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1. Introduction

The question whether a given square integer matrix M can be factorised into a product 
of two integer matrices, either in the form of a square M = N2 or (in case of a symmetric 
positive definite matrix) in the form M = NTN , has a long history in number theory. It 
is known that if n ≤ 7 and M is an n ×n symmetric positive definite matrix with integer 
entries and determinant 1, then a factorisation M = NTN with N an n × n matrix 
with integer entries exists. However, there are examples of such matrices with dimension 
n = 8 which cannot be factorised in this way. This result is mentioned by Taussky (see 
[14, p. 812]) and goes back to Hermite, Minkowski, and Mordell [11].

The number theoretic properties relating to the factorisation of symmetric positive 
definite n × n integer matrices M with fixed determinant have classical connections to 
the theory of positive definite quadratic forms in n variables, see e.g. [12] and the above 
references.

In particular, Mordell considered the similarity classes of n ×n matrices with determi-
nant 1, where two such matrices L, M are in the same class if there exists a unimodular 
integral matrix N such that M = NTLN . The number of such similarity classes is de-
noted by hn. Then a matrix M is in the similarity class of In (the identity matrix) if and 
only if there exists a factorisation M = NTN with an integer matrix N . This implies that 
the quadratic form classically associated with the symmetric matrix M , q(x) = xTMx, 
can be written as

q(x) = xTMx = xTNTNx = yT y =
n∑

j=1
y2
j , (1.1)

where y = Nx, and N has determinant 1. Thus, the factorisation can be used to write 
the quadratic form q(x) as a sum of squares of n linear factors. When n = 8, such a 
factorisation may not exist, as Minkowski proved in 1911 that hn ≥ [1 +n/8], so hn ≥ 2
if n = 8. Mordell showed that h8 = 2 [12], and Ko showed that h9 = 2 as well [9].

In the present paper, we revisit the question of integer matrix factorisation in the light 
of recent general results on matrix decompositions [7], [8]. We establish in Corollary 3.1
that the existence of integer solutions to a certain quadratic equation is a necessary 
condition for a matrix factorisation of the type M = N2 or M = NTN (for symmetric 
positive definite M) to exist. It is interesting to note that solutions to this new type of 
quadratic equation associated with a given integer matrix M can also lead to rational 
matrix factors N with entries in 1

n2Z.
Throughout the paper, we use the classical example of the Wilson matrix [4], [6], [10], 

[13]

W =

⎛
⎜⎜⎜⎝

5 7 6 5
7 10 8 7
6 8 10 9
5 7 9 10

⎞
⎟⎟⎟⎠ (1.2)
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to demonstrate the methodologies under consideration. This integer matrix has determi-
nant 1 and hence an integer inverse matrix, but is moderately ill conditioned, despite its 
small size and entries. It has the integer factorisation W = ZTZ discovered in [6] with

Z =

⎛
⎜⎜⎜⎝

2 3 2 2
1 1 2 1
0 0 1 2
0 0 1 1

⎞
⎟⎟⎟⎠ . (1.3)

We note that the entries of Z are nonnegative and, although the matrix is not triangular, 
it has a block upper triangular structure and can be thought of as a block Cholesky factor 
of W .

The quadratic form associated with the Wilson matrix can be written, using (1.1) and 
(1.3), as a sum of four squares:

q(x) = xTWx = (x3 + x4)2 + (x3 + 2x4)2 + (x1 + x2 + 2x3 + x4)2

+ (2x1 + 3x2 + 2x3 + 2x4)2. (1.4)

As Z is a unimodular integer matrix and hence has an integer inverse, it follows by La-
grange’s four-square theorem that the quadratic form q generated by the Wilson matrix 
is universal [1] in the sense that it generates all positive integers as x ranges over Z4.

This shows that integer matrix factorisation is a valuable tool in studying the 
quadratic form generated by an integer matrix. As a result of our considerations in 
Section 3 below, the question of factorising the Wilson matrix in the form W = ZTZ is 
associated with the solutions of the quadratic equation

2w2 + x2
1 + x1x2 + x1x3 + x2

2 + x2x3 + x2
3 = 952. (1.5)

Indeed, a necessary (but not sufficient) condition for W to factorise is that integer so-
lutions (w, x1, x2, x3) to the quadratic equation (1.5) exist. Thus this equation can be 
considered a quadratic form obstruction to integer factorisability. This approach to in-
teger matrix factorisation was briefly alluded to, but not fully worked out in [6].

In Section 2 we derive a useful S +V decomposition of square matrices, first identified in 
[8], and give explicit formulas for constructing it that were not given in [8]. In Section 3, 
we use the concept of matrix weight, associated with the S factor, to establish the 
quadratic form obstruction to integer matrix factorisation and show how a solution of 
the corresponding quadratic equation can be used to calculate the matrix factors. In 
Section 4, we discuss adjugate matrices in view of the matrix decomposition and in 
particular show that the type S part of a matrix is characterised by having an adjugate 
with all equal entries. Finally, in Section 5 we identify the type V part of a matrix as 
belonging to a space of co-Latin squares, defined as square matrices with constant sum 
over all entries carrying the same symbol in any Latin square.
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2. The S + V decomposition of matrices

The following symmetries of n× n matrices were considered in [8].
(S) A matrix M = (mi,j)ni,j=1 ∈ Rn×n has the constant sum property (or is of type S) 

if there is a number w ∈ R, called the weight of the matrix, such that

n∑
j=1

mi,j =
n∑

j=1
mj,i = nw (i ∈ {1, . . . , n}).

The vector subspace of Rn×n of matrices having the constant sum property with some 
weight is denoted by Sn and can be characterised as

Sn =
{
M ∈ Rn×n : 1TnMu = 0 = uTM1n (u ∈ {1n}⊥)

}
,

where 1n ∈ Rn is the column vector with all entries equal to 1 and orthogonality is 
with respect to the standard inner product, {1n}⊥ = {u ∈ Rn : uT 1n = 0} (cf. [8, 
Thm. 2.6 (a)]).

(V) A matrix M = (mi,j)ni,j=1 ∈ Rn×n has the vertex cross sum property (or is of 
type V) if

mi,j + mk,l = mi,l + mk,j (i, j, k, l ∈ {1, . . . , n})

and the matrix entries sum to zero, 
∑n

i,j=1 mi,j = 0. The vector subspace of Rn×n of 
matrices having the vertex cross sum property is denoted by Vn and can be characterised 
as

Vn =
{
M ∈ Rn×n : uTMv = 0 (u, v ∈ {1n}⊥), 1TnM1n = 0

}
(2.1)

(cf. [8, Thm. 2.6 (e)]). (We derive a surprising alternative characterisation of this space 
in Section 5.)

The spaces Sn and Vn only have the null matrix in common; in fact, they comple-
ment each other and give Rn×n a superalgebra structure in the following way (cf. [8, 
Thm. 2.5 (a)]).

Theorem 2.1. Rn×n = Sn ⊕ Vn. Moreover, Sn is a subalgebra of Rn×n, and

SnSn ⊂ Sn, SnVn ⊂ Vn, VnSn ⊂ Vn, VnVn ⊂ Sn.

We show below in Corollary 2.1 that this decomposition of the matrix algebra is 
orthogonal.

We begin by showing in Theorem 2.2 that every element M of Vn can be written in 
the form M = a1Tn + 1nbT , before deriving a formula for obtaining these vectors a and 
b in Theorem 2.3.
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Theorem 2.2. A matrix M ∈ Rn×n is an element of Vn if and only if there exist vectors 
a, b ∈ {1n}⊥ such that M = a1Tn + 1nbT .

Proof. Let M ∈ Vn. Then for any v ∈ {1n}⊥, we have Mv ∈ {1n}⊥⊥ = R 1n; hence 
there is a linear form f : {1n}⊥ → R such that Mv = 1n f(v) (v ∈ {1n}⊥). By the Riesz 
representation theorem, there is a vector b ∈ {1n}⊥ such that f(v) = bT v (v ∈ {1n}⊥), 
and consequently Mv = 1nbT v (v ∈ {1, n}⊥). Now every x ∈ Rn can be written in the 
form x = α1n + v with suitable v ∈ {1, n}⊥ and α ∈ R, so

Mx = αM1n + Mv = αb1Tn1n + 1nbT v = (a1Tn + 1nbT )(α1n + v)

= (a1Tn + 1nbT )x,

where a := 1
n M1n, bearing in mind that 1Tn1n = n. It follows from the last equation in 

(2.1) that 1Tna = 0. Conversely, for any a, b ∈ {1n}⊥ the matrix a1Tn + 1nbT ∈ Vn. �
Clearly M ∈ Vn is symmetric if and only if a = b in the above representation. The-

orem 2.2 shows that dimVn = 2n − 2, so dimSn = n2 − 2n + 2 (see also [8, p. 14]), 
and that the rank of elements of Vn cannot exceed 2. Moreover, this theorem makes 
the spectral decomposition of any matrix M ∈ Vn very transparent. Indeed, the range 
of M is spanned by the orthogonal vectors a and 1n, so any eigenvector for a non-zero 
eigenvalue must be of the form u = αa + β1n with numbers α, β ∈ C. Then, bearing in 
mind that 1Tna = 0 and bT 1n = 0, and denoting the eigenvalue by λ, we find

λu = Mu = (a1Tn + 1nbT )(αa + β1n) = nβa + αbT a1n,

giving nβ = λα and bTa α = λβ. Hence any nonzero eigenvalue of M is an eigenvalue 

of the 2 × 2 matrix 

(
0 n

bT a 0

)
and vice versa. This gives the characteristic polynomial 

for M ,

χM (λ) = λn−2(λ2 − nbT a)

and furthermore the eigenvectors for M as v± =
√
na ±

√
bTa1n for eigenvalues λ± =

±
√
nbT a if bTa > 0, v± =

√
na ± i

√
−bTa1n for eigenvalues λ± = ±i

√
−nbT a if bTa < 0

and the single eigenvector a for eigenvalue 0 if bTa = 0 (and a 	= 0; otherwise any 
non-null vector orthogonal to b will do).

Finally, Theorem 2.2 easily yields the orthogonality with respect to the Frobenius inner 
product of the direct sum decomposition of the space of n × n matrices into Sn and Vn. 
The Frobenius inner product of two matrices A, B ∈ Rn×n is defined as 〈A,B〉 = trATB.

Corollary 2.1. The decomposition Rn×n = Sn ⊕ Vn is orthogonal with respect to the 
Frobenius inner product.
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Proof. Let S ∈ Sn, V ∈ Vn; then by Theorem 2.2 there are vectors a, b ∈ {1n}⊥ such 
that V = a1Tn + 1nbT . Hence

〈S, V 〉 = trSTV = tr(STa1Tn + ST 1nbT ) = 1TnSTa + bTST 1n
= aTS1n + bTST 1n = 0,

since S1n = ST 1n = nwS1n, where wS is the weight of the matrix S. �
We can calculate the weight of any matrix in Sn as the mean of all matrix entries. In 

fact, it is meaningful to define the linear form

wt : Rn×n → R, wtM = 1
n2

n∑
i,j=1

mi,j

giving the weight of any n ×n matrix M = (mi,j)ni,j=1. Theorem 2.2 immediately shows 
that wtM = 0 for all M ∈ Vn.

Any M ∈ Sn can be uniquely decomposed into

M = M0 + (wtS) En,

where M0 ∈ Sn has weight 0 and En = 1n1Tn ∈ Sn is the n × n matrix with all entries 
equal to 1. In conjunction with the previous observations, this gives rise to the following 
unique decomposition of general n × n matrices, including an explicit formula for the 
calculation of the parts.

Theorem 2.3. Let M = (mi,j) ∈ Rn×n. Then there is a unique decomposition

M = MV + M0 + (wtM) En,

where M0 ∈ Sn with weight 0 and MV = a1Tn +1nbT ∈ Vn, and the entries of the vectors 
a and b are given by

ai = 1
n

n∑
j=1

mi,j − wtM (i ∈ {1, . . . , n}),

bj = 1
n

n∑
i=1

mi,j − wtM (j ∈ {1, . . . , n}).

In particular, if M is an integer matrix then the vectors n2a and n2b have integer entries.

Proof. Let {εj : j ∈ {1, . . . , n − 1}} be an orthonormal basis of {1n}⊥. Then
{

1√ εj1Tn ,
1√ 1nεTj : j ∈ {1, . . . , n− 1}

}

n n
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is an orthonormal basis, with respect to the Frobenius inner product, of the (2n − 2-
dimensional) space Vn. Indeed, for j, k ∈ {1, . . . , n − 1} we have

〈
εj1Tn , 1nεTk

〉
= tr 1nεTj 1nεTk = 0

since εTj 1n = 0, and

〈
εj1Tn , εk1Tn

〉
= tr 1nεTj εk1Tn = δj k tr 1n1Tn = nδj k

and analogously for 
〈
1nεTj , 1nεTk

〉
.

These observations enable us to find MV , the Vn part of M ∈ Rn×n by orthogonal 
projection using the above orthonormal basis. We have

MV =
n−1∑
j=1

(〈
1√
n
εj1Tn ,M

〉
1√
n
εj1Tn +

〈
1√
n

1nεTj ,M
〉

1√
n

1nεTj
)

= 1
n

n−1∑
j=1

(
tr(1nεTj M)εj1Tn + tr(εj1TnM)1nεTj

)

= 1
n

n−1∑
j=1

(εTj M1n)εj1Tn + 1
n

n−1∑
j=1

1n((1TnMεj)εj)T = aM1Tn + 1mbTM

with

aM = 1
n

n−1∑
j=1

(εTj M1n)εj , bM = 1
n

n−1∑
j=1

(1TnMεj)εj .

Observing that {εj : j ∈ {1, . . . , n −1}} ∪{ 1√
n
1n} is an orthonormal basis of Rn, we find

n−1∑
j=1

(εTj v)εj = v − 1
n

(1Tnv)1n (v ∈ Rn).

Hence

aM = 1
n

(
M1n − 1

n
(1TnM1n)1n

)
,

and

bM = 1
n

(
MT 1n − 1

n
(1TnMT 1n)1n

)
. �

Example: the Wilson matrix. For the Wilson matrix W this decomposition takes the 
form
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16W = 14

⎛
⎜⎜⎜⎝

−27
9
13
5

⎞
⎟⎟⎟⎠

T

+

⎛
⎜⎜⎜⎝

−27
9
13
5

⎞
⎟⎟⎟⎠ 1T4 +

⎛
⎜⎜⎜⎝

15 11 −9 −17
11 23 −13 −21
−9 −13 15 7
−17 −21 7 31

⎞
⎟⎟⎟⎠ + 119E4 (2.2)

and for the integer matrix factor Z of eq. (1.3)

16Z = 14

⎛
⎜⎜⎜⎝

17
1
−7
−11

⎞
⎟⎟⎟⎠

T

+

⎛
⎜⎜⎜⎝

−7
−3
5
5

⎞
⎟⎟⎟⎠ 1T4 +

⎛
⎜⎜⎜⎝

3 15 −9 −9
3 −1 7 −9
−5 −9 −1 15
−1 −5 3 3

⎞
⎟⎟⎟⎠ + 19E4. (2.3)

The last terms on the right-hand side of these formulae correctly yield wtW = 119
16 and 

wtZ = 19
16 .

3. Integer factorisation of matrices and the quadratic form obstruction

On the basis of the matrix decomposition established in the preceding section, we now 
derive the quadratic equation arising from balancing the weights in a matrix factorisation.

Theorem 3.1. Let M, N ∈ Rn×n, and let M = MV + M0 + (wtM) En and N = NV +
N0 + (wtN) En be their decompositions as in Theorem 2.3, with NV = a1Tn + 1nbT .

(i) If M = NTN then

wtM = |a|2 + n (wtN)2, (3.1)

MV = y1Tn + 1nyT with y = NT
0 a + n (wtN)b, and M0 = NT

0 N0 + n bbT .
(ii) If M = N2 then

wtM = bT a + n (wtN)2, (3.2)

MV = y1Tn + 1nzT with y = NT
0 a + n(wtN)a and z = NT

0 b + (wtN)b, and M0 =
N2

0 + n abT .

Proof. (i) Since N0En = NT
0 En = On, we have

NTN = (NT
V NV + NT

0 N0)

+ (NT
V N0 + NT

0 NV + (wtN)NT
V En + (wtN)EnNV ) + n(wtN)2En,

where, by the superalgebra property, the matrices in the first bracket lie in Sn, the 
matrices in the second bracket in Vn. Writing NV = a1Tn + 1nbT , we find NT

V NV =
aTaEn + nbbT , NT

V N0 = 1naTN0, NT
0 NV = NT

0 a1Tn , NT
V En = nb1Tn and EnNV = n1nbT . 
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Hence the uniqueness of the decomposition of M by Theorem 2.3 gives the claimed 
identities.

(ii) Similarly, we find

N2 = (N2
V + N2

0 ) + (NV N0 + N0NV + (wtN)NV En + (wtN)EnNV )

+ n(wtN)2En,

and, setting NV = a1Tn + 1nbT , note that N2
V = bT aEn + nabT , NV N0 = 1nbTN0, 

N0NV = N0a1Tn , NV En = na1Tn and EnNV = n1nbT . This gives the claimed identities 
by uniqueness of decomposition. �

The above theorem gives the following quadratic form obstructions to the factorisation 
of an integer matrix M into either M = NTN or M = N2 with an integer matrix N .

Corollary 3.1. Given a matrix M ∈ Zn×n, it is necessary for the existence of a factori-
sation M = NTN with N ∈ Zn×n that n2 wtN ∈ Z and that the vector components 
n2aj , n2bj ∈ Z (j ∈ {1, . . . , n}), where N = a1Tn +1nbT +N0+wNEn is the decomposition 
of N as in Theorem 2.3, form a solution of the quadratic equation

n4 wtM = n (n2 wtN)2 +
n∑

j=1
(n2aj)2.

Similarly, for the decomposition M = N2, the quadratic equation is

n4 wtM = n (n2 wtN)2 +
n∑

j=1
(n2aj)(n2bj).

Suppose we are given a symmetric integer matrix M ∈ Zn×n and have found a solution 
(wN , a1, . . . , an) ∈ 1

n2Zn+1 of the quadratic equation associated with the factorisation 
M = NTN ,

n4 wtM = n5w2
N + n4

n∑
j=1

a2
j .

To complete the factorisation, we need to identify a vector b and a matrix N0 satisfying 
the equations in Theorem 3.1 (i). Using the decomposition M = y1Tn + 1nyT + M0 +
(wtM) En, we have b = 1

nwN
(y − NT

0 a), so we only need to find a solution N0 of the 
quadratic matrix equation

NT
0 (aaT + nw2

NIn)N0 −NT
0 ayT − yaTN0 = nw2

NM0 − yyT (3.3)

or, setting N0 = L − 1
T 2 ayT , the simpler quadratic
a a+nwN
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LT (aaT + nw2
NIn)L = nw2

N

(
M0 + 1

aTa + nw2
N

yyT
)
. (3.4)

The right-hand side and the middle factor on the left-hand side of these equations are 
determined in terms of the S +V decomposition of the given matrix M and the particular 
solution of the factorisation quadratic form considered. Although determining N0 or L
from these equations is a factorisation problem of similar type to the original equation 
M = NTN , we found that their solution was computationally more effective.

Remark 1. We remark in passing that the matrix aaT + nw2
N appearing as a mid-

dle factor on the left-hand side of eq. (3.4) is symmetric positive definite and can 

be written as ATA, where A =
√
nw2

N +
√

aT a+nw2
N−

√
nw2

N

aT a
aaT and A−1 = 1√

nw2
N

+
1

aT a

(
1√

aT a+nwN )N2 − 1√
nw2

N

)
aaT . Thus N0 = A−1L − 1

aT a+nw2
N
ayT , where

LTL = nw2
N

(
M0 + 1

aTa + nw2
N

yyT
)
,

but due to the presence of square roots this is unlikely to give a rational solution N0.

Example: the Wilson matrix. The quadratic equation arising from balancing the weights 
in the assumed factorisation of the Wilson matrix W = ZTZ is

wtW = 119
16 = a2

1 + a2
2 + a2

3 + a2
4 + 4w2

Z

= 2(a2
1 + a2

2 + a2
3 + a1a2 + a1a3 + a2a3) + 4w2

Z ,

as a4 = −a1 −a2 −a3. Multiplying the equation by 27 and setting xi = 16ai, w = 16wZ , 
we find that a necessary condition for the integer factorisation of the Wilson matrix is 
that there are integer solutions to the quadratic equation (1.5)

2w2 + x2
1 + x1x2 + x1x3 + x2

2 + x2x3 + x2
3 = 952.

Solving this equation for w, x1, x2, x3 in Mathematica 11.0 on a PC with a Intel Core i7 
6500CPU, gave the 1728 solutions in just under 6 seconds. Exactly one third (576) of 
these solutions lead to rational matrix factorisations W = ZTZ with Z ∈ 1

16Z
4×4.

The process of converting solutions into matrix factors, i.e. of finding suitable vectors 
b and matrices N0 satisfying the equations of Theorem 3.1 (i) as outlined after Corol-
lary 3.1, took considerably longer at 34 minutes. Our approach involved utilising (3.3), 
in which the vector b is eliminated and the right-hand-side completely determined for a 
given factor weight wN . Substituting potential solutions for the vector a and weight wN

thus reduces the general problem of finding the matrix N0 to that of an (n −1) × (n −1)
unknown matrix. For the Wilson matrix this is a 9-dimensional problem, and then for 
each of the 9-dimensional solutions for N0, the vector b can be quickly constructed. 
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Adding together the elements of the decomposition we then recover the rational matrix 
factors N .

To a large part, the multiplicity of solutions to the factorisation problem is expected. 
Indeed, it is clear that if M = NTN and U is an orthogonal matrix, then UN is another 
solution of the factorisation problem; conversely, if detM = 1 and N and N ′ are solutions 
with integer entries, then N ′ = UN , where U = N ′N−1 is an integer orthogonal matrix. 
It is also not hard to see that any integer orthogonal matrix is a signed permutation 
matrix, i.e. a matrix which has exactly one non-zero entry, either 1 or −1, in each row 
and in each column.

It is therefore natural to classify the factorisation matrices (integer or rational) modulo 
left multiplication with integer orthogonal matrices. For the factorisations of Wilson’s 
matrix obtained through the above procedure, this gives three distinct classes, repre-
sented by the matrix Z of (1.3) and the further two matrices

Z ′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
2 1 0 1
3
2 2 3 3
1
2 1 0 0
3
2 2 1 0

⎞
⎟⎟⎟⎟⎟⎟⎠

, Z ′′ =

⎛
⎜⎜⎜⎜⎜⎜⎝

3
2 2 2 2
3
2 2 2 1
1
2 1 1 2

−1
2 −1 1 1

⎞
⎟⎟⎟⎟⎟⎟⎠

. (3.5)

The three factorisations W = ZTZ = Z ′TZ ′ = Z ′′TZ ′′ correspond to the solutions 
(w, x1, x2, x3) = (19, 17, 1, −7), (w, x1, x2, x3) = (18, −8, 20, −12) and (w, x1, x2, x3) =
(19, 11, 7, −1) of eq. (1.5), respectively. Note that Z ′ and Z ′′ are not integer matrices, so 
the equivalence class of Z comprises all integer factorisations of the Wilson matrix.

4. Determinants, decompositions and adjugates

In this section we consider how the matrix decomposition of Theorem 2.3 can be used 
to obtain expressions for the determinant of a matrix. We begin by recalling that the 
adjugate of an n × n matrix M is defined by

adjM = ((−1)i+j det(Mj,i))ni,j=1,

where Mj,i denotes the submatrix of M obtained by deleting row j and column i; adjM
is the transpose of the matrix of cofactors of M . If M is nonsingular, then the adjugate 
can be written as adjM = (detM)M−1.

The adjugate of a matrix appears naturally when calculating the determinant of a 
rank-1 perturbation of a matrix, as shown in the following lemma (cf. [5]).

Lemma 4.1. Let M ∈ Cn×n and u, v ∈ Cn. Then

det
(
M + uvT

)
= det (M) + vT adj (M)u.
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Proof. Suppose M is a nonsingular n × n matrix. Then

det(M + uvT ) = det(M) det(I + M−1uvT ) = det(M)(1 + vTM−1u)

= det(M) + vT (det(M)M−1)u.

This gives the stated identity for regular matrices. The general case follows from the 
facts that the set of regular matrices is dense in Cn×n and that the determinant and 
adjugate are continuous functions of the matrix. �
Corollary 4.1. Let M0 ∈ Sn with weight 0, and M = M0 + wMEn with some wM ∈ C. 
Then

detM = wM 1Tn (adjM0)1n = n2(wtM)(wt adjM0).

Proof. Writing En = 1n1Tn , we have M = M0 +wM1n1Tn , and applying Lemma 4.1 gives 
detM = detM0 + wm1Tn (adjM0)1n. As M01n = 0, detM0 = 0. �
Remark 2. If M = a1Tn + 1nbT + M0 + (wtM)En is the decomposition of M ∈ Cn×n as 
in Theorem 2.3, where a, b ∈ {1n}⊥ and M0 ∈ Sn with weight 0, then Lemma 4.1 and 
Corollary 4.1 can be used to derive the formula

detM = (wtM − 1) 1Tn adj
(
M0 − abT

)
1n

+ (b + 1n)T adj
(
M0 − abT + (wtM − 1)En

)
(a + 1n).

Example: the Wilson matrix. For the Wilson matrix we have det(WS) = 357
8 , and 

adj(W0) = 3
8E4, where

WS = W0 + wW = 1
8

⎛
⎜⎜⎜⎝

67 65 55 51
65 71 53 49
55 53 67 63
51 49 63 75

⎞
⎟⎟⎟⎠

= 1
16

⎛
⎜⎜⎜⎝

15 11 −9 −17
11 23 −13 −21
−9 −13 15 7
−17 −21 7 31

⎞
⎟⎟⎟⎠ + 119

16 E4.

By Corollary 4.1, det(WS) = 16(wtW )(wt adjW0), and as adjW0 = 3
8E4, this equates 

to 16 11916
3
8 = 357

8 .

Thus the adjugate of the weightless type S part of the Wilson matrix is a multiple of 
E4. As we show in the following theorem, the adjugate of a weightless type S matrix is 
in fact always a scalar multiple of En. Moreover, the converse holds in the sense that a 
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matrix whose adjugate is a non-zero multiple of En must be a weightless type S matrix. 
Of course any matrix of rank n − 2 or less has adjugate 0 = 0En.

Theorem 4.1. (a) Let M ∈ Sn with weight 0. Then there is a constant w ∈ C such that 
adjM = w En.

(b) Let M ∈ Cn×n such that adjM = w En with some w ∈ C \ {0}. Then M ∈ Sn, 
wtM = 0 and rankM = n − 1.

Proof. (a) Let j ∈ {1, . . . , n} and denote by m1, . . . , mn ∈ Rn−1 the columns of the 
matrix M with the j-th row omitted. Let k ∈ {1, . . . , n − 1}. Then

mk = −
∑

l∈{1,...,n},l �=k

ml,

as the row sums of M vanish; hence

det(m1, . . . ,mk−1,mk,mk+2, . . . ,mn)

= det(m1, . . . ,mk−1,−
∑
l �=k

ml,mk+2, . . . ,mn)

= −
∑
l �=k

det(m1, . . . ,mk−1,ml,mk+2, . . . ,mn)

= − det(m1, . . . ,mk−1,mk+1,mk+2, . . . ,mn),

noting that all the determinants in the sum vanish except for the term l = k + 1. This 
shows that the (j, k + 1) entry and the (j, k) entry of adjM are equal. Since this holds 
for all k ∈ {1, . . . , n − 1} and for all j ∈ {1, . . . , n}, it follows that adjM has constant 
columns.

Applying the same argument to MT (which also has row sums 0), we find that adjM
also has constant rows, and hence adjM = wEn for some w ∈ C.

(b) Let j ∈ {1, . . . , n} and let m1, . . . , mn be as in (a). Since

det(m1, . . . ,mn−1) = (−1)n+jw 	= 0, (4.1)

the vectors m1, . . . , mn−1 form a basis of Cn−1, so

mn =
n−1∑
l=1

αlml

for suitable α1, . . . , αn−1 ∈ C. Now for any k ∈ {1, . . . , n − 1} we have

w = (−1)k+j det(m1, . . . ,mk−1,mk+1, . . . ,mn−1,mn)

= (−1)k+j+n−1−k det(m1, . . . ,mk−1,mn,mk+1, . . . ,mn−1).
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Combining this with eq. (4.1), we find that 0 = det(m1, . . . , mk−1, mk + mn, mk+1, . . . ,
mn−1). Hence, for suitable βl ∈ C(l ∈ {1, . . . , n − 1} \ {k}) we have

n−1∑
l �=k

βlml = mk + mn = mk +
n−1∑
l=1

αlml = (1 + αk)mk +
n−1∑
l �=k

αlml.

As m1, . . . , mn−1 are linearly independent, it follows that 1 +αk = 0, i.e. that αk = −1.
Since this holds for all k ∈ {1, . . . , n − 1}, we can conclude that 

n∑
l=1

ml = 0, i.e. that 

the rows of M , except for the jth row, add up to 0. Since j ∈ {1, . . . , n} was arbitrary, 
this holds in fact for all rows.

Applying the above reasoning to the transpose of M , we find that its columns also 
add up to 0. �
5. Co-Latin matrices

An n ×n Latin square (or Latin matrix) is an n ×n matrix with entries from {1, . . . , n}
such that the entries of each row and of each column are distinct, i.e. each number in 
{1, . . . , n} appears exactly once in each row and in each column. Evidently any Latin 
matrix is of type S. If L = (�p,q)np,q=1 is a Latin square and k ∈ {1, . . . , n}, we define 
L(−1)(k) = {(p, q) ∈ {1, . . . , n}2 : �p,q = k}.

Definition 1. A matrix M = (mi,j)ni,j=1 ∈ Rn×n has the co-Latin property if

∑
(p,q)∈L(−1)(k)

mp,q = 0

for all k ∈ {1, . . . , n} and all n × n Latin squares L.

Clearly the set of n × n co-Latin matrices forms a subspace of Rn×n. The co-Latin 
property can be considered an extreme opposite of the weightless type S property. A 
matrix in Sn with weight 0 has the property that its entries in any one row or column 
add to 0; a co-Latin matrix has the property that any selection of n entries such that 
no two selected entries lie in the same row or the same column add to 0. We show 
in the following that these properties are indeed complementary in the sense of unique 
decomposability of any given weightless n ×n matrix into a weightless type S matrix and 
a co-Latin matrix; this is a direct consequence of the following theorem, which identifies 
co-Latin matrices with Vn in (2.1).

Theorem 5.1. Let n ∈ N. The space of all n × n co-Latin matrices is equal to Vn.

To prepare the proof of Theorem 5.1, we first show that there exists a Latin square 
which has the entries 1 and 2 pairwise on the diagonally opposite corners of a rectangle. 
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By suitable row and column permutations, we can assume without loss of generality that 
this rectangle is the top left 2 × 2 square. The existence of such a Latin square is not 
trivial; in fact there is none in dimension 3, as the arrangement

⎛
⎜⎝ 1 2 ∗

2 1 ∗
∗ ∗ ∗

⎞
⎟⎠

enforces two 3s in the third column and the third row, violating the defining condition 
of a Latin square.

Lemma 5.1. Let n ∈ N \ {1, 3}. Then there exists an n × n Latin square L = (�ij), such 
that �1 1 = �2 2 = 1 and �1 2 = �2 1 = 2.

Proof. We consider the cases of even and odd n separately.
(i) Even n = 2m. Consider the Hankel Latin square L̃ = (�̃i,j)mi,j=1, where �̃i,j =

1 + ((i + j − 2) modm) (i, j ∈ {1, . . . , m}), e.g. for m = 4

L̃ =

⎛
⎜⎜⎜⎝

1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 3

⎞
⎟⎟⎟⎠ ,

and then replace each (i, j) entry in this matrix with the 2 × 2 block

L =
(

2�̃ij − 1 2�̃ij
2�̃ij 2�̃ij − 1

)

to create the Latin square L.
(ii) Odd n. Here we start off the first 3 antidiagonals of L thus:

⎛
⎜⎝ 1 2 3

2 1
3

⎞
⎟⎠ ,

and then fill up the antidiagonals up to and including the main antidiagonal in the 
Hankel Latin manner described above. We then fill the next three antidiagonals with

3 1 2 1 2 · · · 1 2 1 2 3,
2 3 3 3 · · · 3 3 3 1,
1 2 1 · · · 2 1 2,

respectively, and complete the remaining antidiagonals in the standard Hankel Latin 
manner. For example, for n = 9 this gives the Latin square
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L =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 2 3 4 5 6 7 8 9
2 1 4 5 6 7 8 9 3
3 4 5 6 7 8 9 2 1
4 5 6 7 8 9 1 3 2
5 6 7 8 9 2 3 1 4
6 7 8 9 1 3 2 4 5
7 8 9 2 3 1 4 5 6
8 9 1 3 2 4 5 6 7
9 3 2 1 4 5 6 7 8

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

This construction works from n = 5 onwards. �
We can now prove the following.

Lemma 5.2. Let n ∈ N, and let M = (mi,j)ni,j=1 be an n × n co-Latin square. Then 
M ∈ Vn.

Proof. The statement is trivial in the case n = 1.
Now consider n ∈ N \ {1, 3}. Let i, j, k, l ∈ {1, . . . , n} such that i 	= k and j 	= l. 

By suitable permutation of the rows and columns of the Latin square constructed in 
Theorem 5.1, there exists a Latin square L = (�p,q)np,q=1 such that �i,j = �k,l = 1 and 
�i,l = �k,j = 2. By the co-Latin property, we know that

∑
(p,q)∈L(−1)(1)

mp,q = 0,

so

mi,j + mk,l = −
∑

(p,q)∈L(−1)(1)\{(i,j),(k,l)}

mp,q. (5.1)

Now consider the matrix L′ = (�′p,q)np,q=1 which arises from L by keeping all the same 
entries except that �′i,j = �′k,l = 2 and �′i,l = �′k,j = 1. Then L′ is still a Latin square, and 
by the co-Latin square property we find that

∑
(p,q)∈L′(−1)(1)

mp,q = 0,

so

mi,l + mk,j = −
∑

(p,q)∈L′(−1)(1)\{(i,l),(k,j)}

mp,q. (5.2)

Noting that the index sets of the sums in (5.1) and (5.2), and hence the values of these 
sums, are the same, we conclude that M ∈ Vn.
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Finally, to see that the statement holds true in the case n = 3, we note that, up to 
permutations of the symbols {1, 2, 3}, there are only two different 3 × 3 Latin squares, 
namely either of the form

⎛
⎜⎝ A B C

B C A

C A B

⎞
⎟⎠ or

⎛
⎜⎝D E F

F D E

E F D

⎞
⎟⎠ .

To show that a 3 × 3 co-Latin square M has the vertex cross sum property, without loss 
of generality we can consider the case i = j = 1, k = l = 2 (as the other cases can be 
reduced to this by suitable row and column permutations). Then the first of the above 
Latin matrices shows that m2,1 + m1,2 + m3,3 = 0, the second Latin matrix shows that 
m1,1 + m2,2 + m3,3 = 0, and it follows that m1,1 + m2,2 = m2,1 + m1,2. �

We can now complete the proof of Theorem 5.1.

Proof of Theorem 5.1. By Lemma 5.2, any n × n co-Latin matrix is an element of Vn.
Conversely, by Theorem 2.2 any element of Vn is of the form a1Tn +1nbT , with suitable 

a, b ∈ {1n}⊥. Since a Latin square takes each value in {1, . . . , n} exactly once in each 
row and each column, it is hence straightforward to see that a1Tn and 1nbT are co-Latin 
squares. �
Example: the Wilson matrix. Using the V part of our integer factorisation matrix Z0, 
given by ZV in (2.3), we have

ZV = 1
8

⎛
⎜⎜⎜⎝

5 7 11 11
−3 −1 3 3
−7 −5 −1 −1
−9 −7 −3 −3

⎞
⎟⎟⎟⎠ .

It can be easily verified numerically that this type V matrix satisfies all 4! = 24 Latin 
selections summing to 0, and so is a co-Latin matrix.

6. Conclusions

Matrices with integer entries play an important role in many modern applications 
of mathematics. In numerical analysis, for example, they make convenient test matrices 
because they are exactly representable. Families of matrices with bounded integer entries 
have recently been termed Bohemian matrices and various aspects of them have been 
studied [2], [3], [4]. The factorisation of integer matrices in the form M = NTN with 
integer N is related to a classical topic in number theory, but there has not been much 
work on finding such factorisations. In this work we have provided some new ideas to 
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determine under what circumstances integer factorisations exist and to develop an ap-
proach to computing them. Our results are founded upon the orthogonal decomposition 
of the algebra of square matrices into two parts, of which one part is the subalgebra of 
constant (row and column) sum matrices, while we identified the other part as a space of 
co-Latin square matrices with symmetries determined by the properties of Latin squares.
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