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ABSTRACT

Cutter Suction Dredgers (CSDs) are a special type of ships designed for construction and maintenance

projects of ocean and offshore engineering. During the dredging operation, CSDs can excavate nearly

all kinds of soil on the sea bed, and then the dredged materials with coarse particles need to be sucked

up by a slurry pump and transported to a disposal area through a long-distance pipeline. In order to

avoid sedimentation of slurry in pipeline transportation, the flow rate must be maintained within a

reasonable range. Otherwise, the pipeline can be blocked when the slurry density is too high. In this

paper, we present a Model Predictive Control (MPC) approach to manipulate the flow rate of slurry in

pipeline transportation for a CSD. To demonstrate the advantages of our proposed approach, we also

implement three Proportional-Integral-Derivative (PID) controllers (i.e., conventional PID, Fuzzy-

PID, and LQR-PID) to make a direct comparison. Moreover, in order to evaluate the effectiveness of

our proposed approach in real scenarios, we have, in particular, built a slurry pipeline transportation

platform. Both the simulation and experimental results show that our proposedMPC approach is more

effective than other PID controllers in controlling the flow rate in the slurry pipeline transportation

problem. The proposed approach can provide a guideline for the automated control of the slurry pump

for a CSD.

1. Introduction

CSDs are a special type of ships for construction and

maintenance projects of ocean and offshore engineering, such

as harbour deepening and land reclamation (Wang et al., 2020).

Comparing with other dredging vessels, CSDs can excavate

nearly all kinds of soil (i.e., sand, clay or rock) on the sea

bed by a cutter head (Tang et al., 2009). Then, the dredged

materials need to be sucked up by a dredger pump and trans-

ported to a disposal area through a long-distance pipeline, as

shown in Fig. 1. During the dredging process of a CSD, the

pipeline transportation system consumes most energy, and,

in addition, control of the flow rate of the slurry is essential

for its safe operation. Therefore, the automated control of

the slurry pump will be beneficial to both the operators and

dredging companies.

In comparisonwith other slurry transportation in pipelines,

the control of dredged materials faces the following chal-

lenges. Firstly, the CSD is usually located several kilome-

tres away from the final disposal area, and the dredged slurry

must be transported to the areawith a high concentration (Bai

et al., 2019). Secondly, the dredged slurry differs from a

homogeneous material, such as mineral slurry (Sinha et al.,

2017), oil (Priyanka et al., 2018) and coal fly ash (Singh

et al., 2017), and may include coarse particles of hard rocks

that vary in size (Ting et al., 2019). Moreover, the distribu-

tion of solid particles along the pipeline is uneven, and the
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particles tend to accumulate at the bottom of the pipeline

because of gravity. Thus, if the flow rate is too slow, the

solid particles of slurry will be deposited on the bottom of

the pipeline, causing blockage accidents (Wei et al., 2019);

however, if the flow rate is too high, the solid particles will

wear down the pipeline and lead to a rupture. In order to re-

solve the above problems, the flow rate must be maintained

within an acceptable range in the pipeline. To this end, this

work aims at providing a Model Predictive Control (MPC)

approach to manipulating the flow rate of slurry for a CSD.

A Cutter Suction Dredger

The slurry pipeline

Figure 1: The cutter suction dredger with the slurry pipeline
transportation system.

Manymethods have been studied to address the flow con-

trol problem in pipeline transportation. For example, a Fuzzy-

PID controller is designed to automatically regulate the flow

rate of oil pipelines by controlling the pressure at distinct

points (Priyanka et al., 2018). The flow rate control has also

been achieved by managing the percentage of opening of the
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control valves in oil pipelines by a PID controller (Priyanka

et al., 2016). Similarly, a PID controller is utilized to con-

trol the flow rate of heavy oil in pipelines by controlling the

vibration on a motor (Razvarz et al., 2019), but the effec-

tiveness of the PID controller is only proved by numerical

simulations. So far many existing methods of controlling

the flow rate in pipelines focus on transporting homogeneous

materials, but little research has studied the automated con-

trol approach to transporting the slurry with coarse particles

in pipelines. In this work, we focus on the slurry pipeline

transportation system of a CSD, andwe also implement three

PID controllers as the baseline, i.e., a conventional PID con-

troller, a Fuzzy-PID controller and a Linear Quadratic PID

controller.

Process control in industry often involves time delays. It

is difficult for a simple feedback controller to handle the pro-

cess control problem with time delays (Bobal et al., 2013).

Slurry pipeline transportation is a kind of control systems

with large inertia, large time delays and time variation. To

realize steady control of the flow rate of slurry, the controller

must have the adaptive ability of responding to the dynamic

changes of the external environment. When the relative time

delay is very large, the predictive control can provide a pos-

sible solution to such a problem (Grüne and Pannek, 2017).

Among the feasible solutions, theMPC (Vazquez et al., 2016;

Wang et al., 2015) has been successfully applied for con-

trolling the processes with time delays. MPC is a promising

alternative because it can be easily used in multivariable sys-

tems and can predict the dynamic behaviour of the system.

Moreover, nested control loops can be incorporated in a sin-

gle loop, which is conductive to the implementation of such

a control system (Morari and Lee, 1999; Kouvaritakis and

Cannon, 2016). In this work, we will also look at a MPC

approach to the slurry pipeline transportation of a CSD.

With regard to the performance of MPC methods, a sim-

ulation study has evaluated twoMPCmethods (i.e., dynamic

matrix control and generalized predictive control) in com-

parisonwith a classical PID controller (Ramdani andGrouni,

2017), and the simulation results can show the advantages

of the two MPC methods. Similarly, a linear MPC and the

predictive function control are also compared with the PI

regulator (Rullo et al., 2014). Another recent work has pre-

sented a MPC method to address the cell generation system,

in comparison with a PID controller (Long et al., 2015). We

can identify that many studies have shown the effectiveness

of MPCmethods by comparing with PID controllers, but the

performance is only evaluated in simulation environments in

most cases. In this work, the proposed MPC approach will

also be evaluated in comparison with three PID controllers,

and, in addition, the experiments are carried out both in sim-

ulations and on a physical platform.

In this paper, we aim at introducing a MPC approach to

the slurry pipeline transportation system of a CSD. Themain

contributions of this work can be summarized as follows:

1. To our best knowledge, we are the first to present a

MPC approach to address the slurry pipeline trans-

portation system of a cuter suction dredger.

2. In order to validate the advantages of the proposed

MPC approach, its performance is comparedwith other

three PID controllers, i.e., a conventional PID con-

troller, a Fuzzy-PID controller and a Linear Quadratic

PID controller.

3. In order to prove the feasibility of stabilizing the flow

control of slurry in real environments, we have, in par-

ticular, designed a slurry pipeline transportation plat-

form. We carry out extensive experiments both in sim-

ulations and on the physical platform to validate the

robustness of the proposed approach.

The paper is organized as follows. We describe themodel

of the slurry pipeline transportation system and present the

proposed MPC approach in Section 2. In order to evaluate

the proposed MPC approach, we also design three PID con-

trollers as the baseline in Section 3. Then, we introduce the

designed experiment platform and discuss the results in Sec-

tion 4. Finally, a brief conclusion is drawn to summarize the

study in Section 5.

2. Model Predictive Control Approach

In this section, we first present the model of the slurry

pipeline transportation system and then introduce the MPC

approach studied in this work. We will detail how the pro-

posed approach deals with the predictive model, rolling op-

timization and feedback regulation.

2.1. Slurry Pipeline Transportation System
As mentioned before, a CSD uses its cutter head to ex-

cavate hard rock or soil on the sea bed, and then the dredged

materials will be sucked up by a slurry pump. The energy

that can transport the sand-water mixture to the disposal area

is provided by the slurry pump. The process of slurry pipeline

transportation is illustrated in Fig. 2. In a CSD, the slurry

Analog Signal 

Output Module

Slurry Pump 

Units

Frequency 

Converter

 Sand-Water 

Mixture
Frequency Voltage Speed VelocityControls

Figure 2: The process of the slurry pipeline transportation.

pump is driven by a motor, thus the flow rate can be adjusted

by changing the rotation speed of the motor. To this end,

the control variable is amplified by the analog signal output

module to obtain the input value of the frequency converter,

which can provide the input voltage to drive the motor. Af-

terwards, the input voltage can determine the rotation speed

of the motor that directly drives the slurry pump units to

transport the sand-water mixture. Finally, the desired flow

rate in the pipeline can be obtained by adjusting the rotation

speed of the pump.

Due to the presence of time delays in the slurry trans-

portation problem, we choose a time-delay system. Based

on the typical transfer function methodology, a local process

model is established for the flow rate control in pipelines,

Gp1(s) =
k

(T s + 1)na
e−�s, (1)
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where k denotes the open-loop gain of the system, T is the

time constant of the inertia part of the system, na represents

the order, and � indicates the time delay. We do not sep-

arately model the correlations between the elements such

as the transmission medium, the transmission distance, and

transmission level of particulate matter. Instead, the system

model is considered as a whole, and we can adopt differen-

tial evolution to identify the model parameters, which will

be detailed in Section 4.1.1. Finally, the system model is

represented by a second-order time-delay system,

Gp1(s) =
k(

T p1 ⋅ s + 1
) (

T p2 ⋅ s + 1
)e−�s, (2)

where k denotes the open-loop gain of the system, T p1 and

T p2 are the time constants of the inertia part of the system.

In order to verify the effectiveness and accuracy of the iden-

tified system model, experiments have been carried out to

show that the system model can accurately describe the dy-

namics of he slurry transportation process.

2.2. Control Framework
The objective of our MPC approach is to obtain a se-

quence of control variables to optimize the future behaviour,

taking account of the time delays and large inertia in slurry

pipeline transportation. Such an automated control paradigm

is realized based on the error between the reference trajec-

tory and the predicted output. Thus, a model that can pro-

vide an accurate prediction of the future is essential for de-

scribing the dynamics of the system in predictive control. In

this work, the proposed MPC approach to the slurry pipeline

transportation is based on the model framework of the Dy-

namic Matrix Control (DMC) (Cutler and Ramaker, 1980),

which uses step response of the system to make predictions.

The general idea of the control framework is depicted in

Fig. 3, where multi-step prediction is adopted to address the

problem of the delay process. As shown in Fig. 3, the most

Process
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y(k|k)
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feedback
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Figure 3: The control framework of the MPC approach.

important components of the MPC is the predictive model,

rolling optimization, and feedback regulation. In the illus-

tration, y(k|k) denotes the current output by the predictive
model at time k, w(k) represents the reference trajectory,

e(k) means the error between the reference trajectory and

predicted output, and d(k) indicates the external disturbance.

The working mechanism of the MPC framework is de-

scribed in Fig. 4. At time k, a finite-time open-loop problem

is solved online based on the current state information, and

the first element of the control sequence (see Eq. (15)) is ap-

plied to the system. At time k+1, the system will repeat the

process of time k; the optimized problem will be refreshed

with the next state. Compared to traditional methods, the

optimal sequence is obtained by solving the open-loop prob-

lem online in MPC, but the feedback regulation mechanism

enables the MPC to be a closed-loop system.

onlinearpast

past feedback values

prediction horizon

curre

state x( )

 predicted trajectory
past trajectory

optimal

 equence u(k)

feedback value µ

u(0)

+1

current time

time t

Figure 4: The working mechanism of the MPC at time tn.

2.3. The Predictive Model
As one of the key component of theMPC framework, the

predictive model consists of the step response coefficients

(a1, a2,⋯ ap), in which ai is the amplitude of the step re-

sponse at the i-th sample step (Moon and Lee, 2009). The

values of the step response at time k are used to describe

the dynamics of the system. The step response curve of the

identified system model Eq.(2) is shown in Fig. 5, where the

value of ap is close enough to the steady state.

Figure 5: The step response curve of the slurry pipeline trans-
portation system.

According to the properties of proportion and superposi-

tion of a linear system, the input u(k− i) at time k− i (k ≥ i)

will contribute to the output y(k) as

y(k) =

{
aiΔu(k − i) (1 ≤ i < p)

apΔu(k − i) (i ≥ p)

}
(i = 1, 2,⋯ , n).

(3)

If the inputs at all the time step k − i (i = 1, 2⋯ k) can be

applied, according to the superposition of a linear system,
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the output can be written as

y(k) =

p−1∑
i=1

[aiΔu(k − i) + apΔu(k − i)]

+ �̂(k + j∕k) (j = 1, 2,⋯ , n), (4)

where �̂(k + j∕k) is the predicted disturbance at time t + j.

Based on the above equation, it is easy to obtain n (n < p)

step prediction

ŷ(k + j∕k) =

p−1∑
i=1

[aiΔu(k + j − i) + apΔu(k + j − p)]

+ �̂(k + j∕k) (j = 1, 2,⋯ , n). (5)

Since we can only know the inputs before time k, we have to

separate the contributions to the future output when utilizing

the dynamic model. Then the above equation can be written

as

ŷ(k+j∕k) =

j∑
i=1

aiΔu(k+j−i)+

p−1∑
i=j+1

[aiΔu(k+j−i)

+ apΔu(k+ j − p)] + �̂(k+ j∕k) (j = 1, 2,⋯ , n),

(6)

where the middle two terms represent the contributions of

the past inputs to the system output, and we can have the n

step prediction

y0(k+ j) =

p−1∑
i=j+1

[aiΔu(k+ j − i) + apΔu(k+ j − p)].

(j = 1, 2,⋯ , n). (7)

Eq. (6) can be written in matrix form as

⎛⎜⎜⎜⎝

ŷ(k + 1)

ŷ(k + 2)

⋮

ŷ(k + n)

⎞⎟⎟⎟⎠
=

⎛⎜⎜⎜⎝

a1 0

a2 a1
⋮ ⋮ ⋱

an an−1 ⋯ a1

⎞⎟⎟⎟⎠
⎛⎜⎜⎜⎝

Δu(k)
Δu(k + 1)

⋮

Δu(k + n − 1)

⎞⎟⎟⎟⎠
+

⎛⎜⎜⎜⎝

y0(k + 1)

y0(k + 2)

⋮

y0(k + n)

⎞⎟⎟⎟⎠
. (8)

To increase the dynamic stability of the control system
and the realizability of the control inputs, we decrease the
vector of Δu from n to m dimensions

⎛
⎜⎜⎜⎝

ŷ(k + 1)

ŷ(k + 2)

⋮

ŷ(k + n)

⎞
⎟⎟⎟⎠
=

⎛
⎜⎜⎜⎝

a1 0

a2 a1
⋮ ⋮ ⋱

an an−1 ⋯ an−m+1

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

Δu(k)
Δu(k + 1)

⋮

Δu(k + m − 1)

⎞
⎟⎟⎟⎠
+

⎛
⎜⎜⎜⎝

y0(k + 1)

y0(k + 2)

⋮

y0(k + n)

⎞
⎟⎟⎟⎠
. (9)

Eq. (9) can also be expressed by

Ŷ = AΔU + Y0, (10)

where Ŷ = [ŷ(k+ 1), ŷ(k+ 2),⋯ , ŷ(k+ n)]T is a n× 1 vec-

tor denoting the predicted trajectory of future output, ΔU =

[Δu(k),Δu(k+ 1),⋯ ,Δu(k+m− 1)]T , ΔU is a m × 1 vec-

tor of the input adjustment, Y0 =
[
y0(k + 1),⋯ , y0(k + n)

]T
denotes the vector of the unforced output trajectory, imply-

ing an open-loop prediction withΔumaintains constant, and

A ∈ ℝ
n×m represents the dynamic matrix. The matrix A is a

dynamic matrix that can reflect the dynamics of the control

object, and it is entirely determined by the step response of

the system. Here n andm indicate the prediction horizon and

the control horizon respectively.

2.4. Rolling Optimization
In order to ensure that the system output can be as close

as possible to the reference trajectory of the future output, the

system need to select and apply the input adjustment vector

ΔU at time k. As the predictive model of the system is based

on dynamic response coefficients, we can minimize J (k) to

find an input adjustment vector,

J (k) =

n∑
i=1

Q[y(k + j) −w(k + j)]2 +

m∑
j=1

R[Δu(k + j − 1)]2

=‖y(k + j) −w(k + j)‖2
Q
+ ‖Δu(k + j − 1)‖2

R
,

(11)

where w(k + j) = �jy(k) +
(
1 − �j

)
yr (j = 1, 2,⋯ , n), �

(0 < � < 1) is the softening factor, and y(r) is the desired

output. Then, the above equation can be abbreviated as

J (k) = ‖Y −W ‖2
Q
+ ‖ΔU‖2

R
. (12)

Here Q ∈ ℝ
n×n and R ∈ ℝ

m×m denote the positive def-

inite and weighted matrices. Y = [y(k + 1),⋯ , y(k + n)]T

is the system output, whileW = [w(k + 1),⋯ , w(k + n)]T

denotes the reference trajectory of the future output, which is

followed by the closed-loop responses to improve the robust-

ness of the system. Then we can replace Y with the optimal

predicted value of Ŷ in Eq.(10), J (K) can be written as

min J =
(
AΔU + Ŷ

)T
Q

(
AΔU + Ŷ

)
+ΔUTRΔU. (13)

The input adjustment vector ΔU is obtained by the deriva-

tion of Eq.(14),

ΔU =
(
ATQA + R

)−1
ATQ

(
W − Y0

)
. (14)

The above equation gives the optimal control sequence at

time k, which is based purely on the predictive model. Be-

cause the presence of the model errors, weak nonlinear and

other effects, the optimal control sequence cannot closely

track the reference trajectory. It is impossible for the sys-

tem to wait m time steps and then repeat Eq. (14); otherwise

the system will inevitably cause large deviations and cannot

suppress disturbances. Therefore, the first element of Δu(k)

is applied to the system, and the input adjustment vector can

be obtained as shown in Eq.(15). Afterwards, the system

applies u(k) to the process model (see Eq. (2)).

Δu(k) =dT
(
W − Y0

)
,

u(k) =u(k − 1) + Δu(k),
(15)
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where dT = CT (ATQA + R)−1ATQ andCT = [1, 0,⋯ , 0].

Since A, Q are known and d can be identified offline, the

online calculation of Δu is obtained from two vectors. The

control strategy is to make new predictions, regulations, and

optimizations by gathering the output data at time k + 1,

when input adjustment vector u(k) is applied to the system.

Rolling optimization does not mean that an offline calcu-

lation is enough to complete the entire optimization process.

Instead, the optimization objective will change along with

the control time, and the optimization process needs to be

repeated accordingly. In other words, a local optimum is ob-

tained and applied to the system at each time step, rather than

trying to find a constant global optimum.

2.5. Feedback Regulation
Due to the dynamics of the external environment, there

must be error between the predicted output and the system

output. Since the system is only applied the first term of the

optimal control sequence ΔU at time k, and the prediction

of the future time steps can be represented as

Ŷp = aΔu(k) + Yp0, (16)

where Ŷp = [ŷ(k+1∕k), ŷ(k+2∕k),⋯ , ŷ(k+p∕k)]T denotes

p predicted outputs with the contribution of input adjustment

vector Δu at time k. Similarly, Yp0 = [y0(k + 1∕k), y0(k +

2∕k),⋯ , y0(k+p∕k)]T represents p predicted outputs with-

out the contribution of input adjustment vector Δu at time k.

And a =
[
a1, a2,⋯ ap

]T
is a vector denoting coefficients of

the step response at the sample step.

Due to the uncertainty of the control objective, when the

input adjustment vectorΔu is applied into the system at time

k, there is the feedback value � between the system output

y(k+1∕k) and the predicted output ŷ(k+1∕k) at time k+1,

�(k + 1∕k) =y(k + 1∕k) − ŷ(k + 1∕k),

ŷ(k + 1∕k) =y0(k + 1∕k) + a1Δu(k).
(17)

Then we can weight the error and then regulate the predicted

output for next prediction horizon as

Ỹp = Ŷp + ℎ�(k + 1∕k), (18)

where ℎ = [ℎ1, ℎ2,⋯ , ℎp]
T represents the adjustment vec-

tor, in general ℎ1 = 1. Moreover, Ỹp = [ỹ(k + 1∕k), ỹ(k +

2∕k),⋯ , ỹ(k+p∕k)]T denotes the predicted output regulated

by the feedback value at time k. The regulated Ỹp (except

for the first item) is used as the unforced output trajectory

for t = k + 2, ..., t = k + p + 1 times. We express the above

relationship by

y0(k+i∕k+1) = ỹ(k+i+1∕k+1) (i = 1, 2,⋯ , p−1), (19)

And the last element in Y0(k + 1) can be approximated by

ỹ(k + p∕k + 1) at time k + 1. Therefore, Eq. (19) can be

further expressed as

Y0(k + 1) = S ⋅ Ỹp(k + 1), (20)

where S is defined as the shift matrix

S =

⎡⎢⎢⎢⎢⎣

0 1 0 ⋯ 0

0 0 1

⋮ ⋮ ⋮ ⋱

0 0 0 ⋯ 1

0 0 0 ⋯ 1

⎤⎥⎥⎥⎥⎦
.

The regulated predicted output ensures that the system can

become a closed-loop feedback control problem to improve

performance.

To summarize theMPC approach, it is mainly composed

of the predictive model, the controller, and the regulator.

The predictive model is responsible for providing the future

predictions, while the controller determines the system dy-

namics. The regulator will play a role and come into opera-

tion only in the presence of prediction errors.

3. Design of PID Controllers for Comparison

In this section, we will briefly discuss the design of three

PID controllers, i.e., a conventional PID controller, a Fuzzy-

PID controller and a Linear Quadratic PID controller. The

above controllers are considered as the baseline, which will

be evaluated in comparisonwith our proposedMPC approach

in the experiments in the next section.

3.1. Conventional PID Controller
Conventional Proportional-Integral-Derivative (PID) con-

trollers have been extensively applied in many industrial au-

tomation and process control. It is widely used because of

its versatility, high reliability, ease of operation, and effec-

tiveness for most linear systems. A standard form of a PID

controller has the expression of

u(t) = Kpe(t) +Ki ∫ e(t)dt +Kd

de(t)

dt
, (21)

where e(t) denotes the tracking error between the reference

w(t) and the system output y(t), d(t) indicates the external

disturbance and Kp, Ki, Kd are the proportional, integral,

and derivative gains, respectively. Fig. 6 illustrates how to

implement a conventional PID controller. In this work, such

Process
e(t)

+

_

d(t)

y(t)w(t)

Kp

Ki

Kd

Proportional 

Integral 

Derivative

Figure 6: Illustration of the conventional PID controller.

a conventional PID controller is implemented and will be

evaluated both in simulations and the physical platform.

3.2. Fuzzy-PID Controller
It is known to be difficult for conventional PID controllers

to be applied in nonlinear and time-delay systems. As a
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modified version, the Fuzzy-PID controller employs fuzzy

logic but still remains the advantages of the conventional

PID controllers. Although the structure is linear, but the

PID gains are nonlinear functions of the input signals. The

fuzzy control of the process model adopts linguistic vari-

ables instead of values, and the control gains are tuned man-

ually, which generally cannot achieve the best possible per-

formance. Fig. 7 depicts the structure of the Fuzzy-PID con-

troller.

e(t)

+

_

d(t)

y(t)w(t)

Kp

Ki

Kd

Proportional 

Integral 

Derivative

Fuzzy

 control

PID

kp ki kd

e

Process

Figure 7: Illustration of the Fuzzy-PID Controller.

Similar to the conventional PID controller, w(t) denotes

the reference trajectory, and e(t) indicates the tracking error

signal between the reference trajectory and the system output

y(t). As shown in Fig. 7, the Fuzzy-PID controller takes the

error e and the error rate ec as inputs and takes the increment

of control gains (i.e., Δkp, Δki, Δkd) as the outputs. The

above Fuzzy-PID control mechanism can be expressed by

⎧⎪⎨⎪⎩

Kp = K ′
p + Δkp

Ki = K ′
i
+ Δki

Kd = K ′
d
+ Δkd

, (22)

whereK ′
p,K

′
i
,K ′

d
are the constant control gains, andKp,Ki,

Kd are the modified control gains.

3.2.1. The Domain and Fuzzy Rules

In general, the range of system inputs and outputs of a

fuzzy controller is referred to as the domain. In order to

transform the input variables from the domain to the cor-

responding fuzzy sets, we present the quantization factor ke,

kec in the process of fuzzification. With different combi-

nations of the error e and the error rate ec, the Fuzzy-PID

controller is able to meet the self-adjustment requirements

at different time steps, according to fuzzy rules, and to carry

out online optimization of control gainsKp,Ki, andKd . The

design of fuzzy rules is generally based on the expert knowl-

edge and a large number of experimental data.

In this work, the fuzzy rule settings between system in-

puts and outputs are shown in Table 1, with the linguistic

labels: PB (Positive Big), PM (Positive Medium), PS (Posi-

tive Small), ZO (Zero), NS (Negative Small), NM (Negative

Medium), and NB (Negative Big). The domain of the er-

ror e and the error rate ec are chosen as [−8,+8], [−8,+8],

and the domain of the increment control gains Δkp, Δki,

Table 1
The fuzzy rules used in the Fuzzy-PID controller.

Δ kp
ec

NB NM NS ZO PS PM PB

e

NB PB PB PB PB PS ZO NS

NM PB PB PM PM ZO NS NM

NS PB PM PM PS NS NM NB

ZO ZO ZO ZO ZO ZO ZO ZO

PS NB NM NS PS PM PM PB

PM NM NS ZO PM PB PB PB

PB NS ZO PS PB PB PB PB

ec
Δ ki

NB NM NS ZO PS PM PB

NB NB NB NB NB PS PS PB

NM NB NM NM NM PM PB PB

NS NM NS NS NS PB PB PB

ZO ZO ZO ZO ZO ZO ZO ZO

PS PB PB PB NS NS NM NB

PM PM PB PM NM NM NB NB

e

PB PB PM PS NB NB NB NB

ec
Δ kd

NB NM NS ZO PS PM PB

NB PS PS ZO ZO ZO PS PS

NM NB NB NM NS NS NM NM

NS NB NB NM NM NS NM NM

ZO ZO ZO ZO ZO ZO ZO ZO

PS NB NB NM NS NM NM NM

PM NB NB NM NM NM NS NB

e

PB PS PS ZO ZO ZO PS NB

and Δkd are chosen as [−0.05,+0.05], [−0.05,+0.05], and

[−0.05,+0.05], respectively. After the fuzzification process,

we can use the famous Mamdani inference mechanism to

perform fuzzy reasoning.

3.2.2. Membership Functions

As membership functions have an important impact on

the control performance, we must consider the influences of

selecting an appropriate membership function. Specifically,

the resolution of membership functions should be adjusted

according to the errors (Wang et al., 2017). For example,

we can choose low-resolution functions for bigger errors and

high-resolution ones for the errors close to zero. In this work,

the membership functions adopt Z-type, triangular, Gaus-

sian and S-type, and the membership functions of the input

and the output fuzzy sets for defuzzification are depicted in

Fig. 8 and Fig. 9, respectively.

3.3. Linear Quadratic Regulator PID Controller
In the optimal control theory, the ideal performance can

be obtained by calculating the control law based on the quadratic

performance index. Here we integrate the quadratic per-

formance index with the conventional PID controller, form-

ing the LQR-PID controller, as shown in Fig. 10. In accor-

dance with the conventional PID controller, w(t) is the ref-

erence trajectory, e(t) is the tracking error, and the d(t) is

the external disturbance. The major difference is that the

LQR-PID takes the least sum of the absolute tracking error

and the control increment as the performance index. The

overall objective of the LQR-PID controller is to adaptively

regulate the system so as to minimize its long-term aver-

age cost (Faradonbeh et al., 2020). The system can realize

the weighted constrained control of the tracking error and

the control increment by continuously changing the control
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(a) Fuzzy sets of input variable e.

(b) Fuzzy sets of input variable ec.

Figure 8: Membership functions of the input fuzzy sets.

gains of the PID controller. Here we set a cost function as

E(k) =
1

2

(
P (w(k) − y(k))2 +QΔ2u(k)

)
, (23)

where P andQ are the weighted coefficients of the error and

the control increment, respectively; y(k) is the system output

and Δu(k) is the control increment. The control variable of

the LQR-PID controller is expressed as

u(k) = u(k − 1) +K

3∑
i=1

w′
i(k)xi(k), (24)

whereK is the proportional coefficient of the neuron. A big-

ger value of K can result in faster response, but it may also

produce a large amount of overshoot and even cause system

oscillations. In the case of an increase in the time delay of the

controlled object, the value of K must be reduced to ensure

the system stability. In the above equation,w′
i
(k)(i = 1, 2, 3)

denotes the weighted coefficients of control gains of kp, ki

(a) Fuzzy sets of output variable Δkp.

(b) Fuzzy sets of output variable Δki.

(c) Fuzzy sets of output variable Δkd .

Figure 9: Membership functions of the output fuzzy sets.

and kd , respectively, and they can be calculated as follows.

w′
i(k) =wi(k)∕

3∑
i=1

||wi(k)
|| (i = 1, 2, 3),

wi(k) =wi(k − 1) + �iK[Pb0e(k)xi(k)−

QK

3∑
i=1

(
wi(k)xi(k)

)
xi(k)],

(25)
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Table 2
The hyper-parameters used in the LQR-PID controller.

Item P Q K �i w1 w2 w3 b0
Value 0.01 1 0.01 0.25 0.8 5 0.8 0.02

Table 3
The initial parameters of three PID controllers.

Parameters
Type

PID Fuzzy-PID LQR-PID
ke,kec ,kp,ki,kd 0.001,0.001,1.3,1,1.1
Kp,Ki,Kd 0.5,0.1706,0.6479 0.78,0.1706.0.6479 0.78,0.1706.0.6479
Disturbance 0.1 0.1 0.1

e(t)

+

_

d(t)

y(t)w(t)

Kp

Ki

Kd

Proportional 

Integral 

Derivative

LQR-BP

PID

kp ki kd

Process

Figure 10: Illustration of the LQR-PID controller.

where �i(i = 1, 2, 3) is the learning rate of the control gains

of kp, ki and kd , respectively, b0 is the initial value of the sys-

tem output. As explained previously, e(k) means the track-

ing error, so we use x1(k) = e(k), x2(k) = e(k) − e(k − 1),

and x3(k) = e(k) − 2e(k− 1) + e(k− 2) to denote the track-

ing error, the change of the error, and the change of the error

rate, respectively. In this work, the hyper-parameters of the

LQR-PID controller are listed in Table 2.

4. Experiment and Results

In this section, we evaluate the performance of the pro-

posed MPC approach to the slurry pipeline transportation

system. In order to demonstrate its advantages, we take the

three PID controllers discussed in Section 3 as the baseline

for comparison. We will first present the simulations re-

sults, and then discuss the experiment results obtained in a

designed physical platform.

4.1. Evaluation in Simulations
4.1.1. Simulation Setup

To simulate the slurry pipeline transportation system, we

use the process model established in Eq. 2. As depicted in

Fig. 2, the relationship between the input frequency of the

inverter and the control variable can be described by the pro-

portion term, so we can obtain the transfer function

Gp = 5 × Gp1. (26)

The parameters of the transfer function are fitted based on

the following conditions. First, the sample time is set to 0.1s

and the continuous transfer function, discussed in Eq. (2),

can be discretized. Then the differential evolution algorithm

can be used to perform global optimization to fit the pa-

rameters (i.e., order, time delay, time constants of the in-

ertia part) of the process model. The initial frequency of

the converter is 5Hz, the cut-off frequency is 10Hz, the vol-

ume concentration of slurry is 20%, the diameter of slurry

particles is 1.1mm, the particle density is 2540kg∕m3 and

the slope change time is 30s. According to the final predic-

tion errors in simulations, the error of the first-order model is

6.5×10−4, the error of the second-order model is 4.12×10−4,

and the error of both the third-order and fourth-order model

is 4.09 × 10−4. Therefore, we can find that, in the same

condition, the second-order, the third-order and the fourth-

order models can produce almost the same prediction error.

Since a higher model will increase the computation time, we

can claim that the transfer function of the second-order time-

delay system can be accurate enough to describe the dynamic

response of the slurry pipeline transportation problem stud-

ied in this work. According to the above configuration, we

can obtain the parameters of the transfer function as

Gp =
0.9109

(2.0559s + 1)(2.1685s + 1)
e−2.3s, (27)

where the open-loop gain k is 0.9109, the time constants of

the inertia part T p1 and T p2 are 2.0559 and 2.1685, respec-

tively, and the time delay � is 2.3s.

In the simulations, the proposed MPC approach and the

three PID controllers are evaluated in the step responses based

on the transfer function as in Eq. 27. The desired flow rate

of slurry is set to 1m/s, and the time horizon is set to 50s.

The initial parameters of the three PID controllers are listed

in Table 3. In our MPC approach, the parameters are deter-

mined as follows: the sampling frequency p is set to 60, the

prediction horizon m and the control horizon n are set to 30

and 2, respectively, and the initial parameter of Y0 in Eq. 10

is set to [0, 0,⋯ , 0].

4.1.2. Step Response without Disturbances

The simulated results of the step response by applying

the four controllers are shown in Fig. 11, which depicts the

system output and input curves of the step response with-

out disturbances. The detailed comparison results are listed
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Table 4
Comparison of step response without disturbances.

Parameters
Type

PID Fuzzy-PID LQR-PID MPC

Flow rate(m/s)
Maximum 1.084 1.009 1.000 1.078

Mean 0.9687 0.9676 0.9477 0.9872
Std 0.1643 0.154 0.1328 0.1102

Response time(s) 31.5 17.3 31.2 9.4

in Table 4, which reports the maximum, mean and standard

deviation (std) of the flow rate, and the response time.

(a) The system output (the flow rate).

(b) The system input (the control variable u).

Figure 11: The step response in simulations without distur-
bances.

As shown in Fig. 11, the desired flow rate is set to 1m/s,

which should be achieved by adapting control variable u.

Thus, Fig. 11(b) depicts the system input curve, describing

how the control variables of four controllers will be changed

so that the system output can reach the desired flow rate. We

can get a general impression that the control curves of the

PID, Fuzzy-PID, and LQR-PID controllers are smoother but

the responses are slower in comparison with the proposed

MPC approach. As shown in Fig. 11(a), although the pro-

posed MPC approach slightly fluctuates at the beginning, it

only spends 9.4s to reach to the desired flow rate with a little

overshoot of 7.8%. The highest flow rate is 1.078m/s at 3.8s,

and afterwards it can quickly converge to the desired sta-

ble value. Comparatively, the conventional PID controller

shows the worst performance, which reaches highest flow

rate of 1.084m/s at 17.7s, and takes 31.5s to realize the de-

sired flow rate with an overshot of 8.4%. The Fuzyy-PID

and LQR-PID controllers have almost no overshoot, but the

required response time to the desired flow rate are 17.3s and

31.2s, respectively. With regard to the step response without

disturbances, we can conclude that all of the controllers are

able to achieve the goal, but the proposed MPC approach is

the fastest one.

4.1.3. Step Response with Disturbances

In order to validate the ability of anti-interference of the

proposed MPC approach, a disturbance of 0.1 amplitude is

considered in the simulation. The system ouput and input

curves of the step response are displayed in Fig. 12, and Ta-

ble 5 also details the minimum flow rate and the response

time when a disturbance is stimulated.

As can be seen in Fig. 12, the proposed MPC approach

is superior to the other three PID controllers in terms of

the anti-interference ability. When an external disturbance

is suddenly loaded into the system, the proposed MPC ap-

proach only takes 3.3s to return back to the stable state (i.e.,

the desired flow rate). The LQR-PID controller takes the sec-

ond place, spending 7.6s to achieve the goal state. Compar-

atively, to overcome the effects of the interference, the con-

ventional PID controller and the Fuzzy-PID controller need

13.2s and 9.5s, respectively.

Based on the simulated results, we can conclude that the

proposed MPC approach can outperform the conventional

PID, Fuzzy-PID and LQR-PID controllers in chasing a de-

sired flow rate of slurry. Since the above conclusions are

only obtained based on the step response in simulation, we

will verify whether the proposed approach still works in a

physical platform.

4.2. Evaluation on a Physical Platform
4.2.1. Platform Design

As mentioned previously, in a CSD, the dredged materi-

als need to be sucked up by a slurry pump and transported

to the disposal area through a long-distance pipeline. When

studying the slurry pipeline transportation system, we can-

not use a real CSD to carry out the experiment due to the

considerable cost and potential accidents. Thus, we design

and build a special experiment platform, which models the
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Table 5
Comparison of step response with a disturbance of 0.1.

Parameters
Type

PID Fuzzy-PID LQR-PID MPC

Minimum flow rate(m/s) 0.9919 1.065 0.9940 0.9922
Response time(s) 13.2 9.5 7.6 3.3

(a) The system output (the flow rate).

(b) The system input (the control variable u).

Figure 12: The step response in simulations with a disturbance
of 0.1.

slurry transportation process of a CSD, and, moreover, the

slurry can circulate in the pipeline to improve the efficiency

of the experiment, as shown in Fig. 13.

The main components of the platform include a 22kW

slurry pump and its drive motor, a flowmeter, a densitome-

ter, two pressure sensors, three valves, and a slurry hopper.

The hopper is used to load coarse sand that can be gradually

added to the circulated pipeline by opening the feeding valve.

At the end of the experiment, the coarse sand can also be re-

cycled into the hopper by opening the recycle valve. Similar

to the simulations, in the experiment, the volume concen-

tration of coarse sand is 20%, the diameter of particles is

1.1mm, and the particle density is 2540kg∕m3. Since the

Densitometer Flowmeter

Slurry pump & 

Drive motor

Pressure sensors Slurry hopper

Feeding valve

Recycle valve

Pipeline

Interference valve

(a)

(b)

Figure 13: The designed experiment platform: (a) 3D illustra-
tion of the key components of the platform; (b) the physical
platform used in our experiments.

slurry pipeline transportation problem is a dynamic process,

many uncertainties can influence the control performance.

For example, the concentration of slurry can be uneven, and

the roughness of the pipeline can also affect the output of the

control system. Although the experimental conditions are

specific in this work, we still take account of disturbances

to address uncertainties in the experiment. To this end, the

interference valve of the physical platform is responsible for

provoking disturbances by changing its opening degree.

The monitoring system of the physical platform consists

of a host computer and a lower computer. All the controllers

are realized in the host computer that generates control com-

mands to be sent to the lower computer; whereas the lower

computer is responsible for collecting the measurement data

and directly controlling the inverter according to the control

commands. The communication between the host and the

lower computers is based on network flows and shared vari-

ables provided by LabVIEW. The experiment is divided into

two groups, and we will first investigate the performance of

four controllers without disturbances, in which the interfer-

ence valve keeps open.
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Table 6
Comparison of experiment results without disturbances.

Parameters
Type

PID Fuzzy-PID LQR-PID MPC

0-1(m/s)
Maximum flow rate(m/s) 1.321 1.065 1.088 1.101

Response time(s) 35 17 30 15

1-2(m/s)
Maximum flow rate(m/s) 2.042 2.032 2.026 2.053

Response time(s) 21 21 19 7

2-3(m/s)
Maximum flow rate(m/s) 3.03 3.038 3.027 3.036

Response time(s) 17 20 23 9

4.2.2. Experiment Results without Disturbances

We first perform the step response experiments in which

the desired flow rate of slurry is set to 1m/s, 2m/s, and 3m/s,

respectively. Thus, the four controllers are required to grad-

ually chase those goals every 40s. Fig. 14 depicts the control

performance, and Table 6 details the maximum flow rate and

the response time in three step responses.

(a) The system output (the flow rate)

(b) The system input (the control variable u)

Figure 14: Performance comparison in the physical platform
without disturbances.

Based on the experiment results, we can find that the sys-

tem output curves show a corresponding correlation with the

changes of the system input. In general, all of the four con-

trollers are able to achieve the desired goals. To bemore spe-

cific, during the first step response (0− 1m/s), it can be seen

that the proposed MPC approach arrives at the highest flow

rate of 1.101m/s at 11s with a slight overshoot of 10.1%, and

then reaches the desired flow rate at 15s. In contrast, the con-

ventional PID controller is relatively quicker, but there is an

overshoot of 32.1%, and finally it needs 35s to reach the de-

sired flow rate. The Fuzzy-PID controller reaches the high-

est value of 1.065m/s at 6s with an overshoot of 6.5%, then

achieves the desired flow rate at 17s, and gradually tends to

the steady state. The responses of the LQR-PID controller

are the slowest, and it spends 23s to reach the desired flow

rate with an overshoot of 8.8%.

During the next step response (1 − 2m/s), the control

curve of the proposed MPC approach can fluctuate to adapt

itself so as to realize the desired state, spending only 7s to

reach the desired flow rate with an overshoot of 5.3%. Com-

paratively, the other three PID controllers almost need triple

time to realize the similar control effect. We can see that

the PID controller spends 21s to reach the desired flow rate

with an overshoot of 4.2%, and the Fuzzy-PID controller also

takes 21s to reach the desired flow rate with an overshoot

of 3.2%. The LQR-PID controller needs 19s to achieve the

same state with an overshoot of 2.6%.

During the last step response (2 − 3m/s), the proposed

MPC only takes 9s to reach the desired flow rate with an

overshoot of 3.6%, whereas the response time of the other

PID controllers needs twice as much time to achieve this

goal. Specifically, the PID controller reaches the desired

flow rate after 17s and then tends to the steady state with

an overshoot of 3%, while the Fuzzy-PID controller reaches

the desired flow rate after 20s and gradually comes to the

steady state with an overshoot of 3.8%. The LQR-PID con-

troller demonstrates the worst case that needs 23s to reaches

the desired flow rate with an overshoot of 2.7%.

In brief, we can conclude that, in comparison with other

controllers, the proposed MPC approach can produce the

fastest response to maintain the desired flow rate. In this

work, we do not particularly address how to maintain the

critical flow rate, as it will be determined by many factors

such as the particle diameter, pipeline diameter, and slurry

concentration. Instead, we intent to show that whatever the

desired flow rate is, the control systems is able to achieve

this goal. Thus, the critical flow rate can be a special case
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of the desired goals. In Fig. 14, we can also notice that the

proposed MPC approach always can provide the best perfor-

mance along with the increase of the desired flow rate.

4.2.3. Experiment Results with Disturbances

As mentioned previously, we can add disturbances to

the circulated pipeline transportation system by changing the

opening degree of the interference valve, as shown in Fig. 13.

In the experiment, we set the desired flow rate to 2 m/s, and

load the disturbances to the slurry pipeline transportation

system by adjusting the opening degree of the interference

valve from 100% to 50%, and the time spent for changing

the interference valve is about 10s. Fig. 15 illustrates how

the four controllers adapt the control variable, so as to cope

with occasional disturbances, and Table 7 details the mini-

mum/maximum flow rate, and the response time.

(a) The system output (the flow rate)

(b) The system input (the control variable u)

Figure 15: Performance comparison in the physical platform
with disturbances.

As depicted in Fig. 13, the proposed MPC approach can

demonstrate a superior ability of anti-interference in com-

parison with others PID controllers. When the opening de-

gree of the interference valve is adjusted from 100% to 50%

within 10s, the pipeline needs more power to maintain the

desired flow rate. We can see that the control curve of the

proposed MPC approach is relatively smooth than others,

and it takes 29.1s to return back to the steady state. Com-

paratively, the conventional PID and Fuzzy-PID controllers

are moderately effective in resisting disturbances, and their

response times are 30.4s and 30.6s, respectively. We can also

explicitly identify that the LQR-PID controller is the worst

case, and it costs 40.7s to return back to the desired flow

rate. Moreover, the minimum flow rate of the LQR-PID con-

troller even reaches to 1.65m/s, which may cause a potential

risk of blockage. Thus, we can conclude that the proposed

MPC approach outperforms the other PID controllers in con-

trolling the flow rate of slurry, whenever the desired flow

rate changes, or the disturbances are loaded into the pipeline

transportation system.

5. Conclusions

The flow rate control of slurry (with coarse particles)

in pipeline transportation is of great significance for sav-

ing energy and avoiding pipeline blockage for a CSD. How-

ever, most existing methods of controlling the flow rate in

pipelines focus on transporting homogeneousmaterials, such

as mineral slurry, oil or coal fly ash, and they are only proved

by numeral simulations. In this work, we propose aMPC ap-

proach to address the slurry pipeline transportation problem

for a CSD. To validate the effectiveness of the proposed ap-

proach, we have designed and built a physical experiment

platform. To demonstrate the advantages of the proposed

approach, we have also implemented three PID (i.e., conven-

tional PID, Fuzzy-PID and LQR-PID) controllers for com-

parison. In the experiments, we first evaluated the step re-

sponses in simulations with and without disturbances, and

then use the physical platform to examine the performance

of reaching the desired flow rates with and without distur-

bances. The experiment results show that the proposedMPC

approach can provide a competitive solution to the slurry

pipeline transportation problem for a CSD.
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