EMPIRICAL AND NUMERICAL INVESTIGATION OF TURBULENT FLOWS IN A NOVEL DESIGN BURNER FOR AMMONIA/HYDROGEN COMBUSTION Corresponding author: Marina Kovaleva M.Kovaleva¹, S. Mashruk¹, A. Valera-Medina¹ **10TH EUROPEAN COMBUSTION MEETING,**

1. College of Physical Sciences and Engineering, Cardiff University, Cardiff, UK

1. INTRODUCTION

- Ammonia is a carbon-free fuel that is cheaper for long term storage and transportation than most other hydrogen carrier alternatives.
- High NOx and flame instability remain challenges in applications of this fuel, and should be considered in the design for these fuels.
- Swirl burners are commonly used in gas turbines, but these are relatively new for ammonia-hydrogen combustion, with limited studies.
- Therefore, the present work explores the performance of NIK15, a novel NH_3/H_2 burner at rich conditions to guide the future development of gas turbine combustors that meet stringent requirements of the EU Industrial Emissions Directive.

Email: <u>kovalevam@cardiff.ac.uk</u>

- Star-CCM+ v19.3 was employed for CFD modelling of the burner.
- •A 3D RANS realizable k-epsilon model was selected for the numerical simulation.
- For experimental validation, one dimensional Laser Doppler aneomometry (LDA) was employed with an even 300L/min air flowrate across all burner inlets.

VIRTUAL EDITION, 14-15TH APRIL 2021

2. METHODOLOGY

Table 1 - Boundary conditions for CFD

Parameter	Value
Swirler walls	Adiabatic
Burner section	Symmetry (120°)
Swirler walls	Adiabatic
Inlet velocity	1.30 m/s
Inlet temperature	300K
Method	Segregated flow, isothermal
Walls	No slip
Swirl	0.8
Blend	70-30 (vol%) ammonia-hydrogen

Burner dimensions and mesh

6. CONCLUSIONS

- The hydrodynamic performance of a novel design of the NIK15 burner, optimized for combustion of rich ammonia-hydrogen flames was quantified.
- Experimental and numerical data was in general agreement, especially in the case of the axial and radial velocity vectors.
- This gives confidence to continue the progression with the existing mesh and physics models to more advanced simulations, such as the addition of chemistry solvers.

7. ACKNOWLEDGEMENTS

This work was supported by funding from the EPSRC SAFE project (EP/T009314/1). The authors also thank Mr Malcolm Seaborne for his expertise and development of the experimental facilities used in this study.