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Abstract 

Process industry remains one of the difficult-to-decarbonise sectors globally. To mitigate industrial 

greenhouse gas (GHGs) emissions, an eco-industrial energy system (e-IES) optimisation framework 

is proposed by coupling mathematical optimisation with clustering algorithms and first principle 

modelling. Within the framework, a rooftop farming database was developed using biogeochemical 

simulations, which models seven crop growth in response to 10 cultivation conditions. Clustering 

algorithm was applied to analyse energy system data, along with the rooftop farming database, to 

inform the optimisation model. A Mixed Integer Linear Programming optimisation model was 

developed to optimize system design considering the trade-off between economic and 

environmental objectives. The implications of rooftop design on e-IES and their interactive effects 

on industrial decarbonisation were addressed. A case study at an industrial park in Suzhou China 

reveals that rooftop farming could generate mutual benefits from both cost and GHG reduction 

perspectives. Planting lettuce indicates a cost-efficient solution, and planting tomato could 

contribute the most to GHG emission reduction. Compared to the rooftop PV and the spare rooftop, 

2.4% and 5.6% cost savings, as well as 10.2% and 16.3% emission savings, could be achieved 

respectively by implementing rooftop farming. Overall, this study demonstrates an emerging 

perspective on decarbonising the industrial sector by coupling biogeochemical simulation and 

energy system optimisation and adopting cross-disciplinary approaches.  

Keyword: integrated energy system; rooftop farming; rooftop agriculture; food-energy nexus; 

industrial sector decarbonisation; multi-objective optimisation 
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1 Introduction 

The global decarbonisation agenda requires a significant reduction in greenhouse gas 

emissions (GHG) by 2050 comparing with 1990 levels. Process industry remains one of the 

difficult-to-decarbonise sectors accounting for roughly 1/4 of global GHG emissions in 2019 

[1], which mainly arise through direct emissions from combustion in manufacturing 

processes and refining of petroleum products and fossil fuels [2]. At regional or national 

levels, carbon reduction targets and regulations have been introduced to mitigate climate 

change. EU committed to decrease 40% the industrial GHG emissions for the industry by 

2030 compared to 1990 levels [3]. The Chinese government is very likely to accomplish its 

announced plans to reduce industrial CO2 emission intensity by 22% from 2015 to 2020 [4].  

There has been an increasing interest in how to cost-effectively decarbonise industrial 

processes. The multi-energy systems that synergistically integrates multiple types of energy, 

including fuel, steam, electricity, heating, and cooling, has been considered as a promising 

solution to mitigate industrial GHG emissions. Relevant research on decarbonisation by 

multi-energy systems, especially in the difficult-to-decarbonise process industry, has been 

reviewed as follows. 

1.1 Relevant research 

Recently published research has covered a wide range of multi-energy system 

optimisation [5], including the system optimisation with uncertainties [6]; sizing and 

operating co-optimisation [7]; quantifying the flexibility and contribution for local renewable 

consumption [8]; and robust system design under extreme events [9].  

In particular, Process Systems Engineering research communities have contributed to 

mathematical optimisation development and applications in industrial multi-energy systems. 

Martin et al. [10] established a mixed-integer nonlinear programming optimisation model to 

design a self-sufficient algae biodiesel production system by integrating solar and wind 

energy. Wu et al. [11] developed a life cycle optimisation model considering economic and 

environmental objectives. Lee et al. [12] investigated the positive interaction between 

polygeneration and geothermal energy utilisation and highlighted the vital roles of the multi-

scale modelling framework to achieve a sustainable industrial energy solution. Xu et al. [13] 

proposed an optimisation model to optimise energy supply and demand strategies of an 

industrial park, where climate uncertainties and energy systems efficiency and stability have 

been considered. Shen et al. [14] coupled performing exergy analysis and multi-objective 

optimisation to model a separation process in ethylene manufacturing and address the trade-
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off between exergy efficiency and operational cost. Noorollahi et al. [15] investigated the 

introduction of electric vehicles as the energy storage for optimal design of energy systems in 

an industrial zone. Wu et al. [16] proposed a biomass polygeneration integrated energy 

system optimisation model and investigated the feasibility to various case regions, where the 

vital factor of the split ratios was further evaluated. 

To harness data advances in sectoral-specific energy systems e.g. real-time energy 

demand and supply profiles, data-driven modelling approaches have been developed to 

couple machine learning techniques and mathematical optimisation [17]. Clustering 

algorithms in the industrial context have been summarised by Benabdellah et al. [18]. In their 

research, five categories of clustering techniques have been grouped: the partitioning-based, 

e.g. K-mean and hierarchical-based, algorithms have been used in temporal clustering in 

previous published research; whereas grid-based and density-based algorithms, e.g. OPTICS, 

have been widely applied in spatial clustering problems. Research efforts have also been 

placed on developing clustering algorithms to decompose spatial complexity to enable large-

scale energy system optimisation models [19]. Voulis et al. [20] proposed a spatial-temporal 

informed clustering method to analyses electricity demand at different urban scales. Previous 

research also compared conventionally partitioning and hierarchical clustering algorithms 

with shape-based clustering algorithms, (e.g. k-shape and dynamic time warping barycenter 

averaging) in time-series decomposition e.g. to identify the representative period for energy 

systems optimisation [21]. Yilmaz et al. [22] proposed a k-means based method and 

combined with five features to determine the temporal representative domestic electrical 

demand profiles. In addition, Shen et al. [23] developed determinist and robust optimisation 

models for large-scale industrial energy systems, where a data-driven approach underpinned 

by kernel support vector clustering was proposed to consider uncertainty parameters. Wang 

et al. [24] introduced a X-means clustering approach in energy system optimisation field, 

which is combined K-means with the Bayesian Information Criterion to evaluate surviving 

clusters, and further combined with a stochastic optimisation model. As highlighted in the 

recent review by Rajabi et al. [25], the development of efficient methods for clustering real-

time and short-term data represents a future research direction. 

1.2 Knowledge gap and contribution 

Despite that the previous energy systems modelling advances addressed multi-energy 

solutions under industrial settings considering energy-only components, e.g., wind turbine, 

solar PV panels, and solar thermal collectors, modelling gap emerges on the novel solutions 

by introducing eco-design components, i.e., rooftop agriculture, to enable cost-effective 

decarbonisation. Synergistic integration of eco-design of rooftop farming with energy supply-
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demand strategy could potentially offer a promising decarbonisation solution to the process 

industry.  

To fill this gap, this exploratory study, for the first time, models an eco-industrial energy 

system (e-IES), which is underpinned by considering multi-energy and rooftop farming 

simultaneously. We present a model-based design optimisation platform by coupling 

mathematical optimisation with clustering algorithms and first principle modelling to 

address open research questions on implications of rooftop design on e-IES and their 

interactive effects on decarbonisation. Through an e-IES case study, we demonstrate the new 

insights such an integrated model-based approach could generate to inform industrial park 

designer and policy-makers’ decision-making. 

The contributions of the present study are: 

(1) The modelling scope is extended beyond multi-energy solutions that leads to highly 

cross-disciplinary research and has the potential to unlock the difficult-to-decarbonate 

industrial challenges cost-effectively. Synergistic optimisation of rooftop agriculture and 

industrial energy systems converges low-carbon and multi-sector co-development towards 

an eco-industry future.  

(2) A new model-based framework has been proposed that integrates the mathematical 

optimisation and first principle modelling to optimise the whole system performances and 

generate new evidence on the co-benefits and interaction between rooftop farming and 

industrial energy system.  

This paper is organised as follows. The modelling methods are described in Section 2. A 

case study is introduced in Section 3. Section 4 focuses on discussing results, limitations and 

future research directions, which is followed by a conclusion in Section 5. 

 

2 Method 

As demonstrated in Figure 1, the e-IES concept integrates rooftop farming with energy 

system design under the industrial park context. Implementing rooftop farming offers a 

potential solution to zero food miles, GHG reduction by photosynthetic assimilation of CO2, 

and thermal demand reduction by enhancing building rooftop insulations. Figure 1 shows the 

proposed model-based e-IES design optimisation framework including three major 

components. A rooftop farming database was constructed in the first component by first-

principle underpinned simulation using DeNitrification-DeComposition (DNDC) [26], which 

models daily incremental growth and agro-ecosystem carbon nitrogen cycles in response to 

varying cultivation conditions. In the second component, unsupervised learning clustering 
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methods were adopted to analyse the energy system data. The model-based e-IES design 

optimisation forms the basis of the third component to optimise the cost-effective 

decarbonisation strategies for industrial park energy systems considering dataflows from the 

previous two components. 

Specifically, the model-based e-IES design optimisation framework addresses conflicting 

e-IES design criteria from economic and decarbonisation perspectives. By solving the 

optimisation model, the rooftop utilisation options, the e-IES systematic configurations, the 

energy (i.e. cooling and heating) network connections, as well as the e-IES operational 

strategies, can be optimised holistically and simultaneously.  

 
Figure 1 Outline of the model-based optimisation of eco-Industrial Energy System (e-

IES) design. a, rooftop farming database including yield cost and emissions achieved by the 

DeNitrification-DeComposition (DNDC) tool; b, energy system related inputs where the clustering 

technique is applied when necessary; c, multi-objective e-IES design and rooftop utilisation 

optimisation resulting in a series of Pareto optimal solutions. 

2.1 Rooftop farming database by Biogeochemical simulation 

The rooftop farming database was developed by adopting the DNDC model presented in 

our previous research [27]. In contrast to data-driven empirical models, DNDC is 

underpinned by first-principle modelling and simulates biogeochemical processes. DNDC is 
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one of the most widely adopted biogeochemistry models first proposed by Li et al. [26] and 

has been validated worldwide including projection of vegetable growth in different regions 

and environments, e.g., in China [28] and in Ghana [29]. DNDC has experienced over two-

decade development a DNDC family tree is presented by the comprehensive review by 

Gilhespy et al. [30]. A complete suite of biogeochemical processes (e.g., plant growth, organic 

matter decomposition, fermentation, ammonia volatilisation, nitrification, denitrification) is 

embedded in the DNDC model, enabling computation of carbon and nitrogen transport and 

transformations in plant-soil ecosystems. DNDC consists of two components. The first 

component, consisting of the soil climate, crop growth, and decomposition sub-models, 

transforms primary drivers (e.g., climate, soil properties, vegetation, and anthropogenic 

activity) to soil environmental drivers (e.g., temperature, moisture, pH, redox potential, and 

substrate concentration gradients). The second component, including the nitrification, 

denitrification, and fermentation sub-models, simulates C and N transformations mediated 

by the soil microbes [31].  

As illustrated by Figure 1, DNDC was informed by integrating whole-year daily climate 

data to simulate the daily incremental growth of the living plants on rooftop under different 

conditions where not only natural conditions but also the enhanced photosynthetic 

assimilation of CO2 in response to elevated CO2 concentration under greenhouse were 

modeled [32]. This study simulates seven vegetable crops (i.e., tomato, lettuce, celery, 

broccoli, radish, cabbage, and potato) cultivated under open farm and conditioned 

greenhouse. Nine different greenhouse conditions were simulated by configuring 

temperature levels (i.e., 20 ℃, 23 ℃, and 26 ℃) and carbon dioxide concentrations (i.e., 350 

ppm, 450 ppm, and 550 ppm). Thus, ten rooftop crop cultivation conditions (1 open farm and 

9 conditioned greenhouse) form a comprehensive database consisting of 70 datasets as 

visualised in Figure 2. The climate data including daily temperature and precipitation are 

derived from the average of 3-year daily meteorological data, which can be obtained from the 

meteorological data sharing service system [33] and given in Appendix Figure A1. 
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Figure 2 Rooftop farming database structure with data definitions and dataset identifiers. 

2.2 Schematic of an eco-industrial energy system  

A multi-energy system was considered that fulfills electricity, cooling, and heating 

demand of an industrial park, as illustrated in Figure 3. Each site was modelled to build its 

own multi-energy system and energy network connections among sits were also enabled. By 

further enabling rooftop farming, an e-IES design optimisation model was developed to 

optimise the rooftop utilisation options, e-IES systematic configurations, energy (i.e., cooling 

and heating) network connections, and the e-IES operational strategies simultaneously.  

In the e-IES model, the whole year has been divided into three representative seasons, 

i.e., summer, winter, and transition season [34]. Summer associates with significant amount 

of cooling demand and less heating demand (for hot water supply); winter associates with 

significant amount of heating demand and less cooling demand (for conditioned workshops); 

transition season (spring and fall) associates with both less cooling and heating demand as 

no general space cooling and heating requirement. Each representative season was assigned 

with different number of days. A typical daily demand profile for each season was generated 

with an hourly temporal resolution, which enables optimisation model to capture the demand 

fluctuation. The entire model was formulated as a Mixed Integer Linear Programming (MILP) 
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optimisation problem based on previous work [35, 36].  

 

Figure 3 Outline of the e-IES design optimisation model. a, availability of energy network 

connection for each site’s individual energy system; b, possible configurations for each individual 

energy system with cooling, heating, and electricity supply technologies. 

2.3 Modelling framework and objective functions 
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i.e., minimised the total annualised cost (TAC) over 20-year horizon, and minimised the 

annualised CO2-equavalent emissions (ACE) of the e-IES. The epsilon-constraints based 

multi-objective optimisation method has been applied in this study to address the trade-off 

between two conflicting objectives for e-IES design [37]. 

The two objectives, a range of energy system constraints, and logical constraints for 

rooftop option choices have been outlined below. More detailed constraint formulations can 

be found in Appendix A.1 and the model parameterisation is given in Appendix A.2.  

Min  obj1 = total annualised cost (TAC) by Eq. 1~8 

Min  obj2 = annualised CO2-equavalent emissions (ACE) by Eq. 9 

                     S.T.  Energy balances  

                           Rooftop options constraints  

                           Conversion constraints  

                           Capacity expansion constraints  

                           Operation constraints  

                           Cooling storage constraints  

                           Battery storage constraints  

                           Grid connection constraints  

                           Energy network constraints  

The total annualised cost (TAC) objective function is defined in Eq. 1. In addition to 

energy technologies, our research also considers the capital and O&M cost as well as the yield 

income of an e-IES. 

 TAC CAPEX FC MC GC YI= + + + +  (1) 

where CAPEX represents the capital cost for both energy technologies and rooftop farming 

settings, FC denotes the fuel cost, MC is the maintenance cost, GC is the grid cost, and YI is 

the farming yield income. 

The CAPEX accounts for the investment on energy devices, energy networks, and 

construction of different rooftop farming settings, see Eq. (2). The CAPEX is further 

annualised by multiplying a capital recovery factor (CRF) assuming the interest rate of 5%, 

see Eq. (3). The service life of energy devices and rooftop farming settings is assumed as 20 

and 15 years, respectively, and energy network is assumed with 30 years’ service life. Eq. (4) 

constrains the number of crop and cultivation condition selected for each rooftop agricultural 

cultivation site. 
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=
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
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where i, j, t denotes site number (i and j), and energy technologies (t), respectively; k=1~10 

denotes 10 rooftop cultivation conditions; v=1~7 represents 7 crop options. CAP indicates the 

installed capacity of energy devices. DX represents the distance between sites. φ is a binary 

variable controlling the selection of one certain crop and one cultivation condition on the 

rooftop of one site. 

Fuel cost (FC) is defined by the gas consumption cost by the Boiler and the CHP (Eq. (5)). 

 

CHP B

, , , ,CHP-NG B-NG

CHP B
[( ) ]

i s h i s h

h h

i s h

E Q
FC C C

 
=  + 

 

(5) 

where i s, h denotes the sites, seasons, and hours, respectively. ECHP is the electricity 

generated by CHP, QB indicates the heating generated by boiler, η is the efficiency, and CCHP-

NG and CB-NG are the unit cost of natural gas, which could be different depending on local 

policies.  

As given in Eq. (6), maintenance costs (MC) includes annual MC for rooftop farming 

options and MC for energy devices, which is determined by the product of energy output from 

each device and the corresponding unitary maintenance cost (Cmaint). 

 
CHP HP/B-heat E-CH/A-CH st st maint RF

, , , , , , , , , , , ,( )i s h i s h i s h i s h i s h t i v k

i s h i v k

MC E Q Q Q E C C= + + + +  + 
 

(6) 

where ECHP is electricity generated by CHP; QE-CH/A-CH is cooling energy generated by electric 

chiller or absorption chiller; Est and Qst are cooling and electricity been stored, respectively; 

and CRF is the annual maintenance cost of each rooftop farming option. 

As defined in Eq. (7), grid cost (GC) depends on the purchased electricity cost and the 

revenue generated by the selling surplus onsite electricity back to the grid.  

 
im im ex ex

, , , ,h i s h h i s h

i s h i s h

GC C E C E=  −  
 

(7) 
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where Cim and Cex are the tariff for buying and selling electricity back to grid, respectively. Eim 

and Eex represent the amount of electricity purchased and sold. 

Yield income (YI) is calculated by the income of selling yields from the rooftop farming 

(Eq. (8)).  

 

RF

, , , ,

RF

, , ,

sales

sales yield

i v k i v k

i v k

i v k v i v k

YI

C A

= 

=  



 

(8a) 

(8b) 

where φ is a binary variable for the selection of crop (v) and cultivation condition (k), salesi,v,k 

represents the annual income per site for different rooftop farming options, CRF is the unit 

price of each crop, Ai is the available rooftop area of each site, and yieldv,k is the simulated 

yield of each crop under different cultivation conditions. 

The annualised carbon emissions (ACE) objective function not only accounts for the 

carbon profiles of energy technologies but also capture the carbon nitrogen cycles and reflect 

the net carbon emissions from rooftop farming system, Eq. (9a~d). 

 ACE NGE GEE RFE= + +  (9a) 

 

CHP B

, , , ,

NG CHP B
( ) 

i s h i s h

i s h

E Q
NGE 

 
=  +  (9b) 

 
im

grid , ,  i s h

i s h

GEE E=   (9c) 

 
RF RF

, , ,v k i i v k

i v k

RFE A =    (9d) 

where NGE, GEE, and RFE are the natural gas emissions, grid electricity emissions, and 

rooftop farming emissions; ΨNG, Ψgrid and ΨRF are the GHG emission factor for natural gas, 

utility grid, and different rooftop farming options, respectively, where negative emissions 

could be induced by rooftop farming options due to the carbon sequestration; ECHP and QB 

are the electricity generated by CHP and heating generated by boiler, respectively; η defines 

the efficiency; Eim is the amount of purchased electricity; Ai represents the available rooftop 

area of each site; and φ is a binary variable ensuring on more than one crop and cultivation 

system is selected for each site. The GHGs of rooftop agriculture represents the land use 

GHGs. It accounts for the carbon cycles in agro-ecosystem including the crop photosynthesis-

fixed carbon, plant respiration (root, shoot and leaf) and microbial heterotrophic respiration 

to convert soil organic carbon to GHGs. However, the operational and capital GHGs 

embedded in fertiliser, energy and greenhouse materials, as well as downstream GHGs at 
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crop consumption and disposal phases were not accounted for. The GHGs of energy systems 

focuses on operational emissions without considering the GHGs embedded in capital inputs 

e.g. PV panel material, boilers, chillers material inputs, pipeline building materials.  

2.4 Clustering technique 

To enable the optimisation model computationally intractable, the widely applicable 

clustering technique, i.e. k-medoids clustering method [38], was adopted to cluster 

representative demand profiles [6] in accordance with the model’s temporal settings.  

2.5 Computational method 

The epsilon-constraints based multi-objective optimisation method has been applied to 

address the system design trade-offs between the cost minimum and GHG minimum 

objectives [36]. The mathematical MILP optimisation model in this study is formulated in 

GAMS [39] and is resolved using CPLEX 28.2 solver on an Intel(R) Core(TM) i7-8565U CPU 

@1.8 GHz with 8GB of memory. The CPLEX solver is widely adopted to solve MILP problems 

and its robustness and efficiency have been demonstrated in previous research [40]. The e-

IES optimisation model with 2.8×105 variables (1.4×105 are binary) was resolved in 

approximately 45 min CPU time at an optimality gap of 2%. 

 

3 Case study setups with clustered demand data 

An industrial park located in Suzhou city with six different sites (see Figure 4a) has been 

used as an optimisation case study. Suzhou is a major city located in the Yangtze River Delta, 

China, characterised with hot summer and cold winter. In the industrial park, all buildings 

offer sufficient structural strength to develop rooftop farming. Several buildings while located 

within one factory border are considered as one site. Each site has different rooftop available 

areas (see Figure 4b), and the demand patterns for each site are different so that energy 

networking availabilities may potentially save energy bills due to the demand 

complementarity over the same time horizon.  

The typical hourly energy (cooling, heating, and electricity) demand profiles for six sites 

are obtained by clustering the 2-year (2016 and 2017) historical measurement data and 

presented in Figure 5. When rooftop farming is applied, the heat transfer coefficient of 

building rooftops and local micro-climate will change [41]; open farm and greenhouse are 

expected to affect building thermal demands to different extents. Based on the method in Ref. 

[42], the cooling and heating demand profiles are estimated to scale down 4% and 6% by 

implementing open farm and greenhouse on rooftops, respectively. 
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In addition, the parameters corresponding to each simulated crop in this study are listed 

in Table 1. The maximum biomass yield, the biomass fraction and the carbon to nitrogen 

ratios are key inputs associated with the simulated biomass for grain, leaf, stem, and root of 

a crop. The thermal degree day refers to cumulative air temperature from seeding until 

maturity of a crop. The tillage and fertilising methods vary with different crops [43]. 
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Figure 4 The case study industrial park including six sites with varying energy demand scales and rooftop areas. a, six sites all 

have different energy demand scales; b, location map of six sites with rooftop areas and illustration of potential energy (i.e., cooling and heating) 

network connections. 
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Figure 5 Typical energy demand profiles (cooling in summer, heating in winter, electricity in transition seasons) for six sites. 

a, the garment factory (site 1); b, the commercial complex (site 2); c, the hotel (site 3); d, the pharmaceutical factory (site 4); e, the electronic 

factory (site 5); f, the office (site 6). 
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Table 1 Physiological parameters of all simulated crops 

Settings Maximum biomass yield 

(kg/C/ha/yr) 

Biomass fraction 

(seed) 

C/N ratio  

(seed) 

Annual N demand  

(kg N/ha/yr) 

Thermal degree days 

(TDD) 

Water demand  

(kg water/kg dry matter) 

lettuce 914 0.64 11.5 100 1,400 800 

broccoli 600 0.3 10 141 1,800 600 

tomato 2010 0.36 26 197 1,400 900 

cabbage 28 0.01 15 130 2,500 600 

potato 2000 0.7 60 48 2,100 500 

radish 1000 0.75 19 60 1,000 508 

celery 40 0.01 12 289 1,300 500 
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4 Results and discussion 

4.1 Rooftop farming yields and emissions 

The rooftop farming database records the DNDC simulated data (crop yield and 

emissions) and economic data (cost and income). The cost data accounted for the capital costs 

and the operational costs for fertilisation (energy, agro-chemical, and labor cost), irrigation 

and other field management costs. Detailed cost data for different crops are presented in 

Appendix Table A5~A11.The income is calculated by the yield and the retail market price been 

presented in Table A12 in Appendix. Table 2 displays the annual crop yields based on DNDC 

simulated daily incremental growth. Among the 7 simulated crops, lettuce, tomato, and celery 

demonstrated the highest yields across a range of cultivation conditions. Table 3 summarises 

the simulated net ecosystem exchange (NEE) of carbon. NEE is equivalent to the difference 

between total amount of photosynthesis-fixed carbon and ecosystem respiration (i.e. biotic 

conversion of organic carbon to carbon dioxide by all organisms in the rooftop ecosystem 

accounting for plant respiration (root, shoot and leaf) and microbial heterotrophic 

respiration). Thus, NEE represents the net CO2 emissions from biogeochemical carbon cycles 

in rooftop agricultural systems. A crop cultivation with a negative NEE value indicates net 

carbon sink effects therefore offers decarbonisation benefits. 

As shown in Table 3, tomato delivered negative NEE across different cultivation options, 

where the NEE for other crops vary significantly with the options between open farm and 

conditioned greenhouse. NEE is not only regulated by plant physiological traits, 

photosynthesis pathways (e.g. Calvin-Benson-Bassham or C3, Hatch-Slack or C4 cycles), but 

also affected by environmental variables (e.g. temperature, CO2 level). Such trends can be 

observed from Table 3, NEE fluctuate with the temperature and elevated CO2 concentration 

in greenhouse cultivation conditions. However, DNDC simulations including biogeochemical 

carbon and nitrogen cycles represent theoretical results derived from computational 

experiments;  however, to further validate the applicability of such simulation model and 

advance the understanding of C and N cycling in rooftop agro-ecosystems, comparisons of 

DNDC simulation with measurement obtained from experiment field would be needed in 

future research.  
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Table 2 Simulated annual yield for 7 crops under different cultivation conditions 

yield  

(kg/ha) 

OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

lettuce 117,288  224,585  249,563  254,125  240,875  252,387  253,907  243,482  250,649  255,428  

broccoli 14,299  15,790  17,549  18,966  18,437  20,469  22,138  19,625  21,802  23,561  

tomato 109,419  116,186  122,570  123,847  124,741  130,550  132,146  126,017  130,103  132,210  

cabbage 24,309  79,410  88,223  95,338  94,098  104,518  112,964  101,856  113,147  114,524  

potato 5,892  8,918  9,913  10,708  9,852  10,950  11,830  10,040  11,157  12,054  

radish 62,805  83,085  99,800  102,396  76,907  85,452  99,755  66,232  73,598  79,520  

celery 130,591  172,462  191,610  206,928  184,461  205,014  199,907  186,091  197,884  197,354  

 

Table 3 Simulated annual NEE for 7 crops under different cultivation conditions 

NEE 

(kg/ha) 

OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

lettuce -1,666 1,404 1,000 990 1,001 810 785 955 828 759 

broccoli -753 6,227 5,246 4,588 6,096 5,138 42,92 6,196 5,184 4,439 

tomato -7,291 -8,746 -9,046 -9,405 -4,910 -4,872 -4,992 -4,560 -4,909 -5,085 

cabbage 15 -2,872 -838 -1,638 -1,219 -2,032 -1,800 -1,858 -3,067 -3,286 

potato -4,647 10,969 9,798 8,582 10,465 9,071 8,116 10,582 9,355 8,324 

radish -5,200 16,239 14,758 18,395 18,395 17,178 13,456 20,588 19,372 18,541 

celery -4571 5,877 4,847 4,028 3,138 1,857 2,137 5,394 5,030 4,764 
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4.2 Optimal rooftop options and corresponding e-IES design 

By solving the e-IES optimisation model, optimal rooftop design strategies can be 

achieved. The pareto frontier presented in Figure 6a shows a set of non-dominated optimal 

solutions to address the design trade-offs between cost and GHG emission reduction 

objectives. The least TAC solution achieved the least total annualised cost (TAC) of 2,437×103 

US$/year with 237×103 ton/year GHG emissions; in contrast the emission-least solution 

delievered a low-carbon profile with 131×103 ton/year annualised GHG emissions but with 

the higher cost of 3,727×103 US$/year.  

The least TAC solution selects to plant lettuce with open farm cultivation option. With 

the optimal solutions shifting from the least cost to the least emissions, the rooftop farming 

decisions showed a transition from lettuce plantation under conditioned greenhouse (i.e., 20 ℃ 

and 550 ppm CO2) to open farming of tomato, and finally to tomato plantation under 

conditioned greenhouse (i.e., 20 ℃ and 550 ppm CO2). It is interesting to observe that 

although the NEE performance in Table 3 shows “lettuce unconditioned” (OPT1) is beneficial 

for carbon emissions than “lettuce in greenhouse” (OPT4), the OPT4 still indicates a lower 

emission solution. This is due to assumption that greenhouse could directly reduce more 

cooling and heating demand of the sites than unconditioned open farm as denoted in Table 

A4, and such direct energy demand reduction led by rooftop farming plays a more dominant 

role than the NEE in this situation, which also reveals that the interlink between rooftop 

farming and the whole system design are comprehensive and the proposed model is therefore 

of importance to quantify such an interlink.  

Meanwhile, a general trend in energy network decisions was observed, i.e. more active 

transfer of the heating energy among sites than the cooling energy. This was driven by the 

modelling configuration which enabled cooling storage for each site, so that cooling energy 

can be stored and utilised locally other than transferred to neighboring sites. Notably, Site 5 

(i.e. the electronic processing site) has been selected to output heating energy to neighboring 

sites across the Pareto optimal solutions. This can be explained by the relatively low heating 

demand but high electricity requirement in Site 5 as illustrated in Figure 5; thus, to meet Site 

5’s electricity demand, the combined heating and power (CHP) technology would generate a 

significant amount of surplus heating, which can be transferred to neighboring sites. 
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Figure 6 Optimal design for e-IES considering trade-offs between cost and emission objectives and corresponding rooftop 

options and energy network design. a, Pareto frontier showing design trade-offs; b, rooftop options and energy flow for the least TAC 

solution; c~j, rooftop options and energy flow for the other solutions; k, rooftop options and energy flow for the least emission solution.  
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Figure 7 further shows the comparison of system configurations for the least TAC solution 

in contrast to the least emission solution. The six sites' system configurations are optimised 

simultaneously considering both energy network design and rooftop farming solutions (as 

reported in Figure 6). For both solutions, no battery storage was adopted due to the relatively 

high capital costs; and the boiler capacity design was small as CHP could provide heating by 

utilising the residual heat along with power generation. The least TAC solution selected to 

install larger CHP capacities for each site to efficiently utilise residual heat to meet heating 

demands, whereas much lower heat pump (HP) capacity was selected. Meanwhile, the 

residual heat can be utilised by the relatively high capacity of absorption chiller (A-CHILLER) 

to provide cooling so that less capacity of electric chiller (E-CHILLER) was selected for the 

least TAC solution. Since the cooling generated by residual heat and cooling demand could 

mismatch, larger capacity of cooling storage was needed in the least TAC solution. 

 

Figure 7 Comparison of the six sites’ system configurations between the least TAC 

solution and the least emission solution. a, least TAC solution; b, least emission solution. 

Abbreviation: CHP (combined heating and power), A-CHILLER (absorption chiller), E-CHILLER 

(electric chiller), COOL-STO (cooling storage), ELE-STO (battery storage), HP (heat pump). 

4.3 Comparison with rooftop photovoltaic (PV) and spare roof 

Figure 8 shows the comparison between optimal solutions achieved with rooftop farming 

options with the set of optimal solutions derived from two other rooftop utilisation scenarios, 

i.e., rooftop PV option and unused rooftop. For the scenario of rooftop PV option, the capital 

and O&M costs of the rooftop PV system need to be considered, and renewable solar power 
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is generated with less emissions and may save the fuel consumption of the energy system. 

The capital and O&M costs as well as the emissions induced by the rooftop farming options 

need to be deducted from the objective functions. As for the unused rooftop scenario, all 

energy, cost and emission terms associated with either rooftop farming or PV are deducted 

from the objective functions. Therefore, when generating the set of optimal solutions for 

rooftop PV and unused rooftop scenarios, a slightly adjustment is needed for the TAC and 

ACE objective functions as presented in Eq. 1~8 and Eq. 9, respectively. 

In general, implementing rooftop farming enabled both cost savings and decarbonisation 

compared to rooftop PV and unused rooftop scenarios, though the rooftop PV and rooftop 

farming deliver similar performance while achieving the least cost solution. Such observation 

is case specific, the regions with higher solar resource might result in rooftop PV as cost-

optimal solution. Meanwhile, more saving effects were observed in the solution comparisons 

for the GHG emission reduction (i.e., 16% and 10.2%) than the cost benefit (5.6% and 2.4%). 

Such a trend indicated that implementing rooftop farming delivered higher benefits from the 

environmental perspective than the economic perspective. The Pareto optimal solutions with 

rooftop farming achieved higher savings in comparisons with the scenarios with unused 

rooftop (i.e., 5.6% for cost and 16.3% for GHG emissions) than scenarios with the rooftop PV 

(i.e., 2.4% for cost and 10.2% for GHG emissions). This observation provides evidence for 

future rooftop utilisation decision-making: rooftop utilisation by either energy or farming 

systems is worth further investigation from both economic and environmental perspectives. 
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Figure 8 Optimal solution comparisons among rooftop farming, PV rooftop, and spare 

rooftop scenarios. Abbreviation: ACE – annualised carbon emission, TAC – total annualised cost. 

4.4 Limitations and the way forward 

This study presented a biogeochemical simulation and energy system integrated model 

towards eco-industrial energy system optimisation.  

Research limitations and emerging research directions are highlighted below: 

a) Rooftop agriculture GHGs induced by land use effects and agro-ecosystem 

biogeochemical processes have been captured. Such GHGs include the crop 

photosynthetic carbon sequestration (negative GHG emissions) and emissions 

released to atmosphere due to plant respiration as well as soil microbiome respiration. 

However, in future research, it is worth to couple full life cycle approach with the 

develop IES model to account for operational and capital GHGs at rooftop agriculture 

stage such as GHGs embedded in greenhouse materials or field operations. 

b) The land-use GHGs derived from DNDC simulation represent theoretical values and 

computational experiments which would need further validation by comparing with 

field measurements. Another interesting direction would be to couple computational 

and field experiments to explore the possibility to use organic fertilisers derived from 

IES system e.g. organic waste from food industry or local sanitation systems in 

agriculture practice. This would lead to a resource-circular zero-waste IES 

optimisation and design problem. 
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c) This study presents a deterministic optimisation problem, the data variability and 

uncertainty in biogeochemical simulation and energy system model were not 

considered in current study. However, in future, it is worth to expand the optimisation 

framework to explore nonlinearity and uncertainty. Global sensitivity analyses, e.g., 

screening methods, regression-based approach or variance-based methods represent 

potential directions to advance the understanding of how input variation affect 

modelling evidences. Optimisation under uncertainty would be another direction 

worth exploring. In addition, it would be interesting to couple global sensitivity 

analyses and meta-modelling with our developed IES model to enable computational 

efficient way to incorporate the approximate mathematical representation of complex 

simulators e.g. DNDC into eco-industrial energy optimisation.  

d) The framework is featured by extensibility, adoptability, and scalability. The 

optimisation framework model can be potentially expanded to incorporate above-

mentioned sensitivity analysis, in-depth scenario analyses, e.g., rooftop farming 

effects on local thermal demands and cover a broader scope of project lifecycle to 

inform decision-making. Model scalability is reflected by wider application in use 

cases. The rooftop farming concept and the proposed model could be adapted and 

scaled to large-scale case studies beyond industrial parks such as region-level urban 

communities or business zones. The framework is expected to benefit wider 

stakeholders, e.g., industrial park designer or urban planners, to inform decision-

making on, e.g., design options for energy-system decarbonisation. Beyond the region 

presented in current study, the developed framework could be applied to other 

countries or regions by considering local technical, economic, and environmental 

characteristics.    

 

5 Conclusions  

To decarbonise the energy systems in process industry, this study presents a nexus design 

by integrating rooftop farming into process industrial energy system optimisation. A model-

based e-IES design optimisation framework is therefore proposed, which couples first-

principle underpinned simulation, clustering algorithms, and mathematical optimisations. 

Within the framework, a rooftop farming database derived from computational simulation 

and clustered energy system data were generated to inform the optimisation model for 

optimal design of the eco-industrial energy system (e-IES) and the functional rooftop 

utilisation. 
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The framework was applied to inform the e-IES decision-making under the context of an 

industrial park in China. Generally, implementing rooftop farming could generate mutual 

benefits from both cost and carbon emission reduction perspectives when compared to either 

rooftop PV or unused rooftop. Significant benefit can be expected from decarbonisation 

perspective in comparison with economic benefits. The derived Pareto optimal solutions 

showed that lettuce cultivation under open farm represented the least cost option; while 

planting tomato in controlled greenhouse with elevated CO2 concentration (i.e., 20 ℃ and 

550 ppm CO2) could achieve the least GHG emission solution.  

The proposed modelling framework can be further extended to inform wider design case 

studies. Building on the proposed modelling framework, future research frontiers are to 

harness AI and data advances e.g. advanced learning algorithms for data analyses and hybrid 

search methods coupling exact and metaheuristic algorithms for responsive optimisation.  
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Appendix 

This appendix presents the model constraints in detail and all parameters that applied in the case study.  

A.1 Modelling constraints 

The definitions of parameters and variables are given in Table A1~A3. 

Table A1 Definitions of indices 

Indices/subscript/ 

superscript 

Definitions 

s Sets of three representative seasons 

h Sets of 24 hours 

i Sets of sites 

j Sets of sites, j≠i 

t Sets of energy devices, including combined heating and power (CHP), boiler (b), 

electric chiller (E-CHILLER), absorption chiller (A-CHILLER), heat pump (hp), 

battery storage (ELE-STO), cooling storage tank (COOL-STO) 

v Sets of crops (tomato, lettuce, celery, broccoli, radish, cabbage, and potato) 

k Sets of three rooftop farming options (k=1 open farming, k=2~10 conditioned 

greenhouse with different temperature and indoor CO2 control) 

 

Table A2 Definitions of parameters 

Parameters Definitions 

CCAP 
Unit capital cost [$/kW] of energy technologies, heating and cooling network, and 

unit capital cost [$/m2] of rooftop farming option 

DXi,j Distance between sites 

η Efficiency of individual energy technology 

H-to-P Heat-to-power ratio of CHP 

CNG Unit natural gas cost [$/kWh]  

Cmaint Maintenance cost [$/kWh] of energy technologies 

CRF Maintenance cost [$/year] of rooftop farming options 

CRF Capital recovery factor for 15, 20, 30 years 

Cim Unit price of purchased electricity from the grid [$/kWh] 

Cex Tariff for electricity feeed-back to grid [$/kWh] 

sales Unit price of selling produced crop yield [$/kg] 

Ψ Emission factor [kg/kWh]  

Ai Available roof area in i site [m2] 
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Qh-dem and Qc-dem Heating and cooling demand for each site  

Edem Electricity demand for each site 

Qh-roof and Qh-roof Thermal demand savings for each site  

Lossc-pipe and Lossh-pipe Thermal loss rate for cooling (Loc-pipe) and heating network (Loh-pipe) 

(.) Upper bound value 

M The “big M” big enough values for M1 and M2 

 

Table A3 Definitions of variables 

Variables Definitions 

TAC The objective of total annualised cost [$/year] 

ACE The objective of annualised CO2 emissions [ton/year] 

Binary Variables  

φRF =1 if select a certain crop and a certain planting pattern 

βCHP =1 if CHP is on  

XCHP =1 if CHP is switching from off to on  

αcha =1 if energy is charged into storage 

αdisc =1 if energy is discharged from storage 

δex =1 if electricity is fed back to the grid  

δim =1 if electricity is bought from the grid  

δDH =1 if district heating network is built  

δDC =1 if district cooling network is built  

γDH =1 if site i receiving heating 

γDC =1 if site i is receiving cooling 

Positive Variables  

CAPEX The capital cost of the whole system [$] 

FC The fuel cost [$/year] 

MC The maintenance cost [$/year] 

GC The grid electricity cost [$/year] 

YI The food yield income [$/year] 

CAP The installed capacity of each energy technology [kW] 

ECHP The electricity output from CHP [kWh] 

QHP The heating output from heating pump [kWh] 

QB The heating output from boiler [kWh] 

QA-CH The cooling output from absorption chiller [kWh] 

QE-CH The cooling output from electric chiller [kWh] 
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Qst The cooling stored in storage tank [kWh] 

EE-CH The electricity consumed by electric chiller [kWh] 

Est The electricity stored in battery [kWh] 

Eim The electricity bought from the grid [kWh] 

Eex The electricity sold back to the grid [kWh] 

Qhf(i,j) The heating flow from site i to j [kWh] 

Qhf(j,i) The heating flow from zone j to i [kWh] 

Qcf(i,j) The cooling flow from site i to j [kWh] 

Qcf(j,i) The cooling flow from site j to i [kWh] 

Qre The heating output from CHP [kWh] 

Qcha The cooling charge into cooling storage [kWh] 

Qdisc The cooling energy discharged [kWh] 

Echa The electricity charge into battery storage [kWh] 

Edisc The electricity discharged [kWh] 

NGB The natural gas consumed by boiler [kWh] 

NGCHP The natural gas consumed by CHP [kWh] 

 

The model is subject to the following constraints. 

Energy balances. Three energy balances are modelled, i.e., electricity, cooling, and heating balances. Eq. 

(A1) constraints the electricity supply and demand balance. 

 
E-CH ex HP cha dem disc im CHP

, , , , , , , , , , , , , , , ,Ei s h i s h i s h i s h i s h i s h i s h i s hE E E E E E E+ + + + = + +
 

(A1) 

where EE-CH is the electricity consumed by electric chiller, Eex is electricity fed back to the grid, EHP is electricity 

consumed by heat pump, Echa is electricity charged into battery storage, Edem is electrical demand to be met, Edisc 

is electricity discharged from battery storage, Eim is electricity purchased from the grid, ECHP is the electricity 

generated by CHP. 

Eq. (A2) constraints the heating supply and demand balance. 

 

h-dem RF h-roof hf( , ) A-CH'

, , , , , , , , , , , , ,

re HP B hf( , ) h-pipe

, , , , , , , , ,

(Q Q )

(1 Loss )   

i j

i s h i v k i s h v k i j s h i s h

v k j

j i

i s h i s h i s h j i s h

j

Q Q

Q Q Q Q j i

−  + + =

+ + +  −  

 


 (A2) 

where Qh-dem is the representative heating demand, φRF is the binary variable to ensure only one rooftop farming 

option been selected, Qh-roof is heating savings due to rooftop farming induced insulation improvement, Qhf(i,j) is 

heating flow from site i to j, QA-CH’ is heating been utilised to generate cooling by absorption chiller, Qre is 

recovered heating from CHP power generation, QHP is heating supply from heat pump, QB is heating supply from 

boiler, Qhf(j,i) is heating flow from site j to i, Lossh-pipe is heating loss rate during energy transfer. 
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Eq. (A3) constraints the cooling supply and demand balance. 

c-dem RF c-roof cha cf( , )

, , , , , , , , , , , , ,

A-CH E-CH cf( , ) c-pipe disc

, , , , , , , , ,

(Q Q )

(1 Loss )    

i j

i s h i v k i s h v k i s h i j s h

v k j

j i

i s h i s h j i s h i s h

j

Q Q

Q Q Q Q j i

−  + + =

+ +  − +  

 


 

(A3) 

where Qc-dem is the representative cooling demand, φRF is the binary variable to ensure only one rooftop farming 

option been selected, Qc-roof is cooling savings due to rooftop farming induced insulation improvement, Qcha is 

cooling energy been charged into storage tank, Qcf(i,j) is cooling flow from site i to j, QA-CH is cooling supply from 

absorption chiller, QE-CH is cooling supply from electric chiller, Qcf(j,i) is cooling flow from site j to i, Lossc-pipe is 

cooling loss rate during energy transfer, Qdisc is cooling been discharged from storage tank. 

Energy conversion. The energy conversion constraints are shown by Eq. (A4). 
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i s h i s h
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i s h i s h
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Q E

Q Q

Q E
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E NG

Q E











= 

= 

= 

= 





 (A4) 

where η denotes efficiency, QE-CH is cooling supply from electric chiller, EE-CH is the electricity consumed by 

electric chiller, QA-CH is cooling supply from absorption chiller, QA-CH’ is heating been utilised to generate cooling 

by absorption chiller, QHP is heating supply from heat pump, EHP is electricity consumed by heat pump, QB is 

heating supply from boiler, NGB is natural gas been consumed by boiler, ECHP is the electricity generated by CHP, 

NGCHP is natural gas been consumed by CHP, Qre is recovered heating from CHP power generation, H-to-P is 

the heat to power ratio for CHP. 

Operation constraints. Operation constraints are implemented for CHP to avoid low demand 

operations and possible efficiency drop. The minimum part demand (MPL) as a percentage of full capacity is 

set to avoid CHP operating at low demand when the engine is on.  

 

CHP CHP

, , , , 1

CHP CHP CHP

, , , , 2( 1) +MPL
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E M CAP





 

 −  
 

(A5a) 

(A5b) 

where CAPCHP is CHP installed capacity, and βCHP is a binary variable to control on/off status of CHP (βCHP = 1 

is on). M1 and M2 are both big enough values. 

To avoid frequently on/off of CHP, only switching on one time per day is allowed as formulated in Eq. (A6). 
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(A6a) 

(A6b) 

(A6c) 

(A6d) 

where χ is a binary variable to control the frequency of switching on/off. 

To avoid drastic fluctuation of CHP’s power output, the power output fluctuation between last and this 

time-step cannot be larger than a threshold (THR) of CHP’s installed capacity. 

 

CHP CHP CHP

, , , , 1

CHP CHP CHP
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i s h i s h i
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−  
 

(A7a) 

(A7b) 

where ECHP is the electricity generated by CHP, CAPCHP is the installed capacity of CHP. 

Storage constraints. Battery and cooling storage are enabled in our model. Here, we show the battery 

storage constraints as illustrative example, the cooling storage constraints are similar from the modelling 

perspective with different inputs.  
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(A8a) 

(A8b) 

(A8c) 

(A8d) 

(A8e) 

where ηcha, ηdisc, ηst are energy charge, discharge, and in-storage efficiency; CAPst is the installed capacity of the 

battery; Echa is electricity been charged into the battery; Edisc is electricity been discharged from the battery; Est 

is electricity stored in battery; α is a binary variable to avoid the cooling energy charging and discharging 

simultaneously. 

Grid connections. The electricity purchased and fed-back to utility grid are formulated by Eq. (A9). 
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(A9a) 

(A9b) 

(A9c) 

where Eim and Eex are electricity been purchased and fed-back to the grid; δex and δim are binary variables to 

represent the export/import status and avoid power export and import simultaneously. 

Network constraints. Cooling and heating network constraints are similar from the modelling 

perspective. The heating can only be transferred when two sites are connected via heating pipework as defined 

AC
CE
PT
ED
 M
AN
US
CR
IPT



34 

 

in Eq. (A10a). The connection between two sites can only be done by at most one time in Eq. (A10b).  
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(A10a) 

(A10b) 

where Qhf(i,j) is heating flow from site i to j, δDH is a binary variable to denote the connection or not among sites 

(1 is connected, 0 is not). 

Similarly, cooling transfer can only happen if cooling pipework exists among sites as derived in Eq. (A11). 
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(A11a) 

(A11b) 

Each site i cannot simultaneously receive and transfer energy to other sites j as constrained by Eq. (A12). 
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(A12a) 

(A12b) 

(A12c) 

(A12d) 

where Qcf(i,j) is cooling flow from site i to j, Qcf(j,i) is cooling flow from site j to i, Qhf(i,j) is heating flow from site i 

to j, Qhf(j,i) is heating flow from site j to i, γDH and γDC are binary variables to control the status of transfer or 

receive for heating and cooling transfer. 

 

A.2 Parameterisation for case study 

All the parameters in the case study are presented below. 

Table A4 A list of parameters applied in the optimisation model [6, 24, 44] 

Parameters Definitions Values 

CAP

CHPC
 

Unit capital cost of CHP [$/kW] 800 

CAP

BC
 

Unit capital cost of boiler [$/kW] 60 

CAP

E-CHC
 

Unit capital cost of electric chiller [$/kW] 200 

CAP

A-CHC
 

Unit capital cost of absorption chiller [$/kW] 250 

CAP

HPC
 

Unit capital cost of heat pump [$/kW] 200 

CAP

pipeC
 

Unit capital cost of heating and cooling network [$/m] 200 

CAP

b-stC
 

Unit capital cost of battery storage [$/kWh] 700 
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CAP

c-stC
 

Unit capital cost of cooling storage tank [$/kWh] 60 

CAP

kC  Unit capital cost of k rooftop agriculture option [$/m2] 
=12 when k=1, 

=45 when k=2~10  

,i jDX  Distance between zones See Fig. 4b 

ηCHP Efficiency of CHP (ele) 0.4 

H-to-P Heat-to-power rate of CHP 0.8 

ηB Efficiency of boiler 0.85 

ηE-CH Efficiency of electric chiller 4 

ηA-CH Efficiency of absorption chiller 1.2 

ηHP Efficiency of heat pump 2.5 

st

batt  Efficient of battery storage self-discharge 0.95 

cha/disc

batt  Efficient of battery storage charge/discharge 0.93 

st

cool  Efficient of cooling storage self-discharge 0.9 

cha/disc

cool  Efficient of cooling storage charge/discharge 0.9 

CHP-NG

hC  Unit cost of natural gas for CHP [$/kWh] See Figure A1 

B-NG

hC  Unit cost of natural gas for boiler [$/kWh] See Figure A1 

maint

CHPC
 

Maintenance cost of CHP [$/kWh] 0.003 

maint

BC
 

Maintenance cost of boiler [$/kWh] 0.0003 

maint

E-CHC
 

Maintenance cost of electric chiller [$/kWh] 0.001 

maint

A-CHC
 

Maintenance cost of absorption chiller [$/kWh] 0.001 

maint

HPC
 

Maintenance cost of heat pump [$/kWh] 0.001 

maint

b-stC
 

Maintenance cost of battery storage [$/kWh] 0.003 

maint

c-stC
 

Maintenance cost of cooling storage tank [$/kWh] 0.0003 

CRF Capital recovery factor for 15, 25, 30 years 0.103, 0.085, 0.073 

im

hC  Unit price of grid electricity purchasing at hour h [$/kWh] See Figure A1 

ex

hC  Tariff for electricity sold back to grid at hour h [$/kWh] See Figure A1 

Edem Hourly electricity demand See Figure 5 

Ψgrid Emission factor of the grid electricity [kg/kWh] 0.45 

ΨNG Emission factor of natural gas power generation [kg/kWh] 0.18 
agri

k  Emission factor of k rooftop agriculture option See Table 4 

Ai Available roof area in i zones [m2] See Figure 4 

RF

vC  Unit price of selling each crop [US$/kg] See Table A12 

MPL Minimum part load of CHP 30% 

M1 
Big M for CHP model, the value may choose twice of peak 

electricity demand  
see Figure 5 

M2 
Big M for CHP model, the value may choose twice of peak 

electricity demand 
see Figure 5 
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yieldv,k Annual yield [kg/ha/year] See Table 3 

h-load

, ,Qi s h  Hourly heating demand See Figure 5 

c-load

, ,Qi s h  Hourly cooling demand See Figure 5 

h-roof

, , ,Qi s h k  
Heating demand saving rate by implementing rooftop farming 

options 

4%, 6% of original 

demand 

c-roof

, , ,Qi s h k  
Cooling demand saving rate by implementing rooftop farming 

options  

4%, 6% of original 

demand 

THR 
Threshold of CHP output variations as a percentage of its installed 

capacity 
50% 

Lossc-pipe Cooling network thermal loss rate 6% 

Lossh-pipe Heating piping thermal loss rate 5% 

 

 

Figure A1 Weather condition for DNDC simulation and energy prices in system optimisation 

model. a, rainfall and temperature at daily basis; b, tariffs for purchased electricity (grid_buy), fed-back to grid 

(grid_sell), natural gas for CHP use (NG_chp), and natural gas for boiler use (NG_b). 
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Table A5 Capital and operational costs for the simulated lettuce 

lettuce OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 450,000 

Fertiliser ($/ha/year) 43,200  35,760  35,760  35,760  35,760  35,760  35,760  35,760  35,760  35,760  

Water ($/ha/year) 357  1,486  1,377  1,324  1,328  1,311  1,235  1,329  1,302  1,266  

Energy ($/ha/year) 945  9,450  9,450  9,450  11,840  11,840  11,840  15,130  15,130  15,130  

Labor ($/ha/year) 63,428  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  

 

Table A6 Capital and operational costs for the simulated broccoli 

broccoli OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  

Fertiliser ($/ha/year) 14,400  14,400  14,400  14,400  14,400  14,400  14,400  14,400  14,400  14,400  

Water ($/ha/year) 357  1,006  1,004  987  1,019  1,024  1,028  1,106  1,026  1,032  

Energy ($/ha/year) 945  9,450  9,450  9,450  11,840  11,840  11,840  15,130  15,130  15,130  

Labor ($/ha/year) 63,428  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  

 

Table A7 Capital and operational costs for the simulated tomato 

tomato OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  

Fertiliser ($/ha/year) 29,714  10,588  10,588  10,588  10,588  10,588  10,588  10,588  10,588  10,588  

Water ($/ha/year) 1,429  6,064  5,483  4,981  5,192  4,763  4,387  4,974  4,384  3,841  

Energy ($/ha/year) 945  9,450  9,450  9,450  11,840  11,840  11,840  15,130  15,130  15,130  AC
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Labor ($/ha/year) 63,428  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  

 

Table A8 Capital and operational costs for the simulated cabbage 

cabbage OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  

Fertiliser ($/ha/year) 106,285  106,285  106,285  106,285  106,285  106,285  106,285  106,285  106,285  106,285  

Water ($/ha/year) 1,000  2,399  2,154  2,056  1,736  1,421  1,243  1,564  1,336  1,207  

Energy ($/ha/year) 945  9,450  9,450  9,450  11,840  11,840  11,840  15,130  15,130  15,130  

Labor ($/ha/year) 63,428  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  

 

Table A9 Capital and operational costs for the simulated potato 

potato OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  

Fertiliser ($/ha/year) 121,714  162,285  162,285  162,285  162,285  162,285  162,285  162,285  162,285  162,285  

Water ($/ha/year) 214  896  884  865  1,205  997  911  1,434  1,306  1,197  

Energy ($/ha/year) 945  9,450  9,450  9,450  11,840  11,840  11,840  15,130  15,130  15,130  

Labor ($/ha/year) 63,428  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  

 

Table A10 Capital and operational costs for the simulated radish 

radish OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  

Fertiliser ($/ha/year) 12,580  15,725  15,725  15,725  15,725  15,725  15,725  15,725  15,725  15,725  AC
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Water ($/ha/year) 214  843  734  641  997  931  656  986  909  721  

Energy ($/ha/year) 945  9,450  9,450  9,450  11,840  11,840  11,840  15,130  15,130  15,130  

Labor ($/ha/year) 63,428  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  

 

Table A11 Capital and operational costs for the simulated celery 

celery OPT1 OPT2 OPT3 OPT4 OPT5 OPT6 OPT7 OPT8 OPT9 OPT10 

Capital cost ($/ha) 120,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  450,000  

Fertiliser ($/ha/year) 61,714  68,114  68,114  68,114  68,114  68,114  68,114  68,114  68,114  68,114  

Water ($/ha/year) 357  2,602  2,460  2,379  2,091  1,980  1,874  3,197  3,001  2,836  

Energy ($/ha/year) 945  9,450  9,450  9,450  11,840  11,840  11,840  15,130  15,130  15,130  

Labor ($/ha/year) 63,428  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  105,714  

 

Table A12 Unit price for selling each crop 

Crop lettuce broccoli tomato cabbage potato radish celery 

Unit price [US$/kg] 0.62 0.90 0.50 0.30 0.32 0.32 0.78 
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