First amphibian inventory of one of Madagascar’s smallest protected areas, Ankafobe, extends the range of the Critically Endangered *Anilany helenae* (Vallan, 2000) and the Endangered *Boophis andrangoloaka* (Ahl, 1928)

Katherine E. Mullin1,*, Manoa G. Rakotomanga2, Minosoa L.C. Razafiarimanana3, Izabela M. Barata4, Jeff Dawson4, Frank Hailer1, and Pablo Orozco-terWengel1

1 Cardiff School of Biosciences, Sir Martin Evans Building, Museum Avenue, Cardiff, CF10 3AX, Wales, UK.
3 Department of Animal Biology, University of Antananarivo, Madagascar.
4 Durrell Wildlife Conservation Trust, Les Augrès Manor, Trinity, Jersey, JE3 5BP, Channel Islands.
* Corresponding author. E-mail: katherinemullin93@hotmail.co.uk
© 2021 by Herpetology Notes. Open Access by CC BY-NC-ND 4.0.

Abstract. Using DNA barcoding, we present the first inventory of amphibians present in one of Madagascar’s smallest protected areas, Ankafobe. This small area represents some of the last remaining central high plateau forests in Madagascar. However, with just 27.89 ha of forest split into two fragments, Ankafobe is highly threatened by yearly grassland fires. We recorded a total of 382 individuals and identified 14 species of frogs. This list includes the Critically Endangered *Anilany helenae* which was previously thought to be micro-endemic and restricted to Ambohitantely Special Reserve, therefore increasing this tiny species’ range to a second protected area. Our results also imply an extension of the known range of the Endangered *Boophis andrangoloaka*. While our inventory likely underestimates the diversity of frog species present in Ankafobe, it provides a baseline for future conservation efforts at this site.

Keywords. DNA barcoding, Herpetofauna, central plateau, fragmentation, range extension
that grasslands are a part of the highland’s natural landscape (Vorontsova et al., 2016; Solofondranohatra et al., 2020), however it is in living memory that many of the valleys in this area were forested, and that these have been degraded or lost in recent years (A. Ando, pers. comms). Much of this degradation has resulted from a series of human actions: firstly due to exploitative selective logging for large trees, secondly burning for charcoal production, and finally by man-made fires that are carried by the wind across the grasslands in the dry season (Miandrimanana et al., 2019). Ambohitantely Special Reserve is one of the largest last remaining forest blocks on the central plateau, home to less than 1630 hectares of forest when all fragments are combined (ESRI World Imagery, 2018) and this area has been the focal location for researching and conserving the highland’s special biodiversity (Goodman et al., 2018).

Ambohitantely and its surrounding area is listed as one of Madagascar’s 21 Alliance for Zero Extinction (AZE) sites (Goodman et al., 2018). Within 10 km northwest of Ambohitantely, there is a lesser-known protected area called Ankafobe, which is inconspicuously located in valleys beside the Route Nationale 4 (RN4) highway.

Ankafobe covers 133.87 ha and is one of the smallest protected areas in Madagascar. This small reserve, of which the majority is grassland, contains only 27.89 ha of forest, divided into two degraded evergreen fragments. Although isolated, Ankafobe is close to Ambohitantely and is considered to be an outlier of Ambohitantely’s larger forest fragment due to its similar biodiversity (Birkinshaw et al., 2009). While these fragments are isolated and their future is uncertain, they provide evidence of the natural forest habitat which once covered more of the central highlands than at present, prior to recent anthropogenic activities (Vieilledent et al., 2018). Despite their small size, these fragments are of high conservation significance (Miandrimanana et al., 2019). Research has identified three species of lemurs inhabiting Ankafobe, one of which is threatened with extinction (the Vulnerable Goodman’s Mouse lemur Microcebus lehilahysara Roos & Kappeler, 2005) (Rainforest Trust, 2020), and a Critically Endangered endemic tree Schizolaena tampoketsana Lowry et al. 1999 (Lucas, 2014). Small 0.1 ha forest plots have revealed 87 species of trees (Miandrimanana et al., 2019), and 112 species of plants are known from the site (C. Birkinshaw, pers. comm.). Despite being understudied and having an incomplete biological inventory, this limited research from Ankafobe highlights just how important these small forest fragments are for biodiversity conservation on Madagascar’s central plateau.

Amphibians in Ambohitantely have been studied in the past (Vallan, 2000), but to date, there are no published inventories for amphibians in Ankafobe. To fill this knowledge gap for amphibians in Madagascar, it is critical to understand what biodiversity Ankafobe remnant forest has and create baseline information highlighting its importance for protection and for monitoring purposes. Historical herbarium specimens show that the forest in Ankafobe is too small and degraded to still host the original set of plant species found on site when the forest was more extensive (Miller et al., 2016) and hence it is assumed that these degraded fragments have already lost some of their original biodiversity. The same is likely also the case for amphibians, so we hypothesise that Ankafobe will have a similar, but reduced, amphibian fauna to that in Ambohitantely.

Materials and Methods

Study site. Ankafobe Special Reserve (Lat -18.1089, Long 47.1932, elevation 1475 m) is a small protected area of 133.87 ha, approximately 120 km north of the capital Antananarivo and 10 km from Ambohitantely, in Madagascar’s sub-humid ecoregion (Fig. 1). The forest habitat present here is humid riparian forest which follows a stream in a valley between the surrounding hills. This positioning has likely protected it from the yearly fires that travel across the grasslands (Miller et al., 2016). The site has been managed by Missouri Botanical Gardens (MBG) since 2004. It has been under temporary protection from the Madagascar Government since 2018 whilst waiting for official status within the national protected area network (it is currently listed as a Nouvelle Aire Protegee (NAP) (Goodman et al., 2018)). The site is currently managed by MBG and the local community-led organisation VOI-Sohisika.

Ankafobe consists of two forest fragments with a varying landscape (Fig. 2). Fragment 1 is surrounded by grassland and the national highway RN4 curves around the fragment’s northern edge. On the eastern side of the fragment, reforestation efforts have been ongoing since 2006 (C. Birkenshaw, pers. comm.). Fragment 2 is highly degraded; a fire in 2014 scorched 9 ha of forest (Missouri Botanical Gardens, 2019), which included the remaining large trees in the northwest section of the fragment. Further, the area in the centre of fragment 2 is so heavily degraded it could almost be described as two separate forest patches. This fragment is also surrounded by grassland, and some reforestation efforts
in the west, while a rice paddy fragments it from a small patch of forest in the east.

Data collection. A rapid amphibian survey assessment was conducted in Ankafobe in March 2020. During six consecutive days, ten surveys were conducted across the two fragments. This resulted in 117 person-hours of survey, comprising 48 hours in the day and 69 hours at night. Both fragments had equal survey effort with three 200 m transects and a total of five surveys. Surveys were undertaken as visual encounter search surveys (VES), a method which has been proven to be the best for tropical frog sampling (Almeida-Gomes et al., 2016) and which is used to determine species richness and to compile a species list of an area (Crump and Scott, 1994). Each VES survey lasted 3 hours and was conducted along a 200 m transect (Table 1, Fig. 1). Transects were conducted to allow stratified sampling across the different microhabitats (such as riparian, swamp and terrestrial) and biotypes present in the fragments (tree trunks, tree holes, overhanging branches, forest floor leaf litter, Pandanus spp. leaf axils, Dypsis spp. axils, on and under rocks in streams, puddles, bamboo hollows, the streambeds, rock crevices, under and inside logs and in epiphytes). Quadrats (4 m²) were also conducted randomly along the transects to target leaf litter species (Bell et al., 2006). Methods followed the ‘intermediate intensity’ of VES, returning all objects to their original position, reducing impact on the environment, and not destroying any features e.g., epiphytes or logs (Crump and Scott, 1994). The limitations of this were accepted to not further negatively affect an already degraded habitat. Where species were heard calling but not seen, their call was recorded, and their presence was noted. The taxonomic nomenclature used herein follows Vieites et al. (2009).

DNA barcoding. Species were identified in the field when possible, however up to three post-metamorphic individuals of each species per fragment were swabbed. Buccal swabbing allowed at least one representative of each species to be barcoded to ensure field identification was correct and to determine whether there were any cryptic and/or candidate species present. Fine tip rayon swabs (Medical Wire & Equipment Co. #MW113) were used to remove cells from inside of the frog’s mouth as per the method described by Pidancier et al. (2003). The swabs were cut off into 1.5 mL Eppendorf tubes containing 0.5 - 0.75 mL of Longmire Buffer (Longmire et al., 1997).

Table 1. Coordinates (latitude and longitude) for all transects surveyed in Ankafobe.
All DNA extractions were performed using the Qiagen Tissue and Blood kit following the manufacturer guidelines. Given the universal success of 16S primers and the widespread use of this mitochondrial region for amphibian barcoding (Vences et al., 2005; Vieites et al., 2009), we chose to amplify this region, sequencing at least two individual representatives from each morphologically identified species (when possible). PCR thermo-cycling conditions were as follows: 3 minutes at 94 °C, followed by 35 cycles of 94 °C for 30 seconds, 58 °C for 30 seconds and 72 °C for 1 minute, finishing with an elongation step of 72 °C for 10 minutes. A 12.5 μl reaction volume was used, using the primer pair 16SA-L, 5′ - CGC CTG TTT ATC AAA

Figure 2. The landscape across Ankafobe protected area. (A) Grassland landscape (B) Man-made fires in the near distance (C) Burnt forest at the northwest side of Fragment 2 from fires in 2014 (D) East of Fragment 1 with views of reforestation efforts (E) Northeast of Fragment 1 (F) West of Fragment 2. Photographs by K. E. Mullin.
AAC AT - 3' and 16SB-H, 5' - CCG GTC TGA ACT CAG A TC ACG T - 3' (Palumbi et al., 1991). For three species identified as *Mantidactylus biporus* (Boulenger, 1889), *Mantidactylus curtus* (Boulenger, 1882), and *Spinomantis peraccae* (Boulenger, 1896), cytochrome oxidase subunit1 (COX1) was also sequenced to improve taxonomic identification. Un-purified PCR products were sequenced in the forward and reverse directions using the Eurofins sequencing service. All sequences were viewed, trimmed and aligned in Geneious Prime (https://www.geneious.com) and were run through nucleotide BLAST (NCBI) to confirm species identity. All sequences were deposited in GenBank (Table 2).

While the occurrence of *Batrachochytrium dendrobatidis* has not been previously investigated in the surveyed sites, biosecurity was taken seriously with all processing equipment sterilised between individual frogs (dipped in 25% commercial bleach, followed by 70% ethanol and then flamed) (Kolby et al., 2015). Field boots were scrubbed and disinfected with 10% commercial bleach between each fragment and field site.

Data analysis. We used species accumulation curves to indicate whether all species were likely found during the surveys, followed by species pool analysis to determine how many species were likely unseen, giving the expected total richness in the study area. These analyses were performed using the Vegan package (Oksanen, 2017) for R language (R Core Team, 2020) using specaccum (Ugland et al., 2003) for the accumulation curve and the specpool and estimateR functions for the species pool analysis. Shannon Index values were calculated to determine site species richness, and these were also computed in R using the Vegan package.

Results and Discussion

Species richness at Ankafobe. Together with visual identification (and one acoustic record), DNA barcoding revealed a total of 14 species from eight genera, distributed into three families (Table 2; Fig. 3). We recorded a total of 382 individuals over the studied period, distributed across the surveyed transects (Table 3). The most species-rich family was Mantellidae, with 11 species recorded, representing 83.8% of the total number of records. Currently, with 233 species (Frost, 2021), the Mantellidae is endemic to Madagascar and Comoros and is considered the most diverse frog family in the country (Glaw and Vences, 2007) – estimated species richness for this family is 266 species (Crottini et al., 2012) out of the 533 total number of frog species estimated for Madagascar (Perl et al., 2014). Within

<table>
<thead>
<tr>
<th>Table 2. List of post-metamorphic amphibians recorded in Ankafobe forest in March 2020 with GenBank accession numbers for the 16S rRNA gene fragment and COX1 gene fragment for the three candidate species.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Family</td>
</tr>
<tr>
<td>Microhylidae</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Mantellidae</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ptychadenidae</td>
</tr>
</tbody>
</table>
Figure 3. Ten of the 14 amphibian species found at Ankafobe during this survey: A) Boophis ankaratra, B) B. goudotii, C) B. andrangoloaka, D) Guibemantis liber, E) Mantidactylus sp. Ca18, F) Mantidactylus sp. Ca17, G) Mantidactylus betsileanus, H) Platypelis pollicaris I) Anilany helenae J) Blommersia blommersae. Photographs by K. E. Mullin and M.G. Rakotomanga.
this family, the most represented genera in our study were *Mantidactylus* Boulenger 1895 (four species, 217 individuals) and *Boophis* Tschudi 1838 (four species, 58 individuals). Although there are currently 36 and 79 recognized species, respectively (Frost, 2020), the number of confirmed undescribed amphibian species far exceeds the number of currently described species for both genera (Vieites et al., 2009). These data show a vast underestimation of Madagascar’s endemic fauna (Vieites et al., 2009; Crottini et al., 2012) and support the need for further species inventories in remaining forest fragments of un-surveyed sites (such as Ankafobe) in the central plateau of Madagascar and elsewhere. Three species were identified as confirmed candidate species (CCS sensu Vieites et al., 2009): *Mantidactylus* sp. Ca17 and *Mantidactylus* sp. Ca18 (Wollenberg et al., 2011), belonging to the *Mantidactylus biporus* and *Mantidactylus curtus* group, respectively; and *Spinomantis* sp. Ca11, a species belonging to the *Spinomantis peraccae* group (Perl et al., 2014).

Species range extension. Here we extend the geographical distribution of all species encountered; however, the most crucial finding is the range extension of two threatened amphibian species: *Anilany helenae* (Vallan, 2000) and *Boophis andrangoloaka* (Ahl, 1928). *Anilany helenae* was found in Ankafobe Fragment 2, extending this species’ distribution 10 km northwest from the only previously known population. This species is Critically Endangered (IUCN, 2016) and was previously thought to be found in just one locality in Ambohitantely Special Reserve, where it has been found in two forest fragments (Vallan, 2000). Further surveys at other potential localities have not found any additional populations (Andreone et al., 2008). Combined with ongoing forest loss and insufficient protection of Ambohitantely, its small range warranted its status as CR. Despite our record extending the species’ range to another protected area, we believe there is no need to reassess the IUCN Red List status given the small size of the fragment where it was found, the continued vulnerability of Ankafobe, and its isolation from the Ambohitantely population due to the inhospitable grasslands between the sites. This species was only recorded in the larger fragment, Fragment 2, however further intensive survey effort may also find the species in Fragment 1. Given this species’ rarity, this record should be used to enhance forest conservation efforts at Ankafobe.

Another species of interest is the Endangered *Boophis andrangoloaka* (Ahl, 1928). Although just one individual of this species was found, this record also extends this species’ range 10 km northwest from its previously known most western population. Having previously been known from two locations in central

Table 3. Number of individuals of each species found along each transect.

<table>
<thead>
<tr>
<th>Species</th>
<th>Fragment 1</th>
<th>Fragment 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Transect 1</td>
<td>Transect 2</td>
</tr>
<tr>
<td>A. helenae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>P. pollicaris</td>
<td>7</td>
<td>4</td>
</tr>
<tr>
<td>B. ankaratra</td>
<td>-</td>
<td>1</td>
</tr>
<tr>
<td>B. goudotii</td>
<td>16</td>
<td>15</td>
</tr>
<tr>
<td>B. andrangoloaka</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>B. sp. aff. elenae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>G. liber</td>
<td>17</td>
<td>1</td>
</tr>
<tr>
<td>M. betsileanus</td>
<td>15</td>
<td>27</td>
</tr>
<tr>
<td>M. aff. biporus (M. sp. Ca17)</td>
<td>1</td>
<td>7</td>
</tr>
<tr>
<td>M. aff. curtus (M. sp. Ca18)</td>
<td>2</td>
<td>37</td>
</tr>
<tr>
<td>M. femoralis</td>
<td>5</td>
<td>8</td>
</tr>
<tr>
<td>Bl. blommersae</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>S. aff. peraccae (S. sp. Ca11)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Pt. mascareniensis</td>
<td>2</td>
<td>-</td>
</tr>
<tr>
<td>Grand Total</td>
<td>65</td>
<td>100</td>
</tr>
</tbody>
</table>
Madagascar (Andrangoloaka and Ambohitantely Special Reserve), it is assumed however, to be found in locations between these two sites and is thought to occur in fewer than five threat-defined locations (IUCN, 2015). Nonetheless, species type locality (Andrangoloaka) has been dramatically reduced and a tiny portion of the original forest still exists (Andreone et al., 2007). In Ambohitantely, *B. andrangoloaka* has been recorded in fragmented forest habitat and has been found 1–1.5 m high in vegetation next to isolated trees in a large exposed swampy area (Glaw et al., 2010), and in edge forest habitat (K. Mullin, pers. obs.). Although our finding adds another protected area to the species’ range, this new location is also threatened by forest loss, and the species is likely to remain endangered.

Several individuals from a *Boophis* species were heard calling from the canopy in Fragment 1. Advertisement call is the most reliable character for species identification since they differ remarkably among most species of the group (Glaw et al., 2001) and so we used acoustic records and identified this species as belonging to the *Boophis luteus* (Boulenger, 1882) group, sounding most like *Boophis elenae* Andreone, 1993. However, due to not physically seeing or DNA sampling these individuals, the species record is tentative, and the number of individuals is not accurate. *B. elenae* is listed as Near Threatened, with the true extent of its distribution considered unknown (IUCN 2015). However both *B. luteus* and *B. elenae* have been recorded at Ambohitantely (Vallan, 2000; Goodman et al., 2018), supporting our findings that a species conspecific with this lineage is present in Ankafobe. Further survey effort is required to confirm identity and distributional range of this taxon.

Species richness compared to Ambohitantely. The only published inventory of Ambohitantely is taxonomically out of date, however preliminary results from our research, following the same survey methodology, allow diversity comparisons between the sites. Ankafobe has a Shannon index of $H = 2.09$, however our results suggest that we found 60–93.3% of the species potentially present in Ankafobe.
compared to Ambohitantely with a value of H = 2.98. As previously hypothesised, species richness is indeed lower in Ankafobe when compared to Ambohitantely. Several factors may explain this lower level of diversity.

Firstly, this reduced diversity in Ankafobe may be due to the forest being highly degraded. On average, the fragments are between 50–70 m wide (the widest forest in Ankafobe is 131 m) and are likely classified as edge habitat. Forest edges present altered microclimates and are more vulnerable to climatic influences such as solar radiation and wind, and have reduced tree cover (Dantas et al., 2016). These factors make the forest hotter and drier (Saunders et al., 1991; Alignier and Deconchat, 2013), with edge effects generally penetrating up to 100 m into the forest; however, these can vary between 5 m to 1000 m depending on location and effect being studied (Broadbent et al., 2008). Secondly, Ankafobe forest fragments may have reduced vegetation structure and structural heterogeneity, which are important factors for maintaining amphibian diversity (Vallan, 2000; Bickford et al., 2010; Adrianso et al., 2017). Habitat alterations have been found to change the functional trait composition of frog assemblages in Madagascar (Riemann et al., 2017). For example, the studied fragments had very few tree holes (breeding habitats for some species) in comparison to neighbouring Ambohitantely (K. Mullin, pers. obs.).

In 2002, Ankafobe was commercially exploited for timber (Birkinshaw et al., 2009) resulting in the removal of mature trees with amphibian microhabitats (e.g. tree holes, depressions, epiphytes). This may explain why very few tree frogs were found. Other than B. goudotii, which was abundant, just one individual of Spinomantis aff. peraccae, B. ankaratra and B. andrangoaloaka were recorded. Further, hole egg laying species such as Plathodontohyla, Anodontyla or other Platypelis species (such as Platypelis grandis) which are present in Ambohitantely were not recorded in Ankafobe. Similar results were found in a study on fragmentation effects on amphibian communities in Eastern Madagascar, whereby large and medium-sized microhylids (specifically Platypelis and Plathodontohyla) were only found in continuous forest and not in forest fragments (Riemann et al., 2015). Additionally, Vallan (2000) found fragments smaller than 30 ha in Ambohitantely present no microhylids, concluding that this resulted from the climate and microclimates present in the fragments. Anodontyla vallani (an Ambohitantely endemic) was not found in Ankafobe which may correlate with the lack of tree holes, and dryness of the degraded forest. Potentially, this difference in vegetation structure is due to the later protection of Ankafobe and previous selective logging. Following the exploitation in 2002 the remaining degraded vegetation was more vulnerable to fires, and in 2003 around 30% of the remaining forest in Ankafobe was indeed burned by grassland fires (Birkinshaw et al., 2009). Resource extraction was suspended in 2004 by Government decree (No 23548/2018), however, it is unlikely that sufficient tree maturation has occurred since then. As such, the forest fragments in Ankafobe are likely unable to support a similar number of species to Ambohitantely. These changes could have resulted in the lower species diversity observed in this study, including the absence of tree frogs who rely upon specific microhabitats.

Conclusions. This study has extended the range of all species surveyed, and most importantly, the ranges of the Critically Endangered Anilany helenae and the Endangered Boophis andrangoaloaka. Despite the limitations presented during this rapid assessment, our study provides a baseline for managers of this small but locally important protected area, feeding into conservation plans and future monitoring of the amphibian fauna. The present inventory supports the growing evidence that small forest fragments are important for species conservation in Madagascar. These findings should contribute towards the Government’s decision to make this protected area officially part of the national protected area network.

Surrounding forest remnants are informally protected by local volunteers who occasionally visit forest fragments and report any illegal deforestation to local authorities. While Ankafobe forest is protected by MBG and the local community association (VOI), made up of passionate locals, the reserve is still highly threatened by unpredictable and uncontrollable man-made fires that are carried across the landscape by the wind. Approximately 70% of the local population are members of the VOI (A. Ando, pers comm.), and membership gives access to the planted Eucalyptus spp. forest for firewood and the opportunity to work on any jobs that arise on the reserve, such as reforestation events. Conservation efforts must continue to support the local people in preserving this forest.

Acknowledgements. We are grateful for ethical approval from Cardiff University and research permits approved by the Madagascar Ministry of the Environment and Sustainable Development (MEDD) N°332/19/MEDD/SG/DGEF/DGRNE. We thank the Department of Animal Biology, University of Antananarivo for supporting the permits and project. We thank Chris Birkinshaw,
References

First amphibian inventory of one of Madagascar’s smallest protected areas

Accepted by Angelica Crottini