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Abstract This paper presents the modelling and
experimental evaluation of the gravity compensation of a
horizontal 3-UPU parallel mechanism. The conventional
Newton-Euler method for static analysis and balancing of
mechanisms works for serial robots; however, it can
become computationally expensive when applied to the
analysis of parallel manipulators. To overcome this
difficulty, in this paper we propose an approach, based
on a Lagrangian method, that is more efficient in terms of
derivation of the gravity
based on the
computation of the total potential energy of the system at
each position of the end-effector. In order to satisfy the
gravity compensation condition, the total potential
energy of the system should remain constant for all of the
manipulator’s configurations. Analytical and mechanical
gravity compensation is taken into account, and the set of
conditions and the system of springs are defined. Finally,
employing a reality environment, some
experiments are carried out and the reliability and

computation time. The

compensation model is analytical

virtual
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feasibility of the proposed model are evaluated in the
presence and absence of the elastic components.

Keywords 3-UPU  parallel manipulator, gravity
compensation, Lagrangian method, experimental test,
elastic system

1. Introduction

The translational 3-UPU parallel mechanism has attracted
the attention of many researchers for decades. This kind
of manipulator has the potential to be used widely in
different fields of science and industry, due to its purely
translational and precise motion. A great deal of work has
been done on several aspects and applications of parallel
mechanisms (see, for example, [1-4]). Like other parallel
robots, a 3-UPU parallel mechanism provides high load-
carrying capacity, high velocity, structural stiffness,
precision and low inertia, at the expense of limited
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workspace and difficulties with mechanical design,
motion generation, direct kinematics and control.

A 3-UPU parallel mechanism exhibits a pure translational
motion if the two outer revolute joint axes in each limb
are parallel and the two inner revolute joint axes are
parallel to one another. Tsai and Joshi carried out one of
the first studies on the spatial 3-UPU parallel manipulator,
analysing its kinematic properties[5, 6]. Research was
further generalized by Frisoli et al. [7], who analysed the
geometrical conditions for type synthesis of fully
translational In 2001 Park
introduced a model of 3-UPU parallel manipulator that
had an unexpected mobility despite none of the prismatic
joints being actuated, and Han et al. carried out the
kinematic sensitivity analysis of this robot [8, 9]. This
mechanism was later investigated in successive articles
interpreting the robot behaviour through
approaches [10, 11]. Walter et al. carried out a complete
analysis of the kinematic behaviour of this robot using
methods from algebraic geometry [9, 12]. Gregorio and
Parenti-Castelli gave an account of the singularities
analysis of the translational 3-UPU parallel mechanism,
and addressed both
singularities [13].

parallel manipulators.

several

translational and rotational

All of the above-mentioned studies addressed the
vertically established parallel manipulators —when the
robot’s base is parallel to the ground and the links are
approximately orthogonal to the ground with some
degrees of deviation. In these robots the gravity vector is
normally directed to the base of the mechanism, which as
some advantages in terms of the
compensation of gravity, since the weight of the platform

mechanical

is almost uniformly distributed among the different limbs.
In addition, the vertical component of the actuator force is
much higher than its horizontal component as it
corresponds to the gravitational force; therefore, the
actuator’s efficiently
mechanism’s weight. In the case of a horizontally
established parallel manipulator, where the limbs are
nearly parallel to the ground and the gravity vector lies in
the plane of the base, the component of actuator force
corresponding to gravitational force is much smaller than
the orthogonal one (parallel to ground). This fact seems to
become large mechanisms, and the
compensation of the high gravitational force through the
small vertical component of the actuators’ force poses a
challenge of gravity compensation for thee manipulators
that has not yet been brought into focus.

force can compensate  the

critical in

Gravity compensation and dynamic balancing have been
of great interest to researchers for several decades [14-19].
Gravity compensation is known as the condition in which
the mechanism is statistically balanced. The literature
shows that mainly springs and counterweights, and in a
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few cases pulleys and cams have been employed in
efforts gravity
mechanisms [20, 21]. For their parallel counterparts,
usually a different configuration of springs is used, and
sometimes counterweights[20, 22, 23]. Gosselin carried
out several studies on the gravity compensation of
parallel robots and proposed a general mathematical
formulation as a design tool for parallel mechanisms;
however, the imposed limitations on achievable solutions
reduced the number of feasible designs. The practicality
of gravity compensation should therefore be improved
through further research [21, 24]. Checcacci et al. adopted
Lagrange’s approach and screw theory for static
balancing of a 5DOF parallel robot, and implied the
experimental comparison of these two methods [25].

towards compensation for serial

In this work we focus on a large workspace configuration
of a 3-UPU parallel manipulator mounted in a horizontal
configuration; we also present a particular solution for
gravity compensation of this mechanism. The large size
of this robot arises from the challenge of its gravity
compensation. One contribution of the present work is to
achieve the static balancing by a combination of
mechanical and analytical compensation. As a mechanical
compensation, two different configurations of springs are
located along and orthogonal to the links (to the authors’
knowledge there are no other 3-UPU mechanisms that
use this spring configuration for gravity compensation).
As an analytical compensation, based on Lagrange's
developed the gravity
algorithm for a horizontal 3-UPU parallel mechanism, for
which we present both modelling and experimental
performance characterization The Lagrange method is
chosen to achieve a computationally efficient solution for
this parallel robot. The reliability and effectiveness of the
proposed algorithm is evaluated through experiment by
employing a haptic interface and Virtual Reality (VR)
environment. Due to the manipulator’s task, which is
carried out at low speed, the dynamic disturbance is
negligible, and thus the dynamic balancing is not taken
into account. The remainder of the paper is organized as
follows. In section 2 the structure of our 3-UPU parallel
manipulator is introduced and a brief description of its
specific application in fMRI is given. Section 3 describes
the proposed gravity compensation algorithm. The
mechanical gravity compensation is discussed in section 4.
The haptic experiment and discussion are presented in
sections5 and 6 respectively. Finally, section 6 presents a
conclusion.

approach we compensation

2. Motivation

Parallel manipulators are known as mechanisms with
complex direct kinematics. The available closed loops in
them more complicated
compared to their serial counterparts in terms of

these mechanisms make
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computations. The conventional Newton-Euler method
which is now preferred for gravity compensation [21, 24],
passes through the orientation matrices in order to
represent each parameter with respect to another frame
(or fixed frame). Thanks to the difficulty of mathematical
computation of parallel mechanisms, this vector-based
method leads to computationally expensive algorithms,
much complexity and difficulties in obtaining solutions;
feasible designs have therefore been limited. Therefore,
an alternative is required in order to improve the
practicality of balancing [20, 21, 24]. In this proposed
method, based on the Lagrangian method a new
algorithm is proposed. By obtaining the potential energy,
we optimize the computational procedure. Thus, the
potential gravitational and elastic energies are computed,
and by taking account of the position of the end-effector
the gravitational and elastic forces acting upon it are
found in the Cartesian space. In order to provide gravity
compensation for all of the configurations the total
potential energy should be constant[21]. To demonstrate
the effectiveness of the proposed algorithm, several
experiments are carried out, as reported in section 5.

3. Device structure

A large number of stroke survivors lose motor control
abilities in the brain. Functional magnetic resonance
imaging, or fMRI, is a technique for measuring brain
activity in neuroscience. Employing an fMRI-compatible
robot and by providing a haptic application and virtual
reality environment, a subject’s motor interaction and the
progress of therapy can be evaluated. In addition, daily
life interactions and environments can be simulated,
which can lead to the identification of the brain activity
most similar to that during Activities of Daily Living
(ADLs). In this project we designed and fabricated an
fMRI-compatible horizontal 3-UPU parallel mechanism. It
is important to provide precise control of the mechanism
because of the crucial environment of the fMRI, and to
guaranty the safety of the person during haptic
interaction.

Figure 1 shows the 3D model of the designed mechanism
and its application in fMRI. As can be seen, robot’s end-
effector should move with precision in the fMRI’s narrow
tunnel. Considering the strong magnetic field in the fMRI
environment, in the fabrication of the robot magnetic-
compatible materials are used. Carbon fibre with high
stiffness is employed for the manufacturing of the
comprehensive links. The rest of the device is made of
polymers, and the parts exposed to high stresses are
made of non-ferromagnetic metals such as aluminium
and brass. In this 3-DOF manipulator, three shielded DC
motors are used as link actuators. Electrical transmission
happens through braid yarn cables. The robot is fixed to
the aluminium supporting frame, which provides
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adjustability in the height and position of the device. In
order to avoid affecting the brain image and ensure safety,
the distance between the fMRI scanner and shielded
motors should be more than 1. 8 m [26].

Figure 1. The 3D model of the 3-UPU parallel mechanism and
fMRI scanner.

Figure 2 illustrates a schematic representation of the
mechanism. As can be seen, the parallel manipulator
consists of a fixed base, which is an isosceles triangle, and
a moving platform, which is an equilateral triangle. The
moving platform is magnified for clarity. These two
triangular platforms are connected through three
identical links, which are jointed to the planes by
universal joints. Each universal joint is formed by two
intersecting revolute joints. At the orthocentre of each
triangular platform, a Cartesian coordinates is attached.
The end-effector is fixed to the orthocentre of the moving
platform with a small offset.

Due to the pure translational motion of the device, a
geometric method is used to obtain the workspace of the
manipulator [20]. Figure 3 shows the theoretical
workspace of the device, which is the intersection of three
spheres with a radius of the maximum link length. All of
the dimensions are in metres. In practice, due to
mechanical constraints, the manipulator’s workspace
becomes smaller.

Prismatic joint

Moving
platform

Fixed base

Figure 2. Schematic representation of the 3-UPU parallel
mechanism.
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Figure 3. 3-UPU parallel mechanism’s workspace.
4. Analytical gravity compensation

In the analytical study of parallel robots, the difficulty of
achieving an accurate analysis of parallel mechanisms
compared to their serial counterparts should be taken into
account. In addition to the difficulty of computing a
Jacobian matrix in the closed form, errors measurement
errors problematic, as can
manufacturing tolerances, etc. [24]. This section describes
how to obtain the gravitational force imposed on the end-
effector by exploiting the total potential energy of the
system. Figure 4 shows the mechanism coordinates for a
typical link. As can be seen at the orthocentre of each
triangular platform, a Cartesian coordinate is attached.
Point O is an orthocentre of the fixed base, and is defined
as a base coordinate. At point O’, which is an orthocentre
of the moving platform, a local coordinate is attached. Fyis

and thermal can be

a gravitational force at the end-effector, and F; is a force
introduced by the i actuator. Three components of F;along
axes of base coordinates are shown asFjy , FjyandFj,.

End-effector
I

Moviné platform

__--Fixed base

Figure 4. Mechanism’s coordinates.

As discussed in reference [21], the position vector of the
centre of mass of mechanism with respect to the Cartesian
frame attached to the fixed base can be written as

1
¢ =L XiamiG M
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where

n is a number of moving bodies in the
mechanism;

mi is the mass of i moving bodies;

M is the total mass of moving bodies, i. e.

M =3 m )

In general, the position vector of centre of mass depends
on the manipulator configuration. Defining A as a vector
composed of all the joint coordinates of themanipulator, ¢
can be written as a function of A as

c=c) ®)

The condition for the force balancing of the manipulator
is
c=c¢y 4)

wherec,can be any arbitrary constant vector, i. e. , an
independent vector fromA.

The condition for statically balancing the mechanism in
the absence of springs and other energy storing elements
can be written as

elc=2C, (5)

wheree,is a unit vector representing the direction of
gravity and Cycan be anyarbitrary constant.

In the presence of elastic elements, the condition for static
balancing is that the total potential energy of the system,
which is the sum of gravitational and elastic potential
energy, remains constant [21].

In order to find the centre of mass of a 3-UPU parallel
manipulator, it is assumed that P, P, P,are components of
the position of the end-effector P in relation to the base
coordinate, as shown in Figure 4. For this mechanism,
seven moving bodies are considered, six for three links
and one for the end-effector, where two centres of mass at
each link refer to the carbon beam and the aluminium
bars that form the link and actuator, respectively. In this
manipulator, e, works along the y-axis of the defined
Cartesian space. Solving Direct Kinematics and Inverse
Kinematics, link length d and the position of the end-
effector P are known in any configuration [5].

Projecting the three links and the end-effector on the x-y

plane of the base coordinate, the position of centres of
mass along the y-axis can be obtained as

@; = cos™! (Z—zi) i=1,23 (6)
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W, = cos ™ (=) @)

dy sing,
W; = sin~! (%) 2,3 )
Ce1 = Py + Lgy sing, sini, 9)
Cei = Py — Lg;sing;siny; i =2,3 (10)
Cair = By + Lyy; sSinq sin, (11)
Caji = Py — Ly sing;siny; i=2,3 (12)

where

@; is an angle between the x-axis and the projection of
the it link on the fixed base.

diis a length of the it link.

P, P, and P, are components of the position of the
end-effector in the Cartesian coordinates.

1); is an angle between the i link and z-axis.

ais a constant referring to the fixed base triangular
structure.

C.; is the position of the centre of mass of the carbon
beam of the i link along the y-axis.

Cyy; is the position of the centre of mass of the
aluminium bars of the it prismatic joint along the y-
axis.

Lg; is the distance between the centre of mass of the
carbon beam of the i link and the end-effector.

Ly;; is the distance between the centre of mass of the
aluminium bars of the i™" prismatic joint and the end-
effector.

Therefore, the gravitational potential energy of the
system can be written as

Uy = gel Xl muc; (13)

where n=7 and g is the magnitude of the gravitational
acceleration.

Without loss of generality, one can obtain:

U = [MgeM; MyMsMps My, My3] -

P, 0 -
Cer
CCZ
Ce3 : (14)
Cann
Carz
o Capa.

where Mee, Mi and Maii are matrices of size 3x1, which are
masses of end-effector, link i and aluminium bars of ith
prismatic joint, respectively, for i=1, 2, 3.
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Therefore, the total potential energy of the system can be
obtained as a function of P as follows:

U, = geluk (15)
where k is an arbitrary constant vector of size 7 x 1.

Deriving from [25] the gravitational force can be written

as

AU(P) _ 9U(P)
AP~ oP

F =limpp_ (16)
Assume Fg and Fm are gravitational and motor forces,
respectively, working on the end-effector. The condition
for gravity compensation can now be written as

Fy+Fp+f =G 17)

where f’ represents the disturbances existing in the
system and Cfis an arbitrary constant.

Following the notation, gravitational force at the end-
effector in the Cartesian space can be obtained as

;€08 @1 (Py—az) 1

/P,§+(Py—o<2)2

U 1 COS @, (Py+as)

T e P22+J(Px+oc4)2+(Py+0<5)2+Pzz

(18)

1 COS (p3(Py+a3)

P}+\/(Px—oc4)2+(Py+o<5)2+Pzz

where;are constants conditional on device structural
properties; and

[L 0 1
|52 a-Ehe |
g : B1Pz(B2Px+B3)
X=op= ra-thh (19)
0 B1Pz(B2Px—P3)
£/20-Eh'h2
where
E; =P2+ (P, +v0)* + P (20)
Ey = (P +7y1)* + (B, +v2)* + P} (1)
Ey = (P, —y1)* + (P, +7v2)* + P} (22)

Where ;s and v, s are constants whose values are

obtained based on device structural properties.

Therefore, Fy, the gravitational force on the end-effector,
can be obtained in terms of P as follows:
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F(P. P, P,)

_ _0Udp _
Fg=AX=2""0=EPP,R) (23)

E, (P By, Fy)

where F, F, and F, are components of F; along the x-axis,
y-axis and z-axis respectively, and are functions of the
position of the end-effector.

5. Mechanical gravity compensation

In order to decrease the burden of actuators, to provide
gravity compensation elastic components, e. g. , springs,
can be used. Elastic components are also able to provide
balancing conditions even in the absence of actuator force;
for an example, see [23].

In the presence of springs, gravity compensation refers to
the set of conditions where the total potential energy of
the mechanism is constant for any configuration of the
manipulator [21]. These conditions can be written as

U==¢C, (24)
where Ce is an arbitrary constant.

The total potential energy of the system is given bythe
summation of gravitational potential energy and elastic
potential energy stored in the springs [21], which can be
written as

1. @ng 2
U= geg Zﬁ)bl m;c; + EZ;;I k](L] — L]O) (25)
where

ng is the number ofthe mechanism’s linear elastic
elements,

kj is the stiffness of the jt elastic element,

L; is the length of the j* elastic element,

Ljo is the undeformed length of the j" elastic element.

The literature shows that in order to provide gravity
compensation, several combinations of springs should be
used [20, 22]. Springs are mostly used because they
impose negligible mass and inertia on the mechanism. In
this work, two systems of springs are designed. The first
is designed to place springs along the mechanism’s links
(corresponding to the prismatic joints’ movements) in
order to decrease the burden of the actuators; the second
is designed to connect the centre of mass of each link to
the fixed point, in such a way that springs are placed
nearly orthogonal to the ground. This system of springs
thus provides vertical force (against gravitational force)
and plays the most important role in the gravity
compensation.
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The elastic potential energy of the springs can be written
as

1
Ues = 3 Xio1 (kuALE; + kyiALY) (26)

where for i=1, 2, 3, k; is the stiffness of the springs, AL; is
the variation in the spring’s length from its undeformed
length, [ stands for springs which are placed along
mechanism links, and v stands for springs that are placed
nearly vertically.

To compute the total elastic forces, first we calculate the
force provided by springs along mechanism links, and
then the force introduced by springs that are placed
nearly orthogonally to the ground. Figure 5 shows the
schematic representation of one typical link with the
spring attached along a prismatic joint.

Figure 5. Schematic representation of a typical joint with spring.

Let a; and b; be the position vectors of points A; and B; in
relationto the coordinate attached to the fixed and
moving platform, respectively (see Figure 5). As
addressed in [5], s;, a unit vector of the i" limb pointing
along the prismatic joint, can be written as

Py—eix Py—eiy Pz_eiz] :
si=|—=,—,= =123 27
¢ [ a a4 v 27)

where
ei=ai—bii=1,2,3 (28)

Following this notation, the length of spring in any
configuration can be written as

Lli = di - Lci i= 1, 2,3 (29)
where constant value L; is the length of the fixed part of
the it limb, and, as mentioned, d; is the length of the i
limbs, which is known from inverse kinematics.

Hence, the spring’s length variation can be written as

ALy =1Ly —Lygj=dy—Leg— Ly 1 =1,2,3 (30)

whereL,; is the undeformed length of the it limb’s spring.
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Let Ax; be the vector of length variation. One can obtain
this vector as

Axy; = ALy.s] i=1,2,3 31)
The spring force can be written as
Fig =ky.0x; 0=1,2,3 (32)

In order to obtain the force imposed by the springs on the
end-effector, equation 16 is used as a new alternative. In
this way, by taking a derivative of spring potential energy
with respect to the position of the end-effector, the force
on the end-effector due to the springs in the Cartesian
space is obtained, and can be written as

— aUels

Fels - ap (33)
PxK (Px+f )K (Px_f K.
—kn —1/21 + ki 1/32 2t kg3 1/32 2
Dy D, Dy

(Py—&)K (Py+&)K (Py+&5)K
Foe=|—ku ylez L+ kg ylez 2+ k3 ynlfz > (34)
2 3
_p PKa PzKy PzKs
kll Dll/z + klZ Dzl/z + kl3 D;/Z |
where
__p
K, = _D1 +$1— Lios (35)
1
K, = D2/2 =& — Loz (36)
1
Ks = D,/? = & — Ligs (37)
and
Dy = P2+ (P, — &) + P2 (38)

2
D, =P +8)°+ (P +&) +B  (39)

2
Dy = (P, —&)* + (B, + &) + P? (40)
and ¢; are the mechanism’s instructional constants. In
order to obtain F,, the force of the spring on the end-

effector in the Cartesian space, taking advantage of
Jacobian matrix (addressed in [5]), one can write

J=|sT (41)

[Felx(Px' Py' Pz)]

Feoc =]T-Fels = Fle}’(Px’ PJ"PZ) (42)

Felz(PxJ Py: PZ)J
where F,y, Fe,, and F,,are components of F along the x-

axis, y-axis and z-axis, respectively, and are functions of
the position of the end-effector.

www.intechopen.com

After obtaining the force provided by the link springs, the
force of the second system of springs is computed. In this
system each spring connects the centre of mass of the link
to the related extended bar, which is fixed to the
mechanism’s supporting frame. Figure 6 shows the
schematic representation of a vertical spring attached to a
typical link.

Figure 6. Schematic representation of a typical link with vertical
spring.

Let Ly; be the vector pointing from A;to the upper end of
the spring and let Lgjbe the distance between 4; and the
lower end of the spring (centre of mass of the link). Lyg;,
the vector of the spring length, can then be written as

Lysi = Ly

—Lg.sT i=1,23 (43)

Thus, Ly;, the length of the spring, can be obtained as

b = B0 4 Ba0) 4 120 1=1.23 (a9

Following this notation, the vg;, a unit vector of the length
variation of thei vertical spring, can be written as

vy =2l (=1,2,3 45)

ni

LetALy;be the length variation of i" spring; one can then
obtain

ALy =Lpi— Ly =123 (46)

where Lyg;is the undeformed length of the i vertical
spring.

Thus, Axy;, the vector of the i vertical spring length
variation, can be written as

Ax,,i = AL.U,:.US,: i= 1, 2, 3 (47)
Therefore, the vertical spring force can be written as

Fys=kyi.Ax,; i=1,2,3 (48)
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In order to obtain the force imposed on the end-effector
due to the system of vertical springs, the same
computation as for the link’s spring is done using
equation 16. Thus, this force in the Cartesian space can be
obtained as

aUevs — aUest
Feys = aP ~—  ads oP (49)
and
Q=2%_
aP
R _ Pu(Pygy) PPy T
@1/2 @j/z @j/z Qi/z
1 (Pate)’ _ (Pt (Pyte,) _Prep |
SN ol o | Y
1 (Pey) _ (Pme)(Pyte,) _ P(Pimey)
_9;/2 @z/z @z/z Bz/z |
where
0, =PxZ+(Py_QO)2+Pzz (51)
0y = (P + 01)*+(B, +02)* + P/ (52)
0; = (P, — 91)2+(Py + 92)2 + Pz2 (53)
and
_kvlrl(pl(3F151_u0)(¢11/2_LV01)_
cpll/z
1
— % — kvzrz(3F252_Il11)(¢z/2_Lv02) (54)
ds cpz/z
kv31"3(3F3S3—u2)(¢;/2—L,,03)
1/2
@, i
where
@y = I7sf + (151 + p3)? + (1151 + pa)? (55)

D, = (15, — ps)® + (I35, — pe)* + (s, — uy)* - (56)
@3 = (I353 + ps)? + (1353 — pe)? + (I3s3 — uy)*>  (57)

and
1
h= (P (R-eo) +82) ¢ (58)
1
/
L=(C+e)?+(B+e) +P2) " —¢  (59)

1
2 /2
L=((P—0)?+ (B +e) +P) "=¢  (60)
Following the notation, one can therefore obtain

Fevx(Px'Py'Pz)

AUgy 0
Fops = QY =20 =

s 0P Fevy(erPy'Pz) (61)

Fevz(Px'Py: Pz)

Int J Adv Robotic Sy, 2012, Vol. 9, 193:2012

where F,yy, Fe,yy and F,,,, are three components of Fe,sin
the Cartesian space, and are functions of the position of
the end-effector in relation to the based coordinate.

In order to provide gravity compensation, the following
condition should be satisfied:

FelC+Fevs+Fm+Eg+fI=Cr (62)

where(; is an arbitrary constant and is equal to zero in a
complete compensation. In articulated mechanical
systems the gravitational force may be compensated
completely by elastic components (e. g. , springs) for all
configurations. Thus, the gravity compensation condition
can be written as

FelC+Fevs+Eg+f’=Cg (63)

where C; is an arbitrary constant and, in a complete
compensation, is equal to zero.

6. Experimental Test

In order to evaluate the effectiveness and reliability of the
proposed model, several experiments were carried out,
with and without springs. During the experiments a force
sensor was attached to the end-effector of the robot and
measured the gravitational force imposed on the end-
effector. The sensitivity and rated capacity of the force
sensor were 10, 015[V] and 245, 166[N], respectively.
Employing XVR (eXtreme Virtual Reality, VRMedia ®), the
virtual reality application was carried out, whereby a
virtual room was designed. A small ball was placed in the
virtual room as an indicator of the end-effector’s position;
the end-effector pursues its movement in the virtual reality
environment. The experimental works are classified as two
experiments: in the first experiment, no elastic components
were used, while in the second a spring was attached along
the first link, and two vertical springs were fixed to the
second and third links in order to impose vertical forces
against gravitational force. Figure 7 shows the 3-UPU
parallel mechanism with attached springs.

Figure 7. Horizontal 3-UPU parallel mechanism with elastic elements.
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6. 1 System without elastic elements

The first experiment aimed to evaluate the effectiveness
and reliability of the modelling and analytical gravity
compensation algorithm. As can be seen in Figure 8 (a), six
yellow balls were placed in the virtual room in different
trial positions of the same plane in the symmetric pattern,
along the x and z axes. This pattern was chosen in order to
observe and compare the mechanism’s behaviour in the
symmetrical configuration of the limbs and in the
symmetrical points. The subject was asked to hold and
move the end-effector of the 3-UPU parallel mechanism to
place the end-effector indicator (red ball) on the positions
of the yellow balls one by one. In order to minimize the
disturbance imposed by subject and environment, we
saved the data from sensor and model while the force
sensor was fixed to a table. Figure 8 (b) illustrates the
position of the end-effector in each trial position in the
mechanism workspace. For each position, based on the
gravity compensation algorithm, the combination of
actuators’ forces imposed the force along the y-axis on the
end-effector, which led to the static balancing. The real
weight of the device for any position is measured using a
force sensor.

(b)
Figure 8. (a) Trial points’ positions in the virtual reality
application; (b) Positions of the end-effector in the workspace.

www.intechopen.com

Figure 9 shows the comparison of the forces measured
from sensors and the value obtained from the model
along the y-axis. The maximum observed error was equal
to 2. 09 [N].

For gravity compensation of a vertical configuration
parallel robot, an almost symmetrical distribution of
forces is expected among different links; however, in this
horizontal configuration we observed a greater force on
the first link, which means the first actuator should
produce more force. The actuators’ currents, applied to
provide gravity compensation on each trial position, are
illustrated in Figure 10. As can be seen, the current of the
first actuator is about twice that of the other actuators,
showing that most of the gravity compensation came
from the first actuator. This should be carefully analysed,
since it limits the overall performance of the mechanism.

50

Force (N)

204 SRS S — S

—0—Model |

15 T T T T T T
1 2 3 4 5 6
Point Number

Figure 9. Comparison of forces obtained from model and sensor
in the absence of elastic elements.
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Figure 10. Actuators’ currents in the absence of elastic elements.
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6. 2 System with elastic elements

In this in order to satisfy gravity
compensation conditions in the absence of actuators, a
configuration of springs was attached to the mechanism.
A compression spring with as tiffness of 0. 03 [N/mm]
and an undeformed length of 1100 mm was attached
along the first link, while two extension springs with
stiffness and undeformed length of 0. 2 [N/mm] and 350
mm were fixed to the centre of mass of the second and
third links (see Figure 7). Employing the above-
mentioned XVR application and attaching the force

experiment,

sensor to the end-effector, the previous experiment was
repeated by the subject, and the data for each trial point
were preserved. Figure 11 shows the actuator currents
relevant to each trial point. As can be seen, the currents of
all three actuators, especially the first one, were decreased
dramatically, and the gravitational force was distributed
among the three links symmetrically.

Current (A)

Point Number

Figure 11. Actuators’ currents in the existence of elastic
elements.

In this experiment, the force produced by the system of
springs compensated the gravitational force; the low
current of the actuator was due to adjusting undesirable
spring forces along the x and z axes. Figure 12 illustrates
the force measured by the sensor and the force obtained
from the model. In the existence of the springs the
maximum observed error was equal to 3. 158[N].

7. Discussion

The gravity compensation experiments were carried out
successfully and the mechanism remains statistically
balanced for the whole workspace including the
mentioned points, which demonstrates the
correctness of the gravity compensation algorithm. In
addition, by implementing a system of three springs, in
the absence of actuators the manipulator had a static
balancing, while the links were at their minimum length
and the end-effector was along the z-axis. The fact that
the experimental force read by the sensor is not the same
as that of model could be clearly explained by the
presence of many sources of unmodelled properties

trial

(mainly static and dynamic friction) or uncertainties with
the modelled ones (masses, parts dimensions).

The experimental results indicate that using elastic
elements successfully led to a decrease in the burden of
actuators to compensate the mechanism’s weight when the
system is statically balanced, even in the absence of
actuators. Figure 13 shows the percentage of the reduction
of the actuators’ absolute current for each trial position. As
can be seen, the most-observed effect of employing springs
was with the first actuator, where current was decreased to
3. 36 A. Comparison of Figures 10 and 11 demonstrates
that the proposed spring configuration allowed a
symmetrical distribution of gravity compensation forces
among the three actuators to be achieved, which improved
the performance of the mechanism.

—i— Model
| —®—Sensor |

Force (N)

Point Number

Figure 12. Comparison of forces obtained from model and sensor
in the existence of elastic elements.
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Figure 13. The percentage of the actuators’ current
reduction due to the existence of elastic elements.
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8. Conclusions

The conventional Newton-Euler approach to static
balancing works for serial robots, but it shows some
weaknesses applied to their parallel counterparts. In this
paper anew algorithm for gravity compensation in a
horizontal 3-UPU parallel mechanism was presented. The
proposed algorithm is based on a Lagrangian model and
takes advantage of the total potential energy of the
system. It has been discussed in terms of analytical
(mechanism weight compensated by actuator forces) and
mechanical (employing three springs
approaches. To evaluate the effectiveness of both analytical
and mechanical algorithms, several experiments were
carried out in the presence and absence of springs.

configuration)

The feasibility and reliability of this model have been
successfully demonstrated for a horizontal 3-UPU parallel
mechanism. The proposed algorithm can be implemented
for any parallel mechanism, knowing the total potential
energy of the system and the position of the end-effector.
The observed error between model and measured force
was due to friction and other sources of uncertainties,
which will be taken into the account in future work.
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