research with heterogeneous subject groups over time and in

cross-national politically motivated violence over time. The EGPLSI model allows

this type of shape-invariant specification with functional flexibility because both the

scale and shift parameters can be incorporated into the model. Below, we discuss

how to model a flexible shape-invariant specification within the EGPLSI model

framework in detail.

Let us consider a flexible shape-invariant specification within the EGPLSI model

framework by considering the two sets of observations below. The first set of obser-

vations (X1, Y1), . . . , (Xn, Yn), for example, is assumed to follow the data-generating

process (d.g.p.) below

Yi = m1(Xi) + εi, i = 1, . . . , n, (2.1)

where ε is assumed to be independent with a mean of 0 and the common variance σ2.

Suppose the second set of observations (X ′
1, Y

′
1), . . . , (X

′
n, Y

′
n) is from the following
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nonparametric regression model

Y ′
i = m2(X

′
i) + ε′i, (2.2)

where ε′ is independent from ε but otherwise has the same stochastic structure as

ε and has the common variance σ′2. The main interest here is to model the curves

whose parametric nature is modelled by

m2(X
′) = S−1

θ0
(m1(T

−1
θ0

(X ′))), (2.3)

where Tθ and Sθ are invertible transformations, particularly scalings and shifts of

the axes indexed by the parameters θ ∈ Θ ⊆ Rd, and θ0 is the vector of the true

values of the parameters. A good estimate of θ0 is provided by θ for which the curve

m1(X) is closely approximated by

m(X, θ) = Sθ(m2(Tθ(X))). (2.4)

For the sake of illustration, the simple models are considered as follows

m1(X) = (X − 0.4)2 and m2(X
′) = (X ′ − 0.5)2 − 0.2, (2.5)

which fit the framework described by (2.1) to (2.4) by defining the following

Tθ(X) = θ(1)X + θ(2)

m2(Tθ(X)) =
(
θ(1)X + θ(2) − 0.5

)2 − 0.2

Sθ(m2(Tθ(X))) =
(
θ(1)X + θ(2) − 0.5

)2 − 0.2 + θ(3)X + θ(4),

where θ0 =
(
θ
(1)
0 , θ

(2)
0 , θ

(3)
0 , θ

(4)
0

)
= (1, 0.1, 0, 0.2).

When a curve comparison problem with a similar parametric nature to (2.3)

needs to be considered, Härdle and Marron (1990) suggested an estimation proce-

dure by which separated kernel smoothers are used in order to compute the estimates

of m1(·) and m2(·). The estimator of θ0 is then found by minimizing a L2-norm ob-

jective function of the kernel estimates of m1(·) and m2(·), and the approximation

in (2.4). Alternatively, pooling the two sets of observations is more desirable. Mod-

elling the data within the EGPLSI model framework enables this type of pooling

nonparametric regression. The shift and scaling of the axes illustrated in the exam-

ple above fit in the EGPLSI framework, shown as below

m3(X1, X2) = [β01X1 + β02X2] +
{
([α01X1 + α02X2]− 0.5)2 − 0.2

}
, (2.6)
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where X1 =





X

X ′
and X2 =





1 if X1 = X

0 if X1 = X ′
. The model examples in (2.5) can

be obtained by defining

(β01, β02, α01, α02) = (0, 0.2, 1, 0.1). (2.7)

Five hundred simulated observations of the model are represented by circles in Figure

2.1, where X1i on the x-axis is a uniform random variable on [0, 1] for i = 1, . . . , 500.

Figure 2.1. Five hundred simulated observations based on m3(·, ·).

The two sets of observations are determined by X2, which is a Bernoulli random

variable with the parameter p = 0.5. It should be noted, however, that the set of

values of the parameters in (2.7) does not satisfy the identification conditions which

require that β0 ⊥ α0 with ||α0|| = 1. An approximate model that satisfies these

identification conditions is obtained by first setting β02 = 0.2 and α02 = 0.1, so that

β01 = −0.02 and α01 = 0.99 can be derived. five hundred simulated observations of

this type of model are represented by triangles in Figure 2.1. In practice, when there

is enough reason to believe (perhaps based on economic theory) that β01 = 0 and

α01 = 1, then such a model can be obtained by scaling and shifting, respectively, as

follows

X2 = v01 − β01X1 and X1 +
α02

α01

X2 =
v02
α01

,
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where β01X1 + β02X2 = v01 and α01X1 + α02X2 = v02. This method is illustrated in

the empirical analysis in Section 3.

2.2. Endogeneity and Newly Proposed Estimation Procedure

Despite its ability to model a flexible shape-invariant specification, the applica-

bility of the EGPLSI model in (1.1) to an empirical study is limited because of its

shortfalls in addressing endogeneity problems. There are two potential sources of

endogeneity in the model, namely endogeneity in the parametric and in the nonpara-

metric components. Hereafter, let us refer to these as “parametric-endogeneity” and

“nonparametric-endogeneity”, respectively. The simultaneous occurrence of these

two types of endogeneity is also possible. If it is present, parametric-endogeneity

can be dealt via parametric IV estimation in place of the usual least-squares (LS)

estimation method.3 Because of the partialling-out process, as in the estimation pro-

cedure of the partially linear (PL) type of semiparametric model of Robinson (1988)

and Speckman (1988), the
√
n-consistent LS estimator of β0 is still obtainable even

in the presence of the nonparametric-endogeneity unless the parametric covariates

are endogenous. Hence, to simplify the argument, the parametric covariates are

assumed to belong to a subset X1 ⊆ R
q1 for q1 < q of X such that E(ǫ|X1) = 0,

namely the parametric covariates are exogenous, without loss of generality.

In this case, nonparametric-endogeneity exists when E(ǫ|X) 6= 0, which implies

that E(ǫ|V0) 6= 0. An unexpected property from the SI type of semiparametric

models is that estimators of the index coefficients are still
√
n-consistent even with

the presence of nonparametric-endogeneity. The literature, particularly Ichimura

(1993), Härdle et al. (1993), and Xia and Härdle (2006), suggested estimating the

index coefficients by minimizing a L2-norm objective function measuring the dis-

tance between a structural link function and its approximation by the conditional

expectation relationship given a set of the initial values of the index coefficients.

The disturbance term in the minimizing objective function is then endogeneity-free

because of the partialling-out process of the estimation procedure of the SI type of

semiparametrics. Nonetheless, the structural link function in the EGPLSI model is

3A comprehensive discussion of parametric IV estimation of the PL type of semiparametric

models can be found in Li and Racine (2007).
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unidentifiable by using the conditional expectation relationship in the presence of

nonparametric-endogeneity. As a result of this, the optimization procedure in Xia

et al. (1999) is no longer applicable.

In the following, let us present the development of the CF approach in the

EGPLSI model. For the sake of notational simplicity, the simplest case is considered,

namely the presence of an endogenous nonparametric covariate denoted by X2.
4

Hereafter, let Z denote a vector of valid instruments for X2 as follows

X2i = gx(Zi) + ηi, (2.8)

where E(η|Z) = 0, and

E(ǫ|X2) = E(ǫ|Z, η) = E(ǫ|η) ≡ ι(η), (2.9)

where (X2, Z) is a set of R×R
qz -valued observable random vectors, and gx(Z) and

ι(η) are unknown real functions such that gx(·) : R
qz → R and ι(·) : R → R,

respectively. The stochastic assumption of (2.9) is standard in the CF literature,

suggesting the exogeneity condition of Z, particularly E(ǫ|Z, η) = E(ǫ|η) (see Newey
et al. (1999), Blundell and Powell (2004), and Su and Ullah (2008) for examples).

Furthermore, the necessary identification condition for the structural link function

(g(·) function) as discussed in Newey et al. (1999) is the non-existence of a linear

functional relationship between X2 and η.

By imposing the structure of (2.8) and (2.9), the EGPLSI model in (1.1) with

the presence of nonparametric-endogeneity is rewritten as

Yi = X ′
iβ0 +m(V0i, ηi) + ei, (2.10)

where m(v0, η) ≡ g(v0) + ι(η) with ι(η) 6= 0 being the endogeneity control function,

and E(e|X) = 0. The conditional expectation relationship, based on (2.10), is

obtained as follows

my(v0, η) ≡ m(v0, η) +mx(v0, η)
′β0, (2.11)

where my(v0, η) ≡ E(y|V0, η) and mx(v0, η) ≡ E(x|V0, η).

4The generalized version (namely when there are more than one endogenous nonparametric

covariates) is available on request from the author.
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In the following, the performance of the CF approach in the EGPLSI model

based on (2.8) to (2.11) is discussed. The identification issue is first presented as

follows. Given α and β, let

J(α, β) = E [Y − E(Y |V, η)− {X − E(X|V, η)}′β]2

V = E({X − E(X|V, η)}{X − E(X|V, η)}′)

W = E({X − E(X|V, η)}{Y − E(Y |V, η)}),

where V = X ′α. Suppose that g(·) is twice differentiable and that X has a positive

density function on a union of a finite number of open convex subsets in R
q. The min-

imum point of J(α, β) with α ⊥ β is then unique at α0 and βα0 = {V(α0)}+W(α0),

where {V(α0)}+ is the Moore-Penrose inverse.

Before we discuss the optimization procedure, the necessary notation is defined

for the sake of convenience. We assume that the random sample {(X ′
i, Z

′
i, Yi); i =

1, . . . , n} is i.i.d. Let fx(x) and fz(z) denote the joint density functions of X ′ and

Z ′, respectively. Let us also denote fα(v) as the density function of V = X ′α. We

assume that Aj ⊂ R
k is the union of a finite number of open sets such that fj(s) > C

on Aj, where k = q or qz and j = x or z for some constant C > 0. Hereafter, this

region is considered to avoid the boundary points. Because the region is not known

in practice, Xia and Härdle (2006) suggested using the weight function such that

In(s) = 1 if 1
n

∑n
i=1 Kj,i(s) > C and 0 otherwise, where Kj is a corresponding kernel

function. In this paper, In(s) is omitted for notational simplicity. In addition,

C, C ′ and C ′′ denote generic constants varying from one place to another. The

conditional expectations, namely E(Y |V, η) and E(X|V, η), are then estimated with

the leave-one-out nonparametric estimation as follows

Êi(Yi|Vi, ηi) =

∑
j 6=i Lhvhη

(Vj − Vi, ηj − ηi)Yj∑
j 6=i Lhvhη

(Vj − Vi, ηj − ηi)
(2.12)

Êi(Xi|Vi, ηi) =

∑
j 6=i Lhvhη

(Vj − Vi, ηj − ηi)Xj∑
j 6=i Lhvhη

(Vj − Vi, ηj − ηi)
, (2.13)

where Lhvhη
is a product kernel function constructed from the product of the uni-

variate kernel functions of khv
(·) × khη

(·) with the relevant bandwidth parameters,

hv and hη. Furthermore, the first-stage leave-one-out nonparametric estimation of

the reduced equation in (2.8) used to estimate ηi is as follows

η̂i = Xi − ĝx,i(Zi), (2.14)
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where ĝx,i(Zi) =
∑

j 6=i Khz (Zj−Zi)Xj
∑

j 6=i Khz (Zj−Zi)
with Khz

(·) being the product kernel function

constructed from khz1
(·) × · · · × khzqz

(·), and hzj , for j = 1, . . . , qz, is the relevant

bandwidth parameter.

The LS estimates of the unknown parametric coefficients are then computed,

given the initial values of the index coefficients denoted by α, as follows

β =
(
SÛ2

)−
SÛ2Ŵ2

, (2.15)

where SAB = 1
n

∑n
i=1 AiB

′
i, SA = SAA, (SA)

− is a generalized inverse of (SA) ,

Ŵ2i ≡ Yi − Êi(Yi|Vi, η̂i) and Û2i ≡ Xi − Êi(Xi|Vi, η̂i). These are estimated by

replacing ηi with η̂i in (2.12) and (2.13), respectively. Next, based on β ∈ Bn, α̂, ĥv

and ĥη̂ are computed by minimizing the objective function as follows

min
α∈An,hv ,hη̂∈Hn

Ĵ(α, hv, hη̂) ≡ min
α∈An,hv ,hη̂∈Hn

1

n

n∑

i=1

(Ŵ2i − Û ′
2iβ)

2, (2.16)

where

An = {α : ||α− α0|| ≤ Cn−1/2}, Bn = {β : ||β − β0|| ≤ Cn−1/2}

and Hn =
{
hz, hv, hη : Cn−1/5 ≤ hz, hv, hη ≤ C ′n−1/5

}
(2.17)

for 0 < C < C ′ < ∞. Finally, we re-estimate β0 by using α̂, ĥv̂ and ĥη̂ as follows

β̂ =
(
SÛ3

)−
SÛ3Ŵ3

, (2.18)

where Ŵ3i ≡ Yi − Êi(Yi|V̂i, η̂i) and Û3i ≡ Xi − Êi(Xi|V̂i, η̂i) with V̂i = X ′
iα̂, and Û3i

and Ŵ3i are estimated by replacing Vi and ηi with V̂i and η̂i in (2.12) and (2.13),

respectively.

Remark 2.1. The conditions for the finite-dimensional parameters in (2.17) seem to

be restrictive at first glance. However, they are not restrictive, given that α̂ and β̂ are
√
n-consistent. Furthermore, as shown in the mathematical proof,

√
n-consistency

is achieved without under-smoothing in the first-stage of the proposed estimation

procedure (i.e. estimation of the reduced-form equation in (2.8)). In general, under-

smoothing in the first-stage of the estimation procedure is not required when qz < 3

and q − q1 < 3/2.
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The remaining task is then to identify the unknown structural link function.

It is plausible to apply the marginal integration technique of Linton and Nielsen

(1995), and Tjøstheim and Auestad (1994) to identify each of the functions because

of the additive specification of the conditional expectation relation (see (2.10) be-

low). As extensively discussed in the literature, a standard identification condition

is to assume that E(g(V0)) = E(ι(η)) = 0 (see Hastie and Tibshirani (1990), Gao

et al. (2006) and Gao (2007) for details). Hence, the marginal integration technique

identifies g(·) and ι(·) functions up to some constant value as follows

m1(V0) ≡
∫

m(V0, η) dQ(η) = g(V0)+C andm2(η) ≡
∫

m(V0, η) dQ(V0) = ι(η)+C ′,

where C ≡
∫
ι(η)dQ(η), C ′ ≡

∫
g(V0)dQ(V0) and Q is a probability measure in R

with
∫
dQ(η) =

∫
dQ(V0) = 1. The estimate of the structural link function can

therefore be obtained by

m̂1(V̂ ) =
1

n

n∑

i=1

m̂(V̂ , η̂i) and ĝ(V̂ ) = m̂1(V̂ )− Ĉ, (2.19)

where m̂(V̂ , η̂i) = Ê(Y |V̂ , η̂i) − Ê(X|V̂ , η̂i)
′β̂, Ĉ = 1

n

∑n
i=1 m̂1(V̂i), and m̂1(V̂ ) is

estimated by keeping V̂i at V̂ when taking an average over η̂i.

Before discussing the main theoretical results of the estimators proposed above,

the estimation procedure is briefly summarized as follows.

Step 2.1: Estimate the endogeneity control covariate, η̂, as in (2.14).

Step 2.2: Estimate β as in (2.15) with η̂i from Step 2.1 and α.

Step 2.3: Estimate α̂ and β̂ as in (2.16) and (2.18), respectively.

Step 2.4: Estimate m̂(V̂i, η̂i) by using (2.11) with α̂ and β̂ from Step 2.3, then

perform the marginal integration technique to estimate ĝ(V̂ ) as in (2.19).

2.3. Asymptotic Properties of Proposed Estimators

In this subsection, the asymptotic properties of the estimators proposed above

are discussed as follows. The required necessary conditions are presented first. Given

ρ, let Aρ
j′ denote the set of all points in R

k′ , where k′ = q or 1, at a distance no

greater than ρ from Aj′ for j
′ = x, η. Let U = {(V0, η) : X ∈ Aρ

x and η ∈ Aρ
η} and

f(V0, η) denote the joint density function of (V0, η) with random arguments of X ′

and η. The necessary regularity conditions are then as follows.
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Assumption 2.1. Suppose that there is a vector of instrumental variables {Zi : i ≥
1} such that Equations (2.8) and (2.9) hold.

Assumption 2.2. (i) The joint density function of fz(Z) is bounded and is bounded

away from zero with bounded and continuous second derivatives on Az. (ii) The joint

density function of f(V, η) is bounded and is bounded away from zero with bounded

and continuous second derivatives on U for all α ∈ An.

Assumption 2.3. (i) Assume that gx(Z) has bounded and continuous second deriva-

tives on Az. (ii) Let m(V, η), my(V, η) and mx(V, η) have bounded and continuous

second derivatives on U for all values of α ∈ An.

Assumption 2.4. Suppose that a univariate kernel function k(·) and its first deriva-

tive k(1)(·) are supported on the interval (−1, 1) and k(·) is a symmetric density

function. Furthermore, both k(·) and k(1)(·) satisfy the Lipschitz conditions.

Assumption 2.5. Let E(η|Z) = 0 and E(η2|Z) = σ2
1(Z), E(e|X, η) = 0 and

E(e2|X, η) = σ2(X, η), E(u|X, η) = 0 and E(u2|X, η) = σ2
2(X, η) almost surely, and

the functions σ2, σ2
1 and σ2

2 are bounded and continuous. In addition,

sup
i
E||Xi||l < ∞, sup

i
E|Yi|l < ∞ and sup

i
E||Zi||l < ∞ for some large enough l ≥ 2.

Assumption 2.2 permits us to estimate the functions in the regions of Az and

U , and to avoid the random denominator problem. In practice, the weight function

of Xia and Härdle (2006) discussed above can be used. Assumptions 2.2 and 2.3

ensure that the kernel function in Assumption 2.4 leads to second-order bias in

kernel smoothing. Higher-order bias can be achieved by imposing more restrictive

conditions on the smoothness of the functions (see Robinson (1988) for details). The

condition on the first derivative of the kernel function in Assumption 2.4 permits

the use of the Taylor expansion argument to address the generated covariate, η̂i (a

similar condition on the derivatives of the kernel function can be found in Hansen

(2008)). The Lipschitz conditions for both the kernel function and its derivative are

convenient for the proof of the uniform convergence. Finally, Assumption 2.5 allows

us the use of the Chebyshev inequality.

Now let us introduce some necessary notations used in the main theoretical re-

sults below. LetKz,2 =
∫
z2Khz

(z)dz, Kη,2 =
∫
η2khη

(η)dη andKv,2 =
∫
v20khv

(v0)dv0.

12



Furthermore, let Kz =
∫
khz,j

(z)2dz and K = KvKη, where Kv =
∫
khv

(v0)
2dv0 and

Kη =
∫
khη

(η)2dη. Let f
(r)
z,j be the rth derivatives of fz(z) with respect to Zj, for

j = 1, · · · , qz, and let f
(r)
v0 (v0, η) and f

(r)
η (v0, η) be the rth partial derivatives of

f(v0, η) with respect to V0 and η, respectively. Moreover, let g
(r)
x,j(z) be the rth par-

tial derivatives of gx(z) with respect to Zj, and let m
(r)
v0 (V0, η) and m

(r)
η (v0, η) be

that of m(v0, η) with respect to V0 and η, respectively. Then, let

Bz(z) ≡
Kz,2

2f(z)

{
2f

(1)
z,j (z)g

(1)
x,j(z) + fz(z)g

(2)
x,j(z)

}

Bv(v0, η) ≡
Kv,2

2f(v0, η)

{
2f (1)

v0
(v0, η)m

(1)
v0
(v0, η) + f(v0, η)m

(2)
v0
(v0, η)

}

Bη(v0, η) ≡
Kη,2

2f(v0, η)

{
2f (1)

η (v0, η)m
(1)
η (v0, η) + f(v0, η)m

(2)
η (v0, η)

}
.

In addition, let

IMSE1(hz) ≍

∫ 



[
qz∑

j=1

Bz,j(z)h
2
z,j

]2
+

Kqz
z

nhz,1 . . . hz,q2

σ2
1(z)

fz(z)





f(z)dz

IMSE2(hv, hη) ≍

∫ 


[
Bv(v0, η)h

2
v +Bη(v0, η)h

2
η

]2
+

K
nhvhη

σ2(V0, η)

f(v0, η)





f(x, η)dxdη,

where ≍ means that the quotient of the two sides tends to 1 as n → ∞.

Theorem 2.1. Under Assumptions 2.1 to 2.5, the minimizing objective function in

(2.16) is rewritten as follows

Ĵ(α, hv, hη̂) = J̃(α) + T1(hz) + T2(hv, hη) +R1(α, hv, hη) +R2(α, hv, hη, hz), (2.20)

where

T1(hz) ≡
1

n

n∑

i=1

{ĝx,i(Zi)− gx(Zi)}2 = IMSE1(hz) +R3(hz)

T2(hv, hη) ≡
1

n

n∑

i=1

{m̂i(V0i, ηi)−m(V0i, ηi)}2 = IMSE2(hv, hη) +R4(hv, hη)

sup
α∈An,hv ,hη∈Hn

|R1(α, hv, hη)| = op(n
−1/2), sup

α∈An,hv ,hη ,hz∈Hn

|R2(α, hv, hη, hz)| = op(n
−1/2)

13



with m̂i(·) and ĝx,i(·) being the leave-one-out local constant estimators of m(·) and

gx(·), respectively. More importantly

J̃(α) =
1

n

n∑

i=1

{Wi − U ′
iβ}

2

where Wi ≡ Yi−E(Yi|Vi, ηi) and Ui ≡ Xi−E(Xi|Vi, ηi). Furthermore, sup
hz∈Hn

|R3(hz)| =

op(n
1/5) and sup

hv ,hη∈Hn

|R4(hv, hη)| = op(n
1/5) because they do not depend on α.

The results of Theorem 2.1 show the attractive properties of our proposed CF

approach. Similar to the results of Härdle et al. (1993) and Xia et al. (1999), The-

orem 2.1 shows that the properties of the bandwidth parameter estimators can be

studied while assuming α0 is known. Moreover, the asymptotically optimal band-

width parameters for estimating the m(·) function are assumed to be used for the
√
n-consistent estimation of α0. In addition, under-smoothing is not required in es-

timating the first-stage reduced-form equation, as already stated in Remark 2.1. In

particular, Theorem 2.1 suggests that minimizing Ĵ(α, hv, hη̂) simultaneously with

respect to α, hv and hη̂, is asymptotically equivalent to separately minimizing J̃(α)

with respect to α, T1(hz) with respect to hz, and T2(hv, hη) with respect to hv and

hη, assuming that α0 and η are known. This is because the remainder terms, namely

R1(α, hv, hη) and R2(α, hz, hv, hη), are shown to be asymptotically negligible.

Next, the asymptotic properties of α̂ and β̂ are shown as a corollary of Theorem

2.1, given that ΦU0 = [{X − E(X|V0, η)}{X − E(X|V0, η)}′].

Corollary 2.1. Under the assumptions of Theorem 2.1, the asymptotic properties

of α̂ and β̂ are as follows

√
n(β̂ − β0) →D N(0,Var1), (2.21)

where Var1 = σ2

[
Φ−

U0
−
(
m

(1)
0 ΦU0

)−
ΦU0

{
m

(1)
0

}2 (
m

(1)
0 ΦU0

)−]
, and

√
n(α̂− α0) →D N(0,Var2), (2.22)

where Var2 = σ2

[{(
m

(1)
0

)2
ΦU0

}−

−
{
m

(1)
0 ΦU0

}−

ΦU0

{
m

(1)
0 ΦU0

}−
]
.

Finally, the asymptotic properties of ĝ(v̂) are presented in Theorem 2.2 below.
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Theorem 2.2. Under the assumptions of Theorem 2.1, and inf
z∈Az

fz(z) > 0 and

inf
x,η∈U

f(v0, η) > 0, the asymptotic results of ĝ(v̂) are as follows

√
nhv (ĝ(v̂)− g(v0)− Bias) →D N(0, V ar),

where Bias = h2
vBv(v0, η) + h2

ηBη(v0, η) and V ar = fα(v0)Kv

∫ σ2(V0,η)f2
η (η)

f2(v0,η)
dQ(η),

with fα(v0) and fη(η) denoting the density functions of V0 and η, respectively.

The mathematical proofs of Theorems 2.1 and 2.2 and Corollary 2.1 are given

in the Appendix.

Remark 2.2. In these results, it is clear the first-stage nonparametric estimation

does not contribute to the asymptotic variance of the estimators in the final-stage

because the contribution of first-stage nonparametric estimation is asymptotically

negligible. This characteristic is common among multi-stage nonparametric estima-

tion procedures (see Su and Ullah (2008) for an example). However, this differs

from the work of Li and Wooldridge (2002), which considers parametrically gener-

ated covariates in a PL semiparametric regression model.

Remark 2.3. It is also interesting to explore the case of performing the CF ap-

proach without the presence of nonparametric-endogeneity. The essential stochastic

assumption of the CF approach ((2.9)) implies no existence of any endogeneity con-

trol function and, hence there is no identification problem in estimating the struc-

tural link function. Therefore, performing the CF approach without the presence

of endogeneity causes an unnecessary multi-stage nonparametric estimation and the

presence of redundant covariates in estimating the structural link function. However,

the theoretical results of the proposed estimators particularly Theorems 2.1 and 2.2

and Corollary 2.1, are still valid with minor modifications, especially in terms of

IMSE2(hv, hη), Var1 and Var2, and the bias and the variance of ĝ(v̂). The minor

modifications of the theoretical results are as follows

IMSE2(hv, hη)
∗ ≍

∫ 


[
B∗

v(v0, η)h
2
vh

2
η

]2
+

K
nhvhη

σ∗2(V0, η)

f(v0, η)





f(x, η)dxdη

Bias∗ = h2
vB

∗
v(v0, η) and Var∗ = fα(v0)Kv

∫
σ∗2(V0)f

2
η

f 2(v0, η)
dQ(η),
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where B∗
v(v0, η) =

Kv,2

2f(v0,η)

{
2fv0(v0, η)g

(1)(v0) + f(v0, η)g
(2)
v0 (v0, η)

}

and σ∗2 = E(ǫ2|X, η) = E(ǫ2|X), and Var∗1 and Var∗2 are obtained by replacing m
(1)
0

with g
(1)
0 in (2.19) and (2.20) with g

(1)
0 being the first derivative of g(v0) with respect

to V0.

Remark 2.4. Our results can also be extended to a more general data structure

where a random sample {(X ′
t, Z

′
t, Yt); t = 1, . . . , n} is a strictly stationary and

strongly mixing process under Assumptions 2.6 and 2.7 below in addition to 2.1

to 2.5 above.

In the rest of this section, we discuss about how to extend these established

theoretical results to stationary time series data as in Remark 2.4. First, let ξt ≡
(X ′

tα0, ηt) and fξ(ξ) denote the joint density function of X ′α0 and η. The necessary

regularity conditions for the strictly stationary and α-mixing case are then as follows.

Assumption 2.6. (i) The conditional densities satisfy the following conditions:

fξ1,ξl|X1,Xl
(ξ1, ξl) ≤ C < ∞; fξ1,ξl|Y1,Yl

(ξ1, ξl) ≤ C ′ < ∞; fZ1,Zl|X1,Xl
(Z1, Zl) ≤ C ′′ < ∞

for some constants C,C ′, C ′′ > 0 and for all l ≥ 1. (ii) The mixing and moment

conditions are as follows:

∑

l

la[α(l)]1−2/l < ∞, E||X0||l < ∞ and fξ1|X1(ξ|X) ≤ C < ∞;

∑

l

la
′

[α(l)]1−2/l < ∞, E|Y0|l < ∞ and fξ1|Y1(ξ|Y ) ≤ C ′ < ∞;

∑

l

la
′′

[α(l)]1−2/l < ∞, E||Z0||l < ∞ and fZ1|X1(z|X) ≤ C ′′ < ∞,

where l > 2 and a, a′, a′′ > 1 − 2/l. (iii) There is a sequence of positive integer sT ,

which satisfies sT → ∞ and sT = o
{
(nhqz

z,T )
1/2
}
, such that (n/hqz

z,T )
1/2α(sT ) → 0 as

T → ∞.

Assumption 2.7. (i) Let the density functions fz(z) and f(v0, η) satisfy inf
z∈Az

fz(z) >

0 and inf
x,η∈U

f(v0, η) > 0. (ii) In addition, we require the following moment conditions:

E||X||s < ∞, sup
ξ∈U

∫
||X||sf(x, ξ)dx, E|Y |s < ∞, sup

ξ∈U

∫
|Y |sf(y, ξ)dy; sup

z∈Az

∫
||X||sf(x, z)dx,
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for some s > 2. (iii) The bandwidth sequences, hv, hη and hz, tend to zero as

n → ∞ and satisfy the following, for some δ > 0

T 1−2s−1−2δhqz
z → ∞; T 1−2s−1−2δhvhη → ∞;T 1−2s−1−2δ

(
hqz
z hvh

3
η

)1/2 → ∞.

In the proof of the
√
n-consistency of α̂ and β̂ in the case of Remark 2.4, Propo-

sitions A.1 to A.15 in the Appendix encompass the extra covariance terms caused by

the serial dependences in the sample. Under Assumptions 2.1 to 2.5 and 2.6(i)(ii),

the covariance terms can be shown to be op(n
−1/2). For instance, the extra covariance

term in Proposition A.1 might be derived as
∑n−1

l=1 (1− t/n)Cov(ϕ̂1, ϕ̂l+1) = o(hvhη).

However, the consistency of ĝ(v̂) requires stronger conditions than the case of α̂ and

β̂, namely the uniform convergence of f̂(v0, η), which requires the uniform conver-

gence of Qj, where j = 1, · · · , 5 in (B.1) in the Appendix. Under Assumptions 2.1

to 2.5, 2.6(i)-(ii) and 2.7, Qj is shown to be op(1) as follows

sup
ξ∈U ,z∈Az

|Q2i| = sup
ξ∈U ,z∈Az

|Q5i| = Op





(
(lnn)2

n2hqz
z hvh3

η

)1/2

+ h2
z(h

2
v + h2

η)



 .

Furthermore, the asymptotic normality of ĝ(v̂) is then obtained by applying As-

sumption 2.6 (iii) for the standard nonparametric small-block and large-block ar-

guments. Nonetheless, the asymptotic normalities of α̂ and β̂ are obtained by ap-

plying parts of Assumption 2.6 (ii), namely
∑

l l
a[α(l)]1−2/l < ∞, E||X0||l < ∞,

∑
l l

a′ [α(l)]1−2/l < ∞ and E|Y0|l < ∞, to (A.6) and (A.10) in the Appendix for the

small-block and large-block arguments of a standard strictly stationary and strongly

mixing process.

2.4. Simulation Studies

In this section5, the finite-sample performances of the estimation procedure pro-

posed above are investigated by making a comparison between the performances of

the estimation method introduced in Xia et al. (1999), referred to the XTL proce-

dure, and the CF approach established in Section 2.2 as the KS procedure in the

presence of nonparametric-endogeneity. Throughout this section, optimization is

5The results of extensive simulation exercises for GPLSI model are available on request from

the author.
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implemented by using a limited-memory Broyden-Fletcher-Goldfarb-Shanno algo-

rithm for the bound-constrained optimization of Byrd et al. (1995). All simulation

exercises are conducted in R with the Gaussian kernel function and the number of

replications Q = 200. To compare and evaluate the finite sample performances of the

procedures, the mean and mean absolute errors of the estimates of both coefficients,

α0 and β0, across Q replications are computed in Tables 2.1 and 2.2. The averaged

absolute error of the estimates of the unknown structural function is also computed

as follows

aeĝ =
1

n

n∑

i=1

∣∣∣ĝ(V̂i)− g(V0i)
∣∣∣ ,

where n is the number of samples.

In the analysis that follows, an example model of the following form is considered

Yi = β01X1i + β02X2i + β03X3i + g(V0i) + ǫi, (2.23)

where V0 = α01X1 + α02X2 + α03X3, g(V0) = exp {−2(α01X1 + α02X2 + α03X3)
2} ,

and Xj is independently and uniformly distributed on [−1, 1] for j = 1, 2. It is

necessary that β0 ⊥ α0 with ‖ α0 ‖= 1. In order for these conditions to be satisfied,

define β02 = 0.4, β03 = 0, α01 = 0.7, α02 = −0.6, then β01 and α03 are defined as

follows

α03 =
√

1− α2
01 − α2

02 and β01 = −β02α02

α01

.

In this example, nonparametric-endogeneity is introduced by letting X3 = Z+η,

where Z and η are independently and uniformly distributed on [−0.5, 0.5] and [−1, 1],

respectively, and ǫ = η+ e and e is independent and standard normally distributed.

Tables 2.1 and 2.2 present the estimation results from the XTL and KS procedures,

respectively.

The simulation results in Table 2.1 show strong evidence against the use of the

XTL procedure in the presence of endogeneity. This evidence is clear when the

averaged absolute errors, aeĝ in Table 2.1 are considered. On the other hand, the

simulation results in Table 2.2 suggest that the KS procedure is able to identify the

structural link function, namely the g(·) function, in the presence of endogeneity.
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Table 2.1. EGPLSI model with nonparametric-endogeneity and the XTL’s procedure.

n β̂1 β̂2 α̂1 α̂2 α̂3

50 0.3130 0.4332 0.8884 -0.7748 0.5597
150 0.3088 0.4340 0.8993 -0.7671 0.5279
300 0.3142 0.4264 0.8988 -0.7674 0.5225
500 0.3135 0.4288 0.8960 -0.7653 0.5179

n |β̂1 − β01| |β̂2 − β02| |α̂1 − α01| |α̂2 − α02| |α̂3 − α03| aeĝ

50 0.0656 0.0714 0.1691 0.1253 0.1586 0.0905
150 0.0428 0.04572 0.0859 0.0559 0.0910 0.0891
300 0.0331 0.03377 0.0629 0.0548 0.0426 0.0895
500 0.0306 0.0319 0.0229 0.0156 0.0181 0.0906

Table 2.2. EGPLSI model with nonparametric-endogeneity and the KS procedure.

n β̂1 β̂2 α̂1 α̂2 α̂3

50 0.2645 0.4652 0.9638 -0.8249 0.5483
150 0.3260 0.4135 0.8975 -0.7852 0.4756
300 0.3486 0.3945 0.8090 -0.6997 0.4382
500 0.3555 0.3891 0.7353 -0.6295 0.3992

n |β̂1 − β01| |β̂2 − β02| |α̂1 − α01| |α̂2 − α02| |α̂3 − α03| aeĝ

50 0.0816 0.0684 0.1678 0.1389 0.1195 0.0632
150 0.0307 0.0264 0.1244 0.0962 0.0769 0.0265
300 0.0213 0.0183 0.0446 0.0327 0.0285 0.0160
500 0.0189 0.0159 0.0416 0.0319 0.0263 0.0124

3. Semiparametric CF approach to Shape-Invariant Empirical Engel Curves

In this section, a flexible shape-invariant Engel curve system is analyzed within

the framework of the EGPLSI model with the newly developed CF approach above.

The consumer optimization theory in the empirical demand study literature sug-

gests including a scale and shift parameters within a flexible shape-invariant em-

pirical Engel curve in order to incorporate the individual household heterogeneity

(see Pendakur (1999), Blundell and Powell (2003) and Blundell et al. (2007) for

examples). In addition, it is also well-known that modelling a shape-invariant Engel

curve system involves a critical difficulty, which resides in the endogeneity of total

expenditure caused by the two-stage budgeting model (see Blundell et al. (1998) and

Blundell et al. (2007) for details). Hence, it is natural to study a shape-invariant

Engel curve system within the framework of the EGPLSI model with the newly

developed CF approach.
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3.1. The Empirical Model and Estimation

Hereafter, let {Yil, X1i, X2i}ni=1 represent an i.i.d. sequence of n household obser-

vations on the budget share Yil of good l = 1, . . . , L ≥ 1 for each household i facing

the same relative prices, the log of total expenditure X1i, and a vector of household

composition variables X2i. For each commodity l, budget shares and total outlay

are related by a general stochastic Engel curve, namely Yl = Gl(X1) + ǫl, where

Gl(·) is an unknown function that can be estimated by using a standard nonpara-

metric regression method under the exogeneity assumption of total expenditure (i.e.

E(ǫl|X1) = 0). Nonetheless, a number of previous studies have reported that house-

hold expenditures typically display great variation with demographic composition.

A simple approach for estimating the model is to stratify the data by each dis-

tinct discrete outcome of X2 and then carry out our estimation with nonparametric

smoothing within each cell. At some point, however, it may be useful to pool the

Engel curves across different household demographic types and to allow X1 to enter

each Engel curve semiparametrically. This idea leads to the specification below

Yil = β′
0lX2i + gl(X1i − φ(γ′

0X2i)) + ǫil, (3.1)

where gl(·) is an unknown function and φ(γ′
0X2i) is a known function up to a finite set

of unknown parameters γ0, which can be interpreted as the log of general equivalence

scales for household i. In the current paper, φ(γ′
0X2i) = γ′

0X2i is chosen so that (3.1)

is specified as follows

Yil = β′
0lX2i + gl(X1i − γ′

0X2i) + ǫil. (3.2)

In this application, total expenditure is allowed to be endogenous and a measure of

earning of the head of each household is used as an instrument.

Following the CF approach discussed above, the empirical model to be estimated

is of the form below

Yil = β01,lX1i + β′
0lX2i + gl(α01X1i + α′

02X2i) + ǫil (3.3)

X1i = mX1(Zi) + ηi, where E(η|Z) = 0 (3.4)

E(ǫl|Z, η) = E(ǫl|η) 6= 0, (3.5)

where mX1(Z) = E(X1|Z) and {Zi}ni=1 represents an i.i.d. sequence of the measure

of earning of n heads of households and (3.3) is a semiparametric model that satisfies
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all the identification conditions required in the construction of the EGPLSI model.

The theoretically consistent model in (3.1) can then be solved based on (3.3). For

this end, a similar scaling transformation to that explained in Section 2.1 is used. In

the remainder of this section, some specific details about the estimation procedure

are discussed. Rather than basing our discussion on (3.3) to (3.5), it is statistically

more equivalent to do so based on the following

Yil = β′
0lX2i + gl(X1i − γ′

0X2i) + ǫil (3.6)

X1i = mX1(Zi) + ηi, where E(η|Z) = 0 (3.7)

E(ǫl|Z, η) = E(ǫl|η) 6= 0. (3.8)

These models suggest the conditional expectation relationship shown below

E (Yl|(X1 − γ′
0X2), η)− β′

0lE (X2|(X1 − γ′
0X2), η) = gl(X1 − γ′

0X2) + ιl(η), (3.9)

where E (ǫl|(X1 − γ′
0X2), η) = E (ǫl|η) ≡ ιl(η) 6= 0, which immediately leads to

Yil = β′
0lX2i + gl(X1i − γ′

0X2i) + ιl(ηi) + eil, (3.10)

X1i = mX1(Zi) + ηi, (3.11)

where E(el|X1, X2, η) = 0. Let ml ({X1i − γ′
0X2i}, ηi) = gl(X1i − γ′

0X2i) + ιl(ηi). In

order to use (3.10), it is important to note that

m1,l(X1 − γ′
0X2) =

∫
ml({X1 − γ′

0X2}, η) dη

gl(X1 − γ′
0X2) = m1,l(X1 − γ′

0X2)− C, (3.12)

where C =
∫
ι(η)dQ(η) and E(gl(·)) = 0.

If a linear specification is imposed on ιl(·), (3.10) would be similar to the ex-

tended partially linear model discussed in Blundell et al. (1998). In this case, Blun-

dell et al. (1998) showed that a test of the endogeneity null can be constructed by

testing H0 : ιl = 0, where ιl is an unknown parameter. To allow for more flexibility

in the functional form between total expenditure and its instrument, as an alterna-

tive, one may apply an existing test of a parametric mean-regression model against

a nonparametric alternative (see Horowitz and Spokoiny (2001), for example). How-

ever, the current paper suggests that it is more convenient to simply construct the
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variability bands for ιl(·) since its estimate is readily available. To do so, the follow-

ing procedure is used.

Step 3.1.1: Obtain an empirical estimate of gl(X1 − γ′
0X2) in (3.12).

Step 3.1.2: Regress (3.10) by using the estimates in Step 3.1.1 to obtain the non-

parametric estimates of ιl(·).
Step 3.1.3: Compute the bias-corrected confidence bands for the nonparametric

smoothing using the procedure introduced by Xia (1998). Finally, the Bonferroni-

type variability bands are obtained by using a similar procedure to that discussed

by Eubank and Speckman (1993).

To perform Step 3.1.1, the estimation procedure introduced in Section 2 is used.

However, some modifications are required to take the vector of index coefficient, γ0,

a general equivalence scale for household i, into account. In this case, the objec-

tive function (2.16) is only used for a particular commodity l. The new objective

function, min
γ∈An,hv,l,hη̂,l∈Hn

Ĵ(γ, hv,l, hη̂,l), is the summation of these individual functions

that is minimized with respect to γ and 14 smoothing parameters, particularly two

for each commodity. Finally, the estimation procedure is completed by using γ̂ as

well as ĥv̂,l and ĥη̂,l.

In addition, the model in (3.10) can also be re-stated as

Y ∗
il = gl(X1i − γ′

0X2i) + eil, (3.13)

where Y ∗
l ≡ Yl − β′

0lX2 − ιl(η). The use of (3.13) relies on

m2,l(η) =

∫
ml(v, η) dv = ιl(η) + C ′ and ιl(η) = m2,l(η)− C ′, (3.14)

where V = X1 − γ′X2, C
′ =

∫
g(v)dQ(v) and E(ιl(·)) = 0, which corresponds to

(3.12) above. Hence, the model in (3.13) suggests that the estimates of the shape-

invariant Engel curves and the related confidence bands are obtained as follows.

Step 3.2.1: Obtain empirical estimates of ιl(η) in (3.14).

Step 3.2.2: Regress (3.13) using the estimates in Step 3.2.1 to obtain the nonpara-

metric estimates of gl(·).
Step 3.2.3: Compute the bias-corrected confidence bands about the nonparametric

estimator in Step 3.2.2 by using the procedure introduced by Xia (1998).
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3.2. The Engel Curve Data

In our application, the data set is drawn from the British Family Expenditure

Survey (FES) 1995-96. Seven broad categories of goods are considered as follows: (1)

fuel, light and power (fuel hereafter); (2) fares, other travel costs and running motor

vehicles (fares); (3) food; (4) alcoholic drink and tobacco (alcohol); (5) leisure goods

and services (leisure goods); (6) clothing and footwear (clothing) and (7) personal

goods and services (personal goods).

Table 3.1. Descriptive statistics.

Couples with 1 or 2 children Couples without children

Mean Std. Dev Mean Std. Dev

Budget shares:
Fuel 0.0692 0.0011 0.0618 0.0012
Fares 0.1537 0.0025 0.1715 0.0031
Food 0.3235 0.0028 0.2768 0.0031
Alcohol 0.0844 0.0022 0.1144 0.0031
Leisure goods 0.2155 0.0038 0.2298 0.0045
Clothing 0.0926 0.0024 0.0872 0.0029
Personal goods 0.0606 0.0016 0.0581 0.0019

Expenditure and income:
log (total expenditure) 5.4374 0.0130 5.4524 0.0161
log (income) 5.9205 0.0153 6.0397 0.0166

Sample size 1072 1278

To maintain some demographic homogeneity, a subset of married or cohabiting

couples are selected from the FES, particularly categories 1 and 3 of the variable ms

in the table adult. In addition, those where the head of household is aged between

20 and 55 (i.e. the variable age in the table adult) and in work (i.e. excluding the

category 1 of the variable fted in the table adult and category 6 of the variable a093 in

the table set8 ) are considered. Finally, all households with three or more children are

excluded. Our demographic variable, X2, is a binary dummy variable that reflects

whether a couple has 1 or 2 children (where X2 = 1) or no children (where X2 = 0).

Overall, there are 2350 observations, 1278 are couples with one or two children.

Table 3.1 shows larger expenditure shares for fuel, food, clothing and personal goods

for the households with children as expected. Also as expected, households without

children are able to spend higher proportions of their total expenditure on alcohol

and leisure goods. Overall, there are clear differences in the consumption patterns

between the two demographic groups. The estimates of the scale and the shift

coefficients are expected to reflect these differences.
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Furthermore, the log of total expenditure on the nondurables and services is our

measure of the continuous endogenous explanatory variable, X1. In our analysis that

follows, the log of normal weekly disposable head of household income, specifically

the variable p389 of the table set3, is used as an instrument. The two variables show

a strongly-positive correlation with correlation coefficients of 0.5660 and 0.5954 for

couples with and without children, respectively. Figures 3.1 and 3.2 present plots of

the kernel estimates of the joint density for these variables. Finally, in the empirical

application the instrument variable Z = Φ(log earnings) is taken, similar to Blundell

et al. (2007).

Figure 3.1. Kernel joint density estimates for the log of total expenditure and the log of weekly

income for couples with 1 or 2 children.

Figure 3.2. Kernel joint density estimates for the log of total expenditure and the log of weekly

income for couples without children.

3.3. Empirical Findings

The important empirical findings are now presented and summarized in Table

3.2. Although exact definitions of the data are not given in Blundell et al. (1998),

Blundell et al. (1998) estimated the shape-invariant Engel curves for four broad
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categories of nondurables and services by using the FES data, namely fuel, fares,

alcohol and leisure, similar to this paper. The empirical estimate, γ̂, of 0.36355

reported in the first column is very close to 0.3698 as found in Blundell et al. (1998).

Furthermore, the signs of the parameter estimates, β̂l, for the four broad categories

are all consistent with those of Blundell et al. (1998); specifically they are positive

for food and leisure, but negative for alcohol, fares and fuel.

Table 3.2. Empirical results

γ̂ Categories of goods β̂l ĥv,l ĥη̂,l

0.36355 Fuel, light and power -0.01401 0.14021 0.93631

Fares, other travel costs and running of motor vehicles -0.02027 0.19545 0.26831
Food 0.00537 0.15120 0.25826

Alcoholic drink and tobacco -0.05205 0.30802 0.22569
Leisure goods and services 0.05077 0.14663 0.40277
Clothing and footwear 0.02079 0.14846 0.27234
Personal goods and services 0.00738 0.49331 0.49335

The first columns of Figures 3.3 to 3.6 present the empirical estimates of the

Engel curves for seven of the goods in our system based on the CF approach discussed

in Section 3.1. For these plots, the smoothing parameters presented in the fourth

and fifth columns of Table 3.2 are used. Furthermore, the third columns of these

figures show the empirical estimates of the Engel curves computed from the Xia

et al. (1999)’s procedure by which the exogeneity assumption is imposed on the

total expenditure. Together with the estimated Engel curves, their 90% point-wise

confidence bands are also reported. The bands are obtained by using the procedure

discussed in Section 3.1. Let us now concentrate on the first columns. For fuel, food

and alcohol, the Engel curves appear to demonstrate that the Working-Leser linear

logarithmic formulation may provide a reasonable approximation. Nonetheless, for

other shares, especially for fares, a nonlinear relationship between the shares and

the log of expenditure is evident. A detailed investigation of the data shows that on

average, up to 70% of fares belongs to running motor vehicles. Hence, motor vehicles

seemed to be a necessity good for a household for which the log of total expenditure

is more than around 5.3 for those with children, for those without children, it is up

to around 4.8. It seemed that motor vehicles are a superior good for households

where the log of total expenditure, is below these levels. The estimated shares for

the couples with children are higher than those for couples without children, except
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for extreme lower quantile of the log of total expenditure. This could lead to the

nonlinear relationship witnessed in Figure 3.3.

Figure 3.3. Fuel and fares (90% confidence bands are drawn for households with children)

As expected, the estimated shares of fuel and food for households with children

are consistently above those for households without children. Couples without chil-

dren spend around 3% more of their budget on fuel and food than couples with

children. In addition, the estimated shares of alcohol, leisure, clothing and per-

sonal goods for households with children are consistently below those for households

without children. Couples with children spend around 3%, 8% and 2% more of their

budget on leisure, clothing and personal goods than couples with children at the

same level of expenditure. In all but one case (i.e. fares), there seem to be a broadly

parallel shift in the Engel curves from one demographic group to another. Our re-

sults suggest that fuel, food and alcohol may be categorized as necessity goods in the

sense that the demand for these goods increases proportionally less than the increase

in total expenditure. These goods whose demand increases with total expenditure

are leisure, clothing and personal goods.
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Figure 3.4. Food and alcohol (90% confidence bands are drawn for households with children)

The second column presents the nonparametric estimates of the control func-

tions, ιl(·). With the estimated control functions, the two sets of bands, namely

the 90% bias-corrected confidence bands for the nonparametric smoothing of Xia

(1998) (blue) and the 90% Bonferroni-type variability bands of Eubank and Speck-

man (1993) (red) are also reported. Regarding fuel and personal goods, ιl(·) for

these cases do not seem statistically significant. However, the opposite is found for

fares, food, leisure and clothing. Hence, neglecting potential endogeneity in the esti-

mation can lead to incorrect estimates of the shape of Engel curves for these goods.

This can be seen by comparing the first and the third columns of the figures. For

these goods it is clear that the curvature changes significantly as the presence of the

endogeneity is allowed.

4. Conclusion

In this paper, the usefulness of the EGPLSI model in its ability to model a

flexible shape-invariant specification is elaborated. A shape-invariant specification

is beneficial for analyzing an aggregate structural relationship, taking individual

heterogeneity into account. A flexible shape-invariant specification is easily studied

within the EGPLSI framework because both the scale and shift parameters are easily
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Figure 3.5. Leisure and clothing (90% confidence bands are drawn for households with children)

incorporated in the EGPLSI model. Despite the benefits mentioned above, the

applicability of the EGPLSI model to an empirical study is limited because of its

shortfalls in addressing endogeneity problems. Hence, the current paper develops the

CF approach to address the endogeneity problem in the EGPLSI model to enhance

its applicability to an empirical study.

The proposed CF approach inherits a few intrinsic features. Firstly, it resem-

bles existing multi-stage nonparametric estimation procedures in the sense that the

endogeneity control covariates must be estimated from the first-stage reduced-form

equation. Furthermore, the involvement of the nonparametrically generated covari-

ates means that establishment of the CF approach is not straightforward. The

optimization technique of Xia et al. (1999) needs to be extended one step further to

ensure its theoretical validity. The current paper shows that under-smoothing is not

required in the first-stage of our proposed estimation procedure under the relatively

mild conditions seen in the literature. The first-stage nonparametric estimation is

shown to be statistically negligible. The paper then closes the theoretical discussion

by providing an outline of the straightforward extension of the results based on an

i.i.d. random sample to a strictly stationary and strongly mixing process. The paper

also presents the satisfactory finite sample performance of identifying the structural

link function in the EGPLSI model in the presence of nonparametric-endogeneity
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from a Monte Carlo simulation exercise.

Figure 3.6. Engel curves for personal (90% confidence bands are drawn for households with chil-

dren)

Finally, the semiparametric analysis of a system of shape-invariant empirical

Engel curves using the FES (1995-96) data-set within the framework of the EGPLSI

model with our proposed CF approach is conducted. Not only are the findings

interesting empirically but the accessible applicability of our proposed CF approach

is also explored.

Additionally, the development of the CF approach in this paper also provides a

foundation for addressing the presence of weak instruments in the EGPLSI model.

Han (2012) discussed how the intuitive triangular structure of the CF approach in a

simple nonparametric regression model translates the difficult problem (namely the

presence of weak instruments in the first-stage reduced-form equation) into a much

simpler one, particularly the multicollinearity problem in the second-stage structural

equation. Hence it is plausible to develop the current paper further to the case of the

presence of weak instruments in the EGPLSI model. However, a thorough investi-

gation is required to examine a number of important issues, particularly examining

the
√
n-consistent estimation of the finite-dimensional parameters, namely α0 and

β0, and the properties of the smoothing parameters in each stage of the proposed

estimation procedure and, most importantly, how to address the presence of weak

instruments in the relatively general semiparametric model, the EGPLSI model.
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Härdle, W., Marron, J. S., 1990. Semiparametric comparison of regression curves. The Annals of

Statistics 18 (1), 63–89.

Hastie, T., Tibshirani, R., 1990. Generalized Additive Models. Chapman & Hall/CRC.

Horowitz, J. L., Spokoiny, V. G., 2001. An adaptive, rate-optimal test of a parametric mean-

regression model against a nonparametric alternative. Econometrica 69 (3), 599–631.

30



Ichimura, H., 1993. Semiparametric least squares (sls) and weighted sls estimation of single-index

models. Journal of Econometrics 58 (1-2), 71–120.

LaFree, G., Morris, N. A., Dugan, L., 2009. Cross-national patterns of terrorism: Comparing tra-

jectories for total, attributed and fatal attacks, 1970–2006. The British Journal of Criminology

50 (4), 622–649.

Li, Q., Racine, J. S., 2007. Nonparametric Econometrics: Theory and Practice. Princeton Univer-

sity Press, Princeton, NJ.

Li, Q., Wooldridge, J. M., 2002. Semiparametric estimation of partially linear models for dependent

data with generated regressors. Econometric Theory 18 (3), 625–645.
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Appendix

In this Appendix, the mathematical proofs of the main theoretical results of the paper

are presented. Note that the proofs in this section are the generalized version, namely the

case where more than one endogeneous nonparametric covariates (q2 > 1). The proofs of

Theorem 2.1 and Corollary 2.1 are first discussed in two main steps, then the proofs of

Theorem 2.2. follow.

For the sake of notational simplicity, let us first introduce the following terms; m =

m(v0, η), mx = E(XAx |v0, η), m̃ = E(m|v, η), m̃x = E(XAx |v, η), L0,ij = Lhv0hη
(V0i −

V0j , ηi−ηj), Lij = Lhvhη
(Vi−Vj , ηi−ηj), L1,ij = Lhvhη

(V̂i− V̂j , ηi−ηj), L2,ij = Lhvhη
(Vi−

Vj , η̂i− η̂j) and L3,ij = Lhvhη
(V̂i− V̂j , η̂i− η̂j). Let us also assume that hη,1 = · · · = hη,q2 =

hη and hz,1 = · · · = hz,qz = hz for the sake of simplicity.

Proofs of Theorem 2.1 and Corollary 2.1

Step 1. Proofs of Theorem 2.1: The proofs of Theorem 2.1 are based on the

decomposition of (2.16) in a few interesting terms and by showing the uniform convergence

of the remainder terms, namely R1 and R2. Let us first denote β0 − β = B in this step of

the proofs. Given α, β and η̂, the minimizing objective function in (2.20) is decomposed

as shown below

Ĵ(α, hv, hη̂) ≡ 1

n

n∑

i=1

(
Yi − Ŷi − δ̂Y i −

{
Xi − X̂i − δ̂Xi

}′
β

)2

= Ĵ∗(α, hv, hη) + T1(hz) +R2(α, hv, hη, hz), (A.1)

where δ̂Y i ≡ Ŷ2i − Ŷi; δ̂Xi ≡ X̂2i − X̂i; Ŷ2i = m̂y(Vi, η̂i) + Ŵ2i; Ŵ2i =
∑

j 6=i WjL2,ij∑
j 6=i L2,ij

;

X̂2i = m̂x(Vi, η̂i) + Û2i; Û2i =
∑

j 6=i UjL2,ij∑
j 6=i L2,ij

; Ŷi = m̂y(Vi, ηi) + Ŵi; Ŵi =
∑

j 6=i WjLij∑
j 6=i Lij

; X̂i =

m̂x(Vi, ηi)+ Ûi; Ûi =
∑

j 6=i UjLij∑
j 6=i Lij

. To obtain the asymptotic equivalence between (2.16) and
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(2.20), Ĵ∗(α, hv, hη) in (A.1) is further expanded as follows

Ĵ∗(α, hv, hη) ≡ 1

n

n∑

i=1

(
Yi − Ŷi −

{
Xi − X̂i

}′
β

)2

= J̃(α) + T2(hv, hη) +R1(α, hv, hη). (A.2)

The two remainder terms, R1 and R2 in (A.2) and (A.1), are composed of a num-

ber of elementary terms. Firstly, R1 is decomposed with the following terms: B′Sm̃x−m̂x
B,

B′SÛB,B′Smx−m̃x,m̃x−m̂x
B,B′Smx−m̃x,Û

B,B′Sm̃x−m̂x,UB,B′Sm̃x−m̂x,Û
B,B′SUÛB,Sm̃−m̂,

Sm−m̃,m̃−m̂, Seê, Sê, B
′Sm̃x−m̂x,m−m̃, B′SÛ ,m−m̃, B′Smx−m̃x,m̃−m̂, BSm̃x−m̂x,m̃−m̂, B′SU,m̃−m̂,

B′SÛ ,m̃−m̂, B′Sm̃x−m̂x,e, B
′SÛe, B

′SUê, B
′Smx−m̃x,ê, B

′Sm̃x−m̂x,ê, B
′SUê, BSÛ ê, Sm̃−m̂,e,

Sm−m̃,ê, Sm̃−m̂,ê and Sm−m̂0 , where m̂0 =
∑

j 6=i mjL0,ij∑
j 6=i L0,ij

. The uniform consistency of R1,

namely sup
α∈An,hv ,hη∈Hn

|R1(α, hv, hη)| = op(n
−1/2), is followed by Propositions A.1-A.3, A.6,

A.7, A.9 and A.12-A.14, with β = β0 + O(n−1/2) as defined in (2.17) and Sm−m̂0 =

Op(n
−1h−1

v h−q2
η )+Op((h

2
v+h2η)

2) by nonparametric analysis. The second remainder term,

R2, is decomposed as follows: B′Sδ̂X
B,Sδ̂m

, Sδ̂e
, B′Sδ̂X δ̂m

, B′Sδ̂X δ̂e
, Sδ̂mδ̂e

, B′Sδ̂X ,mx−m̃x
B,

B′Sδ̂X ,m̃x−m̂x
B,B′Sδ̂XUB,B′Sδ̂X ÛB,B′Sδ̂X ,m−m̃, B′Sδ̂X ,m̃−m̂, B′Sδ̂Xe, B

′Sδ̂X ê, B
′Sδ̂m,mx−m̃x

,

BSδ̂m,m̃x−m̂x
, B′Sδ̂mU , B

′Sδ̂mÛ , Sδ̂m,m−m̃, Sδ̂m,m̃−m̂, Sδ̂me, Sδ̂mê, BSδ̂e,mx−m̃x
, B′Sδ̂e,m̃x−m̂x

,

BSδ̂eU
, B′Sδ̂eÛ

, Sδ̂e,m−m̃, Sδ̂e,m̃−m̂, Sδ̂ee
and Sδ̂eê

− Sgx−ĝx . The uniform consistency of R2,

namely sup
α∈An,hv ,hη ,hz∈Hn

|R2(α, hz, hv, hη)| = op(n
−1/2), is followed by Propositions A.4,

A.5, A.8, A.10, A.11 and A.15, with β = β0+O(n−1/2) and Sgx−ĝx = Op(n
−1h−qz

z )+Op(h
4
z)

by nonparametric analysis. Note that the stated orders of the remainder terms are made

available by using Chebyshev inequality.

Step 2. Proofs of Corollary 2.1: The proofs of the asymptotic properties of α̂ and

β̂ are now ready to be discussed. Firstly, by using the condition in (2.17), particularly

An = {α : ||α − α0|| ≤ C1n
−1/2}, and given the bounded values of X, the conditional

expectation relationships are written as follows

m(v0, η) = m(v, η)−X ′(α− α0)m
(1)
0 +O(n−1), (A.3)

m(v0, η|v, η) = m(v, η)− m̃x(x|V, η)′(α− α0)m
(1)
0 +O(n−1). (A.4)

The asymptotic properties of α̂ by obtained using (A.3) and (A.4) with the expansion

of J̃(α) are then considered as follows

J̃(α) = (α0 − α)′

(
1

n

n∑

i=1

{
m

(1)
0

}2
U0iU

′
0i

)
(α0 − α) +

2

n

n∑

i=1

m
(1)
0 U ′

0i(α0 − α)ei

+2(β0 − β)′

(
1

n

n∑

i=1

m
(1)
0 U0iU

′
0i

)
(α0 − α) + op(1) +Op(n

−1/2), (A.5)
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where U0i ≡ {Xi − E(Xi|V0i, ηi)}. Given α0 and η, β0−β is
(
1
n

∑n
i=1 U0iU

′
0i

)− 1
n

∑n
i=1 U0iei

and hence

J̃(α) = (α0 − α)′
{
m

(1)
0

}2
SU0(α0 − α) + 2m

(1)
0 SeU0(α0 − α)

−2
{
(SU0)

− SeU0

}{
m

(1)
0 SU0(α0 − α)

}
+ op(1). (A.6)

The asymptotic properties of β̂ are obtained by considering the linear reduced form

(see Robinson (1988) for details), given η̂ and α̂, as follows

Yi − Ŷ3i = (Xi − X̂3i)
′β0 + (mi − m̂3i) + (ei − ê3i), (A.7)

where Ŷ3i = m̂y(V̂i, η̂i)+Ŵ3i, Ŵ3i =
∑

j 6=i WjL3,ij∑
i 6=j L3,ij

, X̂3i = m̂x(V̂i, η̂i)+Û3i, Û3i =
∑

j 6=i UjL3,ij∑
i 6=j L3,ij

,

m̂3i =
∑

j 6=i m̃jL3,ij∑
i 6=j L3,ij

, ê3i =
∑

j 6=i ejL3,ij∑
i 6=j L3,ij

. By using (A.7), we obtain

β̂ − β0 = S−1

X−X̂3

(
SX−X̂3,m−m̂3

+ SX−X̂3,e−ê3

)
. (A.8)

Further decomposition of (A.7) is required as shown below

Yi − Ỹi + Ỹi − Ŷ1i − δ̆Y i = (Xi − X̃i + X̃i − X̂1i − δ̆Xi)
′β0 + (mi − m̃i + m̃i − m̂1i − δ̆mi)

+(ei − ê1i − δ̆ei), (A.9)

where δ̆Y i ≡ Ŷ3i− Ŷ1i, δ̆Xi ≡ X̂3i− X̂1i, δ̆mi ≡ m̂3i− m̂1i, δ̆ei ≡ ê3i− ê1i, Ŷ1i = m̂y(V̂i, ηi)+

Ŵ1i, Ŵ1i =
∑

j 6=i WjL1,ij∑
j 6=i L1,ij

, X̂1i = m̂x(V̂i, ηi)+ Û1i, Û1i =
∑

j 6=i UjL1,ij∑
j 6=i L1,ij

, m̂1i =
∑

j 6=i m̃jL1,ij∑
j 6=i L1,ij

and

ê1i =
∑

j 6=i ejL1,ij∑
j 6=i Lij

.

The terms in (A.8) is decomposed further by using (A.9) as follows: Smx−m̃x , Sm̃x−m̂x1
, SU ,

SÛ1
, Sδ̆X

, Smx−m̃x,m̃x−m̂x1
, Smx−m̃x,U , Smx−m̃x,Û1

, Smx−m̃x,δ̆X
, Sm̃x−m̂x1 ,U

, Sm̃x−m̂x1 ,Û1
, Smx−m̃x,δ̆X

,

SUÛ1
, SUδ̆X

, SÛ1δ̆X
, Sm−m̃,e, Sm−m̃,ê1 , Sm−m̃,δ̆e, Sm̃−m̂1,e, Sm̃−m̂1,ê1 , Sm̃−m̂1,δ̆e

, Sδ̆me, Sδ̆mê1
, Sm−m̃,

Sm̃−m̂1 , Sδ̆m
, Sm−m̃,m̃−m̂1 , Sm−m̃,δ̆m

, Sm̃−m̂1,δ̆m
, Sδ̆eδ̆m

, Se, Sê1 , Sδ̆e
, Seê1 , Seδ̆e

, Sê1δ̆e
, Smx−m̃x,e,

Smx−m̃x,ê1 , Smx−m̃x,δ̆e
, Sm̃x−m̂x1 ,e

, Sm̃x−m̂x1 ,ê1
, Sm̃x−m̂x1

, SUe, SUê1 , SUδ̆e
, SÛ1e

, SÛ1ê1
, SÛ1δ̆e

, Sδ̆Xe,

Sδ̆X ê1
, Sδ̆Xδ̆e, Smx−m̃x,m−m̃, Smx−m̃x,m̃−m̂1 , Smx−m̃x,δ̆m

, Sm̃x−m̂x1 ,m−m̃, Sm̃x−m̂x1 ,m̃−m̂1 , SÛ1δ̆m
,

Sm̃x−m̂x1 ,δ̆m
, Sm−m̃,U , Sm̃−m̂1,U , SUδ̆m

, Sm−m̃,Û1
, Sm̃−m̂1,Û1

, Sm−m̃,δ̆X
, Sm̃−m̂1,δ̆X

and Sδ̆X δ̆m
.

Note that the two kernel functions are approximated such that L3,ij = L2,ij+Op(n
−1/2h−1

v )

and L1,ij = Lij + Op(n
−1/2h−1

v ) uniformly in i. Hence, L2,ij and Lij are used instead of

L3,ij and L1,ij , respectively, for the case of β̂ in Propositions A.1 to A.15. By Propositions

A.1-A.15, and (A.3) and (A.4), (A.8) becomes

β̂ − β0

=

(
1

n

n∑

i=1

U0iU
′
0i

)−{
1

n

n∑

i=1

U0iei −
1

n

n∑

i=1

m
(1)
0 U0iU

′
0i(α0 − α)

}
+Op(n

−1/2) + op(1).
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Given β0 and by using (A.5), (A.8) is further simplified as shown below

β̂ − β0 = (SU0)
−

{
SU0e −m

(1)
0 SU0

({
m

(1)
0

}2
SU0

)−

m
(1)
0 SeU0

}
+ op(1). (A.10)

Given both β̂ and α̂, the variance of e is

σ̂2 = Se−ê3 + Sm−m̂3 + (β̂ − β0)
′SX−X̂3

(β̂ − β0)− 2(β̂ − β0)
′SX−X̂3,e−ê3

−2(β̂ − β0)
′SX−X̂3,m−m̂3

+ 2Sm−m̂3,e−ê3 (A.11)

= Se + op(1)
p→ σ2

2

by Propositions A.1-A.15 below, the law of large numbers and the i.i.d. assumption of ei .

The other nine terms, (β̂−β0)
′Smx−m̃x(β̂−β0); (β̂−β0)

′Smx−m̃x,U (β̂−β0); (β̂−β0)
′SU (β̂−

β0); Sm−m̃; Smx−m̃x,m−m̃; Sm−m̃,U ; Smx−m̃x,e; SUe; Sm−m̃,e, are op(n
−1/2). Therefore, by

using the central limit theorem and the law of large numbers, the asymptotic normalities

of α̂ and β̂ are as follows

√
n(β̂ − β0) =

√
n (SU0)

−

{
SU0e −m

(1)
0 SU0

({
m

(1)
0

}2
SU0

)−

m
(1)
0 SeU0

}
+ op(1)

→D N

(
0, σ2

[
Φ−
U0

−
(
m

(1)
0 ΦU0

)−
ΦU0

{
m

(1)
0

}2 (
m

(1)
0 ΦU0

)−])

√
n(α̂− α0) =

√
n

({
m

(1)
0

}2
SU0

)− {
m

(1)
0 SeU0 −m

(1)
0 SU0 (SU0)

− SeU0

}
+ op(1)

→D N

(
0, σ2

[({
m

(1)
0

}2
ΦU0

)−

−
{
m

(1)
0 ΦU0

}−
ΦU0

{
m

(1)
0 ΦU0

}−
])

.

�

Next, the proofs of Propositions A.1 to A.15, are shown.

Proposition A.1.
√
nSm̃x−m̂x

and
√
nSm̃−m̂ are

Op(n
−1/2h−1

v h−q2
η ) +Op(n

1/2(h2v + h2η)
2).

Proof: Let ϕ(·) and ϕ̃(·) denote m(·) and mx(·), and m̃(·) and m̃x(·), respectively.
Then, uniformly in i, (A.3) and (A.4) are used to deduce the following

ϕ̃i − ϕ̂i =
(nhvh

q2
η )−1

∑
j 6=i

{
ϕ̃i − ϕ̃j + U ′

j(α− α0)ϕ
(1)
0

}
Lij

f(V, η)

(
1− f̂(V, η)− f(V, η)

f̂(V, η)

)
+ o(1),

where ϕ
(1)
0 = ∂ϕ(V0, η)/∂V0. Note that

(
f̂(V, η)− f(V, η)

)
= Op(nhvh

q2
η )−1/2 + Op(h

2
v +

h2η) so that
(
1− f̂(V,η)−f(V,η)

f̂(V,η)

)
can be dropped and, hence, only the numerator term is
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considered in the rest of this section. By identical distribution, E(Sϕ̃−ϕ̂) = E
{
(ϕ̃i − ϕ̂i)

2
}
,

where E(ϕ̃i − ϕ̂i) = O(h2v + h2η) and Var(ϕ̃i − ϕ̂i) = O(nhvh
q2
η )−1. Because

Var(ϕ̃i − ϕ̂i) = Var


 1

nhvh
q2
η

∑

j 6=i

(ϕ̃i − ϕ̃j)Lij


+Var


 1

nhvh
q2
η

∑

j 6=i

U ′
j(α− α0)ϕ

(1)
0 Lij




+ 2Cov


 1

nhvh
q2
η

∑

j 6=i

(ϕ̃i − ϕ̃j)Lij ,
1

nhvh
q2
η

∑

j 6=i

U ′
j(α− α0)ϕ

(1)
0 Lij


 ,

where

Var


 1

nhvh
q2
η

∑

j 6=i

U ′
j(α− α0)ϕ

(1)
0 Lij


 = O(n2hvh

q2
η )−1

Cov


 1

nhvh
q2
η

∑

j 6=i

(ϕ̃i − ϕ̃j)Lij ,
1

nhvh
q2
η

∑

j 6=i

U ′
j(α− α0)ϕ

(1)
0 Lij


 = O(n3/2hvh

q2
η )−1.

Hence E(Sϕ̃−ϕ̂) = O(nhvh
q2
η )−1 +O((h2v + h2η)

2). �

Proposition A.2.
√
nSm̃x−m̂x,m̃−m̂ is Op(n

−1/2h−1
v h−q2

η ) +Op(n
1/2(h2v + h2η)

2).

Proof: By using Proposition A.1 (i)-(ii), and the Cauchy inequality. �

Proposition A.3.
√
nSÛ and

√
nSê are Op(n

−1/2h−1
v h−q2

η ).

Proof: Let ̺ denote U and e. By using the assumptions of E(̺|L) = 0 almost surely,

where L = (X, η) and the i.i.d. property of ̺, we obtain the results ofE(S ˆ̺) = E(ˆ̺2i ) and

E(ˆ̺2i ) =
1

n2h2vh
2q2
η

E



∑

j 6=i

̺2jL
2
ij


 = O(nhvh

q2
η )−1.

�

Proposition A.4.
√
nSδ̂X

,
√
nSδ̂m

and
√
nSδ̂e

are

Op

(
n−3/2h−qz

z h−1
v h

−(q2+2)
η

)
+Op

(
n−1/2h4zh

−1
v h

−(q2+2)
η

)
+Op(n

3/2h4z(h
2
v + h2η)

2).

Proof: Let δ denote δX , δm and δe, and δ̂i = δ̂2i−δ̂1i ≡
∑

j 6=i δjL2,ij∑
j 6=i L2,ij

−
∑

j 6=i δjLij∑
j 6=i Lij

. By us-

ing Taylor expansion, L2,ij = Lij+L
(1)
ij

(
△ij

hη

)
+L

(2)
ij (τ)

(
△ij

hη

)2
, where L

(r)
ij is the rth deriva-

tive of Lij with respect to η with r = 1 or 2, △ij = {ĝx(Zj)− gx(Zj)}− {ĝx(Zi)− gx(Zi)}
and τ is between the segment line of ηj − ηi and η̂j − η̂i. Hence, the denominator of δ̂2i is

1

nhvh
q2
η

∑

j 6=i

L2,ij =
1

nhvh
q2
η

∑

j 6=i

Lij +
1

nhvh
q2+1
η

∑

j 6=i

L
(1)
ij △ij +Rij ,
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where Rij is the remainder term and the second term on the right-hand side is op(n
−1/2),

because

E


 1

nhvh
q2+1
η

∑

j 6=i

L
(1)
ij △ij




2

=
1

n4h2qzz h2vh
2(q2+1)
η

E



∑

j 6=i

(
L
(1)
ij

)2



∑

l 6=j

C(l,j;K) −
∑

l 6=i

C(l,i;K)





2


+
2

n4h2qzz h2vh
2(q2+1)
η

E



∑

j 6=i

(
L
(1)
ij

)2



∑

l 6=j

C(l,j;K) −
∑

l 6=i

C(l,i;K)





×




∑

m 6=j,l

C(m,j;K) −
∑

m 6=i,l

C(m,i;K)








+
2

n4h2qzz h2vh
2(q2+1)
η

E



∑

j 6=i

∑

k 6=i,j

L
(1)
ij L

(1)
ik




∑

l 6=j

C(l,j;K) −
∑

l 6=i

C(l,i;K)





×




∑

m 6=k,l

C(m,k;K) −
∑

m 6=i,l

C(m,i;K)








= O
(
n−2h−qz

z h−1
v h−(q2+2)

η

)
+O

(
n−1h4zh

−1
v h−(q2+2)

η

)
+O

(
h4z(h

2
v + h2η)

2
)
,

where C(l,j;K) ≡ {gx(Zl)− gx(Zj)}Kjl. Hence δ̂i =
h−1
η

∑
j 6=i δjL

(1)
ij △ij∑

j 6=i Lij
. Next, consider

E(Sδ̂) =
1
n

∑n
i=1E(δ̂2i ) +

2
n

∑n
i=1

∑n
j=1, 6=iE(δ̂iδ̂j). Using a similar argument to the above,

the two terms on the right-hand side of E(Sδ̂) are

E
(
δ̂2i

)
=

1

n4h2qzz h2vh
2(q2+1)
η

E



∑

j 6=i

δ2j

(
L
(1)
ij

)2



∑

l 6=j

C(l,j;K) −
∑

l 6=i

C(l,i;K)





2


+
2

n4h2qzz h2vh
2(q2+1)
η

E



∑

j 6=i

δ2j

(
L
(1)
ij

)2



∑

l 6=j

C(l,j;K) −
∑

l 6=i

C(l,i;K)





×




∑

m 6=j,l

C(m,j;K) −
∑

m 6=i,l

C(m,i;K)








= O
(
n−2h−qz

z h−1
v h−(q2+2)

η

)
+O

(
n−1h4zh

−1
v h−(q2+2)

η

)

E
(
δ̂iδ̂j

)
=

1

n4h2qzz h2vh
2(q2+1)
η

×
∑

l 6=i

∑

l 6=j

E


δ2l L

(1)
il L

(1)
jl




∑

k 6=l

C(k,l;K) −
∑

k 6=i

C(k,i;K)








∑

m 6=l

C(m,l;K) −
∑

m 6=j

C(m,j;K)








= O
(
h4z(h

2
v + h2η)

2
)
.
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Proposition A.5.
√
nSδ̂X δ̂m

,
√
nSδ̂X δ̂e

and
√
nSδ̂mδ̂e

are

Op

(
n−3/2h−qz

z h−1
v h

−(q2+2)
η

)
+Op

(
n−1/2h4zh

−1
v h

−(q2+2)
η

)
+Op(n

3/2h4z(h
2
v + h2η)

2).

Proof: By using Proposition A.4 (i)-(iii), and the Cauchy inequality. �

Proposition A.6.
√
nSUÛ ,

√
nSÛe,

√
nSeê and

√
nSUê are Op(n

−1/2h
−1/2
v h

−q2/2
η ).

Proof: Since E(̺|L) = 0 almost surely and ̺ is i.i.d., we have

E
(√

nS̺ ˆ̺

)2
=

1

n

n∑

i=1

E
(
̺2i ˆ̺

2
i

)
, where E(̺2i ˆ̺

2
i ) =

1

n2h2vh
2q2
η

E


̺2i

∑

j 6=i

̺2jL
2
ij


 = O(nhvh

q2
η )−1.

�

Proposition A.7.
√
nSm̃x−m̂x,U ,

√
nSm̃−m̂,U ,

√
nSm̃x−m̂x,e and

√
nSm̃−m̂,e are

Op(n
−1/2h

−1/2
v h

−q2/2
η ) +Op(h

2
v + h2η).

Proof: Because E(̺|L) = 0 almost surely and ̺ is i.i.d., we have

E(
√
nSϕ̃−ϕ̂,̺)

2 =
1

n

n∑

i=1

E
{
(ϕ̃i − ϕ̂i)

2̺2i
}
,

where

E
{
(ϕ̃i − ϕ̂i)

2̺2i
}

=
1

n2h2vh
2q2
η

E



∑

j 6=i

(
C∗
(i,j;L)

)2
̺2i


+

2

n2h2vh
2q2
η

E



∑

l 6=i

∑

l 6=i,j

C∗
(i,l;L)C

∗
(j,l;L)̺

2
i




= O(n−1h−1
v h−q2

η ) +O((h2v + h2η)
2)

with C∗
(i,l;L) =

{
ϕ̃i − ϕ̃l + U ′

l (α− α0)ϕ
(1)
0

}
Lil. �

Proposition A.8.
√
nSUδ̂X

,
√
nSUδ̂m

,
√
nSUδ̂e

,
√
nSeδ̂X

,
√
nSeδ̂m

and
√
nSeδ̂e

are

Op

(
n−1h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
+Op

(
n−1/2h2zh

−1/2
v h

−(q2+2)/2
η

)
.

Proof: Because E(̺|L) = 0 almost surely and ̺ is i.i.d., we have

E(
√
nS̺δ̂)

2 =
1

n

n∑

i=1

E
(
̺2i δ̂

2
i

)
,

where

E(̺2i δ̂
2
i )

=
1

n4h2qzz h2vh
2(q2+1)
η

E


̺2i

∑

j 6=i

δ2j

(
L
(1)
ij

)2



∑

l 6=j

C(l,j;K) −
∑

l 6=i

C(l,i;K)





2


+

{
2

n4h2qzz h2vh
2(q2+1)
η

×E


̺2i

∑

j 6=i

δ2j

(
L
(1)
ij

)2



∑

l 6=j

C(l,j;K) −
∑

l 6=i

C(l,i;K)








∑

m 6=j,l

C(m,j;K) −
∑

m 6=i,l

C(m,i;K)











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and hence

E(̺2i δ̂
2
i ) = O

(
n−2h−qz

z h−1
v h−(q2+2)

η

)
+O

(
n−1h4zh

−1
v h−(q2+2)

η

)
,

using similar arguments to those in Proposition A.4. �

Proposition A.9.
√
nSm̃x−m̂x,Û

,
√
nSm̃−m̂,Û ,

√
nSm̃x−m̂x,ê and

√
nSm̃−m̂,ê are

Op(nhvh
q2
η )−1 +Op(n

1/2(h2v + h2η)
2).

Proof:

E
(√

nSϕ̃−ϕ̂, ˆ̺

)2
=

1

n

n∑

i=1

E
{
(ϕ̃i − ϕ̂i)

2 ˆ̺2i
}
+

2

n

n∑

i=1

n∑

j=1, 6=i

E {(ϕ̃i − ϕ̂i)(ϕ̃j − ϕ̂j)ˆ̺i ˆ̺j} ,

where

E
{
(ϕ̃i − ϕ̂i)

2 ˆ̺2i
}
=

1

n4h4vh
4q2
η

E



∑

l 6=i

(
C∗
(i,l;L)

)2∑

j 6=i

L2
ij̺

2
j




+
2

n4h4vh
4q2
η

E



∑

l 6=i

∑

k 6=i,l

C∗
(i,l;L)C

∗
(i,k;L)

∑

j 6=i

L2
ij̺

2
j




= O(n−2h−2
v h−2q2

η ) +O(n−1h−1
v h−q2

η (h2v + h2η)
2)

E {(ϕ̃i − ϕ̂i)(ϕ̃j − ϕ̂j)ˆ̺i ˆ̺j} =
1

n4h4vh
4q2
η

E



∑

k 6=i

∑

m 6=j

C∗
(i,k;L)C

∗
(j,m;L)

∑

l 6=i

∑

l 6=j

LilLjl̺
2
l




= O((h2v + h2η)
4).

�

Proposition A.10.
√
nSÛ δ̂X

,
√
nSÛ δ̂m

,
√
nSÛ δ̂e

,
√
nSêδ̂X

,
√
nSêδ̂m

and
√
nSêδ̂e

are

Op

(
n−3/2h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n−1h2zh

−1
v h

−(q2+1)
η

)
+Op

(
n1/2h2z(h

2
v + h2η)

)
.

Proof:

E
(√

nS ˆ̺δ̂

)2
=

1

n

n∑

i=1

E
(
ˆ̺2i δ̂

2
i

)
+

2

n

n∑

i=1

n∑

j=1, 6=i

E
(
ˆ̺i ˆ̺j δ̂iδ̂j

)
,

where

E
(
ˆ̺2i δ̂

2
i

)

=
1

n6h2qzz h4vh
2(2q2+1)
η

E



∑

j 6=i

̺2jL
2
ij

∑

l 6=i

δ2l

{
L
(1)
il

}2




∑

k 6=l

C(k,l;K) −
∑

k 6=i

C(k,i;K)





2


+





2

n6h2qzz h4vh
2(2q2+1)
η

E



∑

j 6=i

̺2jL
2
ij

∑

l 6=i

δ2l

(
L
(1)
il

)2



∑

k 6=l

C(k,l;K) −
∑

k 6=i

C(k,i,;K)





×




∑

m 6=l,k

C(m,l;K) −
∑

m 6=i,k

C(m,i;K)











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and hence

E
(
ˆ̺2i δ̂

2
i

)
= O

(
n−3h−qz

z h−2
v h−(2q2+2)

η

)
+O

(
n−2h4zh

−2
v h−(2q2+2)

η

)
,

and the cross-product term, E
(
ˆ̺i ˆ̺j δ̂iδ̂j

)
, is

(
n6h2qzz h4vh

2(2q2+1)
η

)−1
times

E



∑

s 6=i

∑

s 6=i,j

̺2sLisLjs

∑

l 6=i

∑

l 6=i,j

δ2l L
(1)
il L

(1)
jl




∑

k 6=l

C(k,l;K) −
∑

k 6=j

C(k,j;K)





×




∑

m 6=l,k

C(m,l;K) −
∑

m 6=i,k

C(m,i;K)






 .

Hence the cross-product term is O
(
h4z(h

2
v + h2η)

2
)
. �

Proposition A.11.
√
nSm̃x−m̂x,δ̂X

,
√
nSm̃x−m̂x,δ̂m

,
√
nSm̃x−m̂x,δ̂e

,
√
nSm̃−m̂,δ̂X

,
√
nSm̃−m̂,δ̂m

,

and
√
nSm̃−m̂,δ̂e

are Op

(
n−3/2h

−qz/2
z h−1

v h
−(q2+1)
η

)
+Op

(
n−1h2zh

−1
v h

−(q2+1)
η

)
+Op

(
n1/2h2z(h

2
v + h2η)

)
.

Proof:

E
(√

nSϕ̃−ϕ̂,δ̂

)2
=

1

n

n∑

i=1

E
(
(ϕ̃i − ϕ̂i)

2δ̂2i

)
+

2

n

n∑

i=1

n∑

j=1, 6=i

E
(
(ϕ̃i − ϕ̂i)(ϕ̃j − ϕ̂j)δ̂iδ̂j

)
,

where

E
(
(ϕ̃i − ϕ̂i)

2δ̂2i

)

=
1

n6h2qzz h4vh
2(2q2+1)
η

E



∑

j 6=i

(
C∗
(i,j;L)

)2∑

l 6=j

δ2l

(
L
(1)
il

)2



∑

k 6=l

C(k,l:K) −
∑

k 6=i

C(k,i;K)





2


+
2

n6h2qzz h4vh
2(2q2+1)
η

E



∑

j 6=i

(
C∗
(i,j;L)

)2∑

l 6=j

δ2l

(
L
(1)
il

)2



∑

k 6=l

C(k,l:K) −
∑

k 6=i

C(k,i;K)





×




∑

m 6=l,k

C(m,l:K) −
∑

m 6=i,k

C(m,i;K)








= O
(
n−3h−qz

z h−2
v h−(2q2+2)

η

)
+O

(
n−2h4zh

−2
v h−(2q2+2)

η

)
,

and the cross-product term, E
(
(ϕ̃i − ϕ̂i)(ϕ̃j − ϕ̂j)δ̂iδ̂j

)
, is

(
n6h2qzz h4vh

2(2q2+1)
η

)−1
times

E



∑

s 6=i

∑

s 6=j,i

C∗
(i,s;L)C

∗
(j,s;L)

∑

l 6=i

∑

l 6=j,i

δ2l L
(1)
il L

(1)
jl




∑

k 6=l

C(l,k:K) −
∑

k 6=j

C(k,j;K)





×




∑

m 6=l,k

C(m,l:K) −
∑

m 6=i,k

C(m,i;K)






 .

Hence the cross-product term is O
(
h4z(h

2
v + h2η)

4
)
. �
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Proposition A.12.
√
nSÛ ê is Op(nhvh

q2
η )−1 +Op(n

1/2(h2v + h2η)
2).

Proof:

E
(√

nSÛ ê

)2
=

1

n

n∑

i=1

E
{
Û2
i ê

2
i

}
+

2

n

n∑

i=1

n∑

j=1, 6=i

E
{
ÛiÛ

′
j êiêj

}
,

where

E
{
Û2
i ê

2
i

}
=

1

n4h4vh
4q2
η

E




∑

j 6=i

UjU
′
jL

2
ij

∑

l 6=i

e2lL
2
il



 = O(n−2h−2

v h−2q2
η )

E
{
ÛiÛ

′
j êiêj

}
=

1

n4h4h4q2η

E




∑

l 6=i

∑

l 6=j

UlU
′
lLilLjl

∑

k 6=i

∑

k 6=j

e2kLikLjk



 = O((h2v + h2η)

4).

�

Proposition A.13.
√
nSmx−m̃x,m̃x−m̂x

,
√
nSm−m̃,m̃−m̂,

√
nSmx−m̃x,m̃−m̂ and

√
nSm−m̃,m̃x−m̂x

are Op

(
n−1h

−1/2
v h

−q2/2
η

)
.

Proof: By (A.3) and (A.4) we deduce that, uniformly in i, we have

ϕi − ϕ̃i = U ′
i(α0 − α)ϕ

(1)
0 (V0i, ηi) +O(n−1). (A.12)

By using (A.12), we have (ϕi−ϕ̃i)(ϕ̃i−ϕ̂i) =
1

nhvh
q2
η

∑
j 6=i ti

{
ϕ̃i − ϕ̃j + U ′

j(α− α0)ϕ
(1)
0

}
Lij ,

where ti = U ′
i(α0 − α)ϕ

(1)
0 . For the rest of proofs, we use similar arguments to those in

Proposition A.7 because E(U |L) = 0 almost surely and U is i.i.d.. Hence we have

E
(√

nSϕ−ϕ̃,ϕ̃−ϕ̂

)2
=

1

n

n∑

i=1

E
(
t2i (ϕ̃i − ϕ̂i)

2
)
,

where

E
(
t2i (ϕ̃i − ϕ̂i)

2
)

=
1

n2h2vh
2q2
η

E



t2i

∑

j 6=i

(
C∗
(i,j;L)

)2


+

2

n2h2vh
2q2
η

E



t2i

∑

j 6=i

∑

l 6=i,j

C∗
(i,j;L)C

∗
(i,l;L)





= O
(
n−2h−1

v h−q2
η

)
+O

(
n−1(h2v + h2η)

2
)
.

�

Proposition A.14.
√
nSmx−m̃x,Û

,
√
nSmx−m̃x,ê,

√
nSm−m̃,Û and

√
nSm−m̃,ê are Op

(
n−1h

−1/2
v h

−q2/2
η

)
.

Proof: By (A.12), E(U |L) = 0 almost surely and because of the i.i.d. assumption of

U , similar arguments to those in Proposition A.6 are used for the rest of the proof.

E(
√
nSϕ−ϕ̃, ˆ̺)

2 =
1

n

n∑

i=1

E
(
t2i ˆ̺

2
i

)
,
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where

E
(
t2i ˆ̺

2
i

)
=

1

n2h2vh
2q2
η

E


t2i

∑

j 6=i

̺2jL
2
ij


 = O

(
n−2h−1

v h−q2
η

)
.

�

Proposition A.15.
√
nSmx−m̃x,δ̂X

,
√
nSmx−m̃x,δ̂m

,
√
nSmx−m̃x,δ̂e

,
√
nSm−m̃,δ̂X

,
√
nSm−m̃,δ̂m

and
√
nSm−m̃,δ̂e

are Op

(
n−3/2h

−qz/2
z h

−1/2
v h

−(q2+2)/2
η

)
.

Proof: By (A.12), E(U |L) = 0 almost surely and because of the i.i.d. assumptions,

the rest of the proofs is similar to that of Proposition A.8.

E(
√
nSϕ−ϕ̃,δ̂)

2 =
1

n

n∑

i=1

E
(
t2i δ̂

2
i

)
,

where

E
(
t2i δ̂

2
i

)
=

1

n4h2qzz h2vh
2(q2+1)
η

E


t2i

∑

j 6=i

δ2j

{
L
(1)
ij

}2




∑

l 6=j

C(l,j;K) −
∑

l 6=i

C(l,i;K)





2


+
2

n4h2qzz h2vh
2(q2+1)
η

E


t2i

∑

j 6=i

δ2j

(
L
(1)
ij

)2



∑

l 6=j

C(l,j;K) −
∑

l 6=i

C(l,i;K)





×




∑

k 6=j,l

C(k,j;K) −
∑

k 6=i,l

C(k,i;K)








= O(n−3h−qz
z h−1

v h−(q2+2)
η ) +O(n−2h4zh

−1
v h−(q2+2)

η ).

�

Proof of Theorem 2.2

Given β̂ and α̂, fix the observation V0i at v0, then at the observation v0 and ηi

m̂(v̂, η̂i)−m(v0, ηi) = {m̂y∗∗(v̂, ηi)− m̃y∗∗(v̂, ηi)}

+
{
Q1i +Q2i − (Q3i +Q4i +Q5i)

′ (β̂ − β0)
}
, (B.1)

where Y ∗∗
i ≡ Yi − X ′

iβ0; m̃y∗∗(v̂, ηi) = E(my∗∗ |v̂, ηi); m̃x(v̂, ηi) = E(mx|v̂, ηi); δ̆m∗∗
y ,i ≡

m̂y∗∗(v̂, η̂i) − m̂y∗∗(v̂, ηi); δ̆mX ,i ≡ m̂x(v̂, η̂i) − m̂x(v̂, ηi); Q1i = m̃y∗∗(v̂, ηi) − my∗∗(v0, ηi);

Q2i = δ̆m∗∗
y ,i; Q3i = m̂x(v̂, ηi) − m̃x(v̂, ηi); Q4i = m̃x(v̂, ηi) − mx(v0, ηi); Q5i = δ̆mx,i. As

the results of a standard nonparametric analysis (see Hansen (2008) for example), the

last five terms on the right-hand-side of (B.1) are op(1) uniformly in i. In particular,

sup
z∈Az

|Q2i| = sup
z∈Az

|Q5i| = Op

{(
(lnn)2

n2hqz
z hvh

q2+2
η

)1/2
+ h2z(h

2
v + h2η)

}
. Hence (B.1) is

m̂(v̂, η̂i)−m(v0, ηi) = m̂y∗∗(v̂, ηi)−m̃y∗∗(v̂, ηi)+op(1) ≡ m̂(v̂, ηi)−m̃(v̂, ηi)+op(1), (B.2)
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where

m̂(v̂, ηi)− m̃(v̂, ηi) =

∑
j 6=i {m(v0, ηj)−m(v0, ηi)}

{
L0,ij +Op(n

−1/2h−1
v )
}

∑
j 6=i L0,ij + op(1)

+Op(n
−1/2).

Hence (B.2) is

m̂(v̂, η̂i)−m(v0, ηi) = m̂(v0, ηi)−m(v0, ηi) + op(1). (B.3)

Let us define m̌(v0, ηi) = m̂(v0, ηi)f̂(v0, ηi). We can then rewrite the first term on the

right-hand side of (B.3) as follows

m̂(v0, ηi)−m(v0, ηi) =
m̌(v0, ηi)−m(v0, ηi)f̂(v0, ηi)

f(v0, ηi)

(
1− f̂(v0, ηi)− f(v0, ηi)

f̂(v0, ηi)

)
,

where sup
x,η∈U

∣∣∣f̂(v0, ηi)− f(v0, ηi)
∣∣∣ = Op

{(
lnn

nhvh
q2
η

)1/2
+ (h2v + h2η)

}
. First, we consider the

bias term as follows

E(m̂(v0, ηi)−m(v0, ηi)) =
Em̌(v0, ηi)−m(v0, ηi)E(f̂(v0, ηi))

f(v0, ηi)
,

where

Em̌(v0, ηi) = E


Ev0,ηi





1

nhvh
q2
η

n∑

j=1, 6=i

kv

(
V0j − v0

hv

)
Kη

(
ηj − ηi
hη

)
Y ∗∗
j








= E


 1

nhvh
q2
η

n∑

j=1, 6=i

kv

(
V0j − v0

hv

)
Kη

(
ηj − ηi
hη

)
m(v0, ηi)




= f(v0, ηi)m(v0, ηi) + h2vBv(v0, ηi) +

q2∑

l=1

h2η,lBη,l(v0, ηi) + o(1).

In the expression above, Ev0,ηi denotes the conditional expectation at the observation v0

and ηi. Hence it is as follows

E(m̂(v0, ηi)−m(v0, ηi)) =

{
h2vBv(v0, ηi) +

q2∑

l=1

h2η,lBη,l(v0, ηi)

}
+ o(1). (B.4)

The single sum of (B.4) converges to its population mean by Chebyshev’s law of large

numbers (see Linton and Härdle (1996) for details).

Now let us consider the variance term. Note that f(v0, ηi) = f(v0, η)+Op(n
−1/2) and

m(v0, ηi) = m(v0, η)+Op(n
−1/2) by the law of large numbers, since both functions satisfy

the bounded moment conditions. We then have

Var

(
1

n

n∑

i=1

m̂(v0, ηi)

)
=

1

f(v0, η)2
Var

(
1

n

n∑

i=1

{
m̌(v0, ηi)−m(v0, ηi)f̂(v0, ηi)

})

=
1

f(v0, η)2

{
Var

(
1

n

n∑

i=1

m̌(v0, ηi)

)
+m(v0, η)

2Var

(
1

n

n∑

i=1

f̂(v0, ηi)

)

−2m(v0, η)Cov

(
1

n

n∑

i=1

m̌(v0, ηi),
1

n

n∑

i=1

f̂(v0, ηi)

)}
,
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where

Var

(
1

n

n∑

i=1

m̌(v0, ηi)

)
= E

(
Varv0,ηi

{
1

n

n∑

i=1

m̌(v0, ηi)

})
+Var

(
Ev0,ηi

{
1

n

n∑

i=1

m̌(v0, ηi)

})

= σ2fη(η)
2E


 1

nhv

n∑

j=1

kv

(
V0j − v0

hv

)


2

+ fη(η)
2Var


 1

nhv

n∑

j=1

kv

(
V0j − v0

hv

)
m(V0j , ηj)




=
σ2fα(v0)fη(η)

2

nhv
Kv +

m(v0, η)
2fα(v0)fη(η)

2

nhv
Kv +O(n−1),

Var

(
1

n

n∑

i=1

f̂(v0, ηi)

)
=

fα(v0)fη(η)
2Kv

nhv
+O(n−1)

and

Cov

(
1

n

n∑

i=1

m̌(v0, ηi),
1

n

n∑

i=1

f̂(v0, ηi)

)

= E

{
1

n2

n∑

i=1

m̌(v0, ηi)

n∑

i=1

f̂(v0, ηi)

}
− E

{
1

n

n∑

i=1

m̌(v0, ηi)

}
E

{
1

n

n∑

i=1

f̂(v0, ηi)

}

=
m(v0, η)fα(v0)fη(η)

2Kv

nhv
+O(n−1)

with Varv0,ηi denoting the conditional variance at v0 and ηi. Hence we have

√
nhv(m̂(v̂)−m(v0)−Bias) →D N(0, V ar).

The consistency of ĝ(v̂) and its asymptotic normality are argued in a similar way to the

above because m(v0) = g(v0) + C. �
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