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Abstract 28 

Layered double hydroxides (LDH) are a class of basic inorganic layered compounds, 29 

which are widely used in the fields of adsorption and catalysis owing to their unique 30 

structure and properties. In previous studies, costly soluble Al salts or Al(OH)3 were 31 

used as the Al sources for the synthesis of Mg-Al LDH. The present work proposes a 32 

facile and one-pot method to synthesize Mg-Al LDH in a water bath with MgO and 33 

MK as precursors, which are both obtained from abundant natural resources. The effects 34 

of liquid/solid ratio (30:1 or 60:1), synthesis temperature (55-90℃) and alkali 35 

concentration (3 or 6 mol/L) were investigated on the composition and characteristics 36 

of the synthetic products. The obtained samples were characterized by X-ray diffraction 37 

(XRD), Fourier transform infrared spectroscopy (FT-IR), Thermogravimetric analysis 38 

(TGA), Scanning electron microscope (SEM) and Nuclear magnetic resonance (NMR). 39 

Findings showed that a highly alkaline solution (6 M NaOH) promoted the dissolution 40 



of MK, resulting in the release of trivalent Al for the formation of LDH. Increasing 41 

temperature also led to faster dissolution of MK and released more Al and Si, which 42 

resulted in the formation of both LDH and zeolite.  More importantly, it was found 43 

that Mg2+ released during the hydrolysis of MgO combined with Al-containing 44 

substances directly to precipitate LDH, whereas its hydration product, i.e., brucite, 45 

remained stable in the alkaline condition and released little Mg2+ to participate in the 46 

formation of LDH. Zeolites may form depending on the Si/Al ratio of the solution 47 

which is governed by the various synthesis parameters. The findings not only shed 48 

lights on the reaction mechanism between the MgO and MK and the role of key 49 

synthetic conditions in the formation of LDH and zeolitic phases, but also demonstrated 50 

the feasibility of using widely-available, low-cost natural minerals to produce 51 

commercial adsorbents/catalysts. 52 

1. Introduction： 53 

Layered double hydroxide (LDH), also known as hydrotalcite-like compound (HT) or 54 

anionic clay, is a general term for a large class of natural and synthetic layered materials.  55 

The general formula of LDH can be expressed as  � �X+2+ 3+ n-
1-X X 2 2x/n

M M (OH) A H Oª º¬ ¼ , 56 

where M2+ and M3+ are divalent and trivalent cations, respectively, X is the ratio of 57 

� �3+ 2+ 3+M M + Mª º ª º ª º¬ ¼ ¬ ¼ ¬ ¼ , and A is the interlayer anion of valence n (Halajnia et al., 58 

2012; Ram Reddy et al., 2006). A wide variety of M2+, M3+, X, and An- produces a large 59 

class of iso-structural materials with various physical and chemical properties and wide-60 

ranging applications. In recent decades, they have been studied extensively as 61 



adsorbents (Daud et al., 2019; Lei et al., 2017; Liang et al., 2013), catalysts (Fan et al., 62 

2014; Fan et al., 2016; Gunjakar et al., 2011; Mao et al., 2017), anion exchangers 63 

(Chubar et al., 2017; Goh et al., 2008; Halajnia et al., 2013), flame retardants (Gao et 64 

al., 2014; Nyambo et al., 2008), and drug delivery carriers (Ay et al., 2009; Ladewig et 65 

al., 2009). Specifically as an adsorbent, LDH has a huge potential in soil and water 66 

remediation (Siebecker et al., 2018; Zubair et al., 2017) due to its highly adjustable 67 

composition and structure, high stability, non-toxicity and excellent anion exchange 68 

capacity (Del Hoyo, 2007; Sajid and Basheer, 2016). In addition, LDH functionalized 69 

by intercalation, surface modification and other methods exhibits high selectivity and 70 

stability and hence can more effectively adsorb heavy metal ions (Gu et al., 2015; Tran 71 

et al., 2018; Zhen et al., 2020).  72 

LDH can be prepared by co-precipitation (Miyata, 1975; Panda et al., 2011; Zhang et 73 

al., 2006), hydrothermal (Huang et al., 2015; Xu and Lu, 2005), mechanochemical 74 

(Ferencz et al., 2015; Qu et al., 2016) and sol-gel methods (Jitianu et al., 2013; Lopez 75 

et al., 1996), among which co-precipitation was most commonly used (Chubar et al., 76 

2017) due to its easy operational procedure and the high purity of synthesized LDH. 77 

The co-precipitation of Mg-Al LDH could be considered as a simultaneous 78 

precipitation of Al(OH)3 and Mg(OH)2 (Theiss et al., 2016) using soluble metal salts, 79 

such as Mg(NO3)2, AlCl3 as precursors (Bukhtiyarova, 2019). NaHCO3 or NH4HCO3 80 

was frequently used to regulate the pH as they also acted as the (CO3)2- source(Ogawa 81 

and Kaiho, 2002; Zeng et al., 2009). The use of pure chemicals was not only costly, 82 

difficult to handle and transport but also unsustainable and hence various naturally-83 



abundant Mg and Al sources were explored. For Mg sources, dolomite (Hosni and 84 

Srasra, 2009, 2010; Kameda et al., 2007) and magnesite (Wang et al., 2013) were used, 85 

whereas for Al, Al2O3 (Xu and Lu, 2005), Al(OH)3 (Salomão et al., 2011), red mud (Hu 86 

et al., 2017) and ground granulated blast furnace slag (Yi et al., 2016) were attempted. 87 

However, the low reactivities of these precursors usually necessitates various 88 

pretreatments or activation processes such as acid leaching, grinding, hydrothermal 89 

treatment in order to enhance the reaction kinetics (Mao et al., 2018; Qu et al., 2016). 90 

On the other hand, reactive MgO, which can be calcined from magnesite, dolomite or 91 

synthesized from Mg-containing brines, has been successfully used as a low-cost and 92 

sustainable precursor in the synthesis of LDHs with different interlayer anions(Salomão 93 

et al., 2011; Xu and Lu, 2005). The low calcination temperature leads to smaller 94 

crystallite size, higher surface energy and hence faster dissolution rate of reactive MgO 95 

in aqueous solutions (Mejias et al., 1999; Mo et al., 2010), which facilitates the 96 

formation of LDH via the co-precipitation method. 97 

Kaolin is a common industrial material used in paper and ceramics production rich in 98 

kaolinite (Al2Si2O5(OH)4), of which the world production reached 42 million tons in 99 

2019 (2020). Upon heating at approximately 600-900℃, metakaolin (MK) is produced 100 

with enhanced chemical reactivity via the dehydroxylation of kaolinite , and hence it is 101 

commonly used as a pozzolanic material in cement and concrete (Rashad, 2013; Zhuang 102 

et al., 2016). Commercial MK typically contains 50-55% SiO2 and 40-45% Al2O3 in its 103 

composition (Poon et al., 2001). Under alkaline conditions, MK readily dissolves to 104 

release [SiO2(OH)2]2−, [SiO(OH)3]− and [Al(OH)4]−. The silicate unit then condenses 105 



with [Al(OH)4]− to produce aluminosilicates (Weng and Sagoe-Crentsil, 2007), which 106 

has been widely explored to manufacture geopolymers (Zhang et al., 2016). However, 107 

to the best of authors’ knowledge, MK has never been studied as an Al source to 108 

synthesize Mg-Al LDH. Considering the wide availability and abundance of clays in 109 

the world, utilization of MK would promote the concept of green chemistry and 110 

potentially reduce the cost of LDH notably.  111 

This article explores the feasibility of using solid MgO and MK as precursors to 112 

synthesize Mg-Al LDH. The effects of alkali concentration, temperature and 113 

liquid/solid ratio on the synthesized products were investigated, and the reaction 114 

mechanism between MgO and MK was explored with a variety of techniques such as 115 

X-ray diffraction (XRD), thermogravimetric analysis (TGA), Scanning Electron 116 

Microscopy (SEM) and Nuclear Magnetic Resonance (NMR). This work would help 117 

pave the way forward to future upscaling the production of low-cost high-performance 118 

LDH/zeolite-based adsorbents/catalysts in a wide variety of applications. 119 

2. Materials and methods 120 

2.1. Materials 121 

Highly reactive MgO (obtained from Baymag, Canada) was used, which contained a 122 

small amount of dolomite and calcite as impurities (Fig. 1a). The activity value was 123 

determined to be 45 seconds (denoted as M45) according to the method described in 124 

the literature (Mo et al., 2010). MK, mainly in the form of amorphous aluminosilicate 125 

(Mo et al., 2018)(Fig. 1b), was provided by SUPER Kaolin Co., Ltd., Inner Mongolia, 126 



China. X-ray fluorescence (XRF) test showed that MK contained 41.08% Al2O3 and 127 

52.77% SiO2 while the purity of MgO is 91.79%. Analytical reagent grade granular 128 

NaOH and powdered Na2CO3 used in this study were obtained from China Xilong 129 

company. Deionized water was used throughout the study. 130 

 131 

Fig. 1. XRD patterns of the raw materials (a) MgO (PDF#79-0612) 132 

Dolomite(PDF#84-1208) CaCO3(PDF#72-1214) and (b) Metakaolin(MK).  133 

2.2. Synthesis of Mg-Al LDH 134 

In total seven (7) mixtures were prepared aiming to investigate the effects of liquid/solid 135 

ratio, alkali (NaOH) concentration, synthesis temperature and presence of Na2CO3 on 136 

the synthesized product. Compositions of all mixtures are detailed in Table 1. For 137 

example, MMS-1 (6:1:2-30L-6M-80℃) was made from 4.81g MK and 5.19g MgO with 138 

a Mg/Al molar ratio of ~3 in an aqueous suspension. The solid MgO and MK powders 139 

were added to a 300 mL solution containing 4.59 g 3.79g anhydrous Na2CO3 and 72 g 140 

NaOH (6M NaOH solution). The liquid/solid ratio was 30:1, which referred to the ratio 141 



of the volume of the solution to the mass of MgO and MK. The synthesis was carried 142 

out in sealed beakers, heated in a water bath and stirred at 300 rpm at the set temperature. 143 

After 24 hours, the samples were filtered and washed until the pH value of filtrate 144 

stabilized. Then they were dried in the oven at 80℃ for approximately 6 hours and 145 

gently milled to powders. All the dried samples were bagged and stored in a desiccator. 146 

Moreover, the effect of reaction time was studied for samples MMS-1 and MMS-4. 147 

Table 1 Mix proportion and experimental conditions for the synthesis of LDH 148 

Sample ID Molar ratio 

Liquid 
to 
Solid 
ratio 

NaOH 
concentration 
(mol/L) 

Temperature 
(℃) 

MMS-1 (6:1:2-
30L-6M-80℃) 

MgO:MK:Na2CO3=6:1:2* 30:1 6 80 

MMS-2 (6:1:2-
30L-3M-80℃) 

MgO:MK:Na2CO3=6:1:2 30:1 3 80 

MMS-3 (6:1:2-
60L-6M-80℃) 

MgO:MK:Na2CO3=6:1:2 60:1 6 80 

MMS-4 (6:1:2-
30L-6M-55℃) 

MgO:MK:Na2CO3=6:1:2 30:1 6 55 

MMS-5 (6:1:2-
30L-6M-90℃) 

MgO:MK:Na2CO3=6:1:2 30:1 6 90 

MMS-6 (2:1:2-
30L-6M-80℃) 

MgO:MK:Na2CO3=2:1:2 30:1 6 80 

MM (6:1 -30L-
6M-80℃) 

MgO:MK =6:1 30:1 6 80 

* Since 1 mol MK contains approximately 2 mol Al, this molar ratio is equivalent to 149 

Mg:Al:CO3
2− =3:1:1 150 

2.3. Characterization 151 

2.3.1. XRD 152 

The synthesized products were sieved to <80 μm and then subjected to powder XRD. 153 



The instrument used was a Rigaku SmartLab X-ray diffractometer (Cu target, rated 154 

power 3 kW, scanning range of 5°-80° with a step size 0.02° and scanning speed of 155 

10°/min.  156 

2.3.2. Fourier transformed infrared spectroscopy (FTIR)  157 

The FTIR spectra of solid products were recorded on the Nexus 670 Spectrometer. 158 

Specifically 1 mg sample and 200 mg KBr in a dry environment was fully ground into 159 

a tablet, and the spectrum was measured with a resolution of 2 cm -1 in the wavenumber 160 

range of 4000-400 cm -1. 161 

2.3.3. Thermogravimetry/differential scanning calorimetry (TG/DSC) 162 

The TG/DSC test used a Netzsch STA 449 differential thermogravimetric analyzer. 163 

Approximately 10 mg sample was heated from 30 to 900°C at a rate of 10°C/min in N2 164 

atmosphere. 165 

2.3.4. Scanning Electron Microscopy/Energy-dispersive Spectroscopy (SEM/EDS) 166 

The morphology of the products after gold sputtering was observed with Zeiss Ultra55 167 

Field Emission-SEM (FE-SEM), while the elemental composition was measured by 168 

Energy Dispersive Spectroscopy (EDS). 169 

2.3.5. Specific surface area and pore size analysis. 170 

The pore size distribution and BET specific surface area of samples were measured by 171 

N2 adsorption using Micro-meritics ASAP 2020 volumetric instrument. All the samples 172 



were degassed at 180 °C prior to the test. 173 

2.3.6. NMR 174 

The NMR spectra were collected using the Bruker AVANCE III 400 (9.8 T) 175 

spectrometer. 27Al MAS NMR spectra were collected at 104.198 MHz and a spinning 176 

speed of 12 kHz, employing a pulse width of 3.75 s (25°), a relaxation delay of 2 s with 177 

a minimum of 1024 scans.29Si MAS NMR spectra were collected at 79.435 MHz at a 178 

spinning speed of 6.8 kHz and employed a pulse duration of 4.7 μs (90°) and a 179 

relaxation delay of 1.0-5.0 s, with a minimum of 1200 scans. 180 

3. Results 181 

3.1. XRD 182 

As shown in Fig. 2, the characteristic diffraction peaks of Mg-Al LDH (PDF #89-0460) 183 

are observed in all samples. The reflections of (012), (015) and (018) are particularly 184 

strong, which is consistent with the characteristics of the 3R1 polytype hydrotalcite 185 

(Newman et al., 2002; Xu and Lu, 2005) due to the low synthesis temperature employed 186 

in this study. The crystal transition temperature of 110℃ was reported for the 3R2 187 

polytype (Budhysutanto et al., 2010). Characteristic peaks for brucite (Mg(OH)2, PDF 188 

#75-1527) are also prevalent in the solid products. According to (Xu and Lu, 2005), 189 

Mg(OH)2 may either be an unreacted mesophase in the synthesis of LDH or an 190 

accompanying impurity, which will be elucidated in the Discussion section.  191 

Comparing the relative intensities of LDH in each sample, it can be deduced that either 192 



high liquid/solid ratio (MMS-3) or low synthesis temperature (MMS-4) facilitates the 193 

formation of Mg-Al LDH as the main impurities are brucite and unreacted MgO. On 194 

the other hand, sodalite and zeolite phases are generated in other samples, indicating 195 

that part of Al released from MK does not participate in the formation of Mg-Al LDH 196 

but react with Na and Si instead. Specifically, decrease of alkali concentration (MMS-197 

1 vs. MMS-2), decrease of Mg/Al ratio in the precursors (MMS-1 vs. MMS-6), 198 

changing the reaction temperature (MMS-4 vs. MMS-1 vs MMS-5) and lack of Na2CO3 199 

(MMS-1 vs. MM) all lead to the reduction of peak intensities ascribed to Mg-Al LDH 200 

in the final products. Moreover, lower alkali concentration (MMS-2) and lack of 201 

Na2CO3 (MM) result in the formation of Zeolite A (PDF #38-0241) and Zeolite 21 202 

(PDF#27-1405), respectively apart from sodalite (PDF#76-1639).  203 



 204 

Fig. 2. XRD patterns of solid products synthesized from MgO and MK after 24h of 205 

reaction. 206 

Fig. 3 shows the effect of reaction time on the phases of the synthesized products from 207 

mixtures MMS-1 and MMS-4. It is apparent that LDH appears very early (within 30 208 

mins) upon reaction (Fig. 3a). With time, MgO peaks decline while those of LDH 209 

intensify. Zeolite 21 starts to form at 3 hours and peaks at 4 hours before completely 210 

disappears after 18 hours, accompanied by gradually intensified peaks of sodalite. As 211 

shown in Fig. 3b, when reaction time increased from 24 to 72 hours at 55°C, zeolitic 212 

phases are observed in MMS-4, together with reduced peak intensities from MgO. 213 

Therefore it is concluded that lowering reaction temperature merely changes the 214 

kinetics without affecting the reaction products. Lower temperature leads to a slower 215 



dissolution rate of MK and hence less Al available in the solution, being totally 216 

incorporated in LDH. Increasing the temperature and/or reaction time release more Al 217 

and Si which react to form zeolitic phases and sodalite. 218 

 219 

 220 

Fig. 3. XRD patterns of solid products after different reaction times (a)MMS-1 (6:1:2-221 

30L-6M-80℃), (b)MMS-4(6:1:2-30L-6M-55℃). 222 



3.2. FTIR 223 

Fig. 4 shows the FTIR spectra of the solid products. The impurity phase brucite is 224 

reflected in the vibration band at 3697-3698cm-1(Xu and Lu, 2005). There is a very 225 

strong broad bands in the range 3450-3530cm−1 due to the stretching mode of structural 226 

-OH groups in the metal hydroxide layer (Hosni and Srasra, 2009). The weak band at 227 

1640 cm-1 is due to the deformation vibration of the interlayer water molecules (Mao et 228 

al., 2018). Two bands at 2362 and 1370 cm-1 are both ascribed to the interlayer 229 

carbonates (Guzmán-Vargas et al., 2015; Zhou et al., 2011). It is worth noting that 230 

sample MM also shows the characteristic peak of carbonate, which is due to that 231 

ambient CO2 dissolved into the water to form carbonate, and eventually remains in the 232 

solid phase as an interlayer anion (Olanrewaju et al., 2000; Rezvani et al., 2014). The 233 

broad bands in the region of 900-1030 cm−1 are attributed to asymmetric Al–O/Si–O 234 

stretching vibrations (Liu et al., 2016; Rożek et al., 2018) mainly due to the presence 235 

of zeolitic phases. Two samples, i.e., MMS-3 and MMS-4, without sodalite (see Fig. 2) 236 

show no such bands. The complex bands in the range of 400-900 cm-1 can be assigned 237 

to hydroxyl M-OH and MO transition patterns and the specific positions depend on the 238 

nature of M2+ or M3+ ions (Mao et al., 2018). 239 



 240 

Fig. 4. FTIR spectra of solid products synthesized from MgO and MK. 241 

3.3. Thermal analysis (TG/DSC) 242 

Thermal analysis of the samples shows two major endothermic peaks characteristic of 243 

LDH, and two corresponding weight loss stages (Fig. 5). The first stage of weight loss 244 

starts from room temperature up to 275°C, which is mainly caused by the loss of 245 

absorbed water and interlayer water from LDH(Mao et al., 2018; Stanimirova et al., 246 

2006). The endothermic peak of the second stage (from 275°C to 500°C) is at 430℃, 247 

which is mainly due to the decarbonisation and dehydroxylation of LDH (Bukhtiyarova, 248 

2019; Tongamp et al., 2007). It should be noted that brucite also decomposes in this 249 

second stage (Mo et al., 2019), so it is impossible to perform a quantitative analysis by 250 

TG. The endothermic peak at 685°C is mainly due to the decomposition of the 251 



impurities (i.e., calcite/dolomite) in the raw material.  252 

Although accurate quantification cannot be carried out, combined with the XRD results, 253 

it can be seen that the relative intensity of the strongest LDH diffraction peak (see Fig. 254 

2) agrees well with the mass loss of each sample. Samples MMS-3 and MMS-4 exhibit 255 

the largest mass losses due to the larger quantities of LDH formed. Samples MMS-2 256 

and MMS-6 show the smallest mass losses which corroborates with the observation that 257 

lower alkali concentration and Mg/Al ratio reduce the amount of LDH formed. 258 

Moreover, it is deduced that the higher mass loss of MMS-2 than that of MMS-6 is 259 

mainly due to its higher brucite content (Fig. 2).  260 

 261 

Fig. 5. TG/DSC curves of solid products synthesized from MgO and MK. 262 

3.4. Specific surface area and pore size analysis. 263 



From the BET results in Fig. 6a, it can be seen that the adsorption/desorption isotherm 264 

belongs to Type IV according to the IUPAC classification, with loops appearing in the 265 

high relative pressure region, corresponding to mesoporous solids (Alothman, 2012), 266 

which is typical for LDHs (Wang et al., 2019). The hysteresis is characterized as Type 267 

H3, indicating the solid pore shape is mainly plate-shaped slit pores (or sharp particles 268 

like cubes), with no uniform size which is common for zeolites (Leofanti et al., 1998). 269 

Fig. 6b shows the BJH results of the pore size distribution, demonstrating the wide 270 

range of pore sizes of 2-30 nm, which is due to the mixture of LDH, sodalite, zeolites 271 

and other impurities in those samples. The specific surface areas in the descending order 272 

of MMS-3, MMS-1, MMS-2, MM are 31.95 m2g-1, 24.51 m2g-1, 14.24 m2g-1, 12.52 273 

m2g-1, respectively. This is comparable to the specific surface area value (17.2 m2g-1) 274 

of pure Mg-Al LDH measured by others (Tran et al., 2018).  275 



 276 

 277 

Fig. 6. BET test results of solid products synthesized from MgO and MK. (a) N2 278 

physisorption isotherm and (b) pore size distribution calculated by BJH method. 279 

3.5. SEM 280 



Fig. 7 is the scanning electron micrograph of MMS-1 sample. Fig. 7(a) shows that, 281 

unlike the regular hexagons obtained using soluble salt solutions in previous studies 282 

(Wang et al., 2014; Zeng et al., 2009), LDH crystals mainly appear as cross-stacked 283 

irregular lamellas. This is due to the preferential growth of crystals on faces with lower 284 

energy, and similar morphological feature also reflects the mechanism of 285 

hydration/dissolution/co-precipitation of the reactants (Salomão et al., 2011). The point 286 

and mapping EDS data show that the content and distribution of carbon is low and 287 

localized, which is probably due to the formation of Mg-Al-OH LDH apart from Mg-288 

Al-CO3 LDH. The areas where Na, Si and Al are highly overlapped in the circle of Fig. 289 

7(a) are ascribed to sodalite, which grows together with LDH. 290 



 291 

 292 

Fig. 7. (a) SEM image and EDS data at Point 1(b) EDS mapping of MMS-1 (6:1:2-30L-293 

6M-80℃). 294 



When the liquid/solid ratio is increased to 60:1, the sodalite diffraction peak disappears, 295 

and the morphological characteristic of the laminar LDH is much clearer (Fig. 8), which 296 

is in agreement with (Xu and Lu, 2005) where MgO is used as a magnesium source to 297 

synthesize a variety of LDHs. The sheets of Mg-Al-OH LDH are often thinner and 298 

stacked, indicating the formation of a large quantity of Mg-Al-OH LDH in the 299 

synthesized products in this work.  300 

 301 

 302 

Fig. 8. SEM images of MMS-3(6:1:2-60L-6M-80°C): (a) lower magnification, (b) 303 
higher magnification on the area highlighted with a white square frame in (a). 304 



4. Discussion 305 

4.1. The influence of synthesis conditions  306 

Different from the direct co-precipitation in aqueous solutions containing divalent and 307 

trivalent cations (Miyata, 1975), this study used solid MgO and MK as the Mg and Al 308 

source respectively. A strong alkaline solution (6M NaOH) was needed to break the 309 

stable silicon-oxy-aluminum bond to release the trivalent Al3+ (Granizo et al., 2014; 310 

Zhuang et al., 2016). Therefore, the concentration of NaOH became the key influencing 311 

factor in the MgO-MK system. When the NaOH concentration was reduced by half to 312 

3 mol/L, the peak intensities of LDH were the lowest while those of sodalite were not 313 

significantly affected, and zeolite A appeared. This may be due to that certain zeolite 314 

structural units remain stable at different alkalinities. Lower the alkali concentration 315 

facilitated the formation of zeolite A (Rożek et al., 2019), which in turn may be 316 

transformed into sodalite(Granizo et al., 2014).  317 

Synthesis temperature affected the dissolution kinetics and hence the reaction products 318 

significantly. MK dissolved faster at higher temperatures and released more Al and Si 319 

in the solution to participate in the reactions. The increase in the amount of these ions 320 

would lead to an increase in the nucleation rate, facilitating polycondensation and hence 321 

increasing the amount of the polymerized zeolitic phases. Therefore, it seems that 322 

setting a low reaction temperature is beneficial for LHD synthesis but on the other hand, 323 

the dissolution of MgO will be hindered, which is evidenced by the high peak intensity 324 

of MgO in sample MMS-4.  325 



Increasing the liquid/solid ratio from 30:1 to 60:1 (Fig. 2, MMS-1 vs. MMS-3) resulted 326 

in the disappearance of the sodalite. For the formation of crystalline zeolites and 327 

sodalite, MK must undergo hydrolysis to produce sufficient Si and Al ions in the 328 

solution, which usually requires a relatively low liquid/solid ratio (Rożek et al., 2019).  329 

When reducing the Mg/Al ratio 1:1 (Fig. 2, MMS-1 vs. MMS-6) while keeping other 330 

experimental conditions unchanged, the intensities of LDH peaks reduced while those 331 

of sodalite enhanced. Assuming that under the same alkalinity, the amount of Al and Si 332 

released were similar in the two samples but reduced availability of Mg in MMS-6 333 

promoted the formation of sodalite.   334 

Without Na2CO3 (sample MM), LDH can still be formed but with much weaker 335 

intensity (Fig. 2), together with a new zeolitic phase of zeolite 21. From the FTIR and 336 

SEM/EDS results, it can be seen that Mg-Al-OH LDH was formed and CO3
2- from the 337 

air or from the raw materials (calcite and dolomite) may participate in the reactions.  338 

4.2. Mechanism of LDH synthesis 339 

4.2.1. Role of MgO 340 

Reactive MgO underwent continuous hydrolysis in contact with water and during the 341 

formation and development of LDH. The higher the temperature, the faster the 342 

hydrolysis progresses, and meanwhile, a small portion of Mg(OH)2 precipitated and 343 

dissolved under dynamic equilibrium. The overall reaction is as follows:  344 

MgO+H2O ⇄ Mg2++2OH-⇄ Mg(OH)2 345 

The remaining Mg(OH)2 may either act as the reactant to form LDH, or as an impurity 346 



that did not participate in the reaction. In order to clarify this, MgO was replaced with 347 

fully hydrated MgO (i.e., brucite, MH) while keeping other reaction conditions 348 

unchanged (as opposed to MMS-1) and the resulting product was subjected to XRD. 349 

Fig. 9 demonstrates that a complete hydration was achieved at 23 days when reactive 350 

MgO was continuously stirred in water at 40°C. XRD result showed no trace of LDH 351 

while sodalite and zeolite 21 were the only reaction products, demonstrating that 352 

Mg(OH)2 is not suitable for the synthesis of LDH under the experimental conditions in 353 

this work. The Mg2+ released via hydrolysis of MgO combined with Al-containing 354 

substances directly to precipitate LDH. The precipitated brucite remained stable in a 355 

strong alkaline environment (due to its low Ksp value), and hence could not contribute 356 

to the formation of LDH.  Similar views can be found in (Paikaray et al., 2014; Yang 357 

et al., 2012), which claimed that during the synthesis of Mg-Al LDH, Mg2+ was 358 

incorporated into Al(OH)3 or boehmite, instead of Al3+ entering Mg(OH)2. 359 

 360 



Fig. 9. XRD patterns of the solid product (MHMS) synthesized from hydrated MgO 361 

(MH) and MK under the same conditions as MMS-1. (Hydrated 362 

MgO:MK:Na2CO3=6:1:2, liquid/solid ratio=30:1, 6 mol/L NaOH solution, T=80℃, 363 

t=24h). 364 

4.2.2. Insights from 27Al, 29Si NMR 365 

For sample MMS-3, 27Al and 29Si NMR were conducted on the liquid filtrate and solid 366 

product and compared with those in the original MK in order to reveal the evolution of 367 

Al and Si during synthesis. 368 

 369 

Fig. 10. (a) 27Al and (b) 29Si MAS-NMR spectra for the raw material MK, reaction 370 

filtrate and solid products of sample MMS-3 (6:2:1-60L-6M-80℃). 371 

Fig. 10 shows that the signals of 27Al from raw MK include three Al environments with 372 

chemical shifts peaked at 55 ppm, 28 ppm and 3 ppm, which can be designated as AlIV, 373 



AlV and AlVI respectively (Mo et al., 2018). The 29Si signal of MK is mainly a wide 374 

resonance centered at -108 ppm, which can be assigned to a series of Al-O-Si bond 375 

angles (Singh et al., 2005). After alkali leaching, the 27Al signal in the filtrate is 376 

concentrated at 80 ppm, showing that the main form of Al in the solution is [Al(OH)4]− 377 

(Granizo et al., 2014; Weng and Sagoe-Crentsil, 2007). In addition, a broad band at 50-378 

80 ppm is also present, which may be due to the formation of a small amount of 379 

aluminosilicate oligomers (Benavent et al., 2016). The 29Si signal in the filtrate is 380 

generally similar to that in the raw MK, while a strong and sharp signal appears at 71.4 381 

ppm, which can be attributed to [SiO(OH)3]− and [SiO2(OH)2]2− monomers (Granizo et 382 

al., 2014). The original peak at -108 ppm is reduced along with the increased intensity 383 

of the broad band between -70 and -108 ppm, indicating more Al coordination with Si 384 

(Q4(mAl)). The 29Si signal in solid product is very weak, indicating negligible Si 385 

content, which is consistent with XRD and FTIR results. For 27Al, a strong and sharp 386 

signal at 10 ppm is observed in the solid product. Combined with XRD, this indicates 387 

that Al in the synthesized LDH is six-fold coordinated, octahedral and very stable 388 

(Vyalikh et al., 2009). On the other hand, the 27Al signal of sodium aluminosilicate gel 389 

and zeolites tends to concentrate at ~60 ppm due to the formation of Q4(mAl) sites 390 

(Granizo et al., 2014; Singh et al., 2005), which confirms the absence of such 391 

aluminosilicates in sampleMMS-3.  392 

In the process of LDH formation, the coordination number of Al underwent a 393 

significant change from 4 to 6 (i.e., tetrahedra to octahedral structure). In the presence 394 

of MgO, Mg2+ released and coprecipitated with [Al(OH)4]− to form LDH but Si 395 



remained in the solution. With the precipitation of LDH, the amount of free [Al(OH)4]− 396 

ions in the solution was reduced, leading to higher Si/Al ratio over time. (Sagoe-Crentsil 397 

and Weng, 2007) found that when the Si/Al ratio was greater than 3, the condensation 398 

reaction between [Al(OH)4]− and silicate materials became fast, forming aluminum 399 

silicate oligomers which condense to form a grid structure. This may explain that LDH 400 

was formed first followed by zeolite and sodalite as shown in Fig. 3. Lower temperature 401 

reduced the reaction rate, and thereby prolonged the time required for the formation of 402 

LDH. As the reaction time increased, it changed the Si/Al ratio in the solution and hence 403 

affected the mineral composition of the precipitated product. 404 

5. Conclusion 405 

This study demonstrated for the first time the feasibility of using solid MgO and MK 406 

as the Mg and Al sources respectively to produce Mg-Al LDH. The facile, one-pot 407 

synthesis was carried out under the alkaline condition in a water bath at elevated 408 

temperatures (<100℃). The formation of LDH was influenced by various parameters 409 

such as liquid/solid ratio, temperature, and alkali concentration. The alkali 410 

concentration was found to be the key influencing factor since a strong alkaline solution 411 

was needed to break the stable silicon-oxy-aluminum bond in the MK to release the 412 

trivalent Al. Increasing reaction temperature led to faster dissolution of MK, releasing 413 

more Al and Si ions to participate in the reactions. It was also proved that the Mg2+ 414 

released via MgO hydrolysis combined with [Al(OH)4]− ions directly to precipitate 415 

LDH whereas brucite when precipitated remained stable in a strong alkaline 416 



environment, contributing little to the formation of LDH. Zeolites and sodalite may 417 

form depending on the Si/Al ratio of the solution which was governed by the synthesis 418 

parameters. These findings would promote the concept of green chemistry and facilitate 419 

the use of widely-available, low-cost natural minerals to produce LDH and zeolite-420 

based materials with wide-ranging environmental and engineering applications. The 421 

life cycle assessment on the LDH synthesized through this one-pot process will be 422 

further performed in our upcoming research. 423 
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